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Abstract 

Passive Safety Systems (PSSs) are increasingly employed in advanced Nuclear Power Plants (NPPs). Their 

safety performance is evaluated through computationally expensive Thermal-Hydraulic (T-H) simulations 

models and the identification of the operational conditions which lead to unsafe conditions (the so-called 

Critical failure Regions, CRs) may be challenging.  

In the present paper, a computational framework is proposed to identify the CRs of a generic passive 

Decay Heat Removal (DHR) system of a NPP. A time-demanding Best-Estimate Thermal-Hydraulic (BE-TH) 

model of the system is used to train a fast-running metamodel embedded within an adaptive sampling 

technique of literature, namely Adaptive Kriging Monte Carlo Sampling (AK-MCS), so as to provide increased 

accuracy in proximity of the failure threshold and identify which input values lead the PSS to failure. To the 

best authors’ knowledge this is the first time that the metamodel-based AK-MCS technique is applied for 

the identification of the CRs of a PSS of an NPP. 

 

Keywords: Nuclear Power Plant; Passive Safety System; Critical Failure Region; Decay Heat Removal; Kriging; 

Adaptive Sampling; Adaptive-Kriging Monte Carlo Sampling (AK-MCS);   



Acronyms 

AK-MCS  Adaptive Kriging Monte Carlo Sampling  

AV  Activation Valve  

BE-TH  Best Estimate Thermal Hydraulic  

CR  Critical (failure) Region 

CV  Cross-Validation  

DHR  Decay Heat Removal  

DoE  Design of Experiment 

E-HX  Emergency Heat Exchanger 

FC  Failure Criterion 

GA  Genetic Algorithm  

GP  Gaussian Process  

I/O  Input/Output  

LHS  Latin Hypercube Sampling 

MCS  Monte Carlo Sampling 

MSIV  Main Steam Isolation Valve 

NPP  Nuclear Power Plant 

NRMSE  Normalized Root-Mean-Square Error 

PCP  Parallel Coordinates Plot  

PV  Pressure Vessel 

PSS  Passive Safety System 

QI  Quality Indicator  

REPAS  Reliability Evaluation of Passive   Safety Systems 

RMSE  Root-Mean-Square Error 

SBO  Station Black-Out  

SRV  Safety Relief Valve 

T-H  Thermal Hydraulic 

TPI  Transient Performance Indicator 

Symbols 

���   Activation Valve flow area  �����  Main Steam Isolation Valve flow area  �  Trend coefficients of Kriging approximation ��   Trend coefficients least square estimates  	  Domain  	
���   Delay of Activation Valve opening  	
�����  Delay of Main Steam Isolation Valve closure  
�  Energy exchanged  
�,%  Percentage of energy exchanged  �������  Absolute Leave-One-Out error   �������� Normalized Leave-One-Out error   �  Generic model function  �  Kriging metamodel Information matrix  �  Kriging metamodel trend  ℎ  Arbitrary function of Kriging trend  �  Input combination index   �  Number of partitions of an I/O set      Problem dimensionality  !"#   Mean value of a metamodel prediction $  Normal Gaussian distribution  %&��'   Number of best candidates in AK-MCS procedure %�(�  Number of samples generated by MCS  %)��*�  Number of training samples  %+�,  Number of validation samples   %-%  Non-condensable gases percentage  .  Iteration number  ./*�  Final number of iterations   0  Number of arbitrary functions of Kriging trend  01  Probability   2��  Maximum value of pressure   

3  Predictivity indicator    4  Correlation matrix   5  Vector of cross correlations between input 

vectors   1   element of the cross correlations vector   6  Standard deviation  67  Average standard deviation  6"#   Estimation error of a metamodel prediction 8  Kriging approximation hyperparameters  9   U learning function  :;1  Variance  <  Generic input  =  Set of model input vectors   =∗  Input vectors of the set of best candidates  =)��*�  Set of training input vectors  =+�,  Set of validation input vectors    ?  Model input vector  @  Model input parameter  A  Generic output  A)B���  Threshold output value   C∗  Outputs of the set of best candidates   C)��*�  Set of training outputs   C+�,   Set of validation outputs   CD  Set of metamodel predictions  CD+�,   Set of predictions of the validation outputs E  Model output  E#  Metamodel prediction output  E7+�,  Average validation output value   F  Unit variance stationary Gaussian Process of 

Kriging metamodel construction  



 Introduction 

In recent years, important efforts have been made for the design and development of Passive Safety 

Systems (PSSs) to increase the safety level of Nuclear Power Plants (NPPs). Innovative PSSs are being 

employed in new advanced nuclear reactors to provide the main safety functions, e.g., decay heat removal, 

reactivity control and fission product containment. Obviously, the conditions that lead PSSs to failure must 

be determined, analyzed and avoided (Jafari et al. 2003; Burgazzi 2004). This implies considering the 

influence of many operational and environmental parameters on the PSS T-H performance and its 

dependence on natural driving forces (e.g. gravity, natural circulation etc.), and properly treating their 

uncertainties in a sufficiently wide range of operational conditions (Herer et al. 2019).  

For this, the REPAS (Reliability Evaluation of Passive Safety Systems) methodology (Jafari et al. 2003; 

Pierro et al. 2009) has been developed to provide a structured procedure for conducting a T-H reliability 

assessment of PSSs accounting for uncertainties. However, in its original formulation REPAS does not 

explicitly include the detailed characterization of the PSS Critical failure Regions (CRs). This is necessary to 

define the configurations of critical operation for the system, i.e., those combination of values of PSS design 

and/or operational parameters which lead the PSS to fail providing its safety function. In mathematical 

terms, given the Input/Output (I/O) representation, A G �H<I, of the PSS behaviour, a specific combination 

of input parameters values ? is critical, if the resulting output value (e.g., the decay heat removed by the 

PSS) is lower (higher) than a predefined threshold, E G �H?I J HKIA)B���, representing the limit value for 

the system operation. These combinations define the CRs, whose determination is a challenging problem, 

which can be addressed with computational methods (Cadini et al. 2014; Picheny et al. 2010; Turati et al. 

2017; Turati et al. 2018a and b). In these methods, Best-Estimate Thermal-Hydraulic (BE-TH) models are not 

directly used to numerically compute the PSS response in the many accidental scenarios that need to be 

considered, because the computational cost for the high number of code runs required could become 

excessive. For this reason, advanced computational methods are being studied to reduce the cost of 

computation. On one side, fast-running surrogate metamodels can be adopted to mimic the behaviour of 

the computationally demanding, original T-H simulator and replace it in the analysis. On the other side, 

intelligent adaptive sampling strategies may be implemented to efficiently trace the CR boundary (i.e., the 

PSS limit surface bounding the CR), with minimum waste of computational time for samples far from the 

CR. 

With respect to this latter point, the goal of adaptive sampling is, then, to find the best Design of 

Experiments (DoE) with the smallest number of samples (and, thus, of time-demanding simulations) (Garud 

et al. 2017). In general terms, samples are selected iteratively to fill the search domain (in this case, the PSS 

input parameters space) in such a way that any discontinuity or key feature are not missed (namely, good 

exploration), and, at the same time, the search is focused on regions that have been identified as potentially 

interesting because close to the CR (namely, good exploitation) (Crombecq et al. 2011b).  



With respect to the former point, surrogate models, or metamodels, can accelerate the collection of 

experiments. The general idea consists in finding an approximation function that is constructed on multiple 

simulations at key points of the design space (training set) and on the analysis of the outcomes of such 

simulations (Crombecq et al. 2011a). This function manages not only to mimic the results of the samples in 

the DoE, but also to provide a good estimate of the (true) model output A in correspondence of other input 

values of the domain. Gaussian Processes (GPs) have been extensively used for this purpose because they 

have been shown capable of reproducing numerous system responses (Ranjan et al. 2008), while providing 

the estimation confidence without adding further complexity. Kriging models add non-stationarity to the 

GPs (Turati et al. 2017) which is very useful if adaptive techniques are applied for exploitation.  

An example of combination of adaptive sampling and Kriging metamodeling, known as AK-MCS (Echard 

et al. 2011), is here adopted and tailored to obtain the CRs of a PSS. The objective of the paper is, thus, to 

present the computational framework and show its feasibility, advantages and effectiveness for the PSS CRs 

exploration task. On the contrary, the aim is not to carry out the complete reliability analysis of a specific 

PSS. The PSS considered is a Decay Heat Removal (DHR) system, based on an Emergency Heat eXchanger 

(E-HX), for removing the heat after the reactor shut down due to an accident initiation (specifically, a Station 

Black-Out (SBO) accident, in this work), whose operation is regulated by the simultaneous action of two 

valves. To the best authors’ knowledge this is the first time that the metamodel-based AK-MCS technique 

is applied for the identification of the CRs of a PSS of an NPP. As a final remark, notice that the identification 

of CRs has a radically different meaning and objective with respect to classical Uncertainty Analysis (UA), 

even if the sampling techniques that can be adopted in the two tasks may be similar. The goal of the former 

is to identify and characterize the combinations of values of PSS design and/or operational input variables 

leading to functional failure, which is strictly related to PSS thermal-hydraulic behavior. The objective of the 

latter is to propagate the uncertainty affecting the computer code (e.g., its models, correlations, 

parameters, …) to the corresponding outputs of interest (Alcaro et al., 2021). In this work, we are not 

performing any uncertainty calculation and the parameters selected are related to the PSS design and 

operation and not to the code used to simulate it. 

