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Assessing the Impact of Sensor-based Task
Scheduling on Battery Lifetime in IoT Devices
Yukai Chen, Member, IEEE, Wenlong Wang, Member, IEEE, Daniele Jahier Pagliari, Member, IEEE,

Enrico Macii, Fellow, IEEE, Massimo Poncino, Fellow, IEEE

Abstract—A well-known system-level strategy to reduce the

energy consumption of microprocessors or microcontrollers is

to organize the scheduling of the executed tasks so that it is

aware of the main battery non-idealities. In the IoT domain,

devices rely on simpler microcontrollers; workloads are less rich

and, batteries are typically sized to guarantee lifetimes of more

extensive orders of magnitude (e.g., days, as opposed to hours).

Load current magnitudes in these IoT devices are therefore

relatively small compared to other more powerful devices, and

they hardly trigger the conditions that emphasize the battery

non-idealities. In this work, we carry out a measurement-based

assessment about whether task scheduling is really relevant to
extend the lifetime of IoT devices. We run experiments both on a

physical commercial IoT device hosting four sensors, an MCU,

and a wireless radio, as well as on a “synthetic” device emulated

with a programmable load generator. We used both secondary

lithium-ion and primary alkaline batteries to explore the impact

of battery chemistries further. Results show that the impact of

different schedules is essentially irrelevant, with a maximum

difference of only 3.98% in battery lifetime between the best

and worst schedules.

Index Terms—Power Management, Task Scheduling, IoT,

Battery-powered Device, Multi-sensor Device, Measurement

Scheduling.

I. INTRODUCTION

The requirement of highly energy-efficient operations
has made battery-powered sensor-based devices become the
ground in which Dynamic Power Management (DPM) strate-
gies have found their most diversified applications [1]–[6].
Some of these solutions explicitly take into consideration
the fact that devices are battery-powered; this substantially
amounts to realize that there is a substantial difference between
the power consumed by the device and that is actually drawn
by the battery [2], [4], [6]. Two fundamental factors result in
this decoupling. First, a DC-DC converter is typically placed
between the battery and the load, whose conversion efficiency
depends on the operating input and output power levels;
Secondly, the battery cannot provide any arbitrary amount of
power with the same efficiency; this is the so-called “rated
capacity” effect, which represents the fact that the effective
capacity of a battery (i.e., its available energy) decreases as
the discharge current increases.

The former factor can be mostly taken into account at design
time by choosing the best devices (batteries and converters)
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that can provide the lowest possible losses. The latter aspect,
however, pertains exclusively to the operations of the load.
Existing solutions do account for this problem by focusing
on the scheduling of the computational tasks executed on the
hardware: of the generic applications [1], [4], of the sensing
tasks in a multi-sensor device [7], [8], of the transmission tasks
of the sensor nodes [9], [10], or globally for the tasks executed
in the various nodes of a wireless sensor network [3].

These solutions generally try to reshape the current profile
of the tasks in order to address the two above non-idealities,
i.e., to match power levels of battery and load to reduce
converters’ losses and reduce the rated capacity effect. This
can be achieved typically by scheduling tasks so that the load
profile avoids significant current variations and reduces the
peaks, compatibly with the dependencies of the tasks. While
these works provide general scheduling guidelines that can
reduce the battery drain, they have two main shortcomings.

First and foremost, most of these works focus only on
computational or communication-related tasks that only in-
volve the processor [4], [11] and neglect the impact sensing
tasks, which may have non-negligible power demands [2].
Typical Internet of Things (IoT) devices are often equipped
with several sensors [8], [12], and their aggregate power
demand tends to be more significant than that of the other
tasks. At the same time, however, sensing tasks offer additional
degrees of freedom in designing the task schedule. Sensing
operations are usually independent of each other; thus, they
can be freely scheduled without dependence constraints. As
such, they can be fully serialized (to minimize peak currents)
or fully parallels (to maximize idle intervals), with all the
intermediate partial combined serial/parallel options. These
two factors (their power demand and the number of additional
scheduling options they offer) are the apparent motivation of
why sensing tasks should not be neglected in determining the
optimal battery-aware task scheduling.

Neglecting the sensing task has, however, a second and
more subtle implication. Different sensors require quite diverse
supply voltages, implying that each sensor will be powered by
a distinct DC-DC converter, resulting in different efficiency
and power losses. While this could be simply handled using
a constant efficiency, the reality is that DC-DC converters’
efficiency is positively affected by the output current (in
this case, the sensors’ currents); ignoring this variability will
usually lead to over-optimistic results.

A second issue with previous works is that they tend
to overrate the recovery effect in batteries, i.e., adding rest
periods during discharge might prolong battery operation time
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(obviously, net of the inserted time intervals). Many methods
propose strategies based on stretching idle times among tasks
to exploit the recovery effect (e.g., [11], [13], [14]). However,
the magnitude of the recovery effect is strongly dependent
on the battery chemistry; recent works have shown that the
recovery effect is virtually absent [15] in typical lithium-ion
batteries. Therefore, an IoT device powered by a lithium-ion
battery playing with idle times will hardly benefit. While in
primary (non-rechargeable) batteries, the effect of recovery can
be more evident, its impact will still be limited with respect
to that achieved by the scheduling of the computational tasks.

