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ABSTRACT This paper introduces a fast stochastic surrogate modeling technique for the frequency-
domain responses of linear and passive electrical and electromagnetic systems based on polynomial chaos
expansion (PCE) and principal component analysis (PCA). A rational PCE model provides high accuracy,
whereas the PCA allows compressing the model, leading to a reduced number of coefficients to estimate and
thereby improving the overall training efficiency. Furthermore, the PCA compression is shown to provide
additional accuracy improvements thanks to its intrinsic regularization properties. The effectiveness of the
proposed method is illustrated by means of several application examples.

INDEX TERMS Multiport systems, polynomial chaos, principal component analysis, rational modeling,
surrogate modeling, variability analysis, uncertainty quantification.

I. INTRODUCTION

UNCERTAINTY quantification is becoming ubiquitous
in many engineering domains. In fact, the intrinsic vari-

ability of many design parameters, such as geometry and ma-
terial properties, may induce large stochastic variations in the
system performance metrics of interest. These effects must be
carefully assessed and accounted for in robust designs. In this
scenario, traditional Monte Carlo-based simulations become
a major bottleneck owing to the massive amount of data they
typically require.

Therefore, alternative and more efficient strategies were
investigated in the past decade. In this regard, a standard
and well-recognized approach for stochastic modeling is
provided by the polynomial chaos expansion (PCE) frame-
work. These methods approximate the stochastic quantities
of interest using polynomial bases that are orthogonal w.r.t.
to the distribution of the uncertain parameters [1], thus en-
abling a precise uncertainty quantification in terms of sta-
tistical moments and distribution functions. The PCE frame-
work became widely popular also in the field of electrical
engineering [2], e.g., to investigate the impact of process
variations in large-scale integration circuits [3]–[17]. The
available techniques can be subdivided into two classes: in-
trusive ones [3]–[8], chiefly based on the so-called stochastic
Galerkin method, favor model accuracy and interpretability
at the expense of implementational easiness, as they require

access to the system equations and hardly apply to nonlinear
problems. On the other hand, collocation approaches [9]–
[17] are essentially black box, and merely leverage a collec-
tion of responses computed for some suitable configurations
of the uncertain parameters, thus similarly to Monte Carlo,
but being more parsimonious in the number of samples
required.

Regardless of the aforementioned differences, conven-
tional applications make use of single expansions, which are
linear in their coefficients. Recently, rational PCEs [18]–[20]
were proposed for accuracy improvement in the uncertainty
quantification of stochastic linear systems in the frequency
domain (FD) [21]. Indeed, the technique was proven to
provide a far more accurate model for generic FD network
responses, and an exact model for the responses of lumped
circuits [22]. The method is non-intrusive and features an
iterative re-weighted linear least-square regression for the
determination of the expansion coefficients. Compared to the
standard single PCE, the main drawback of rational PCEs is
the reduced computational efficiency, since in this case the
regression matrix to be inverted differs for each frequency
point and for each output of interest. This makes the method
unsuitable for the characterization of large multi-port struc-
tures and/or fine frequency sweeps.

In order to alleviate this shortcoming, we introduce here
a compression strategy, based on principal component anal-
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ysis (PCA) [23], that allows for a considerable reduction
of the number of regression problems to be solved, thus
remarkably improving the efficiency in large-size problems.
This approach was recently used in conjunction with generic
surrogate modeling techniques to improve the efficiency of
stochastic time-domain circuit simulations [24]. In this paper,
it is adapted for the use with rational PCEs in the FD.
Therefore, compared to [24], the main novel contribution
is in the use of rational PCEs as surrogate models, which
were shown to provide remarkably better accuracy for the un-
certainty quantification of FD network responses. Moreover,
novel theoretical insights are provided, and the behavior of
the PCA coefficients w.r.t. the original stochastic variables is
highlighted and discussed. In particular, it is found that opti-
mal accuracy is obtained by matching the expansion order to
the number of principal components, when feasible. Several
application examples, ranging from a trivial analytical case to
distributed circuits and electromagnetic structures, illustrate
and validate the advocated approach.

The rest of the paper is organized as follows. Section II
summarizes the state of the art of PCE-based surrogate
modeling, outlining both standard and rational model struc-
tures. Section III introduces the proposed PCA compression.
A simple illustrative example is discussed in Section IV,
whereas more realistic application test cases are provided
in Section V. Finally, conclusions are drawn in Section VI.
Throughout the paper, plain x, lowercase bold x, and up-
percase bold X variables denote scalar, vector, and matrix
quantities, respectively. Superscript T stands for transpose
and H denotes conjugate transpose (Hermitian).

II. STATE-OF-THE-ART POLYNOMIAL CHAOS
MODELING
We consider a generic P -port electrical system affected by d
uncertain parameters collected in vector ξ = (ξ1, . . . , ξd).
We assume that the FD system response can be evaluated
(e.g., through a circuit or field solver), at any frequency and
fixed configuration of the uncertain parameters ξ.

A. CONVENTIONAL MODEL: SINGLE PCE
In the standard PCE framework [2], any FD port characteri-
zation S at a given complex frequency sm ∈ {2πfm}Mm=1 is
modeled as the following PCE

S(sm, ξ) ≈ Ŝm(ξ) =

L∑
`=1

Sm,`ϕ`(ξ), (1)

where S, Ŝm,Sm,` ∈ CP×P . The basis functions {ϕ`}L`=1

are suitable multivariate polynomials that are orthogonal
w.r.t. the joint probability density function of ξ, as discussed
later in Section III. It should be noted that the model (1)
is discrete over the frequencies sm and continuous over
the uncertain variables ξ. A continuous model also w.r.t.
frequency can be obtained by applying vector fitting to the
PCE coefficients [25].

The model coefficients are computed by solving the linear
regression problem

xm,ij = arg min
x

‖Ψx− bm,ij‖2 (2)

in the least-square sense over a set {ξk}Kk=1 of samples of the
uncertain parameters (typically, randomly drawn), where:
• xm,ij = (Sm,ij,1, . . . , Sm,ij,L)T ∈ CL, i.e., a vector

collecting all PCE coefficients for the element (ij) of
matrix S at the frequency sm;

• bm,ij = (Sij(sm, ξ1), . . . , Sij(sm, ξK))
T ∈ CK is a

vector collecting the element (ij) of matrix S evaluated
at the frequency sm for all the regression samples of ξ;

• Ψ ∈ CK×L with entries Ψk,` = ϕ`(ξk), for k =
1, . . . ,K, ` = 1, . . . , L, i.e., a matrix containing all the
basis functions evaluated at the regression samples.