The paper is organized as follows: in Section 2, the case study is presented; Section 3 offers an exhaustive 

description of the AK-MCS algorithm tailored to the CR exploration, whereas in Section 4 the AK-MCS 

technique is applied to the PSS described in Section 2; in Section 5, some results are reported and, finally, 

in Section 6 some conclusions are drawn together with a perspective for future developments. 

 

  



 

 Case Study 

 Description of the Passive Safety System and Definition of its Failure Criteria 

The PSS considered is a generic DHR system operating in natural circulation to remove the decay heat 

from a BWR reactor core in accidental conditions. The main components of the PSS are (see Fig. 1):  

 an E-HX that condenses the steam produced in the Pressure Vessel (PV). It is composed by two 

cylindrical headers and a bundle of vertical straight pipes. The E-HX is submerged in a water 

pool; 

 a steam line connecting the top of the PV to the inlet of the E-HX;  

 a condensate line connecting the outlet of the E-HX back to the PV. On the pipe it is installed an 

Activation Valve (AV) that opens to trigger the PSS operation.  
 

 

 

The PSS function is to remove the decay heat in accidental conditions. In the present case it has been 

considered an SBO with reactor shut down. The PSS operation should prevent the energy increase within 

the PV, which may lead to over-pressurization and over-heating of the various components. The reactor 

normally operates in steady state conditions at a pressure of about 70 bar, the Main Steam Isolation Valve 

(MSIV) is open and the steam produced in the PV is directed to the turbine. 

During normal conditions the PSS is not active. The PSS steam line is initially filled with saturated steam 

at 70 bar, with possible presence of a certain amount of non-condensable gases. The PSS condensate line 

initially contains subcooled liquid assumed at 40°C and 70 bar. The AV is initially closed, preventing the 

Figure 1: PSS simplified sketch 



connection of the PSS condensate line with the PV. The pool is filled with water initially at 40°C and the 

water level is above the E-HX upper header. 

When the SBO accident occurs, the reactor is shut down and the MSIV closes. Simultaneously the AV 

opens, so that the vapor from the PV is directed into the PSS. Vapor condenses inside the E-HX due to the 

heat transferred to the pool and the condensate flows back to the PV through the condensate line.  

A preliminary list of parameters possibly affecting the PSS operation has been identified based on expert 

judgment. The selected parameters are related only to the PSS thermal-hydraulic behavior and not to the 

code adopted to simulate it1. Considering that: (i) the aim of the paper is to show an exemplificative 

application of a metamodel-based methodology (AK-MCS) for the identification of the critical failure region; 

and (ii) parametrising and training a metamodel becomes hard or even intractable as the number of input 

parameters increases (see Section 3), only a relatively small subset of the identified parameters has been 

considered for this study. In particular, a simple one-at-a-time sensitivity analysis has been performed to 

select the parameters mostly affecting the PSS behavior. Five input parameters ? G H@L, @M, @N, @O, @PI have 

been identified as possibly relevant for the response of the PSS during the SBO accident:  

1. AV flow area H���I: the opening of the AV triggers the PSS operation when the accident occurs.  

2. AV opening delay H	
���I: the AV may open with a certain delay with respect to the beginning 

of the accidental sequence. 

3. MSIV residual flow area H�����I: the MSIV should close completely when the accident occurs, 

but some leakage may be present (i.e., normalized flow area > 0%).  

4. MSIV closure delay H	
�����I: the MSIV may close with a certain delay with respect to the 

beginning of the accidental sequence. 

5. Percentage of non-condensable gases H%-%I: in the PSS lines a certain amount of non-

condensable gases may build up during the system operation. These gases tend to accumulate 

in the coldest regions of the system, where the vapor partial pressure is the lowest. Their 

quantity is expressed in terms of percentage of volume occupied by the non-condensable gases 

with respect to the total volume of the steam line. 

To generate different combination of values of the five parameters, @� (S G 1, . .5), uniform probability 

distributions have been considered to span their ranges of variation and, thus, explore their possible 

combination of values in the search for the CRs. The parameter ranges have been selected based on 

preliminary sensitivity calculations driven by expert judgment as a compromise between two “competing 

objectives”: on one side, they should be wide enough to allow a proper analysis and exploration of the 

 
1 For example, correction factors have been not included among the varying parameters, since they are mainly 

related to the uncertainty of the calculation. In a complete PSS analysis within a safety review process these two 

aspects should be obviously combined. Therefore, the identification of the failure region (related to the passive system 

operation) should be considered together with its uncertainty (related to the computational tool). However, this is 

outside the scope of the present paper. 



failure domain (i.e., to contain a satisfactory amount of failure configurations); on the other side, they 

should not be too large, to avoid sampling simulations points too far from the critical failure region itself. 

Table 1 lists the ranges of variation of the input parameters. For the AV and MSIV valves, the actuation time 

has not been considered since it is negligible with respect to the opening and closure delay.  

Table 1: Ranges of variation of the input variables 

Input   Symbol Range of variation  

AV flow area (%) ���  H0, 100I 

AV opening delay  (s) 	
��� H0, 720I 

MSIV residual flow area  (%) ����� H0, 0.15I 

MSIV closure delay  (s) 	
����� H0, 7200I 

Non-condensable gases percentage (%) %-% H0, 40I 

The DHR system successful response to the accident is measured in terms of its heat removal function 

and, specifically, in relation to the amount of heat removed during the accidental transient, lasting about 

8h. If the heat is not removed adequately, the temperature and pressure may dangerously rise inside the 

PV and if the pressure increases beyond the Safety Relief Valve (SRV) set-point, considered at 75.5 bar, the 

valve opens to discharge the vapor inside the containment building. Two output parameters (AL, AM) are 

considered as Transient Performance Indicators (TPIs) (Pierro et al. 2009) to evaluate the PSS functional 

response:  

1. Energy exchanged (
�): the total amount of energy removed during the transient;  

2. Maximum of PV pressure (2��): maximum value reached by the pressure evolution inside the 

PV during the transient.  

Table 2 lists the values of the input and output parameters for the reference transient, i.e., the 

“reference conditions” of nominal functioning of the DHR system. The energy exchanged output is 

measured calculating the percentage (
�,%) with respect to the value obtained in the reference conditions.  

 

Variable symbol  ��� 	
���  ����� 	
�����  %-% 
�,% 2�� 

Reference Value   100% 0 sec 0.00 % 0 sec 0 % 100% 70.0 bar 

The reference conditions allow identifying two Failure Criteria (FC):  

1. Low heat removal: if 
�,% < 90% (Pierro et al. 2009).  

2. Steam release in the containment if 2�� > 75.5 \;1 (i.e., pressure rise in the PV causes the 

SRV to open, which leads to vapor release in the containment of the NPP)  

In the present paper, the exploration of the CRs is carried out only with respect to exchanged energy 

output 
� and, thus, successful operation of the system is defined when 
�,% > 90%; otherwise, the 

system fails to provide its function.  

Table 2: I/O reference conditions 



 Description of the PSS model 

A RELAP5-3D model of the PSS described in the previous Section 2.1 has been developed in cooperation 

by University of Pisa and Politecnico di Torino (Lanfredini et al. 2020). The RELAP5-3D model simulates the 

behaviour of the DHR system connected to a simplified reactor PV and is composed of two hydrodynamic 

regions: the primary side (with the PV, the E-HX and the pipe connections) and the pool side.  

The PV is modelled using pipe and branch components, whereas its connections to the feedwater line 

and the steam supply line are represented by two time-dependent volumes. On the steam supply line, the 

MSIV is located and modelled as a servo-valve, whereas the SRV at the top of the PV is modelled as a trip 

valve. The E-HX is constituted by two headers represented by branch components and a pipe component 

for the heat exchanger tubes. Steam and condensate lines between the PV and E-HX are represented by a 

series of pipe components. On the condensate line, the AV is located and modelled as a motor valve. For 

what concerns the pool side, branch and pipe components laterally connected through crossflow junctions 

have been adopted.  

A more detailed description of the RELAP5 model can be found in (Lanfredini et al. 2020). Some closure 

equations, relevant for the operation of the PSS (e.g., condensation heat transfer within the HX tubes), have 

been revised and correction factors have been applied to properly simulate the occurring phenomena 

(Bersano et al. 2020).  