The work of [7] partially address these shortcomings by
taking into account all types of tasks executed in the device
as well as the conversion efficiency of the converters, while
virtually neglecting the recovery effect; it calculates battery-
aware scheduling of tasks through a heuristic exploration,
showing that a battery-aware task scheduling can prolong
battery lifetime as much as 20% with respect to a battery- and
converter-agnostic one. However, that work relies on results
obtained from simulation, without an experimental validation
based on measurements. The issue of measurement-based
validation is particularly relevant because battery models tend
to be accurate for discharge rates (i.e. C-rates. A 1C rate for
a battery with an X mAh capacity corresponds to a current of
X mA) close around the nominal capacity (i.e., 0.2C . . . 2C).

Conversely, the typically low duty cycles of IoT devices
and the lifetime requirements of days or weeks are such that
the average power consumption of the whole device ends up
being relatively small, e.g., below the mA scale. As a result,
it might be that the levels of power are not large enough to
trigger the non-idealities of batteries appreciably, especially for
some battery chemistries. For instance, an advanced lithium-
ion battery can handle a discharge rate in mA range with-
out actually experiencing a measurable rated capacity effect.
Moreover, this low-level discharge current strongly affects the
conversion efficiency of the IoT device’s converters.

In this work, we present an experimental validation of ex-
isting task scheduling methods by carrying out measurements
to estimate the lifetime of an IoT multi-sensor device when
powered by the lithium-ion battery and the primary battery,
with the objective to assess the actual impact of different
scheduling of the tasks executed by the device. In particular,
our experimental measurements implements the tasks schedul-
ing solution proposed in [7], including sensing, computation,
and communication tasks. The scheduling exploits the freedom
offered by mutual independence of sensing tasks and the
power/speed trade-off of the Micro Controller Unit (MCU);
moreover, it considers DC-DC converter efficiency resulting
from each module’s power level. The conclusion drawn from
our experiments is that in a realistic scenario task scheduling
hardly impacts the lifetime of the device, both in the case of
lithium-ion and of the primary batteries.

The paper is organized as follows. Section II provides some
background on the three main battery non-idealities that are
the subject of our study and reviews the current state-of-
the-art devices scheduling works; Section III describes the
characterization of a generic multi-sensor IoT device and how
the scheduling of the tasks executed on it can impact the power

consumption. The experimental analysis is carried out in
Section IV; we conduct two different sets of measurements to
investigate the influence of task scheduling on the IoT device
lifetime. Finally, Section V summarizes the main observations
that can be drawn from our experiments.

II. BACKGROUND

A. The Non-Idealities of IoT Device Batteries
IoT devices are primarily sensor-based electronic devices.

These IoT device nodes are typically deployed by dispersing
them over a wide physical area, and it is impossible to rely
on the utility grid. Therefore, batteries have become the most
widely used energy storage devices in IoT applications. Al-
though the self-powered IoT devices by energy harvesting are
proposed for designing power-autonomous green IoT devices,
the current solution for power supply in the IoT field is still
using batteries as energy storage devices. According to the
different IoT application scenarios, designers choose either
a primary or rechargeable battery for their IoT devices [16].
The authors of [17] reports that batteries used for low-power
sensory and IoT devices are mainly very low-cost primary
batteries due to low cost and self-discharge, and high ca-
pacity. For instance, Netatmo and X-sense offer smart smoke
alarms as IoT devices powered by primary batteries used to
detect and monitor toxic gas in real-time by mobile phone;
Petsafe, Xiaomi, and Dogness produce smart pet feeders
accept primary batteries as secondary power supply. However,
with the development of green IoT applications and the cost
reduction of rechargeable batteries, rechargeable batteries will
be more widely used in the future. Whatever the battery type
and chemistry, a battery is far from being an ideal voltage
source; the power it can provide is strongly dependent on the
charge and discharge currents profile. In this work, we are
fundamentally interested in the discharge process, although
most of the discussion below can apply to the battery charge.

1) Rated Capacity Effect: The most commonly acknowl-
edged non-idealities of battery is the rated capacity effect,
which expresses the change in battery capacity at different
discharge rates. When a battery is continuously discharged, the
available battery capacity decreases as the discharge current
increases.

Figure 1. Primary battery capacity dependence on the discharge current [18]
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Figure 1 shows the relation between battery capacity and
discharge current of the alkaline battery E91 [18] by Ener-
gizer. The dependence shown in Figure 1 indicates that as
the discharge current increases from 25mA to 500mA, the
corresponding available capacity decreases from 3,000mAh to
1,700mAh (For this battery, the datasheet does not provide a
nominal capacity). This implies that for the largest discharge
currents, the E91 behaves approximately as a half-capacity
battery with respect to the case of the smallest current.

