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Abstract— This paper presents an innovative kinodynamic
motion planning algorithm for Unmanned Aircraft Systems,
called MP-RRT#. MP-RRT# leverages the idea of RRT#

and the Model Predictive Control strategy to solve a motion
planning problem under differential constraints. Similar to
RRT#, the algorithm explores the map by constructing an
asymptotically optimal graph. Each time the graph is extended
with a new vertex, a forward simulation is performed with
a Model Predictive Control to evaluate the motion between
two adjacent vertices and compute the trajectory in the state
space and the control space. As result, the MP-RRT# algorithm
generates a feasible trajectory for the UAS satisfying dynamic
constraints.

Preliminary simulation results corroborate the proposed
approach, in which the computed trajectory is executed by
a simulated drone controlled with the PX4 autopilot.

I. INTRODUCTION

In the last years Unmanned Aircraft Systems (UAS) have
been widely studied due to their flexibility to provide many
applications, such as mapping, surveillance, package deliv-
ery, to name a few [1]. Their extensive use has induced
the rapid growth of the related research areas, making
possible the development of intelligent drones able to fly
autonomously [2].

The development of an unmanned aircraft with au-
tonomous flight is very complex [3], requiring the im-
plementation of the essential tasks of autonomous robots:
motion planning and control, localization and mapping, and
perception [4]. However, despite the level of autonomy of
the vehicle, the motion planning problem is omnipresent.
In simple words, motion planning aims to find the control
input that moves the vehicle from an initial to a target state
satisfying some constraints, such as avoiding obstacles and
considering the vehicle kinematics and dynamics [5].

Often, the motion planning problem is split into two parts:
path planning and path tracking. In [6] the authors propose
a potential field approach to compute a path, then followed
using a multi-constrained Model Predictive Control. Another
two-stage strategy is proposed in [7], in which the Rapidly-
exploring Random Tree (RRT) algorithm is used to plan a
reference trajectory tracked by a Linear Quadratic Regulation
(LQR) controller. Similarly, in [8], the path computed with
RRT is post-optimized using a Model Predictive Control to
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define a feasible trajectory. However, these approaches do not
always guarantee the dynamic feasibility of the computed
path and, as a consequence, the UAS will take a different
trajectory than the planned one.

Kinodynamic motion planning algorithms overcome this
problem because they attempt to solve the motion planning
problem satisfying, simultaneously, kinematic and dynamics
constraints [9]. In the literature there are several stud-
ies on kinodynamic motion planning solved using Bezier
curves [10], harmonic potential field [11] and a learning
approach [12], to name a few.

In the last years, a popular class of algorithms widely
used for kinodynamic motion planning is sampling-based
planners. Sampling-based algorithms, such as the Rapidly-
exploring Random Tree (RRT) and the Probabilistic
Roadmap (PRM) are suitable to rapidly find solutions even in
high-dimensional spaces [13]. In particular, one of the most
popular sampling-based technique is the RRT∗ algorithm
proposed in [14]. RRT∗ enhances the original RRT algorithm
by providing a near optimal solution. As a consequence,
many variants of RRT∗ have been developed to provide
anytime planning [15], real-time path planning [16], multi-
agent planning [17], and more others [18].

A very interesting RRT-based algorithm, called RRT#

is presented in [19]. RRT# is asymptotically optimal and
ensures that the constructed incremental graph always con-
tains lowest-cost path information for promising vertices,
i.e. vertices that can improve the solution [19]. In fact, a
drawback of the RRT∗ algorithm resides in the rewiring
procedure, in which any new information in the graph is
updated locally, without providing a globally propagation in
the graph.

A sampling-based kinodynamic algorithm is proposed for
the first time by LaValle and Kuffner in [20], in which RRT
constructs a tree of trajectories in the state space generated
by sampling the control input of the vehicle and, then, simu-
lating its motion. As a consequence, the computed trajectory
satisfies the vehicle dynamics and can be easily executed
by the vehicle. Based on this algorithm, several approaches
have been developed in the last years [21], [22]. However,
sampling in the control space is not efficient for vehicles with
complex dynamics, because often a sample configuration can
result in an infeasible trajectory and, as a consequence, many
iterations are required to compute a good quality solution.
To solve this problem, in [23] the closed-loop RRT (CL-
RRT) is proposed, in which vertices are sampled in the
reference space and a closed-loop prediction computes a
trajectory in the state space. The same approach is also used



in [24] applied with the RRT# algorithm. Similarly, in [25]
a kinodynamic RRT∗ is developed using Dubins curves and
the double integrator, whereas a LQR controller is used in
[26].