Each transient simulation with the RELAP5-3D code takes about 4.30h on a PC with CPU Intel Core i7-

7500U CPU @ 2.70GHz dual. 

 Metamodel-based AK-MCS for CRs Exploration 

The AK-MCS iterative technique, introduced in (Echard et al. 2011) and further developed in (Turati et 

al. 2017), is here tailored specifically for the CRs characterization of the PSS. The RELAP5-3D simulations 

used for the metamodel construction are called training simulations and the corresponding I/O values 

constitute the metamodel I/O training set ]=)��*� , C)��*�^.  The AK-MCS iterative procedure consists of the 

following steps, for each .-th iteration:  

1. Construction: a Kriging metamodel is built with the available I/O training set ]=)��*� , C)��*�^ (see 

Appendix A for details). The first I/O training set used to construct the first Kriging is called ]=)��*� , C)��*�^*�; then, the set is progressively updated and enriched in the successive iterations.  

2. Generation of random input combinations: a large number %�(� of new input combinations = G_?L, … , ?abcde is generated by means of Latin Hypercube Sampling (LHS) (McKay et al. 1979), so as 

to efficiently span the input parameters space.   



3. Metamodel Evaluation: the Kriging metamodel is used to evaluate the output values corresponding 

to the =  combinations: CD G _E#L, … , E#abcde.  

4. Convergence check: Convergence of the metamodel construction is verified through an a priori 

defined convergence (e.g., a certain error metric) or stopping criterion (e.g., a limited computational 

budget, expressed in the form of a maximum number of BE-TH simulations).  

5. Selection: if convergence criterion at step 4 is not satisfied, the best candidate subset =∗ ⊂ = of 

input combinations is added to the current training set by evaluating the corresponding output 

values C∗ through the long-running BE-TH model. The %&��' best candidates are selected on the 

basis of their learning function values. Among the several examples of learning functions provided 

in literature (Xiao et al. 2018), the 9-function (Echard et al. 2011; Turati et al. 2017) is adopted:  

9H?I G |A)B��� − !"# H?I|6"# H?I . (1) 

The 9H?I value represents the distance, expressed relative to standard deviation, of the metamodel 

prediction (whose mean value is !"# H?I and the related estimation error is 6"# H?I) from the contour 

of the CR, defined by A)B���. The smaller is 9H?I, the closer is the metamodel prediction to the 

failure threshold and the higher the interest in adding the observation corresponding to ? to the 

current training set, since the main scope is to focus on the limit state and to increase the metamodel 

accuracy in that area. However, notice that the choice of =∗ should not be made only among the %&��' combinations with the lowest 9-function values. In fact, in this way the corresponding inputs 

could result too close to each other in their domain due to a high correlation function, bringing a 

small amount of information to the Kriging training process; some techniques (e.g., clustering) are 

proposed in literature to face this issue by evenly “spreading” the candidates along the limit state 

surface (Turati et al. 2017).  

Once the new I/O relations ]=∗, C∗^ have been simulated with the original model and added to the 

training set, steps 1 to 5 are repeated until step 4 is verified.  

The Kriging metamodel obtained at the end of the iterations must provide predictions of the output with 

satisfactory level of accuracy, especially in proximity of the CRs limit surfaces. A large number of new input 

combinations ? (e.g., several thousands) can, then, be generated, again with LHS, and sent in input to the 

Kriging metamodel, and the critical ones, i.e., E# G �H?I J A)B���, are retained for characterizing the shape 

and number of the CRs. In mathematical terms, this corresponds to solving the inverse problem ? G�iLHE#I, with E# J A)B���. Once this is done, a graphical representation of the CRs can be provided by high 

dimensional data visualization techniques (Zio and Bazzo, 2011 and 2012), like scatter plots or Parallel 

Coordinates Plot (PCP) (Inselberg 2009). In brief, scatter plots show the two-dimensional projections of the 

CRs over all the possible pairs of inputs. Instead, PCP allows representing all the input combinations 

belonging to the CRs in a unique plot: all the   input variables, normalized on their respective ranges, are 

reported on vertical axes and lined up horizontally; then, each input combination is represented by a line 



connecting in the horizontal direction the corresponding input variables values on the vertical axes. In this 

way, the analyst is provided with exemplary patterns of typical critical conditions for the system operation.  

A consideration is in order with respect to the steps of the AK-MCS iterative procedure detailed above. 

In the present case of study (Section 2) the number of input variables selected by expert judgment is quite 

small (i.e., equal to 5), which allows: (i) the construction of a relatively small-sized DoE still able to evenly 

cover the entire input space; and (ii) a satisfactorily accurate, precise, and fast training of the kriging 

surrogate model. However, parametrising and training a metamodel can become harder or even intractable 

as the number M of input parameters increases (in particular, when M > 30-100), a well-known problem 

often referred to as curse of dimensionality: see, e.g., (Verleysen and François, 2005; Lataniotis et al., 2020). 

Similar challenges arise in the presence of high-dimensional model outputs, which is beyond the scope of 

this paper: see, e.g., (Gu and Berger, 2016). In general, it is very difficult (if not impossible) to provide a 

definitive statement about whether (and when) the AK-MCS methodology (or other metamodel-based 

techniques) may not be advantageous over a more traditional MCS or LHS, due to the size of the 

input/output parameter space at hand. This is due to several (competing) issues: (i) the effectiveness of the 

metamodel in mimicking the behavior of the original code strongly depends also on the properties of the 

underlying mathematical model f(x) (e.g., its degree of complexity, nonlinearity, multimodality, 

discontinuity, etc.), which are unknown a priori; (ii) when we deal with long-running, detailed computer 

codes (like the one employed in this work), the reduction in the computational cost obtained thanks to the 

metamodel is always outstanding (typically of several orders of magnitude); (iii) in the presence of high-

dimensional inputs, we can still resort to dimensionality reduction techniques before metamodel 

construction (step 1. above) (Turati et al., 2017, 2018a and b; Lataniotis et al., 2020). In general terms, 

dimensionality reduction includes a number of strategies for identifying a lower-dimensional subspace of 

variables where it is possible to build a reduced and simplified, yet representative and understandable, 

model of the system behavior (Fodor, 2002; H. Liu & Motoda, 2012). From the point of view of the 

metamodel training and subsequent exploration of different system configurations, reducing the 

dimensionality of the state space to probe allows the definition of a more effective DoE. Three main 

strategies have been proposed in the literature: (i) feature selection, which aims at selecting a subset of the 

available variables and parameters input to the model (Guyon & Elisseeff, 2003); (ii) feature extraction, 

which aims at identifying a subset of “new” features created by means of transformations of the initial ones 

(Guyon & Elisseeff, 2006); and (iii) sensitivity analysis methods, which achieve the same final objective as 

feature selection, by ranking the factors according to their influence on the output of the model (Borgonovo 

& Plischke, 2016; Saltelli, 2008; Sudret, 2008). As highlighted above, in the present case none of these 

structured pre-processing steps was needed, except a rough expert judgment-based sensitivity analysis. 

  



 

 Application 

The metamodel-based AK-MCS framework described in Section 3 has been applied for the 

characterization of CRs relative to the output variable “energy exchanged” (
�) of the PSS illustrated in 

Section 2. In the following Section, the relevant steps of the application are discussed.   

 I/O Training Set and Metamodel construction  

Training I/O combinations have been generated by simulations with varying values of each input @� 

within its range (see Table 1). Unfortunately, no definite recommendations exist about the choice of the 

most suitable size of the training set (Liu 2005; Liu et al. 2018). The criterion proposed for Kriging 

metamodels in (Loeppky et al. 2010) suggests a number of training combinations equal to about 10 , 

where   is the dimensionality of the problem; hence, about 50 RELAP5-3D runs were necessary in this case. 

We proceeded, then, to build an initial I/O training set ]=)��*�, C)��*�^*� by 64 RELAP5-3D simulations in 

correspondence of input values combinations generated as follows: some of them (in this case, 27) are 

“deterministically” selected by expert judgment to span the entire ranges of input variation, while exploring 

extreme parameter combinations (e.g., values of the input variables lying on the bounds of the 

corresponding intervals); the remaining (37) I/O patterns are randomly sampled by LHS to evenly cover the 

input domain. 