In the case of rechargeable batteries, the rated capacity in
datasheets is usually described as shown in Figure 2, i.e.,
as voltage vs. capacity curve, parameterized with respect to
discharge current. Figure 2 refers to the lithium-ion battery
NCR18650B [19] by PANASONIC. The usable capacities are
obtained when the battery voltage reaches the cut-off voltage
value (2.5V in this case). We can immediately notice how
the sensitivity to current is quite modest and shows only a
small improvement for a 0.2C current (i.e., 3,200mA*0.2 =
640mA). Comparing Figure 1 and Figure 2 indicates that the
rated capacity effect is much more significant in the primary
battery than it in the lithium-ion battery.

Figure 2. Lithium-ion battery voltage vs. discharge current curves [19]

2) Capacity Dependence on Discharge Variation: The plots
in the previous sections do refer to a constant current dis-
charge. In a real scenario, load currents will exhibit significant
variations in the time domain but also in the frequency domain.
Generally speaking, a battery is more efficient if there is no
variation in the load profile. Therefore, a constant current is
a favorable case for measurements, and any variation will
degrade the equivalent capacity of the battery. This information
is seldom provided by datasheets but has been described by
many research works [20]–[22].

As an example of the variation over time, consider a periodic
square wave alternating with a given duty cycle D between
two current values I1 (D) and I2 (1�D); the average value of
the current will be Iavg = D⇤I1+(1�D)⇤I2. Figure 3 shows
the SOC traces during battery discharge of Panasonic lithium-
ion UR16650ZT battery with an 800mA constant discharge
profile and two square wave discharge profiles of period
cycle 2,000s, 50% duty cycle, average value 800mA, two

different swing values (±300mA and ±500mA) [20]. The
SOC traces indicate a difference in discharge time between a
constant discharge at 800mA with respect to the square wave
discharge at Iavg = 800mA. The magnitude depends on the
difference between I1 and I2: the larger, the more evident
the difference will be. As shown in the figure, the square
wave’s discharge time with ±500mA swing values has a more
significant difference to the constant discharge time than the
square wave with ±300mA swing values.
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Figure 3. Capacity dependence on discharge variation: constant discharge vs.
periodic square wave discharge [20]

3) Recovery Effect: A third effect is the so-called recovery
effect. Compared to the previous two, this one is potentially
beneficial from the battery duration perspective. It states that
if the battery stays in periods of rest (zero or very little
discharge) for a sufficient duration, capacity lost during dis-
charge can be rejuvenated to a certain extent. Figure 4 shows
the measurement results of battery discharge voltage traces
from three different load profiles, and one is a continuous
discharge scenario; the other two are intermittent discharge
with different idle periods cases. The curves reveal that the
voltage rises when the load is reduced, as shown by the
intermittent discharge curve, and the overall discharge time
extends. Furthermore, the longer period of the rest, the more
voltage recovered, as illustrated by two intermittent discharge
profiles shown in Figure 4.

Figure 4. Battery discharge voltage profiles of continuous and intermittent
discharge by 250mA discharge rate with Energizer E91 primary battery.

The work of [23] investigates the capacity recovery effect
concerning discharge current, Depth of Discharge (DOD), and
recovery break time; the measurements show that the recovery
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effect of the battery is positively correlated with these three
parameters, and it is possible to build a capacity recovery
battery model based on these three parameters. On the other
hand, the experimental results in [15] reveal that the recovery
effect almost does not exist in the Alkaline, Nickel-Metal
Hydride (NiMH) and lithium-ion battery chemistries, which
are commonly used as power supplies for IoT applications.

B. Energy-efficient Power Management Techniques

Several different techniques for prolonging the lifetime of
battery-powered sensor-based devices have been proposed in
the literature, focusing on different application contexts.

A large part of these existing works corresponds to the
energy optimization and lifetime enhancement for the Wireless
Sensor Networks (WSN) [5], [8], [10], [24]–[27]. The WSN is
constructed by a certain amount of sensor nodes and gateway
nodes. Each node equips with its energy storage devices. In
most cases, the energy storage components of nodes are not
identical. Not all the energy storage components are replace-
able or rechargeable, making nodes have a different lifetime.
When a node finishes its energy storage device, it is considered
“dead”. If a certain number of nodes lose functionality, the
whole network cannot operate, which tells the end of the
WSN lifetime. The works related to the WSN usually focus on
the whole network lifetime instead of focusing on one single
device node. For this reason, the works related to WSN do not
care about techniques used for prolonging the lifetime from the
perspective of battery. They usually use high-level techniques
to optimize protocol or network configuration [28], [29].

The existing works related to WSN have one consensus
that sensors’ power consumption is not comparable to the
transmission power consumption [10], [30], [31]. There are
works related to WSN focus on the scheduling of sensors
while they schedule the sensors in the network scale, instead
of scheduling multiple sensors within one node [7]. [24], [26],
[29] propose a similar idea to schedule the different sensors
in the whole WSN. [26] illustrates that each sensor has its
coverage area in the network; there are overlaps among the
sensor coverage area; it proposes using the overlapped area to
activate or deactivate some sensor nodes in order to achieve an
optimal network lifetime. Similar to these works, the work [27]
focuses on the gateway in the network.