This paper presents a kinodynamic motion planning algo-
rithm called MP-RRT#, leveraging the ideas of the RRT#

algorithm [19] and the Model Predictive Control [27]. Simi-
lar to the concept proposed in [23], the algorithm samples in
the reference space and, then, a Model Predictive Control is
used to provide a forward simulation to evaluate the motion
between vertices and to compute a trajectory in the state
space and in the control space. Specifically, the MP-RRT# is
used to solve the motion planning problem for a multicopter.
As result, the MP-RRT# returns a feasible trajectory for the
UAS satisfying dynamic constraints.

The use of the MPC in the graph construction of a RRT-
based algorithm is a novelty and introduces some benefits,
such as a the use of a model-based control strategy, a small
prediction error and a generation of a feasible trajectory
easily executable by the vehicle.

The rest of the paper is organized as follows. Section II
defines the optimal motion planning problem. The proposed
algorithm is described in Section III, detailing the pseu-
docode, the UAS model and the Model Predictive Control
strategy adopted. Section IV describes the experimental
result and our conclusions are drawn in Section V.

II. PROBLEM FORMULATION

This section defines the motion planning problem assumed
in this work. Let’s define the UAS dynamic model

ẋ(t) = f(x(t),u(t)), (1)

where x(t) ∈ Rnx is the state of the system of dimension
nx, and u(t) ∈ Rnu is the control input of dimension nu.
Both states and control inputs should respect the following
constraints

x(t) ∈ Xfree, (2)

u(t) ∈ U . (3)

The Equation (2) defines a constraint to avoid obstacles by
setting the vehicle state in the free state space Xfree = X \
Xobs, with X the state space, and Xobs the space occupied by
obstacles. The Equation (3) defines the bounds of the control
input.

Given the initial state of the UAS x(0) = x0 at time
t = 0 and the desired target state defined by the goal region
Xgoal ⊂ Rnx . The aim of the motion planning problem is
defining an optimal state trajectory x∗ : [0, tf ] ∈ Xfree and
an optimal control input sequence u∗ : [0, tf ] ∈ U over a
finite horizon from 0 to tf for moving from the initial state
x(0) = x0 to a final state in the goal region x(tf ) ∈ Xgoal.
x∗ and u∗ are computed by minimizing a cost function
Cost(·) and satisfying constraints (2) and (3). Hence, the

Figure 1. Example of the graph constructed with MP-RRT#. The graph
consists in vertices (in black) and edges (in blue). Edges are evaluated by
computing the trajectories (in magenta) with the Model Predictive Control.
An edge is not valid if the corresponding trajectory hits an obstacle.

optimal motion is the solution of the following program

x∗,u∗ = argmin Cost(x(t),u(t))

subject to x(0) = x0

x(tf ) = xgoal ∈ Xgoal

∀t ∈ [0, tf ] , x(t) ∈ Xfree

∀t ∈ [0, tf ] , u(t) ∈ U .

(4)

III. THE MP-RRT# STRATEGY

This section introduces the MP-RRT# (Model Predictive
Rapidly-exploring Random Tree ”sharp”) algorithm, which
extends the RRT# algorithm [19] with the Model Predictive
Control philosophy to compute a near optimal trajectory for
UAS.

As other kinodynamic RRT-based algorithms, MP-RRT#

generates an incremental graph of feasible trajectories to
explore the search space and to reach a specific target state.
Unlike existing works [20], [21], [22] that search for an
optimal trajectory by randomly sample in the control input
space, our approach samples an input of the closed-loop
system as proposed in [23], i.e. in the reference space.