The solution to (2) is well-known and reads

xm,ij = Ψ+bm,ij , (3)

where Ψ+ = (ΨHΨ)−1ΨH denotes the Moore-Penrose
pseudo-inverse [26] of Ψ.

At this point, it is important to note that matrix Ψ is
independent on the frequency and response matrix element.
Therefore, the full characterization of the model (1) can
be carried out simultaneously by stacking the regression
data bm,ij for all frequency points and port variables into a
single matrix

B =

 ←− b
T
1,11 −→
...

←− bTM,PP −→

 ∈ CMQ×K , (4)

with Q = P 2, and computing

X =
(
Ψ+BT

)T
, (5)

which collects all model coefficients in (1) with the same
ordering as in (4).

Despite a remarkable computational efficiency, it was
shown in [21] that the model (1) is not very accurate for elec-
trical/electromagnetic systems, especially at high frequency
and for distributed and/or strongly resonant structures. More-
over, the number K of regression samples required to “train”
the model becomes rapidly prohibitive when the expansion
order is increased.

B. RATIONAL PCE MODEL
For the aforementioned reasons, an element-wise rational
model of the form

Sij(sm, ξ) ≈ Ŝm,ij(ξ) =

∑L
`=1Nm,ij,` ϕ`(ξ)

1 +
∑L
`=2Dm,ij,` ϕ`(ξ)

(6)

for i, j = 1, . . . , P , was put forward [21]. In [22], it was
further shown that such a model is exact for lumped systems,
provided that a suitable truncation strategy is used.
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The model coefficients in (6) are obtained through the
iterative solution of the linearized regression problem(
nνm,ij
dνm,ij

)
=

arg min
n,d

∥∥∥∥(∆ν
m,ijΨ −∆ν

m,ijΨ
′
m,ij

)(n
d

)
−∆ν

m,ijbm,ij

∥∥∥∥
2

(7)

in the least-square sense, in which ν denotes the iteration
index, Ψ and bm,ij are defined as in (2), and in addition:

• nνm,ij = (Nν
m,ij,1, . . . , N

ν
m,ij,L)T ∈ CL, i.e., a vector

collecting the numerator coefficients at iteration ν;
• dνm,ij = (Dν

m,ij,2, . . . , D
ν
m,ij,L)T ∈ CL−1, i.e., a vector

collecting the denominator coefficients at iteration ν;
• Ψ′m,ij ∈ CK×(L−1) with entries Ψ′k,` =
Sij(sm, ξk)Ψk,`, for k = 1, . . . ,K, ` = 2, . . . , L;

• ∆ν
m,ij is a diagonal matrix collecting the inverse of the

denominator PCE at the iteration ν − 1 evaluated at
the regression samples. It is initialized to the identity
matrix, and updated throughout the iterations as

∆ν
m,ij =

[
diag

{
Ψ

(
1

dν−1
m,ij

)}]−1

.

The regression problem (7) has 2L − 1 unknowns, cor-
responding to the numerator and denominator PCE coeffi-
cients. In [21], a Latin hypercube sampling strategy was used
to generate the K random samples of ξ for the regression,
and K � 2L− 1 was taken for the system to be sufficiently
overdetermined. The iterative re-weighting is used to elimi-
nate the bias introduced by the linearization [27]. Iterations
stop after convergence is detected.

The above-described approach has one important limita-
tion. The regression matrix in (7) depends on both frequency
and port response, hence the iterative regression solution
must be carried out separately for each frequency point sm
and for each input-output pair (ij). This leads to a possibly
large number MQ of separate, independent (and iterative)
calculations. Therefore, the approach becomes intractable for
the responses of systems with many ports evaluated over a
fine frequency sweep. A compression strategy is proposed in
the next section to alleviate this problem.

Before continuing, we would like to remark at this point
that for reciprocal systems, Sij(sm) = Sji(sm) ∀i, j,m,
and therefore the modeling reduces to the triangular part
of S, leading to Q = P (P + 1)/2 unknowns instead of
Q = P 2. A further reduction may occur for symmetrical
structures. In the following, Q will denote in general the
actual number of distinct port responses to be modeled. It
is important to remark that, however, any redundancy in the
data is automatically removed by the compression strategy
introduced in the next section.

Throughout the following, we will refer to the ensemble of
stochastic responses {S(sm, ξk)}M,K

m,k=1 that is used to train
the model, collected into matrix (4), as the “training dataset”.

III. PCA-COMPRESSED POLYNOMIAL CHAOS
MODELING
In order to reduce the exorbitant number of MQ regression
solutions that is required by the full characterization of the
model (6) for all port responses and frequency points, a
compression strategy is introduced using PCA [23]. This
approach is motivated by the fact that the responses of a linear
system exhibit some amount of interdependency between
different ports and frequency points, which can be effectively
handled by compressing the data into a reduced subset by
means of PCA [24].