The possibility of harnessing battery recovery effect in IoT
and WSN applications to reduce battery size or extend battery
life is investigated. These works have assumed the existence of
this recovery effect and proposed different power management
techniques in the form of power supply architectures (e.g.,
multiple battery setup) and communication protocols (e.g.,
burst mode transmission) in order to exploit it. The work
of [13] demonstrates the recovery effect can prolong the
battery lifetime by up to 45% by modifying discharging profile
and inactive periods rather than constantly discharging, while
this work only study the AAA NiMH battery chemistry.
[6] proposes to use multi-battery for each node. There is
always one battery works and the others in the rest state.
While the work does not mention the battery’s chemistry,
and they use a straightforward linear battery model to prove

the proposed method. Leveraging the recovery effect during
the communication period to prolong the system lifetime is
studied in [14]. The work [9] devise the optimal transmission
task scheduling by considering the recovery effect. However,
the work [15] declares that the lithium-ion battery’s recovery
effect is negligible based on their measurements. Another
critical point related to the battery in the existing works is
that the used battery model’s accuracy is not enough for
conducting accurate power estimation. The work [32] try to
estimate the lifetime of WSN by adapting an analytical kinetic
battery model, while this model cannot account for capacity
dependence on load current variation, and the used model is
only limited to the NiMH battery.

Besides the WSN applications, in the traditional real-time
embedded system applications, there are existing works [1],
[3], [4], [7] target on the scheduling computation tasks to
derive the battery-friendly discharge current profile by con-
sidering the non-ideal battery discharge characteristics. The
work [33] proposes to deploy the super-capacitor and battery
simultaneously in the wireless sensor nodes to construct a
hybrid energy storage system to extend the lifetime. In case
of not convenient for replacing or charging batteries in the
WSN, [31] study to include the energy harvesting devices to
optimize the lifetime by leveraging environmental resources
convert to electrical energy.

III. BATTERY-AWARE TASK SCHEDULING

Battery-aware scheduling of the various tasks run by a IoT
device must carefully balance the main non-ideal discharge
characteristics of batteries described in Section II: the depen-
dence on the current magnitude, on current variance, and on
periods of rest.

In order to better understand the interplay of these three
effects, we define a straightforward model of our target IoT
device. We assume that the device hosts:

• NS sensors (each one represented by a corresponding
task), each one taking a time Ts,i to complete sensing
and requiring a power Ps,i. The idle power consumption
of each sensor is Ps,i,off .

• An MCU with an idle power consumption of Pc,off , and
Np power states associated to different voltage/frequency
points; at a given voltage/frequency point i = (1, ..., Np),
the MCU takes Tc,i to execute its tasks and requires a
power Pc,i. Power states are sorted in increasing values
of power.

• A wireless transceiver implementing some given protocol.
For simplicity we assume that each message has a fixed
size and transmission requires always the same Ttx and
Trx, consuming respectively a power Ptx and Prx, and
the power consumption in idle state is Px,off .

There is only one simple (yet realistic) dependence rule:
sensing must occur before processing, and transmission must
follow processing. Therefore, there is total freedom in the
scheduling of the sensing tasks. Notice that the MCU is indeed
active during the sensing tasks as it has to drive the collection
of the sensed data through its interfaces.

Finally, the global execution model consists of a duty-cycled
workload of a period of Tcycle. The scheduling determines the
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execution sequence of the tasks, which results in an “active
interval” Tactive; while in the remaining part (“idle interval”)
of the cycle Tidle = Tcycle � Tactive, all the modules of the
device are put into the idle state.

Figure 5 shows two possible schedules of a system hosting
four sensors. The heights of the bars denote power consump-
tion, and the widths indicate the time; hence, each bar’s area is
the energy. It is important to emphasize that the two plots are
identical from the point of view of the energy consumption:
the total areas of the various “boxes” is the same in both
cases. What makes them different for the battery are the above-
mentioned battery non-idealities.

Figure 5. Two extreme cases of task scheduling.

These plots describe two scenarios that privilege one battery
property over the others. The schedule on the top features
all the sensing in series, followed by data processing and
transmission. This schedule has the smallest peak power (so
it will suffer less from the rated capacity effect), but it will
have the shortest idle interval (so it will exploit less recovery
effect). Notice that sensing tasks are executed in decreasing
order of power consumption not by chance: it is a commonly
accepted principle that this is best for the battery as the most
larger currents are drawn in the maximal charge conditions,
i.e., at the beginning of the cycle [1]–[3].

Conversely, in the bottom plot, all sensing tasks are executed
in parallel at the beginning of the period. This scheduling will
stress the battery more, yet for a shorter time and maximize
the idle interval. Even if we assume that battery recovery is
modest, we have to consider that states that Poff is likely
to be 2 or 3 orders of magnitude smaller than active power;
therefore, there will be a limit in compress the activity period,
after which an increase in the idle period will not be convenient
anymore. It is therefore possible that an intermediate schedule
in which only a subset of the sensor tasks is executed in
parallel will result in the best balance between the two effects.