Generally, sampling the control input is inefficient. Most
of the sampled inputs are discarded because they provide
a bad behavior of the system. Hence, especially when the
dynamics are complex, a lot of iterations are required to
construct the graph and compute an optimal trajectory. On
the contrary, our approach samples an input of the closed-
loop system, i.e. a reference r(t) ∈ Rnr . Then, the algorithm
performs a forward simulation using a Model Predictive
Control strategy computing a state trajectory and the optimal
control input to follow the sampled reference. Thanks to the
MPC logic, the computed trajectory satisfies the constraint
of Equation (2). Anyway, the feasibility of the computed
trajectory is checked later verifying if it collides with obsta-
cles and, then, satisfying the Equation (3). In our strategy the



MPC does not avoid obstacles. In fact, unfeasible trajectories
are simply discarded, as well as the edge corresponding to
the motion. This choice is made to avoid a too complex
controller that is called several times during the proposed
motion planning.

This strategy is more efficient than other kinodynamic
RRT-based approaches [20], [21], [22] because each sampled
reference state corresponds to a feasible trajectory providing
an optimal motion. This requires fewer samples to construct
an exploration tree and, then, to compute an optimal tra-
jectory. Moreover, sampling a reference state is also more
efficient than directly sampling the vehicle state. In fact,
for vehicles with complex dynamics, the reference command
has generally a lower dimension than the dimension of the
vehicle state and, then, nr � nx. For instance, in our work,
the UAS state is defined with 8 variables, while the reference
with only 3 variables.

The above mentioned logic is used to generate a graph
of feasible trajectories using the RRT# algorithm. Figure 1
shows a simple example of the proposed strategy. Note that
if a trajectory enters in the obstacle space, the related edge
is not included in the graph. On the contrary, even if the
edge crosses an obstacle, it is not discarded if the related
trajectory does not collide with obstacles.

A. Algorithm

The proposed algorithm is based on the RRT# algorithm
proposed in [19]. RRT# is a variant of the Rapidly-exploring
Random Graph (RRG) that ensures a globally optimal graph
in the search space.

The main pseudocode of MP-RRT# is defined in Algo-
rithm 1. The inputs of the algorithm are the initial state
x0, the goal region Xgoal and the state space X in which
the motion planning searches for a solution. First, the set
of vertices V , the set of edges E and the graph G are
initialized (from lines 2 to 4). Then, the iterative procedure
of the construction of the graph starts and continues until a
certain number N of vertices are sampled and added to the
graph (lines 5 to 8). Specifically, a vertex rrand is randomly
sampled (line 6) and the graph is extended by adding the new
vertex (line 7). The Replan() function propagates this update
on the graph (line 8). Both the Extend() and Replan()
functions are detailed in Algorithms 2 and 4, respectively.
Finally, the branch T connecting the initial and the target
states is extracted from the graph (line 9) and returned as
the solution of the algorithm.

With a slight abuse of notation, with vertex r we denote
a reference state in the state space X . Then, the reference
state is used to compute the resulting state trajectory x to
move toward r.

The Extend procedure is a crucial element for the proposed
approach because it expands the graph by adding a new ver-
tex and, then, by computing the related state trajectory using
the Model Predictive Control. Specifically, this procedure is
detailed in Algorithm 2. First, the vertex r is connected to
the nearest vertex rnearest (line 4). The Nearest() function
selects the vertex with the minimum Euclidean distance from

Algorithm 1: The MP-RRT# algorithm

1 MP-RRT#(x0,Xgoal,X)
2 V ← {x0};
3 E ← ∅;
4 G ← (V,E)
5 for i = 0 to N do
6 rrand ← Sample();
7 G ← Extend(G, rrand);
8 Replan(G);
9 T ← SpanningTree(G);

10 return T

r. The ComputeTrajectory() function computes the optimal
state trajectory x of moving from rnearest to r (line 5). Then,
if the computed trajectory is valid, i.e. it does not collide with
obstacles, the cost-to-come of vertex r, denoted by g(r) is
computed by increasing the cost at the previous vertex with
the cost of the trajectory x, denoted by c(x) (line 7). In line
8 all the neighbor vertices of r are added to the neighbor set
N and, then, the vertex r is included in the neighbor set of
its neighbors (lines 9 to 11). The Near() function selects all
the vertices within a certain radius as defined in [14].