A. EIGENVALUE-BASED CALCULATION
The approach starts by interpreting the MQ ×K matrix B,
defined in (4), as a collection of K realizations of a MQ-
variate stochastic variable β. Next, the experimental covari-
ance matrix of β, i.e.,

Kβ = E{(β − E{β})(β − E{β})H}

≈
∑K
k=1

(
βk − µβ

) (
βk − µβ

)H
K − 1

=
B̃B̃

H

K − 1

(8)

is computed, where Kβ ∈ RMQ×MQ, βk ∈ RMQ is the kth
column of B,

µβ =
1

K

K∑
k=1

βk (9)

is the mean estimated over the stochastic samples, and

B̃ = B − (µβ ⊗ 11×L), (10)

where 11×L ∈ RL is a row vector of ones.
Given the eigenvalue decomposition of Kβ, i.e.,

eig(Kβ) = ΦΛΦH, (11)

where Λ is a diagonal matrix collecting the eigenval-
ues {λn}MQ

n=1 of Kβ, assumed to be sorted in descending
order, and Φ is the corresponding matrix of eigenvectors, the
realizations {βk}Kk=1 of the original training dataset can be
expressed as [23]

βk = µβ +

MQ∑
n=1

Zk,nφn (12)

where φn denotes the nth eigenvector (i.e., the nth column
of Φ), whereas the coefficients Zk,n are obtained as

Zk,n = φH
n(βk − µβ). (13)

The expansion (12) can be truncated to retain only the
first n̄ eigenvectors, corresponding to the most significant
eigenvalues, based on a pre-defined relative threshold. This
is the so-called PCA, leading to the approximation

βk ≈ β̂k = µβ +

n̄∑
n=1

Zk,nφn (14)

of the data in (4). As it will be shown by the application
examples, n̄ ≪ MQ (typically, two to three orders of
magnitude less).
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Now, the key point is that the collection of the PCA
coefficients Zk,n can be seen as a set of K realizations of
n̄ stochastic variables stemming from (and hence, depending
on) the original random parameters ξ. As such, each of the n̄
PCA coefficients can be represented using the rational PCE
model (6) as

Zn(ξ) ≈
∑L
`=1Nn,`ϕ`(ξ)

1 +
∑L
`=2Dn,`ϕ`(ξ)

, (15)

with n = 1, . . . , n̄, and coefficients computed as in (7)
using the samples {Zk,n}Kk=1. The fundamental difference,
compared to (6), is that (15) requires to construct only n̄
rational models, instead of MQ.

Once the model (15) is computed, it is used to generate
new random samples for the PCA coefficients in (14), which
in turn allows obtaining new samples for the random vari-
ables β. The corresponding samples for the original port
variables are recovered by assembling a new dataset B and
reshaping it back to the original form according to (4). It
should be noted that the proposed method no longer com-
putes the PCE coefficients of the port variables as in (1)
or (6). Samples thereof are instead obtained directly from
the rational PCE model (15) of the PCA components. The
PCA compression is also applicable in conjunction with the
conventional PCE, yet without significant benefit on neither
the computational efficiency nor the accuracy, as we will
show later on.

B. SVD-BASED CALCULATION
The evaluation of the eigenvalue decomposition (11) is not
efficient for very large-sized matrices, which is often the case
in practice. Conveniently, the eigenvalue decomposition of
the covariance matrix (8) can be reformulated as a singular
value decomposition (SVD) [23]. Consider the “economy-
size” SVD of the entire zero-meaned training dataset B̃

svd(B̃) = UΣVH (16)

where, since MQ > K, U ∈ CMQ×K , Σ ∈ RK×K is
a diagonal matrix collecting the singular values {σn}Kn=1 of
B̃ in descending order, and V ∈ CK×K . Recalling that the
singular values of a matrix M correspond to the square root
of the eigenvalues of MMH, and that the left-singular vectors
are a set of corresponding orthonormal eigenvectors [26],
then the eigenvalues in (11) are related to the singular values
in (16) by

λn =
σ2
n

K − 1
(17)

whereas the eigenvectors (columns of Φ) and the left-
singular vectors (columns of U) are proportional up to a
complex constant with unit magnitude, and hence they are
interchangeable in (12)–(14). Because of (17), a relative
threshold ε on the singular values of B̃ is equivalent to a
relative threshold ε2 on the eigenvalues of Kβ.

C. ERROR OF PCA TRUNCATION
First of all, we assume all the training samples in dataset B
to be an exact representation of the true system response,
with no associated “measurement error”. Let us consider a
PCA truncation based on a relative threshold ε on the singular
values of the zero-meaned dataset B̃. We denote with B̂ the
corresponding approximation of B, i.e., a matrix collecting
columnwise the approximated samples {β̂k}Kk=1 in (14), and
with Kβ̂ the corresponding experimental covariance matrix.
Thanks to the properties of singular values [28], the following
relations hold for the approximation error:

‖B̂ −B‖2 ≡ σn̄+1 =
σn̄+1

σ1
‖B̃‖2 ≤ ε‖B̃‖2 (18)

where σn̄+1 is the first discarded singular value, and the
standard matrix 2-norm ‖M‖2 = max(σ(M)) = σ1 has
been used. Moreover, using (17), the error on the covariance
matrix can be expressed as

‖Kβ̂ −Kβ‖2 ≡
σ2
n̄+1

K − 1
=

(
σn̄+1

σ1

)2

‖Kβ‖2 ≤ ε2‖Kβ‖2.
(19)

Finally, the following property holds for the root-mean-
square error (RMSE) over the individual realizations βk:√√√√ 1

K

K∑
k=1

‖β̂k − βk‖22

=
1√
K
‖B̂ −B‖F ≤ ‖B̂ −B‖2 ≤ ε‖B̃‖2,

(20)

where ‖ · ‖F denotes the Frobenius norm and the property
‖M‖F ≤

√
r‖M‖2, where r ≤ K is the rank, has been

used. Therefore, the PCA approximation error is rigorously
controlled by means of the truncation threshold. It should
be noted that the overall approximation error is the sum
of the contributions of the PCA truncation and of the PCE
approximation of the PCA coefficients, which is in turn
controlled by letting the expansion order be sufficiently high.

D. PCE TRUNCATION
Without loss of generality, we assume the components of the
random vector ξ be independent and identically distributed
(i.i.d.), with probability density function (PDF) w(ξ). In this
case, the basis functions in the PCE are constructed as the
product

ϕ`(ξ) =

d∏
j=1

ζαj
(ξj), (21)

where {ζα(ξ)}∞α=0 are univariate polynomials of degree α
satisfying the orthogonality condition∫

R
ζα(ξ)ζγ(ξ)w(ξ)dξ = 0, α 6= γ. (22)

An implicit mapping is introduced between the scalar index `
and a vector of univariate degrees α = (α1, . . . , αd) in (21).
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With the above definitions, three truncation strategies of
increasing sparsity are typically defined for the PCE [2], [29],
given an expansion order p:

• tensor product (TP), such that ‖α‖∞ ≤ p and leading
to L = (p+ 1)d terms;

• total degree (TD), such that ‖α‖1 ≤ p and leading to
L = (p+ d)!/(p!d!) terms;

• hyperbolic, such that ‖α‖u ≤ p, with 0 < u < 1.