Given that the degrees of freedom essentially lies in the
scheduling of the sensing tasks and that, therefore, the number
of options is limited (having more than ten sensors is quite
unusual), the work of [7] proposes a heuristic exploration tool
to determine the schedule that yields the most extended battery
lifetime. The method of simulation-based exploration for the

most energy-efficient task scheduling proposed in [7] adopts
the circuit equivalent battery model in the simulation. Figure 6
illustrates the structure of the circuit equivalent battery model,
and it can account for the capacity dependencies on the current
magnitude and dynamics. All the model parameters can be
extracted from the battery’s datasheet, and the model can be
applied to both lithium-ion batteries and primary batteries.

Figure 6. Circuit equivalent battery model for the simulation exploration [20].

The full battery charge stored capacity can be modelled
by a full-capacity capacitor (C). This is simply obtained by
converting the nominal battery capacity Cnom (in Ah) using
Equation 1, where 1V is the initial voltage across the capacitor
that defines a fully charged battery [34].

C =
Cnom ⇥ 3600

1V
(1)

The voltage generator Voc(SOC) of the model describes the
relation between SOC and voltage. R(SOC) represents the
battery internal resistance. The methodology to extract these
two quantities is described in [35]. It needs two voltage versus
capacity curves as shown in Figure 2. Two discharge current
(I1 and I2) curves are fitted to build two functions V I1

batt
(SOC)

and V
I2
batt

(SOC). The parameters Voc(SOC) and R(SOC) are
derived by solving the equations as follows:

⇢
VOC(SOC) = R(SOC)⇥ I

I1
batt

+ V
I1
batt

(SOC)
VOC(SOC) = R(SOC)⇥ I

I2
batt

+ V
I2
batt

(SOC)
(2)

R(SOC) =
V

I1
batt

(SOC)� V
I2
batt

(SOC)

I
I2
batt

� I
I1
batt

(3)

VOC(SOC) = V
I1
batt

(SOC) +R(SOC)⇥ I
I1
batt

(4)

The two pairs of RC groups in series of the battery model
account for the battery’s sensitivity to the load dynamics. The
first RC group (parallel between RS(SOC) and CS(SOC))
defines the short-time constant ⌧S = RS ⇥ CS of the
battery voltage response due to the double layer capacity
effects; the second RC group (parallel between RL(SOC) and
CL(SOC)) defines the long-time constant ⌧L = RL ⇥ CL of
the battery voltage response due to the characteristic diffusion
effects in the electrolyte. The work [35] provides the detailed
steps to extract these RC groups’ quantities from the datasheet
if it provides the voltage trace of a pulse current. There are
existing works compute these parameters by conducting pulse
current test. Since it is too difficult to obtain the parameters
of these two RC groups and they do not affect the long-term
simulation results, this circuit equivalent model is frequently
used with only the R(SOC) in the right part for the simulation
does not focus on the instantaneous simulation results.
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Two voltage generators Vlost(Ibatt) and Vlost(fload) on
the left side part of the battery model account for the rated
capacity effect C(Ibatt) and the effect of load current variation
C(fload) as described in the section II, these two voltage
generators bring a voltage drop at the SOC node, thus affect
the battery SOC. Vlost(Ibatt) is derived by computing, at each
simulation time step �t, the following equation:

�SOC(Ibatt) =
IBatt ⇥�t

C(Ibatt)
� IBatt ⇥�t

Cnom

(5)

where C(IBatt) is the relationship between capacity and
battery current can be derived from datasheet as described
in [36] and Cnom is the nominal capacity. The effect of the
discharge variation is not an instantaneous quantity; therefore,
the model uses the Short Time Fourier Transform (STFT)
to compute load frequency components in each time interval
window. Vlost(fload) is obtained by evaluating Equation 6 at
each �t.

�SOC(fload) =
NFFTX

i=1

(
IBatt(i)⇥�t

C(fload)
� IBatt(i)⇥�t

Cnom

) (6)

NFFT is length of timing window in STFT; IBatt(i), i =
1, . . . , NFFT is a string of current values within a timing
window; C(fload) is the relation between capacity and load
frequency. The method proposed in [36] shows that using
the information in Figure 2 can derive the relation between
discharge energy and current and the relation between dis-
charge time and current. Then the relation between discharge
power and current is computed based on the previous two
relations. Using the power and current relation and the energy
and current relation can draw Ragone plot. The diagonals in
the Ragone plane indicate the discharge time; the inverse of
each discharge time represents a frequency. Thus the relation
between energy and frequency is extracted; after converting
energy to capacity, the C(fload) is computed.

In our work, we will use the result of such exploration to
compare, through measurements, the alleged optimal energy-
efficient schedule against the two extremes of Figure 5.