The UQLab Software Framework for Uncertainty Quantification (Marelli and Sudret 2014) has been used 

to fit the Kriging metamodel to the training set. UQLab provides straightforward parametrization of the 

Kriging (see Appendix A): constant, linear, polynomial, or arbitrary trends, associated to elliptic and 

separable correlation kernels, based on many possible one-dimensional distribution families (e.g., 

Exponential, Gaussian, Matérn, or user-defined). The metamodel hyperparameters can be estimated 

through the Cross-Validation (CV) or the Maximum-Likelihood (ML) methods, using different optimization 

techniques (local or global) (Lataniotis et al. 2019). The best Kriging setting for the specific case study has 

been established by testing different options with the CV procedure (see Appendix B). In particular, two 

Kriging features have been tested: the trend type and correlation function family, whereas the other 

features have been set to their default options defined in UQLab. The Kriging best setting has resulted to 

be: 

 Trend type: Linear 

 Family of correlation functions: Matern-5_2  

 Type of correlation functions: Ellipsoidal (default) 

 Estimation method: CV (default) 



 Optimization method: Genetic Algorithm (GA) (default) 

 Adaptive Procedure: AK-MCS 

In the present section, the steps of the metamodel-based AK-MCS framework are illustrated in detail, 

following the structure introduced in Section 3, and tailored to the specific case study, in relation to the 

energy exchanged 
� by the DHR during an SBO accidental transient.  

1. Construction: a new Kriging metamodel is constructed at each .-th iteration using an I/O training 

set of increasing dimension, starting from the initial one ]=)��*�, C)��*�^*� made by the 64 RELAP5-

3D simulations. The Kriging features tailored on the initial training set, can be adjusted at each 

iteration of the adaptive procedure to improve the fit with the new training sets. The metamodel 

accuracy is improved specifically in proximity of the failure threshold (A)B��� G 90% of the energy 

exchanged during the reference transient). 

2. Generation of random input combinations: %�(� G 10.000 new input combinations, = G_?L, … , ?abcde, are generated by LHS (see Table 1). The number of combinations %�(� (= 10.000) 

is empirically found to provide a satisfactory trade-off between thoroughness of PSS state space 

exploration and computational cost (associated to the metamodel evaluation) in the present case. 

On one side, the evaluation of the metamodel is almost costless with respect to that of the original 

code (i.e., it takes fractions of seconds with respect to several hours): this allows sampling a very 

large number %�(� of configurations to exhaustively probe the PSS input space and perform a 

reliable selection of the Ncand best candidates to add to the current DoE (step 5 of the algorithm). On 

the other side, the effectiveness of the metamodel-based exploration depends also on the 

properties of the mathematical model f(x) underlying the PSS state space (e.g., its degree of 

complexity, nonlinearity, multimodality, discontinuity, etc.). Since these properties are a priori 

unknown, an “optimal” value of NMCS (if any) cannot be defined a priori. Rather, also NMCS could be 

adaptively determined based on a set of convergence criteria, where NMCS is progressively increased 

only if it is found to significantly improve the thoroughness of the exploration and to speed up the 

convergence of the overall methodology. Such refinement is not considered in the present study. 

3. Metamodel evaluation: the sampled input combinations = are run through the metamodel to 

predict the corresponding output values of energy exchanged: CD G _E#L, … , E#abcd e.  

4. Convergence check: a double convergence criterion is defined. On the one hand, the level of 

accuracy of the metamodel should be increased as much as possible; on the other hand, the 

computational cost of the successive iterations (and corresponding RELAP5-3D simulations) should 

be kept to a feasible level. Different criteria have been proposed in the open literature to adaptively 

enrich the DoE and check the convergence of the kriging metamodel training. In (Bichon et al., 2008; 

Echard et al., 2011), the Expected Feasibility Function (EFF) has been employed to quantify the 

balance trend between the search in the vicinity of the limit state and a more global search in the 



input space: when the maximum value of the EEF over the entire search space falls below a given 

threshold (e.g., EFF < 0.001 in (Bichon et al., 2008)), the algorithm is stopped. In (Echard et al., 2011) 

the the 9-learning function (1) is introduced to increase the accuracy and precision of the kriging 

metamodel preferably in proximity of the limit state. The smaller is 9H?I, the closer is the 

metamodel prediction to the failure threshold and the higher the interest in adding the observation 

corresponding to ? to the current training set. In this view, when the minimum value of 9H?I over 

the search space exceeds a given threshold (e.g., 9H?I > 2 in (Cox and John, 1997; Echard et al., 

2011)), the iterations are stopped. Since in some applications the EEF and the 9-learning function 

(1) are found to exhibit a slow convergence to the critical region (Echard et al., 2011; Dubourg et al., 

2013), other works of literature employ quantitative metrics based on a cross-validation procedure 

to check both metamodel accuracy and refinement convergence. Basically, the DoE ]=, C^ is split 

into a training subset ]=)��*�, C)��*�^ and a validation subset ]=+�, , C+�,^ such that ]=)��*� , C)��*�^ ∩ ]=+�,, C+�,^ = ∅ and ]=)��*�, C)��*�^ ∪ ]=+�,, C+�,^ = ]=, C^. The metamodel is then built using 

the training subset and validated by comparing the predicted values and the real values onto the 

validation subset. The leave-one-out (LOO) technique is a special case where the training subset is 

defined as ]=, C^\?*. (Allen, 1971) uses an LOO assessment of the mean squared error referred to 

as the Predicted REsidual Sum of Squares (PRESS), whereas (Dubourg et al., 2013; Turati et al., 2017) 

employ an LOO-based correction factor to account for epistemic uncertainty in the failure 

probability estimates provided by kriging and to correspondingly check its accuracy and training 

convergence. Based on this critical review of literature, we propose an approach relying on two 

(“local” and “global”) validation sets, which is empirically found to provide a satisfactory trade-off 

between (high) metamodel accuracy, (high) speed of convergence to the PSS critical region and (low) 

computational cost (i.e., number of calls to the long-running T-H simulation code). Details are 

provided in the following. 

Accuracy is evaluated with respect to the %+�,  combinations of a validation set (=+�,): CD+�, G_E#L, … , E#anope different from the training set. The predicted output values CD+�, are compared to the 

corresponding RELAP5-3D output values C+�, through the construction of some Quality Indicators 

(QIs). No definitive guidelines are found in literature about the correct size %+�,  of the validation set. 

(Martin and Simpson 2005) suggests %+�, ≫ %)��*�, since a small %+�,  can be misleading in case 

validation points are taken, by chance, too close to training points where the metamodel is clearly 

more refined (Wu et al. 2018). However, this approach becomes extremely expensive in case of 

time-demanding simulators. (Iooss 2009) proposes a “sequential validation design” to get to a 

meaningful validation, while keeping %+�, small: validation is carried out gradually by adding 

validation samples in the unfilled regions of the input space to optimize the distance between the 

validation set and the training set. Here two validation sets are considered. The first one derived 

from 55 simulated transients, with output 
�,% G 85 ÷ 95 %, and it is used to verify the 

metamodel accuracy around the limit surface. The second one includes 138 I/O simulated transients, 



with 
�,% values spreading all over the domain and it is employed to obtain an indication of the 

metamodel accuracy over the entire domain. The QIs used to quantify metamodel accuracy with 

respect to both validation sets are the well-known RMSE and two different predictivity indicators, 3L, defined in (Iooss 2009), and 3M presented by (Lataniotis et al. 2019): 

4 t
 G u v HE#* − E*IM%+�,
a+�,
*wL  (2) 

3L G 1 − ∑ HE#* − E*IM a+�,*wL∑ HE7+�, − E*IMa+�,*wL  (3) 

3M G %+�, − 1%+�, y ∑ HE#* − E*IM a+�,*wL∑ HE7+�, − E*IMa+�,*wL z, (4) 

 

where E*  is the �-th output of ]=+�,, C+�,^, E#*  is the corresponding metamodel prediction and E7+�, 
is the mean value of all the simulations output values in the validation set. RMSE and 3M should be 

as low as possible, whereas 3L tends to 1 as the prediction accuracy increases. Notice that the RMSE 

has the same unit of measure of the physical quantity of interest (
�,%) and, thus, it can be 

progressively compared to the exchanged energy output to understand whether the predictions are 

satisfactory. It can be also normalized (NRMSE) dividing it by E7+�,. 3L and 3M have similar expressions 

and, differently from the RMSE, they take into account also the variability of the output in the 

validation set. The values of these QIs should be improved as much as possible through the 

successive iterations of the algorithm. In this work, the convergence (stopping) criterion related to 

the metamodel accuracy is considered satisfied when the NRMSE evaluated on the “local” validation 

set constructed around A)B��� becomes about 2%. On the other hand, if the metamodel quality is 

still unsatisfactory, the second convergence (stopping) criterion needs to be checked: further 

computational time is required to add a new algorithm iteration and to simulate new configurations 

by the BE-TH code in order to enrich the training set. The computational budget, i.e., the maximum 

number of simulations initially foreseen, has been here fixed to 100 RELAP5-3D simulations in 

addition to the initial ones (i.e., the 64 simulations belonging to ]=)��*�, C)��*�^*�). When the 

computational budget is completely run out, even if Kriging accuracy is still not satisfactory, the 

procedure stops. Notice that the number (100) of RELAP5-3D simulations to be added to the (64) 

initial ones has not been defined according to some theoretical criterion: this number is strongly 

problem- and model-dependent and must be obviously set by the analyst according to the 

computational time and power available. 