The above truncation strategies are equivalent for the univari-
ate case (d = 1).

A TD truncation is typically used for conventional single
PCE models [2], since the higher-order interactions included
in a TP of the same degree are often negligible. On the other
hand, it was shown that using a TP truncation of order p = 1
for both the numerator and denominator of a rational model
yields an exact model for lumped circuits [22]. Because of the
PCA transformation, however, the exactness no longer holds
for the PCA coefficients in (15), even for lumped systems.
Therefore, whereas in [21] the above property motivated, by
extension, the choice of a TP truncation also for distributed
systems, although generally with p > 1, here we will also
consider the more compact TD truncation for the rational
model (15).

E. SAMPLING STRATEGY

Low-discrepancy sequences are frequently used in quasi-
Monte Carlo simulations to speed-up the convergence of
sampling-based techniques [30]. They are fully deterministic
sequences of multivariate samples with optimal space-filling
properties. Two notable examples thereof are the Sobol [31]
and Halton [32] sequences. Their samples, which we denote
with {(η1,k, . . . , ηd,k)}Kk=1, are uniformly distributed in the
hypercube [0, 1]d. Normally-distributed samples are obtained
through the inverse probability transform [33]

ξj,k = F−1
N (ηj,k), ∀j, k (23)

where F−1
N is the inverse of the cumulative density function

of the standard normal distribution. It is important to mention
that the first element of the sequence is always the origin
and it has to be discarded when transforming into a normal
distribution, since F−1

N (0) = −∞. This operation involves
a negligible computational cost. Hence, we did not consider
alternative methods, such as the Box-Muller transform [34],
for improving the computational efficiency.

Figure 1 shows the distribution of K = 100 bivariate
(d = 2) Gaussian samples drawn according to plain random
number generation (like in standard Monte Carlo), Latin
hypercube sampling, Sobol sequence, and Halton sequence.
The samples from the low-discrepancy sequences are more
evenly spread in the space. In this paper, we draw training
samples according to a Sobol sequence in place of the Latin
hypercube sampling strategy used in [21].
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FIGURE 1. Distribution of K = 100 biviarate Gaussian samples drawn
according to different schemes.

IV. ILLUSTRATIVE EXAMPLE
We start by considering a trivial analytical example consist-
ing of a parallel RLC circuit, whose impedance reads

Z(s) =
sRL

R+ sL+ s2RLC
. (24)

Given the rational form of (24), and contrary to the con-
ventional single PCE, a first-order rational PCE (6) with TP
truncation is exact, as was rigorously proven for the general
case in [22].

We start by considering a univariate case in which only the
inductance L is uncertain, following a Gaussian distribution
with a nominal value of 3 H and a standard deviation of
0.6 H (i.e., 20% relative). The resistance is R = 2 Ω
and the capacitance is C = 4 F. For the calculation of
the model coefficients, we consider K = 50 impedance
samples evaluated for inductance values generated from a
Sobol sequence.

We first illustrate the impact of the PCA compression on
the classical, single PCE. Therefore, we assess the modeling
error for different PCA truncation thresholds and PCE orders.
Figure 2 shows the behavior of the root-mean-square error
(RMSE), calculated over 10000 samples of the stochastic
inductance. The average and maximum error over frequency,
obtained by applying the PCE directly to FD data (dashed
yellow lines), are compared against the results achieved in
conjunction with PCA compression of the training dataset
with various truncation thresholds on the singular values,
namely ε = {10−2, 10−3, 10−4, 10−5} (solid red lines). It
is noted that the error does not monotonically decrease with
increasing order. This is because the model coefficients of
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FIGURE 2. Average (left) and maximum (right) RMSE over frequency
obtained with single PCEs of various orders, applied to FD data (dashed
yellow lines) or in conjunction with PCA compression with different truncation
thresholds (solid red lines).

higher-order expansions are computed with lower accuracy
(or higher variance) with a given training dataset, since the
number of unknowns to be estimated by the regression in-
creases. This phenomenon is called the “bias-variance trade-
off” in statistical learning theory [35], and can be mitigated
using LASSO or Ridge regressions. It was observed in [21]
that the number of required samples increases superlinearly
with the number of unknown coefficients to estimate, thus
making the use of high-order classical PCEs impractical for
the modeling of FD responses. Moreover, the PCA truncation
threshold is found to have little influence, especially on the
maximum error. From ε = 10−4 and below, the FD and
PCA-compressed solutions provide the same accuracy up to
the fourth digit, meaning that the PCA compression error
has become practically negligible compared to the PCE error.
The error of a first-order rational PCE model is found instead
to be limited to machine precision, as expected.
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FIGURE 3. Magnitude of the PCA coefficients for the impedance of the
parallel RLC circuit with uncertain inductance. Blue solid lines: actual value;
red dashed line: single PCE model of order p = 3; yellow, purple, green, and
cyan dotted lines: rational PCE models of order p = 1, 2, 3, 4, respectively.

Next, we focus on the proposed modeling scheme, i.e.,
the PCA-compressed rational approximation discussed in
Section III. We first investigate the accuracy of the rep-

resentation (15) of the principal components, for different
expansion orders of the numerator and denominator, and
then we analyze the resulting accuracy on the impedance. To
this end, we start by considering a PCA compression with
a truncation threshold of ε = 10−2. This leads to retaining
n̄ = 4 PCA coefficients out of the 501 original frequency
samples, with a reduction to a mere 0.8% of the original
data. Figure 3 reports a parametric analysis of the four PCA
coefficients {Zn}4n=1 as a function of the normalized induc-
tance value, denoted with ξ. The solid blue lines show the
magnitude of the actual value of Zn, obtained by projecting
the corresponding impedance samples via (13). The dashed
red lines are single PCE models of order p = 3, which yield
the best model accuracy according to Fig. 2, and yet exhibit
a rather large error for all PCA coefficients, especially for
|ξ| > 2.1 The dotted curves are rational PCE models of
various orders. In particular, each panel shows the rational
models of order p = n−1 and p = n. This comparison leads
to the interesting observation that a nth-order rational PCE
model is very accurate for the nth coefficient Zn, whereas
a rather large error is observed if a lower order is used.
More precisely, models of order p ≤ n − 1 result to be
highly inaccurate, whereas using p ≥ n ensures excellent
accuracy. Therefore, the order of the PCA coefficients seems
to increase linearly with the index.
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FIGURE 4. Average (left) and maximum (right) RMSE over frequency
obtained with rational PCEs of various orders, applied in conjunction with PCA
compression with different truncation thresholds. The dots mark the point at
which the expansion order matches the number of principal components.