IV. EXPERIMENTAL RESULTS

A. Experiments on an Industrial IoT Device

1) Device Description: Our first validation is run on an
industry-level multi-sensor IoT device prototype shown in
Figure 7, which has been manufactured as a final deliverable of
one EU-funded project and is currently being commercialized
by one of the industrial project partners.

The minimum board supply voltage of this industrial IoT
device is 3.5V. It hosts four different sensor modules, one
low-power MCU, and one wireless transceiver. The detailed
specifications of each module are given as follows:

• A low-power MCU by NXP (LPC54114 [37]), based on
ARM CORTEX-M4 architecture. The MCU controls the
activation and de-activation of the sensors according to
the scheduling. It also collects the data from each sensor
and performs a linear regression of the sensed data [38].
The data to be transmitted are simply the trend (i.e.,
the slope of the extrapolated line) and the last received

Figure 7. The IoT multi-sensor device prototype: (A) ARM CORTEX-M4
architecture MCU module; (B) Wireless transceiver module; (C) Air quality
sensor module; (D) Air quality poisonous gas sensor module; (E) Noise sensor
module; (F) Humidity and temperature sensor module.

datum. In this way, the receiver (not considered here) can
reconstruct the data set as a set of piece-wise segments.

• A wireless transceiver Texas Instruments (TI)
CC2538 [39], compliant to the IEEE 802.15
standard [40]. The radio transmit gathered data at
the end of every period.

• Four sensor modules by Mikroelektronika provided as
ClickTM boards; each board includes the sensor and other
electronic components (e.g., DC-DC converter and analog
to digital converter).
– Humidity and temperature sensor module [41], it con-

tains a HDC1000 sensor [42] by TI. It measures
relative humidity 0-100% with an accuracy of 3% and
temperature in a range [–20�C,85�C] with a 0.2�C
accuracy.

– Air quality sensor module [43], which embeds the
SGP30 sensor [44] from Sensirion; it provides detailed
information of the air quality parameters by measuring
various types of gases and outputs them in the form of
two complementary air quality readings: Total Volatile
Organic Compounds (TVOC) and CO2.

– Noise sensor [45] module carries the SPG0410HR5H-
B [46] surface mount silicon microphone from SiSonic
to detect the noise in the environment.

– Air quality poisonous gas sensor module [47] includes
an MQ135 [48] sensor for detecting ammonia, nitrogen
oxides benzene, smoke, and other poisonous gases.

Table I lists the rated voltage and current of the six modules
(MCU, transmitter, and four senors) of the test IoT device.

It is important to emphasize that the sensor modules, as
discussed above, include the sensors and other electronic com-
ponents; therefore, the sensor module’s power consumption is
larger than that of the sensor itself. For completeness of the
information, Table II summarizes the electrical characteristics
of the sensors hosted by the sensor modules.

Notice how the whole module power consumption is much
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Table I
MODULES ELECTRICAL PARAMETERS OF INDUSTRIAL IOT DEVICE

Module Voltage (V) I (mA)

LPC54114 (MCU) [37] 3.3 6.0
CC2538 (Transmitter) [39] 3.3 7.0

Temperature and Humidity (Sensor) [41] 3.3 6.5
Air Quality (Sensor) [43] 3.3 55.5

Noise (Sensor) [45] 3.3 11.0
Poisonous Gases (Sensor) [47] 5.0 56.4

Table II
ELECTRICAL PARAMETERS OF SENSOR IN EACH SENSOR MODULE.

Sensor Sensor Module
Voltage I

(
¯
V) (mA)

HDC1000 [42] Temperature and 2.7 to 5.5 0.18Humidity
SGP30 [44] Air Quality 1.62 - 1.98 48.2

SPQ0410HR5H-B [46] Noise 1.5 - 3.6 0.12
MQ-135 [48] Poisonous Gases 5.0  160

larger than one sensor alone in some cases. For instance,
an HDC1000 sensor’s current is only 0.18mA, while the
corresponding module is rated as a 6.5mA current load. In this
specific case, the difference is due to the presence of LEDs,
voltage regulators, and some essential electronic components
such as amplifiers, pull up/down resistors, capacitors, etc. As
these are inherently part of the specific sensor in order to
make it “usable”, in the evaluation of the schedule by using
the method of [7], we adopt the power consumption values of
sensor modules, i.e., those in Table I.

2) Battery Description: We selected the rechargeable
lithium-ion battery NCR18650B [19] from PANASONIC
and the primary AA battery E91 [18] from Energizer in
our experiments. To achieve accurate measurement results
for the lithium-ion battery, we adopted a battery gauge
(BQ27z561 [49]) produced by TI to record and monitor battery
discharge characteristics.