Then, the FindParent() function searches if one of the
neighbors can be the parent vertex of r (line 12), i.e. the
neighbor vertex that provides the minimum cost-to-come
g(r). The FindParent() procedure is detailed in Algorithm
3, in which the trajectory between the vertex r and each
neighbor vertex rnear ∈ N (r) is evaluated seeking for the
best parent vertex.

Then, the vertex r is added to the graph and it is included
in the priority queue q (line 15).

The priority queue has a crucial role in the RRT# algo-
rithm [19] because it is a queue of vertices that is evaluated
in the Replan() procedure to propagate any update on the
graph. Vertices of the queue are ordered based on their cost
f(r) from the highest to the lowest. Specifically, the cost
f(r) is the estimated cost to reach the goal passing through
the vertex r, inspired by the well-known cost function define
in the A∗ algorithm [28]

f(r) = g(r) + ĥ(r). (5)

g(r) is the costo-to-come at the vertex r, i.e. the cost of
moving between the starting vertex x0 and r, with g(x0) = 0.
ĥ(r) is the estimated cost-to-go to reach the goal state, with
ĥ(rgoal) = 0.

In particular, the Replan() procedure is detailed in Al-
gorithm 4. This procedure is based on an iterative loop
that updates only promising vertices (lines 3 to 13), i.e.
vertices that can improve the current solution in the graph.
Specifically, the set of promising vertices Vprom ⊂ V
contains vertices inside the relevant region Xrel

Xrel = {r ∈ Xfree : f(r) < g(r∗goal)}, (6)

with r∗goal is the vertex in the goal region with the minimum



Algorithm 2: The Extend procedure

1 Extend(G, r)
2 (V,E)← G;
3 E′ ← ∅;
4 rnearest ← Nearest(G, r);
5 x← ComputeTrajectory(rnearest, r);
6 if isTrajectoryValid(x) then
7 g(r)← g(rnearest) + c(x);

8 N (r)← Near(G, r);
9 foreach rnear ∈ N (r) do

10 N (rnear)← N (rnear) ∪ {r};
11 E′ ← E′ ∪ {(rnear, r), (r, rnear)};
12 FindParent(r);
13 V ← V ∪ {r};
14 E ← E ∪ E′;
15 UpdateQueue(r);
16 return G ← (V,E)

Algorithm 3: The FindParent procedure

1 FindParent(r)
2 foreach rnear ∈ N (r) do
3 x← ComputeTrajectory(rnear, r);
4 if isTrajectoryValid(x) then
5 if g(rnear) + c(x) < g(r) then
6 g(r) = g(r) + c(x);
7 P(r) = rnear;

cost-to-come. Notably, the heuristic cost ĥ(r) used to com-
pute f(r) must be admissible, i.e. it should not overestimate
the cost-to-go, discarding vertices that would lead to the
optimal solution. The evaluation of promising vertices is
essential to avoid the propagation toward vertices that can
not improve the current solution, speeding up the algorithm.

The first element of the queue is selected (line 4) and
removed from q (line 5). Then, the procedure verifies if the
current vertex can improve the cost-to-come of its neighbors
(lines 6 to 13) as a new parent vertex. This is verified by
computing the cost-to-come of the resulting state trajectory
of moving from r to the neighbor vertex rnbh. Exactly as
in Algorithm 3, line 9 checks if rnbh is a promising vertex
and, in line 10, if r can be the new parent vertex of rnbh.
If occurs, the vertex rnbh is included in q to be evaluated in
the Replan() procedure.