5. Selection: if algorithm convergence has not been reached at step 4, new I/O simulations related to 

the so-called best candidates =∗ are run and the input and output values added to the training set 

to refine the metamodel. The %&��' best candidates are selected among the = generated at step 2 

according to their 9-function values. Combinations with 9 < 1.96 are sorted in ascending order 



according to their predicted output value E# and, then, organized in %&��' equally-spaced bins. Then, 

one candidate is randomly picked from each bin. This procedure is applied to avoid selecting 

candidates “clustered” in the same area of the input space (i.e., too similar to each other). Actually, 

combinations that are close in the input space share similar 9 values (see Section 3); hence, selecting 

the candidates only according to the %&��'  lowest 9 values would cause them to be restricted in 

the same area of the domain, instead of spanning the whole input space. The selection procedure is 

illustrated in Fig. 2.  %&��' G 7 or 8  points have been chosen, as a satisfactory trade-off between computational cost, 

number of iterations of the algorithm and metamodel accuracy. Indeed, lower values of %&��' would 

require a larger number of algorithm iterations and training repetitions (i.e., higher computational 

cost) to obtain the same Kriging accuracy; also, an excessively small number of candidates implies a 

rougher exploration and “mapping” of the area close to the limit surface.  On the other hand, limiting 

the number %&��' is useful, in particular in the first iterations when the metamodel is still inaccurate. 

Selecting many candidates according to its predictions may lead to a waste of computational time: 

actually, some candidates, simulated with the expensive BE-TH model, may later reveal to be not so 

useful for the scope of the analysis (e.g., they may lie far from the limit surface). In Fig. 2, the value 
�,% is reported on the @-axis, whereas E-axis displays the corresponding 9-function values. It is 

clear from the dashed vertical lines how the bins are constructed by subdividing the @-axis in 

segments of the same length. C∗ values are represented by diamonds, whereas all the samples with 9 < 1.96 are shown as crosses. The shape of the graph shows that the closer is a point to A)B��� G90% , the lower its 9 value is; this was easily foreseeable looking at equation (1).  

Once the best candidates =∗ have been selected and the corresponding I/O transients simulated 

with the BE-TH model to obtain the output C∗, the training set is enriched and steps 1 to 5 are 

repeated until convergence at step 4 is reached.  

 

 

Figure 2: Identification of new candidates (Step 5): random selection of combinations with U < 1.96 

divided in equally-spaced bins 



 Results 

 Metamodel Accuracy Evaluation 

The AK-MCS procedure has been stopped at iteration ./*� G 14, after enriching the initial training set ]=)��*�, C)��*�^*� with the input and output values of 100 RELAP5-3D (i.e., maximum computational budget 

available). In Table 3 the salient aspects of each .-th iteration are reported.  

Table 3: AK-MCS results for |}? output 

n  ~�5��� ���  ��� ������5� ������� 

0 64 11.76 11.67 0.128 20.62 

1 71 11.09 10.99 0.130 19.39 

2 78 9.41 9.38 0.138 19.05 

3 85 8.83 8.80 0.148 18.76 

4 92 8.39 8.35 0.152 18.36 

5 99 7.10 7.06 0.159 18.24 

6 106 7.60 7.55 0.169 18.18 

7 113 7.50 7.46 0.169 17.36 

8 121 7.35 7.30 0.167 16.37 

9 129 7.41 7.36 0.166 15.61 

10 136 7.23 7.18 0.176 16.61 

11 143 7.01 6.96 0.175 15.98 

12 150 4.56 4.21 0.177 15.66 

13 157 4.61 4.10 0.126 10.81 

14 164 4.47 3.92 0.119 9.69 

 

In the 3rd and 4th columns of Table 3, two average standard deviations (67) are reported; they are 

calculated with respect to different metamodel outputs CD: 67L in column 3 is evaluated with respect to the 

outputs of all the combinations generated at step 2 of the AK-MCS procedure, which are spread throughout 

the domain; instead, 67M in column 4 is calculated using only the outputs of those combinations for which 9 < 1.96. Both the measures have been used in the successive iterations of the algorithm in order to check 

the Kriging gradual refinement, without resorting to the computationally expensive validation set. In 

particular, 67L allows following the improvement in the metamodel accuracy over the entire domain, 

whereas 67M is used to focus on the accuracy increase nearby the limit surface. As expected, the metamodel 

general improvement during the iterations makes both standard deviations decrease; however, 67M diminishes more rapidly due to the nature of the AK-MCS algorithm, which adds new I/O data with 

outputs close to A)B��� (where 9 is lower), thus making the predictions more accurate in proximity of the 

limit surface than elsewhere in the domain (e.g., at iteration ./*� G 14, 67L is equal to 4.47, whereas 67M is 

equal to 3.92). The Kriging settings (Section 4.1) have been adjusted from iteration 12 onwards by changing 

the correlation function family from Matérn 5/2 to Exponential, in order to improve the fit with the new, 



expanded training set; indeed, looking at the evolution of the two average standard deviations 67L and 67M up 

to that point, it can be noticed that the corresponding values were not decreasing anymore and the 

metamodel improvement seemed stuck. 

The last two columns of Table 3 report the Leave-One-Out (LOO) error evolution with iterations: column 

5 shows the LOO error directly returned by the UQLab tool, also called normalized LOO error (��������), 

whereas column 6 reports its absolute version (�������):   

�������� G La��o�� �∑ _"H?�Ii"#H��IH?�Ie���o����� �
���[C��o��] �         and         ������� G �������� ∙ :;1[C)��*�], (5) 

where E#Hi*IH?*I is the prediction made by the metamodel in correspondence of the �-th combination ?*  ∈  =)��*� and obtained using all the ]=)��*� , C)��*�^ pairs of values available, except ]@*, E*^, and :;1[C)��*�] is the variance of the training outputs. The only difference is in the term :;1[C)��*�] 
representing the output variability in the training set. The LOO error is generally used (as the 67′s previously 

introduced) to assess model accuracy when there is no availability of an external validation set due to its 

high computational cost; thus, the evolution of these two quantities has been followed since it gives an idea 

about the Kriging progressive refinement. A gradual decrease was expected, but what occurs in reality is 

that �������� initially rises and, then, sharply drops reaching its lowest value at ./*� G 14. This behaviour 

is justified by equation (5): the metamodel becomes progressively more refined, causing the numerator of �������� to decrease; however, at the same time, also :;1[C)��*�] at the denominator diminishes, 

because the I/O data are all selected with outputs close to A)B��� and hence the variability of C)��*�  
reduces. On the other hand, �������, not containing the :;1[C)��*�] term, shows a more regular 

(decreasing) trend.   

The best way to follow the Kriging accuracy improvement with iterations, if enough computational 

power is available, is to construct an external validation set and to evaluate the corresponding QIs by 

computing the Kriging predictions with respect to the validation data (as explained at step 4 of the AK-MCS 

procedure). For this case study, two validation sets have been constructed (see Section 4.2) and three QIs 

have been considered: RMSE, 3L and 3M (see equations (2), (3) and (4)). The QIs evolution is illustrated in 

Figs. 3 and 4. Note that the RMSE in Fig. 3 is expressed in percentage because it has the same unit of 

measure of the predicted output, i.e., the percentage energy exchanged (
�,%); but, it should not be 

confused with the NRMSE.   

The two curves in each plot (Fig. 3, and Fig. 4(a) and 4(b)) are referred to different validation sets, but 

they all show the same general trend: a decrease in RMSE and 3M, and an increase towards 1 for 3L, 

representing the improvement of the metamodel accuracy. The three curves associated to the validation 

set constructed near A)B��� display a faster improvement in accuracy because of the nature of the 

metamodel-based AK-MCS procedure, which gradually makes the metamodel more refined around the 



failure threshold. The diamond in correspondence of the 12th iteration symbolizes the change of Kriging 

setting. The two curves in Fig. 4(a) and 4(b) cross because of 3L and 3M mathematical expressions. For 

example, for what concerns 3M, being the metamodel at the beginning still inaccurate, the numerator in 

equation (4) is small for both (local and global) validation sets; on the contrary, the denominator is obviously 

larger for the global validation set, with data spread all over the domain, than the local validation set. This 

is the reason why at the beginning the 3M value is lower (and hence better) when evaluated with respect to 

the most various validation set (curve with crosses in Fig. 4(b)) than with the local validation set (curve with 

circles in Fig. 4(b)), unlike what is observed at the end of the AK-MCS procedure. The same behavior with 

respect to the two validation sets is observed also for 3L, but in the opposite way (see equation (3)). 