The battery gauge has its independent power source and is
equipped with an Evaluation Module (EVM) with all essential
peripherals for measurement and communication. The EVM
provides interfaces to connect the lithium-ion battery and the
load device to the gauge. All captured data are transmitted to
the PC via a Micro USB interface and can be visualized by
a software called BqStudio, which TI provides for interacting
with the gauge. The gauge implements the Impedance Track
algorithm developed by TI. It consists of two main phases, the
learning phase and the usage phase. Before the learning phase,
the chosen battery’s chemistry file provided by TI should be
selected and loaded in BqStudio. TI provides a large number
of chemistry files corresponding to different batteries. The
chemistry file typically consists of the battery’s basic elec-
trical parameters and their corresponding lookup tables with
specific parameters (SOC, T(temperature)), such as nominal
capacity, cut-off voltage, OCV[SOC, T] table, and internal
resistance[SOC, T] table. Moreover, some parameters related
to the charging and discharging process to guarantee safety
(e.g., battery voltage thresholds for charging and discharging
phases, maximum allowable current of the gauge) should be

uploaded to the internal flash memory through BqStudio.
In the learning phase, the battery is first discharged from

the predefined SOC1 to SOC2; then inserted a rest interval;
after the rest, the battery is charged to SOC1, relaxed again;
finally discharged again from SOC1 to SOC2. The battery
impedance is learned during the learning phase (R[SOC, T]
= (V-OCV[SOC, T])/I), and the maximum battery capacity is
computed (Qmax = Total Passed Charge/(SOC1 - SOC2)). In
the usage phase, the gauge builds a battery model according
to the data provided in the chemistry file and data captured
in the learning phase, and it runs the simulations with this
battery model and uses the new measured data to calibrate
the derived battery model. We set the SOC1 and SOC2 to be
99% and 1% in the learning phase, respectively; the discharge
current was 0.2C, and the charging current is 1C. The rest
intervals are 5 hours after the discharge phase and 2 hours
after the charge phase; these are the values suggested by the
gauge user manual.

As the battery gauge is not designed for AA batteries, the
HP 34401A digital multimeter is used to measure the primary
AA battery discharging characteristics. According to the rated
AA battery’s nominal voltage, a set of three E91 batteries is
used for supplying the IoT multi-sensor device to satisfy the
minimum board supply voltage.

Table III shows the key electrical data of the two batter-
ies. Figure 8 shows the measurement experiments under the
lithium-ion battery scenario.

Table III
MANUFACTURER’S PARAMETERS OF THE EMPLOYED BATTERIES.

Parameters NCR18650B E91

Rated Capacity 3,200mAh
3,000mAh-25mA

2,500mAh-100mA
2,000mAh-250mA

Nominal Voltage 3.6V 1.5V
Cut-off Voltage 2.5V Varies w.r.t. discharge conditions

Figure 8. (A) IoT multi-sensor device prototype; (B) Panasonic NCR18650B
lithium-ion battery; (C) Texas Instruments battery gauge BQ27z561.
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3) Workload Description and Task Scheduling: The work-
load executed by the device is structured as a periodic se-
quence of the following major tasks as described in Section III:
sensing from the four sensors, processing, and transmission
of the processed data to a sink node. Note that the opera-
tions of the sink node are irrelevant for the purpose of our
analysis. Although there are only four sensors in the IoT
device prototype, it is impractical to carry out experimental
measurements on all the different schedules. We decided to use
the simulation-based design space exploration methodology
proposed in [7] as indicated in Section III to obtain the optimal
and worst energy-efficient schedules. Notice that this task
requires building battery models of the two kinds of batteries
described above and the various modules of the IoT device as
listed in III because the method of [7] is based on simulation.
The batteries are modelled by the circuit equivalent battery
as indicated in Figure 6. All other modules are considered as
loads of system; therefore, they are modelled by the voltage
and current drain with the values as listed in Table I. Further
detailed modelling and simulation explanation please refer [7].

We then analyzed the impact of different schedules on
battery operation time by measuring the difference between
the optimal and worst schedules, which can also be seen
as the upper bound of the impact of different schedules on
battery lifetime. In this practical IoT device case, the heuristic
exploration proved to be marginally helpful. It yields the fully
serial schedule as the best (longest operation time) one, with
all the tasks in parallel as the worst one. This differs from the
results shown in [7] because different battery and load current
profiles were used.

Notice that full serial/parallel refer to the sensing tasks
only, as there are precedence constraints such that all sensing
tasks should precede the processing tasks, which must be
completed before the transmission task. The two schedules
are conceptually illustrated in Figure 5. Notice that sensing
tasks follow a monotonically decreasing order in the full serial
schedule (from most to least power demanding). We then apply
these two schedules to the device and run the measurements.

From the point of view of the battery, the experiment is
designed as follows. The device is turned on with a fully
charged battery; it executes the corresponding schedule (serial
or parallel) for a predefined time so that all the schedules
have the same operation time. After one execution of the
experiment, the lithium-ion battery is recharged to 100% SOC
and set to rest for 12 hours, while the AA battery pack
is replaced with the new one. After the rest period or the
replacement, a new run of the different schedule is executed
at the same given operation time.