This is further confirmed by the plots in Fig. 4, which
now report the average and maximum RMSE on the FD
impedance obtained by applying a rational PCE in conjunc-
tion with PCA compression, for different expansion orders
and truncation thresholds. The dots mark the point at which
the expansion order p matches the number of principal
components n̄ for the corresponding truncation threshold.
It is indeed noted that the accuracy does not significantly
improve by further increasing the expansion order beyond
that value. This corroborates the conclusion that such model
is virtually exact, with the residual error on the impedance
being due to the PCA truncation. Moreover, there is no

1Since ξ is Gaussian distributed, the probability that |ξ| > 2 is below 5%,
whereas the probability that |ξ| > 3 is below 0.3%.
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TABLE 1. Accuracy of various PCE models for the impedance of the parallel
RLC circuit with uncertain inductance.

Method
PCA Order RMSE

threshold p avg max

Single PCE — 3 1.0343× 10−2 2.5870× 10−1

FD rational PCE — 1 ≈ 0 ≈ 0

PCA-compressed
rational PCE

ε = 10−2 3 3.2645× 10−3 4.5731× 10−2

ε = 10−2 n̄ = 4 2.2920× 10−3 3.2751× 10−2

ε = 10−3 n̄ = 5 1.7682× 10−3 2.5408× 10−2

ε = 10−4 n̄ = 7 1.2403× 10−3 1.7206× 10−2

ε = 10−5 n̄ = 9 9.7891× 10−4 1.3807× 10−2

significant difference in using different truncation thresholds
when p < n̄.

Table 1 summarizes the key figures concerning the ac-
curacy for the various cases. The first row reports the best
accuracy that is achieved with a single PCE, i.e., by using
order p = 3. As already noted, no significant difference
is found by applying the PCE directly in the FD or to the
PCA-compressed variables. A rational model in the FD is
exact, thereby leading to a vanishing error. A very good
accuracy is still attained by applying the rational model to
the PCA compressed variables. As noted from Fig. 4, the
error saturates at p = n̄. However, compred to a single
PCE, a lower error is obtained also for p < n̄ (regardless
of the truncation threshold), as is shown, e.g., for the case
with p = 3. Indeed, albeit no longer being exact, a rational
PCE applied in conjunction with PCA compression provides
a modeling error that is about one order of magnitude lower
than the one obtained with the conventional single PCE.

We perform a similar analysis by now considering all
three RLC elements to be uncertain, each with a Gaussian
distribution and a 20% relative standard deviation. For the
regression, we take K = 1200 samples, again from a
Sobol sequence and deliberately high for the regressions with
various expansion orders to be sufficiently overdetermined.
We first consider a direct FD modeling with both a single
and a rational PCE. The former is computed using a TD
truncation of order p = 5, which yields the best accuracy
with the given training dataset. For the latter, a first-order
TP truncation is used, yielding again an exact model. The
corresponding RMSEs are provided in the first two rows of
Table 2.

We then apply a PCA compression using a threshold of
ε = 10−2. As a result of the increased variability caused by
the two additional uncertain elements, n̄ = 8 terms are now
retained. Figure 5 shows the scatter plots pairing the magni-
tude of the PCA coefficients {Zn}8n=1, calculated from 101
impedance samples using (13), with the corresponding values
obtained using various rational PCE models. Specifically,
each plot shows the prediction of a rational model with TP
truncation of order p = n− 1 (with the exception of the plot
for Z1, as p = 0 would correspond to a constant function), a
TD truncation of order p = n, and a TP truncation of order
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FIGURE 5. Scatter plots of the PCA coefficients Zn for the impedance of the
parallel RLC circuit with three uncertain elements (rational PCE model vs
actual value). Cross, circle, and dot markers: (n− 1)th-order TP, nth-order
TD, and nth-order TP models, respectively.

p = n. Keeping in mind that an accurate model results in the
points to be aligned along the bisector y = x (dashed line),
Fig. 5 allows us to draw the following conclusions:

• A TP rational PCE of order p = n virtually provides an
exact model for the corresponding PCA coefficient Zn,
similarly to the univariate case;

• A TD truncation of order p = n also provides an
acceptable model for higher-index PCA coefficients.

The appropriateness of the rational models of matching order
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TABLE 2. Accuracy of various PCE models for the impedance of the parallel
RLC circuit with all uncertain elements.

Method
PCA Order RMSE

threshold p avg max

Single PCE — 5 1.1193×10−2 2.3417×10−1

FD rational PCE — 1 ≈ 0 ≈ 0

PCA-compressed
rational PCE

ε = 10−2 5 5.1425×10−3 3.1039×10−2

n̄ = 8 2.0102×10−3 1.3109×10−2

ε = 10−3 n̄ = 12 1.1815×10−3 8.2125×10−3

is further confirmed by the rapid convergence of the iterative
regression scheme, which does not occur for p < n.

Table 2 provides the information on the RMSE achieved by
using rational PCEs in conjunction with PCA compression.
The best compromise on the accuracy is found by using a
TD truncation and letting p = n̄ for all PCA coefficients,
although a marginal saving in computational cost could be
attained by tuning the order for each individual Zn. Com-
pared to single PCEs, a lower error is again achieved with
rational PCEs, even when p < n̄ is used.

V. APPLICATION EXAMPLES
In this section, we confirm the previous results through the
application of the proposed method to more meaningful
examples. All the structures are deliberately taken from the
existing literature.