 

 

 

 

Table 4 reports all the QI values at the last iteration, with the RMSEs computed in both the absolute and 

normalized forms:  

 

 

Figure 3:  �� | evaluated with respect to 2 validation sets  

Figure 4: ¡� (a) and ¡� (b) predictivity indicators evaluated with respect to the two validation sets 



Table 4: QIs at the end of AK-MCS procedure (14th iteration) 

Quality indicator (QI) RMSE NRMSE  Q1 Q2 

Validation EVERYWHERE 4.74 5.95% 0.728 0.270 

Validation NEAR ¢��5}� 1.94 2.24% 0.917 0.081 

 

The final results are generally satisfying: a RMSE of 1.94 is acceptable if compared to 
�,%, which usually 

varies from 70% to 100% in the simulated transients. A value of 2.24% for the NRMSE is remarkable since it 

could be taken, at first instance, as a measure of the percentage error in prediction: an error around 2% 

near the limit surface is considered satisfactory. Actually, as highlighted at Step 4. of the algorithm in Section 

4.2, the convergence (stopping) criterion related to the metamodel accuracy is considered satisfied when 

the NRMSE evaluated on the “local” validation set constructed around A)B��� becomes about 2%. Thus, in 

this case there is no need to include additional RELAP5-3D simulation points, since the associated (relevant) 

increase in the computational cost would not justify the (slight) improvement in the “local” metamodel 

accuracy (see the curve with circles in Fig. 3, reaching a sort of plateau). 

 Critical failure Regions characterization 

The Kriging metamodel obtained at the end of the AK-MCS iterations has been exploited to predict the 

outcomes of a large number (10.000) of new input combinations ? in order to: (i) find the critical ones, with 

reference to the PSS function, i.e. E# G �H?I J A)B���; and (ii) retrieve information about the shape of the 

CRs of the PSS operation. Given that the input space dimensionality is  G 5, a graphical representation of 

the unique CR identified is provided through a series of scatter plots with paired inputs representing the CR 

two-dimensional projections (Fig. 5): green diamonds are used to indicate combinations leading to a safe 

operation (i.e., 
�,% K 90%), whereas red crosses represent critical input values when the PSS fails its 

function. 



 

Figure 5: Scatter plots of the PSS CR, obtained by AK-MCS with 164 RELAP5-3D simulations 

and 10000 kriging metamodel evaluations 



The subplots in Fig. 5 allow catching the influence of the input parameters on the amount of energy 

exchanged (
�) by the PSS; in particular, each scatter plot provides information about the effect of the 

interaction between the two input parameters therein represented (whatever the values of the other 

parameters). The results show that only four of the five input parameters have significant influence on 
�. 

Indeed, ��� is not very relevant for driving the PSS response in terms of the energy exchanged: in fact, 

whatever its value, the DHR function may or may not be successfully accomplished (green diamonds or red 

crosses, indifferently). The interaction of %-%  with the other input parameters (except ���) is shown in 

Fig. 5(b), (c) and (d). In particular, in all the subplots the maximum %-% value corresponding to a 

combination of functional success is around 30%, suggesting that PSS fails to provide its function whenever %-% > 30%, independently of the values of the other parameters. This is coherent with the underlying 

physics: the presence of non-condensable gases leads to a reduction in the heat transfer coefficient during 

condensation in the E-HX and, in fact, the higher %-% , the worse the impact on 
�. According to Fig. 5(b), 

(c) and (d), the upper limit for %-% is generally reduced in case of interactions with other parameters that 

reduce the 
� value, i.e., variations of 	
���, 	
����� and ����� from their reference values. The results 

are represented by triangle-shaped safe region (green diamonds). For example, a value ����� G 0.035% 

represents a leakage in the MSIV that reduces the amount of steam directed into the PSS, thus lowering 
�: in this situation, the maximum value of %-%, for which the PSS function can still be successfully 

accomplished, is about %-% G 15%  (whatever the values taken by the other three parameters). Also, 	
��� plays a central role in 
� determination. Indeed, if AV opens with a certain delay, i.e., 	
��� > 0, 

the whole heat transfer process is delayed and this impacts severely on 
�, especially because the largest 

amount of energy is exchanged in the first part of the accidental transient. Moreover, if AV is not open, the 

PV pressure may rise, which causes the opening of the SRV and, hence, vapor discharging into the 

containment instead of condensing inside the PSS. Looking at subplots 5(b), (e), (h) and (i), the maximum 	
��� for which the PSS function can still be accomplished is about 400 s: however, this upper limit is, in 

general, lowered in case of interactions with other parameters (as for input %-%). For example, when 

varied together with ����� (see subplot 5(h)), again a triangle-shaped region of safe function is observed: 

e.g., if ����� G 0.025%, the maximum 	
���  value for successful function is about 200 sec. For what 

concerns 	
�����, the observed upper limit is about 4000 s. The MSIV closure is necessary to isolate the 

turbine side and start sending the vapor into the PSS for condensation; hence, if the closure is delayed, less 

vapor enters the PSS in the first part of the transient and 
� is reduced. Whereas a priori the expected 

interaction of 	
����� with other input parameters negatively affecting 
� could have been a decrease 

in the value of 	
����� leading to the PSS functional failure. Instead, what is observed from the simulations 

in case of interaction with, e.g., 	
��� or ����� is different (see subplots 5(i) and (j)). In such cases, the 

safe region is square-shaped. For example, focusing on the interaction between 	
����� and 	
��� , the 

upper limit of  	
����� should, in general, decrease if 	
��� > 0 ¤, independently of the values of the 

other three parameters; instead, the upper limit remains about 4000 s (except in the extreme case where 	
��� reaches its own upper limit causing PSS functional failure by itself). This behaviour (and the 



consequent square-shaped regions) is probably due to the influence of 	
����� on 
�, which is more 

significant than that of other input parameters. For example, considering the interaction between 	
����� 

and �����, the possible presence of a certain leakage in the MSIV after its closure (i.e., ����� > 0%) is less 

relevant in terms of contribution to the amount of energy exchanged, if it occurs in case of a significant 

delay in the MISV closure, which is much more influential2.  

Relevant insights about the safe and failure regions can be also drawn by exploiting the intrinsic 

properties of the kriging metamodel. As highlighted in Appendix A, one of the main advantages of this 

technique is that – due to the Gaussian assumption – a standard deviation 6"#MH?I (and, thus, a Confidence 

Interval-CI) can be associated to each prediction E#H?I: hence, it can be exploited for assessing the accuracy 

and precision of the metamodel in predicting a new PSS configuration. The lower and the upper bounds of 

the (α·100)% CI for prediction E#H?I read E#H?I − ¥H¦I ∙ 6"# H?I and E#H?I + ¥H¦I ∙ 6"# H?I, respectively: k(α) 

sets the confidence level as ¥H¦I G ¨iL[H1 + ¦I/2], where ¨iL[∙] is the inverse cumulative distribution 

function of the standard Normal distribution. Analogously, we can identify a “confidence interval” on the 

safe and critical failure regions. For example, the lower and upper (α·100)% confidence bounds on the safe 

region are defined as ª?: E#H?I − ¥H¦I ∙ 6"# H?I K A)B���¬ = ?: 
�,%® H?I − ¥H¦I ∙ 6¯°±,%® H?I K 
�,%)B���² and ª?: E#H?I + ¥H¦I ∙ 6"# H?I K A)B���¬ = ?: 
�,%® H?I + ¥H¦I ∙ 6¯°±,%® H?I K 
�,%)B���², respectively. By way of 

example and only for illustration purposes, Fig. 6(a) shows the two-dimensional projection (in the plane 

DELAV-AMSIV) of the safe region (green diamonds) together with the corresponding lower (black squares) and 

upper (blue asterisks) 95% confidence bounds, resulting from 10000 kriging evaluations; as a guide to the 

eye, the convex hulls enveloping the safe configurations sampled are also represented as green dotted, 

black solid and blue dot-dashed lines, respectively. In Fig. 6(b) only the convex hulls are reported for the 

sake of clarity. It is worth noting that the lower and upper bounds can be interpreted as the least and most 

conservative estimates of the safe domain, respectively. In other words, we are able to quantify a sort of 

licensing-defined (α·100)% tolerance (or (α·100)% CI limit) on the input parameter uncertain values that still 

result in a safe PSS operation. 

 
2 A consideration is in order with respect to the scatterplots reported in Fig. 5. On one side, it is clear there is a 

well-defined and limited safe region (green diamonds) in each bi-variate comparison; on the other side, it may seem 

that the distribution of failed states (red crosses) exists across the entire domain of all the uncertain variables (actually, 

in each subplot many safe and failed configurations appear to overlap). However, notice that this is only a visualization 

issue, due to the fact that each subplot represents a two-dimensional projection of the five-dimensional safe and failed 

regions. 