B. UAS model

Before explaining the Model Prediction Control strategy
adopted, we detailed the model of the Unmanned aircraft
assumed in this work. In particular, we consider a multicopter
with a linear model approximated around its hovering condi-
tions [29], where small attitude angle variations are assumed
and the vehicle heading is aligned with the inertial frame
x-axis, i.e. ψ = 0. Hence, the linear model of the system is

Algorithm 4: The Replan procedure

1 Replan(G)
2 (V,E)← G;
3 while f(q.top()) ≺ g(r∗goal) do
4 r = q.top();
5 q.pop();
6 foreach rnbh ∈ N (r) do
7 x← ComputeTrajectory(r, rnbh);
8 if isTrajectoryValid(x) then
9 if g(r) + c(x) + ĥ(rnbh) < g(r∗goal)

then
10 if g(r) + c(x) < g(rnbh) then
11 g(rnbh) = g(r) + r(x);
12 P(rnbh) = r;
13 UpdateQueue(rnbh);

defined as follows

ẋ(t) = Acx(t) +Bcu(t), (7)

with Ac is the state matrix in continuous time

Ac =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 −ax 0 0 g 0
0 0 0 0 −ay 0 0 −g
0 0 0 0 0 −az 0 0
0 0 0 0 0 0 − 1

τφ
0

0 0 0 0 0 0 0 − 1
τθ


, (8)

and Bc is the input matrix in continuous time

Bc =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
kφ
τφ

0 0

0 kθ
τθ

0


, (9)

where ax, ay and az are the drag coefficients, g is the gravity
acceleration, τφ is the roll time constant, τθ is the pitch time
constant, kφ is the roll gain and kθ is the pitch gain. The
state vector is x =

[
pT vT Wφ Wθ

]T
, where p is the

position vector of the UAS in the three-dimensional space,
v is the velocity vector, Wφ and Wθ are the roll and pitch
angles in the inertial frame W. The input vector is u =[Wφd Wθd T

]T
, where Wφd and Wθd are the roll and

pitch control command in the inertial frame and T is the
thrust control command.

The controller is implemented in the discrete time and, as
a consequence, the UAS model is discretized as follow

A = eAcTs , (10)



B =

∫ Ts

0

eAcdτdτBc, (11)

where Ts is the sampling time. In this work we used a simple
and linear model to avoid a too complex optimization for the
MPC.

C. Model Predictive Control

The MP-RRT# algorithm uses a Model Predictive Control
to compute the optimal state trajectory of moving between
two adjacent vertices and, then, to evaluate the cost of the
trajectory.

Based on the UAS model previously defined, in this work
we implement a Linear Model Predictive Control inspired
by [29], where the authors propose a MPC-based trajectory
tracking.

Specifically, the MPC searches for an optimal trajectory
by optimizing the following cost function J

J(x, u) =(Hp−1∑
k=0

(xk − xref,k)TQx(xk − xref,k)

+ (uk − uk−1)
TR∆(uk − uk−1)

)
+ (xHp − xref,Hp)TQfinal(xHp − xref,Hp),

(12)

with Hp is the prediction horizon, u is the input vector with
u =

[
u0 u1 . . . uHp

]T
and uk ∈ R3 for k from 0 to

Hp−1. x is the vector state x =
[
x0 x1 . . . xHp

]T
with

xk ∈ R8 for k from 0 to Hp. xref is the vector reference
state xref =

[
xref,0 xref,1 . . . xref,Hp

]T
with xref,k ∈

R8 for k from 0 to Hp. Qx is the penalty matrix on the state
error, R∆ is a penalty matrix on the variation on the control
input, and Qfinal is the terminal cost matrix on the last state
error. The computation of Qfinal is done by solving the
Algebraic Riccati Equation iteratively [30]. Qx, R∆, Qfinal
are positive semidefinite matrices.

Hence, the following convex optimization problem is
solved

x∗, u∗ =min
U,X

J(x, u) (13)

subject to xk+1 = Axk +Buk (14)
uk ∈ U (15)
x0 = x(t0) (16)

This MPC problem is solved each time the MP-RRT#

algorithm evaluates a motion of moving between two adja-
cent vertices. Anyway, in order to perform the optimization
problem of Equations (13), we define a reference trajectory
xref connecting two vertices using Dubins curves, a suitable
solution to achieve flyable path, due to their simplicity and
performances.