We assess the performance based on the achieved RMSE
and on the ability of accurately reproducing probability dis-
tributions at a specific frequency. In addition, we show that
very good accuracy is usually obtained also for the entire FD
response for some specific random parameter configurations,
even though PCE-based methods tend to favor global statisti-
cal accuracy on a large ensemble of parameter configurations,
at the expense of the accuracy on specific realizations.

All simulations are performed on a Dell Precision 5820
workstation with an Intel(R) Core(TM) i9-7900X, CPU run-
ning at 3.30 GHz, and 32 GB of RAM.

A. NETWORK OF COUPLED TRANSMISSION LINES
We consider here the nine-port network with coupled mi-
crostrip lines analyzed in [21]. The structure is shown in
Fig. 6 and consists of three sections with coupled microstrip
lines interconnected by lumped elements. Because of reci-
procity, the number of distinct port variables that needs to be
considered is Q = 45. We simulate the S-parameters of the
network with HSPICE atM = 401 equally-spaced frequency
points from dc to 20 GHz. Hence, the naive calculation of
rational PCE models for all S-parameters requires MQ =
18045 separate solutions of the linearized regression (7).
For the error assessment, we calculate 5000 samples of the
scattering matrix.

In a first instance, we assume a uniform variability of the
length of the microstrip lines, in the interval [2.4, 3.6] cm,
and we compute K = 30 training samples using a Sobol
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FIGURE 6. Schematic of the nine-port network with coupled microstrip
lines [21], with port definition.
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FIGURE 7. Magnitude of the PCA coefficients for the S-parameters of the
network with coupled microstrip lines of uncertain length. Blue solid lines:
actual value; red dashed lines: single PCE model of order p = 3; yellow,
purple, and green dotted lines: rational PCE models of order p = 3, p = 5,
and p = 8, respectively.

sequence. Then, we apply a PCA compression to the training
dataset using a threshold of ε = 10−2 on the singular values.
This leads to retaining only n̄ = 8 principal components,
i.e., less than 0.05% of the original data. Figure 7 shows
the behavior of the PCA coefficients (solid blue lines) as a
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function of the normalized length ξ, and compares it against
a single PCE model of order p = 3 (dashed red line), which
yields the lower maximum RMSE with the given training
data, and rational PCE models of order p = 3, p = 5,
and p = n̄ = 8 (dotted yellow, purple, and green lines,
respectively). It is confirmed that a rational model of a given
order is accurate up to the PCA coefficient of the same
index, and that choosing an order that matches the number
of retained PCA coefficients ensures high overall accuracy.
The conventional single PCE model exhibits a large error for
all PCA coefficients instead.
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FIGURE 8. Top and bottom-left panels: comparison between a subset of
actual S-parameter samples (solid blue lines) of the network with coupled
microstrip lines of uncertain length and their PCE models (dashed red lines:
conventional FD single PCE model of order p = 3; dotted green lines:
PCA-compressed rational PCE model of order p = 11). Bottom-right panel:
RMSE error for all S-parameters (solid red lines: FD single PCE; dashed green
lines: rational PCE with PCA compression).

Next, we lower the PCA truncation threshold to ε = 10−3,
which leads to n̄ = 11. In the top and bottom-left panels
of Fig. 8, we compare some random samples of a subset of
S-parameters from the reference HSPICE simulation (solid
blue lines) with the predictions obtained using a conventional
single PCE of order p = 3, applied directly to the FD data
(dashed red lines), and the proposed PCA-compressed ratio-
nal models of order p = n̄ = 11 (dotted green lines). A re-
markably better accuracy is obtained with the latter approach,
whereas the former is accurate only at low frequencies. The
bottom-right panel shows instead the RMSE over the 5000
reference samples achieved by the conventional single PCE
and by the PCA-compressed rational models (solid red and
dashed green lines, respectively), for all the 45 distinct S-
parameters. As in the previous examples, applying a single
PCE in conjunction with PCA compression provides similar
accuracy. On the other hand, it is confirmed that the rational
models provides a model that is orders of magnitude more
accurate.

Table 3 provides the main figures concerning the accuracy
and computational time of the various approaches, including
the direct FD application of rational PCEs as in [21]. This
approach is still feasible for this one-dimensional example,

but the processing time is already over 10× higher than with
the corresponding PCA-compressed model. The computa-
tional cost of the latter is comparable to the more efficient
(yet inaccurate) single PCE, for which the computational gain
achieved with the PCA-compression is marginal (about 2×).
The largest gain achieved by the PCA compression is on the
model training (i.e., the calculation of the model coefficients
through regression), but it does yield an improvement also on
the model evaluation time.

It is further established that rational PCE models provide
far superior accuracy compared to the conventional single
PCE models. As was already observed in Section IV, it is
found that taking p > n̄, or lowering the PCA truncation
threshold without increasing the expansion order accord-
ingly, do not substantially improve the accuracy (results not
shown in the table). Finally, it is confirmed that similar
accuracy is attained when applying a conventional single
PCE model to FD and PCA-compressed data.
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FIGURE 9. RMSE of the FD single PCE (red lines), FD rational PCE (yellow
lines), and PCA-compressed rational PCE (green lines) for the network with
coupled microstrip lines and uncertain substrate thickness and permittivity, as
a function of the PCE order. Left and right panels refer to the average and
maximum error over frequency and port, respectively.

Next, we consider the same network but with uncertainty
in the substrate thickness and relative permittivity, both fol-
lowing a Gaussian distribution with a 10% relative standard
deviation. For training the models, we use K = 100 samples
from a bivariate Sobol sequence (cfr. Fig. 1). By setting a
PCA truncation threshold of ε = 10−3, the training dataset
is reduced to n̄ = 14 principal components. We use a
TD truncation for both single and rational PCE models. As
already noted, for this distributed structure, the use of a
more “expensive” (in terms of unknowns) TP truncation for
rational models is not motivated by their exactness, not even
in the FD as opposed to the lumped case in Section IV.

Figure 9 reports the average (left panel) and maximum
(right panel) RMSE, calculated over 5000 samples of the S-
parameters, obtained with various PCE models of increasing
order. In particular, the expansion order is increased until
the training of the rational models becomes unfeasible, i.e.,
the pertinent regression problem is underdetermined). This
occurs at a lower expansion order compared to single PCEs,
given the higher number of unknowns (almost double). With
the available data, it is not possible to match the order of the
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TABLE 3. Accuracy and computational times of various PCE models for the S-parameters of the network with coupled microstrip lines of uncertain length.