 
 

 
Figure 6: a) two-dimensional projection (in the plane DELAV-AMSIV) of the safe region (green diamonds) 

together with the corresponding lower (black squares) and upper (blue asterisks) 95% confidence bounds, 

resulting from 10000 kriging metamodel evaluations; b) convex hulls enveloping the safe configurations 

 

Other interesting conclusions about the CR can be inferred from the PCP (Fig. 7). PCP allows displaying 

in a unique plot all the five input values corresponding to each combination; each of the five vertical axes 

reports the values of one input parameter (normalized on its range) and, hence, one input combination is 



represented by a line in the horizontal direction connecting the corresponding input values on the different 

axes.  

In particular, Fig. 7 shows the quantile representation of all the predicted combinations together: the 

solid blue lines are representative of the PSS safe operation, whereas the dashed orange lines represent the 

input combinations leading the PSS to fail its function. In particular, in both cases (solid or dashed lines) the 

line in the middle stands for an “average” combination (average safe combination or average failure 

combination), whereas the other two external lines are its 0.25 upper and lower quantiles (also called 

quartiles).  

The contribution of ���  to safe function immediately stands out: the normalized value associated to this 

curve is about the same as the one observed for functional failure. This confirms the scarce importance of ��� in the PSS function, as already seen from Fig. 5, but in a more quantitatively way. Moreover, the solid 

blue lines are mainly located in the lower part of the graph, close to the 10% of the range of variation of 

each input (except for ���, as previously mentioned); on the contrary, the dashed orange lines occupy quite 

a large portion (in particular, the middle part) of these intervals, meaning that the majority of the input 

combinations leads to PSS functional failure. The same result can be deduced from Fig. 5, where the red 

crosses are far more abundant than the green diamonds. A word of caution is in order in this respect. This 

result does not mean that the PSS analysed is more prone to fail than to succeed, since this type of 

conclusion should be supported by a probabilistic analysis of the occurrence of the input combinations, 

which is not carried out in this work. Actually, the probability estimated for the event that the PSS fails its 

function strongly depends on: (i) the characteristics of the system itself, and (ii) the (data and/or expert-

based) probability distributions of the PSS input parameters. In this paper, as mentioned in the Introduction 

and Section 2.1, no realistic probability distributions are assigned to the PSS parameters, since the objective 

is not to carry out a reliability analysis of the PSS, but to describe how the metamodel-based AK-MCS 

procedure can be exploited for critical regions characterization.  



 

 

 

For illustration purposes, the safe and critical regions identified by the AK-MCS method with 10000 

kriging metamodel evaluations (Fig. 7) are compared to those revealed by: (i) the initial set ]=)��*�, C)��*�^*� of 64 RELAP5-3D simulations, which serves as a reference baseline result (Fig. 8); (ii) the 

final set of 164 RELAP5-3D samples (generated by the adaptive AK-MCS search), as a point of comparison 

to the additional refinements provided by the extensive sampling capability of the kriging metamodel (Fig. 

9). Comparing the PCP of Fig. 7 and Fig. 8 the following considerations can be done. Using only the initial 64 

RELAP5-3D simulations (Fig. 8), the solid blue lines (that represent the input combinations leading the PSS 

to safe operation) overlap almost completely (i.e., the “average” safe combination of inputs coincides with 

the 0.25 upper and lower quantiles). This means that the initial 64 samples are not sufficient to thoroughly 

explore the state space of the PSS and, thus, they cannot properly identify the safe (resp., critical) region 

and cannot precisely characterize its boundaries and width. Rather, only few sparse safe configurations (in 

this case, 27) are identified, most of them lying on the bounds of the uncertainty ranges of the input 

variables: in fact, all the solid blue lines in Fig. 8 are located in the lower (resp., upper) part of the graph, 

very close to the 0% (resp., 100%) of the range of variation of each input. This is a consequence of the 

Figure 7: PCP with 0.25 quantiles (quartiles), obtained by AK-MCS with 164 RELAP5-3D simulations and 10000 kriging 

metamodel evaluations 



“deterministic” (expert-based) selection of some of the 64 initial input configurations, as detailed in Section 

4.1; instead, most of the other configurations (randomly selected by LHS) fall in the failure region. In 

addition, it can be noticed that the contribution of ��� to safe function suggested by Fig. 8 is completely 

different from that resulting in Fig. 7. In particular, the normalized value associated to this (solid blue) curve 

is much larger than the (orange dashed) one observed for functional failure. This would imply a significant 

importance of ���  in the PSS function, which contradicts the results of the detailed exploration carried out 

by the adaptively trained kriging metamodel (Fig. 7). Finally, it is worth noting that for some input variables 

(in particular, NC%, AAV and DELAV) the distance between the 0.25 upper and lower quantiles of the critical 

failure ranges (orange dashed lines) is larger in Fig. 8 than in Fig. 7: this means that in the present case, 

relying only on 64 RELAP5-3D simulations (selected in a mixed deterministic and probabilistic fashion) leads 

to an overestimation of the size of the critical failure region. These considerations and results call for a 

deeper and more systematic exploration of the PSS state space, to precisely discriminate between safe and 

failed configurations and to provide robust information to designers and operators. 

In this view, the PCP constructed on the final set of 164 RELAP5-3D samples (Fig. 9) provide more reliable 

indications. For example, the location of the safe regions for input variables NC%, DELAV, AMSIV and DELMSIV 

(blue solid lines) is similar to the reference one represented in Fig. 7 (i.e., close to the 0-10% of the range 

of variation). This is obviously due to the fact that the additional 100 RELAP5-3D samples are a result of the 

metamodel-aided intelligent adaptive search carried out by the AK-MCS methodology itself. However, it is 

also worth noting that the size of the corresponding safe regions (i.e., the distance between the 0.25 upper 

and lower quantiles) is underestimated. In addition, the importance of ���  in the PSS function is still 

overestimated with respect to the results of the detailed exploration carried out by the adaptively trained 

kriging metamodel (Fig. 7): actually, the normalized value associated to the corresponding “average” (solid 

blue) curve is still larger than the (orange dashed) one observed for functional failure. Finally, also the 

location and size of the critical failure region of some input variables (in particular, NC%, AAV, AMSIV and 

DELMSIV) are different from the reference ones (Fig. 7). For example, the orange dashed lines of NC%, AMSIV 

and DELMSIV are in the lower part of the corresponding range of variation (instead of the middle part as 

reported in Fig. 7) and the corresponding distance between the 0.25 upper and lower quantiles is slightly 

underestimated. In conclusion, the comparison between these three levels of parameter space exploration 

highlights the need for an accurate and thorough, yet computationally feasible, analysis of the PSS safe and 

failed configurations, which strengthens the argument for using a methodology like AK-MCS for PSS design 

and operation and possibly licensing applications. 

 

As a conclusive remark, notice that thanks to the use of the proposed metamodel-based technique, the 

computational cost associated to the analysis above has been reduced by 3-4 orders of magnitude. 

 



 

Figure 8: PCP with 0.25 quantiles (quartiles), revealed by the initial set ]³�5���, ´�5���^�� of 64 RELAP5-3D 

simulations 

 

 



Figure 9: PCP with 0.25 quantiles (quartiles), revealed by the final set of 164 RELAP5-3D samples (generated by the 

adaptive AK-MCS search) 

 

 Conclusions  

The adoption of PSS is a promising way to increase the safety of an NPP. However, the operational 

experience with PSS is lower than with active systems: thus, a more thorough analysis of the possibly wide 

range of PSS operating conditions and a detailed exploration of the critical combinations that may lead to 

PSS functional failures are mandatory. A structured procedure for the reliability assessment of T-H PSSs 

(namely, REPAS) has been developed in the past (Jafari et al. 2003; Pierro et al. 2009): however, it does not 

explicitly include an important step, i.e., the detailed characterization of the PSS Critical Regions (CRs), which 

is necessary to identify the combinations of critical operation of the system (i.e., those combinations leading 

the PSS to fail providing its function). The identification of the states that lead a PSS to safety-critical 

conditions provides relevant insights for improving system safety, since it allows prevention and 

preparation. In particular, in the design phase, such information may be used, e.g., to implement proper 

modifications aimed at “reducing the size” of the critical regions to the extent possible. In the operational 

phase, a detailed “mapping” of the PSS state-space allows in principle to characterize and classify, in a timely 

manner, new (developing) scenarios as ‘safe’ or ‘faulty’. In this view, the CR characterization process can 

serve as a basis for the identification of critical system components that are more likely to lead the PSS into 

functional failure and for the consequent prioritization of inspection/maintenance actions on such relevant 

components. To these aims, computational models and simulators are frequently employed for studying 

the PSS response under different conditions. This is challenging because the simulation models are black-

box, dynamic and computationally demanding. 

To tackle these issues, we have applied an intelligent exploration framework, namely the metamodel-

based AK-MCS, combining a fast-running Kriging metamodel and adaptive sampling (Echard et al. 2011; 

Turati et al. 2017). The AK-MCS procedure automatically refines the Kriging in proximity of the PSS limit 

surface to predict – at an acceptable computational cost – those physical input combinations leading the 

PSS to functional failure (and hence to trace the boundary between safe and failed behavior). To the best 

authors’ knowledge this is the first time that the AK-MCS technique is applied for the identification of the 

CRs of a PSS of an NPP. 