Dubins curves are introduced in [31] and they refer to
the shortest path between two poses in the two-dimensional
space considering a constant radius curvature. This solu-
tion fits with the proposed work, since the algorithm is
implemented in the two-dimensional space. However, Dubins

Figure 2. Example of reference trajectory computed using Dubins curves
and connecting two adjacent vertices. The green line is the reference
trajectory, whereas magenta arrows are the state trajectory computed using
the Model Predictive Control.

curves are also extended to the three-dimensional space [32]
and with a variable radius curvature [33].

Given the two-dimensional pose of the aircraft[
px py pβ

]
and assuming a constant speed, the

differential equation of Dubins curves are:

ṗx = cos(pβ) (17)
ṗy = sin(pβ) (18)
ṗβ = uc (19)

where uc is normalized in the range between −1 and 1,
considering the maximum curvature of the aircraft. The
shortest path between two poses can be expressed as a
combination of no more than three motion primitives [31].
Hence, only three values of uc are defined uc ∈ {−1, 0, 1}.
The value uc = 0 describes a straight motion (S), uc = −1
the right (R) turn, while uc = 1 the left (L) turn. As a
consequence, only six combination of curves exist:

{LRL,RLR,LSL,LSR,RSL,RSR} (20)

Hence, in accordance with MPC philosophy, the optimiza-
tion problem is solved to follow the reference trajectory.
However, only the first control input is applied and the
optimization is solved iteratively. Figure 2 shows an example
of reference trajectory using Dubins curves followed by the
Model Predictive Control strategy.

D. Implementation details

In this Section some implementation details of the MP-
RRT# are exposed. The MP-RRT# algorithm is imple-
mented considering a two-dimensional space, i.e. flight at
fixed altitude. Specifically, the Special Euclidean Group
SE(2) is used, in which each admissible configuration is
a pose in the two-dimensional space free to translate and
rotate. Hence, each state sampled by the algorithm consists
of three parameters, i.e. the position of the UAS and an
orientation corresponding to the flight direction. Hence, each



(a) (b)

(c) (d)

Figure 3. Example of the exploration of the map using the MP-RRT# algorithm. In (a), the graph with 10 nodes rooted from the start pose, in which
the graph does not reach the target pose. In (b), the graph with 20 nodes and with a preliminary solution. In (c), the graph with 30 nodes in which a better
solution is found. In (d), the graph is extended with 10 more nodes (40 in total), but the best solution is the graph does not change.

time the MP-RRT# algorithm evaluates the motion between
two states, a reference trajectory is computed using Dubins
curves and the MPC computes the optimal state trajectory
and control input to follow it.

Then, the motion-cost of the trajectory is computed as
follows

c(x, u) =

M∑
i=1

‖xi − xi−1‖2

+ (ui − ui−1)
TR∆(ui − ui−1),

(21)

with xi ∈ x, ui ∈ u, and M is the size of the trajectory. In
particular, the first term evaluates the Euclidean distance of
the trajectory, and the second term evaluates the variation of
the control input exactly as in Equation (12).

On the other hand, the cost-to-go ĥ(r) is computed as the
distance of the Dubins curve between the vertex r and the
goal region Xref .

IV. RESULTS

The proposed strategy is implemented in C++ using the
Robot Operating System (ROS) [34] framework. Specifically,
the MP-RRT# algorithm is implemented using the Open
Motion Planning Library (OMPL) [35] that consists in many
state-of-the-art sampling-based algorithms and offers many
functionalities to facilitate the implementations of new algo-
rithms. The optimization of the Model Predictive Control is
solved using CVXGEN [36], a tool for code generation for
convex optimization. CVXGEN can be used to generate fast
custom code for small, QP-representable convex optimization
problems. The mathematical problem is translated into a high
speed solver that is twelve to thousand-times faster than other
popular optimizers [36]. Hence, the linear model of the UAS
and the Linear MPC problem of Equations (12) and (13) are
included and solved with CVXGEN.