Method
PCA Order RMSE Training Evaluation Total CPU Speed-up

threshold p avg max time time time w.r.t. FD

FD single PCE — 3 4.7618×10−2 4.8058×10−1 < 0.1 s 1.4 s 1.5 s —

FD rational PCE —
3 4.9448×10−3 3.0672×10−1 6.6 s 2.6 s 9.2 s —
8 2.3993×10−5 3.4468×10−3 13.0 s 2.6 s 15.7 s —
11 2.3897×10−6 3.4709×10−4 22.7 s 2.6 s 25.3 s —

PCA-compressed
single PCE ε = 10−3 3 4.7618×10−2 4.8058×10−1 < 0.1 s 0.6 s 0.7 s 2.2×

PCA-compressed
rational PCE

ε = 10−2 3 1.3531×10−2 1.8324×10−1 < 0.1 s 0.8 s 0.9 s 10.4×
ε = 10−2 8 1.2224×10−3 2.3190×10−2 < 0.1 s 0.8 s 0.9 s 18.3×
ε = 10−3 11 3.4312×10−4 7.1074×10−3 < 0.1 s 0.8 s 0.9 s 28.2×

rational model with the number of retained PCA coefficients,
since L = 120 for p = n̄ = 14, and therefore K < 2L− 1.

It is observed that the error of the single PCE (red lines)
steadily increases for expansion orders above three. Once
again, this is a classical manifestation of the bias-variance
tradeoff. On the other hand, the error of the rational PCE
models is always well below the error of the single PCEs.
It is also interesting to note that the PCA-compressed model
achieves higher average RMSE compared to the direct FD
modeling, but lower maximum RMSE. This is readily ex-
plained by the fact the iterative re-weighed regression (7)
can locally exhibit poor convergence, and hence a relatively
larger error, at some specific frequencies. However, these ar-
tifacts are “smoothed out” when working on the compressed
data, with PCA intrinsically acting as a regularizer.
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FIGURE 10. PDF of a subset of S-parameters of the network with coupled
microstrip lines and uncertainty in the substrate thickness and permittivity,
computed at 18 GHz. The distribution of the reference samples (histogram) is
compared to the predictions obtained with a single PCE of order p = 3 (solid
red line), a FD rational PCE of order p = 5 (dashed yellow line), and a rational
PCE of order p = 8 in conjunction with PCA compression (dashed green line).

Figure 10 compares the PDF of a selection of S-
parameters, computed at 18 GHz with the same three meth-

TABLE 4. Training times of the rational PCE models for the S-parameters of
the network with coupled microstrip lines of uncertain substrate thickness and
permittivity.

PCE order 2 3 4 5 6 7 8
FD 24.5 s 24.7 s 39.1 s 138.2 s 337.1 s 537.3 s 454.0 s
PCA 0.2 s 0.2 s 0.3 s 0.3 s 0.2 s 0.3 s 0.6 s
Speed-up 137× 130× 149× 472× 1400× 1593× 823×

ods. Specifically, the distribution of the reference samples
(histogram) is compared against the PDFs obtained with a FD
single PCE of order p = 3 (solid red lines), a FD rational PCE
of order p = 5 (dashed yellow lines), and a PCA-compressed
rational PCE of order p = 8 (dashed green lines). These
models provide the best accuracy with the given training data,
according to Fig. 9. The FD and PCA-compressed rational
models provide similar accuracy, which is far better than the
one atteined with a single PCE. However, the FD model takes
138.2 s for the training, as opposed to a mere 0.6 s required
by the advocated PCA-compressed method.

To better investigate the efficiency of the proposed method,
Table 4 compares the computational times for training the
rational models of increasing order considered in Fig. 9.
The processing time of the PCA-compressed models remains
feasible and within seconds, whereas the construction in the
FD rapidly scales up to several minutes. For this very reason,
the analysis in [21] was limited to a small subset of S-
parameters. For this test case, the PCA compression leads to
a speed-up of two to three order of magnitudes.

B. COUPLED-LINE MICROSTRIP BANDPASS FILTER
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FIGURE 11. Top view of the coupled-line bandpass filter [36].

The next test case considers the coupled-line bandpass
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filter investigated in [36], consisting of six microstrip res-
onators and shown in Fig. 11. The structure consists of a
perfect electric conductor (PEC) cover, an alumina layer with
a thickness of 0.635 mm, relative permittivity εr = 9.9, and
loss tangent tan δ = 0.0009, and a gold layer with a thick-
ness of 0.178 mm. Two-port S-parameters, evaluated with
the Keysight Advanced Design System (ADS) Momentum
simulator at M = 300 frequency points from 1 GHz to
7 GHz, are available for 400 configurations of the width of
the inner microstrip sections W and their gap S, both in the
range [0.635, 0.889] mm and evaluated on a uniform 20× 20
grid.
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FIGURE 12. Training (red dots) and validation (blue circles) parameter
samples for the microstrip bandpass filter.

We consider the two parameters to be uniformly dis-
tributed, and we use Legendre polynomials as basis func-
tions. We use half of the points (i.e., K = 200) as training
samples, and the remainder of the points as validation sam-
ples. Specifically, we select the training samples as the avail-
able configurations that lie the closest to the first 200 points
of the Sobol sequence. The result is illustrated in Fig. 12,
where filled dots and circles denote training and validations
samples, respectively, in normalized units. Choosing a PCA
truncation threshold of ε = 10−3 leads to n̄ = 11. A rational
model of matching order has L = 78 terms and can be
therefore feasibly trained.

Figure 13 shows the comparison between the reference
S-parameters (solid blue lines) and the corresponding pre-
dictions obtained with the PCA-compressed rational model
(dashed green lines) for a selection of five validation points.
In addition, the dotted red line shows the RMSE over the
200 validation samples, which turns out to be well below
−50 dB outside the bandpass region. The mean and max-
imum RMSE over frequency and ports are 1.3587 × 10−3

and 1.3840× 10−2, respectively. The training of the n̄ = 11
rational models for the principal components requires 2.1 s.
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FIGURE 13. S-parameters of the coupled-line microstrip bandpass filter. Solid
blue lines: reference responses from ADS Momentum; dashed green lines:
predictions of the PCA-compressed rational model; dotted red lines: RMSE
error over all the validation samples.