The proposed methodology has been applied to a generic PSS, the DHR, to analyze the event of “Low 

heat removal” (i.e., energy exchanged 
�,% < 90%). The metamodel-based AK-MCS has been shown 

capable of accurately identifying the combinations leading to functional failure by resorting to a limited 

number (i.e., few hundreds) of computationally expensive BE TH code runs. The CR and safe region have 

been visualized by scatter plots and PCPs. In the case study considered, it has been shown that one of the 



five input variables initially chosen to describe the PSS response, ���  (i.e., the flow area of the Activation 

Valve that opens to trigger the PSS operation), does not play a significant role in the determination of the 

PSS energy output. The other four parameters, as expected, affect the amount of energy exchanged by the 

PSS: for example, a certain percentage of non-condensable gases (%-%) inside the PSS steam line causes a 

deterioration of the heat transfer coefficient inside the E-HX; moreover, a possible delay or leakage in the 

Main Steam Isolation Valve closure (i.e., 	
����� and ����� respectively), as a delay in the Activation Valve 

opening (i.e., 	
���), negatively affect 
�,%. Most of the input combinations explored by Kriging have 

been found to lead to PSS failure: this suggests that, in a hypothetical design phase, the variations of such 

relevant inputs should be limited only for a small portion of the explored ranges. Moreover, as expected, it 

has been shown that in many cases the PSS functional failure is favored by the “combined action” of input 

parameters varying together (with respect to one-at-a-time variations). Thanks to the use of the proposed 

metamodel-based technique, the computational cost associated to the analysis has been reduced by 3-4 

orders of magnitude. 

One of the advantages of the proposed method is that – due to the Gaussian assumption – a standard 

deviation (and, thus, a Confidence Interval-CI) can be associated to each kriging evaluation. This property 

has been exploited for assessing the accuracy and precision of the metamodel in predicting a new PSS 

configuration. Most important, this has allowed defining a “confidence interval” even for the safe (resp., 

critical failure) regions identified. The corresponding lower and upper bounds can be interpreted as the 

least and most conservative estimates of the safe (resp., failure) domain, respectively. In other words, we 

have been able to quantify a sort of licensing-defined tolerance (confidence) on the input parameter 

uncertain values that result in a safe PSS operation. On the other hand, the method inherits the limits of the 

technique employed: in particular, traditional Kriging metamodels require accommodating properties like 

continuity and smoothness of the approximated function. Thus, large prediction errors may result when AK-

MCS is used to approximate non-smooth or multimodal output distributions. In such cases, different 

approaches (e.g., multiple metamodels trained by clustered training sets, Finite Mixture Models, …) could 

be adopted, which is the object of future research. 

Finally, it is worth providing a closing comment on the relevance and usefulness of the approach here 

proposed, by highlighting its possible role within the safety and risk analyses classically carried out for 

nuclear systems. As mentioned before, the main purpose of the procedure is to identify the combinations 

of input configurations (i.e., sequences of events or component states or design variable values) that lead 

the PSS to critical conditions (i.e., to functional failure). However, a complete picture of the risk associated 

to the PSS also requires the assessment of the probabilities of these critical, dangerous conditions (which is 

in general accomplished by quantifying the uncertainties in the system behavior, modeling by proper 

probability distributions and propagating them through the model code). Since this task was beyond the 

scopes of the present paper, it has not been addressed. However, research is planned to embed the 

adaptive exploration scheme here presented within advanced Monte Carlo Simulation (MCS) approaches 



for the efficient estimation of the functional failure probability of PSSs, with particular attention to those 

situations where the failure region is very small and far from the nominal design (Villén-Altamirano & Villén-

Altamirano, 2011; Pedroni and Zio, 2017; Schöbi et al., 2017; Turati et al., 2016; Yang and Cheng, 2020; Yang 

et al., 2020). 
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Appendix A – Kriging metamodels  

Kriging is defined as a stochastic interpolation algorithm, which assumes that the model output E G�H<I is the realization of a Gaussian process indexed by < ∈ 	µ ⊂ ℝ�, where 	< is the metamodel domain 

of validity and   is the dimensionality of the problem (Turati et al. 2017):   

E G �H<I G $_�H<I·�, 6MFH<Ie, (6) 

where the first term, �H<I·�, is the mean value of the Gaussian process, also known as trend, consisting 

of 0 arbitrary functions ªℎ̧ ; º G 1, … 0¬ and the corresponding coefficients ª»̧ ; º G 1, … 0¬, and the second 

term consists of the variance of the Gaussian process 6M and a zero mean, unit variance stationary Gaussian 

process FH<I; the correlation function underlying FH<I is represented by 4H?, ?¼; 8I, where 4 is the 

correlation matrix (given a certain correlation function family) and 8 its hyperparameters. In particular, 4H?, ?¼; 8I describes the correlation between two vectors ?, ?¼: the closer they are the higher their 

correlation is. The Gaussian process assumption states that every set of realizations of the model output 

can be described by a Gaussian vector, whose relation between a single realization EH?I and the rest of the 

set C)��*� ∈ ℝa��o��  follows a Gaussian distribution defined by: 

½ EH?IC)��*�¾ ~$a��o��ÀL Á½�H?I·��� ¾ ; 6M ½ 1 5ÂH?I5H?I � ¾Ã. (7) 

In detail, � is the information matrix of the Kriging metamodel trend and in each row there are the 

regressors related to the corresponding observation ?* (i.e., �* G �H?*I, � G 1, … , %)��*�); 4 is the 

correlation matrix with elements 4*¸ G 4_?* , ?¸; 8e, �, º G 1, … , %)��*�, and 5H?I is the vector of cross 



correlations between ? and each of the other vectors whose elements reads as 1* G 4H?, ?* ; 8I, � G1, … , %)��*�).  

In the context of metamodeling, the interest is to predict a new point response, hence, given an 

experimental design or training set, i.e., ]=)��*�, C)��*�^, with C)��*� G (EL, … , Ea��o��) and with an 

associated information matrix � and correlation matrix 4, the prediction of the output, i.e., E# for a given 

input configuration ? is given by: 

E#H?I|Ä, 6�, 8~$_!"# ; 6"Me, (8) 

where !"# H?I and 6"#MH?I are respectively the mean value and the variance of the Gaussian random 

variate E#, defined by:  

!"#H?I G �H?I·� + 5H?I·4iLHC)��*� − �ÅI, (9) 

6"#MH?I G 6MH1 − 5H?I·4iL5H?I·I + H�H?I· − 5H?IÆ4iL�IH�Æ4iL�IiLH�H?I· − 5H?IÆ4iL�I·  (10) 

And the least square estimates of �:  

�� G H�Æ4iL�IiL�·4iLC)��*� , (11) 

An important property of Kriging predictor is that is an exact interpolator, i.e., the prediction variance at 

experimental design points collapses to zero. Another main advantage of this approach is that a confidence 

interval is returned together with each prediction E#H?I and, hence, it can be exploited for assessing he 

accuracy and precision of the metamodel in predicting a new configuration.  

Appendix B – Best Kriging Setting calculations  

The UQLab software allows to tune different Kriging features accordingly to the properties of the case 

study. For the specific application of the Kriging metamodel used to mimic the RELAP5-3D model simulating 

the response of the DHR system, different options have been tested through the CV procedure. The initial 

I/O training set (made by 64 RELAP5-3D simulations) has been split into � partitions (with � G 4) of the 

same size: a metamodel has been trained on � − 1 partitions and the CV error (which is actually a RMSE 

error) has been evaluated by comparing the metamodel predictions corresponding to the input 

combinations of the left out partition ¥ with the true model outputs. The process has been repeated for ¥ G 1, 2, … � and the CV error has been averaged. Then, the whole procedure has been repeated to 

calculate the average CV error with other Kriging options and, finally, the best option of a certain kind (e.g., 

the best trend option) has been selected according to the lowest CV error. In particular, two Kriging features 

have been tested: the trend type and correlation function family (see Tables 5 and 6), whereas the other 

features have been set to their default options defined in UQLab.  



 

Trend type Ordinary  Linear  Quadratic  

Average CV error [%] 8.82 5.13 9.53 

 

Corr. Function family Exponential Gaussian Matérn 3/2 Matérn 5/2 

Average CV error [%] 5.58 5.31 5.55 4.99 

 

Note that the average CV error used to rank the different options is expressed in percentage because it 

has the same unit of measure of the predicted output, i.e., the percentage of energy exchanged (
�,%). 

The best trend type has been evaluated with all the other Kriging features set to their default options 

defined in UQLab (the correlation function family set by default is Matérn 5/2). The same default options 

have been used for the estimation of the best correlation function family, with the trend type set to Linear 

(optimal setting found at the previous step).  
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