The experimental tests are performed considering the
multicopter Asctec Firefly and using the parameters listed



Parameter Value
ax 0.01
ay 0.01
az 0
kφ 0.9
kθ 0.9
τφ 0.250 s
τθ 0.255 s

TABLE I
PARAMETERS USED FOR THE UAS MODEL.

in Table I.
The MP-RRT# is executed considering a maximum cruise

velocity of 2.5m/s and the reference trajectory is computed
with Dubins curves with a curvature radius of 2 m. The
admissible control input is defined with the following con-
strains

−0.436 rad ≤Wφd ≤ 0.436 rad (22)

−0.436 rad ≤Wθd ≤ 0.436 rad (23)
−4.80 N ≤ T ≤ 10.19 N (24)

Figure 2 shows an example of reference trajectory com-
puted with Dubins curves and connecting two vertices. The
trajectory is followed by the Model Predictive Control that
reaches the target vertex.

The proposed MP-RRT# algorithm is tested in different
maps to evaluate its effectiveness in computing UAS tra-
jectories. Figure 3 shows the construction of the graph, in
which, in Figure 3(a), the graph with 10 nodes does not
explore enough the map and does not reach the target pose.
In Figure 3(b) the graph is extended with 10 more nodes
finding an initial solution. In Figure 3(c), the algorithm finds
a new better solution. Finally, in Figure 3(d) the best solution
does not change, even if the graph has 10 more nodes (40
in total).

Other tests in more complex maps are shown in Figures 4
and 5. In Figure 4 the trajectory is computed by exploring
the map with a graph of 100 nodes.

Similarly, in Figure 5(a), the MP-RRT# algorithm ex-
plores the map with a graph of 100 nodes computing a
solution. The trajectory computed in Figure 5(a) is also
executed in a realistic simulation performed using Gazebo
and SITL frameworks. Gazebo is an open-source multi-robot
simulator fully compatible with ROS [37] able to simulate
robots, sensors, and rigid body dynamics. SITL (Software In
The Loop) [38] is a software to execute an autopilot on a
computer, without using a specific and dedicated hardware.
In this work, the simulation uses the PX4 autopilot [39],
an open-source flight control software for drones and other
autonomous vehicles.

In particular, the state trajectory computed with MP-RRT#

is uploaded on the PX4 autopilot and, then, executed as
shown in Figure 5(b). Even if the environment of Figure 5(b)
does not correspond with the map of Figure 5(a), the
executed trajectory is the same.

Figure 4. Trajectory computed with the MP-RRT# algorithm by construct-
ing a graph of 50 nodes.

V. CONCLUSIONS

In this paper we have presented a model predictive sample-
based motion planning for UAS. Specifically, we have intro-
duced a novel algorithm called MP-RRT#, which extends
RRT# with the Model Predictive Control philosophy to
compute an optimal trajectory for UAS.

Similarly to RRT# the algorithm constructs an asymp-
totically optimal graph to explore the map and to search
for a near optimal solution. Moreover, the Model Predictive
Control is used to compute the optimal trajectory of moving
between vertices of the graph to evaluate the feasibility of
the edge and its cost. As a consequence, the MP-RRT#

algorithm computes an near optimal trajectory considering
the UAS dynamics.

This method differs from other kinodynamic RRT-based
algorithms, because MP-RRT# samples the input reference
of the closed loop system instead of directly sample the
control input. This implies a more efficient strategy for
vehicles with complex dynamics.

The experimental tests demonstrate how the proposed
algorithm is able to compute a good quality trajectory even
in complex maps. Moreover, the computed trajectory is
executable by a UAS equipped with a professional autopilot.

Even if the proposed algorithm is tested in a simplified
scenario, i.e. in a two-dimensional space and using a simple
and linear model of the UAS, the MP-RRT# algorithm can
be adapted to be used in more complex scenarios while
increasing the complexity of the algorithm. Moreover, even
if this work focuses on UAS, the proposed planning strategy
can be used for other systems, such as ground robots,
autonomous cars and underwater vehicles.

Future works will include the adaptation of a three-
dimensional environment. Moreover, we will exploit the
proposed strategy to implement a real-time trajectory planner
similar to the work done in [23], [24]. Moreover, experimen-
tal tests will be conducted on a real robotic platform.



(a)

(b)

Figure 5. In (a), the trajectory computed with the MP-RRT# algorithm
by constructing a graph of 100 nodes. In (b) the computed trajectory is
executed by the PX4 autopilot in a simulation.
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