W

L

S

FIGURE 14. Top view of the patch antenna [37].

C. PATCH ANTENNA
This example refers to the patch antenna analyzed in [37]
and shown in Fig. 14. The patch has a size of 16× 12.5 mm.
The dielectric layer has a thickness of 0.794 mm and relative
permittivity εr = 2.213. One-port S-parameters (reflection
loss), evaluated again with the ADS Momentum solver at
M = 250 frequency samples from 1 MHz to 20 GHz, are
available for 1000 combinations, on a 10 × 10 × 10 cube,
of the three parameters indicated in Fig. 14, namely the
feed stub length L ∈ [4, 10] mm, width W ∈ [2.5, 4] mm,
and offset S ∈ [7, 9] mm. Like in the previous example, a
subset of samples (250, in this case) that lie the closest to
the Sobol sequence, are selected as training data, and the
remaining 750 samples are used for validation. We apply a
PCA compression with a truncation threshold of ε = 10−2,
which leads to n̄ = 15. In this case, it is unfeasible to train a
model of matching order, which would have L = 816 terms
at the numerator and denominator. We therefore consider an
expansion order of p = 5 and a TD truncation.

Figure 15 provides the comparison for a selection of S-
parameter samples. As before, solid blue lines are the ref-
erence S-parameters from the ADS simulation, the dashed
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FIGURE 15. Reflection loss of the patch antenna. Curve identification is as in
Fig. 13.

green lines are the corresponding predictions obtained with
the PCA-compressed rational model, and the dotted red line
is the RMSE over all the validation samples. Despite using a
non-optimal expansion order, very good agreement is again
established, with an average and maximum RMSE over fre-
quency of 3.5831 × 10−2 and 6.0897 × 10−2, respectively.
The model training takes 2.5 s.

D. PCB INTERCONNECT WITH SLOTTED GROUND
PLANE
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FIGURE 16. PCB interconnect with slotted ground plane [38].

The last example concerns the PCB interconnect with
slotted ground plane considered in [38] and shown in Fig. 16.
A copper microstrip line with width t = 0.12 mm and a
thickness of 35 µm runs over a square dielectric substrate
of size a× b, with a = b = 100 mm, thickness h = 0.3 mm,
and relative permittivity εr = 4.3. The bottom ground plane
has a transveral slot of width w = 0.12 mm, with a nominal
length L and offset d from the midpoint of 15 mm each.
These two parameters are considered as independent Gaus-
sian random variables with a 10% relative standard deviation.

S-parameter samples are computed with Dassault Sys-
tèmes Simulia CST Studio Suite from dc to 10 GHz for 1000
random configurations of the uncertain parameters, drawn
according to a Latin hypercube design. A rational model with
Hermite basis functions of order p = 4 is trained using the
samples that lie the closest to the first K = 50 points of
the normally-distributed bivariate Sobol sequence, whereas
the rest of the samples is used for validation. Using a PCA

truncation threshold of ε = 10−3 leads to retaining n̄ = 27
principal components, making it unfeasible to train a rational
model of matching order.
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FIGURE 17. S-parameters of the PCB interconnect with slotted ground plane.
Solid blue lines: reference responses from the CST simulation; dashed green
lines: predictions of the PCA-compressed rational model.

Figure 17 compares a selection of five validation S-
parameter samples from the CST simulation (solid blue lines)
to the predictions obtained with the PCA-compressed ratio-
nal model (dashed green lines). An excellent agreement is
once again established, despite the large variability of the
response, occurring especially at frequencies above 5 GHz.
For this example, the average and maximum RMSE over
frequency and port are 2.4394 × 10−2 and 7.3570 × 10−2,
respectively. The training of the model requires 0.2 s.
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FIGURE 18. PDF of the S-parameters at the frequency of 7 GHz. Histogram:
distribution of the reference samples; line: prediction obtained with the
PCA-compressed rational model.

Furthermore, Fig. 18 shows the PDF of the S-parameters
computed at 7 GHz, i.e., the location of the large reso-
nance exhibited by the insertion loss. The proposed method
achieves a high accuracy, while requiring a very limited
training time.

VI. CONCLUSIONS
This paper presented an effective method for constructing
rational surrogate models for the uncertainty quantification
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of linear and passive electrical circuits and electromagnetic
structures in the FD, possibly characterized by large datasets
in terms of frequency points and number of ports. Rather
than training a separate surrogate model for each frequency
point and port variable of interest, the data is first compressed
using PCA, and a rational model is trained for the principal
components only. PCEs are leveraged for the numerator and
denominator of the principal components.

Several theoretical insights were provided. First of all, it
was demonstrated that setting a relative truncation threshold
for the PCA, based on the magnitude of the singular values
of the dataset matrix, allows for a rigorous control of the
compression accuracy. Second, it was shown that using a
rational model for the principal components, in place of the
standard single PCE, yields a much better accuracy, in anal-
ogy with what was already observed for the direct application
of rational models to FD data. Moreover, numerical results
show that a model with an expansion order matching the
number of principal components yields the best accuracy,
although this is not always feasible as it potentially leads to
a model of intractable size. Nevertheless, very good accuracy
is also attained with lower expansion orders. Finally, it was
observed that the PCA-compressed modeling often achieves
a lower maximum error over frequency compared to the FD
modeling, thanks to the intrinsic regularization properties of
the PCA.

The technique was successfully validated based on several
application examples, ranging from a simple analytical test
case to distributed circuits and electromagnetic structures,
for which excellent accuracy was established. Compared to
the direct FD modeling, the advocated method requires a
much lower training time, in the order of a few seconds
instead of several minutes. However, the method is currently
limited to a small number of random variables, and it was
tested up to three uncertain parameters. Plans for future
work include addressing the scalability in terms of number
of uncertain parameters, possibly through the use of kernel-
based expansions and/or sparse regressions, as well as a more
in-depth investigation of the PCA performance.
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