Notice that it is crucial to guarantee that the batteries have
the same initial voltage before starting each discharge cycle
for the test. For the lithium-ion battery, even if we use the
same battery cell and recharge it to 100% SOC after one
schedule, there is still a tiny difference in the initial voltage;
thus, we should discharge it to a predefined initial voltage
each time before the experiments start. For the AA battery,
the fresh AA battery typically has a slightly different initial
voltage due to the manufacturing variations; we thus slightly
discharge all the pack’s batteries before the experiments to the

predefined initial voltage. In this way, we can guarantee that
the battery’s initial voltage remains consistent across different
and successive runs. In the following experiments, the initial
lithium-ion battery voltage is set as 4,100mV, and the initial
AA battery pack voltage is set as 4,400mV.

In order to make the captured data stable and give the air
quality and poisonous sensor modules enough time to warm
up, we set each sensor module sampling period to 30 seconds.

Regarding the experimental environment’s choice, we de-
cided to perform the measurements in a general laboratory
environment. As the power consumption of the sensor modules
is independent of the measured quantity’s magnitude, for
our analysis (assessing power consumption for the different
temporal sequences of operations), there is no difference
in measuring indoor or outdoor quantities. It is also worth
mentioning that our experiments were taken in the laboratory
throughout the day. During normal working hour operations,
with doors and windows opening and closing, a variable
number of persons, and so on, these factors lead the laboratory
environment is not very different from outdoor ones.

B. Measurements Results of the Industrial IoT Device

We use the battery voltage to measure the effect of different
schedules on the device lifetime. Specifically, all schedules are
applied for the same amount of operation time. At the end
of this time, we select the schedule with the highest battery
residual voltage (say, Vmax) as the reference value, that is,
the energy-optimal one. Then, on the voltage waveforms of
the other schedules (they have all final voltages < Vmax, we
search the point in time where their voltages reached Vmax.
The difference in the time is the “benefit” obtained with the
energy-optimal schedule.

1) Measurements Results of Lithium-ion Battery: The de-
vice operations consist of multiple cycles of duration: Tcycle=
3 minutes. Each cycle consists of sensing (30 seconds for each
sensor), MCU operations (2 seconds), and transmission (3 sec-
onds). Sensors are in an active mode for the same time so that
the data transfer in the parallel schedule can be synchronized.
MCU operations include transfer from the sensors and delivery
to the wireless transmitter. The transmitter time includes
the transceiver’s startup time and the transmission overhead
(modulation, protocol, encoding, etc.). The two schedules have
therefore duty cycles of (30⇥ 4 + 2+ 3)/180 = 69% (serial)
and (30 + 2 + 3)/180 = 19% (parallel).

Figure 9 shows the comparison between the full serial and
full parallel schedules for the 3-minute cycle described above
with 1,440 minutes (24 hours) operation time. After the device
operates for 24 hours, the residual voltage of the full serial
schedule is slightly higher than that of the full parallel one
(see the last cycle in Figure 9), which matches the simulation
results [7]. The difference in discharge time between the two
schedules can be seen by observing the last few discharge
cycles. To quantify the difference, we select the battery voltage
in the last cycle of the full serial task schedule as the reference
value (3,739mV) and search at what cycle the voltage trace
of the full parallel schedule reaches this voltage. This occurs
nine cycles (27 minutes) before that of the serial schedule
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as indicated by the red arrows in Figure 9, corresponding to a
1.875% (27/1,440) difference in discharge time after 24 hours.
Notice that when the battery voltage reaches 3,739mV, the
battery SOC is dropped to approximately 54%.
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Figure 9. Lithium-ion battery results of 3-minute cycle and 1,440 minutes
operation time: Voltage traces of last 15 cycles from 1,395 to 1,440 minutes.

To verify our experimental results’ generality, we first re-
peated the measurements above with the same battery but with
three different operation times (1,320 minutes, 1,488 minutes,
1,740 minutes) to estimate the influence of operation length.
Then we adopted two more Panasonic NCR18650B cells to
repeat the above experiments to strengthen the generality of
our conclusion. Notice that enlarging operation time is not
unrestricted; we should guarantee that the battery voltage is
always higher than the minimum board supply voltage. Twelve
dots indicate twelve measurement results (one colour for the
same battery, and each colour includes four different operation
times) corresponding to the 3-minute cycle period category
shown in Figure 10. The cluster of these dots indicates that the
difference between optimal and worst schedules keeps stable
with different batteries and operation times; the rows belong to
the 3-minute cycle period category in the Table IV illustrates
that all the differences are marginal.

Notice that this magnitude is consistent with the difference
of simulation results reported in [7] when a “robust” lithium-
ion battery is used. More considerable differences were re-
ported only when less powerful batteries are used.
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Figure 10. Lithium-ion battery practical board measurement results with 3,
10, 30, and 60 minutes cycle period using 3 different batteries.

2) Impact of Cycle Period Length: The results of the pre-
vious section refer to a 3-minute cycle period. We ran another

set of experiments with a 10-minute, 30-minute, and 60-minute
cycle and different operation times to assess the cycle period’s
impact. As we did in the 3-minute case, we adopt three
different batteries in the measurements. For 10-minute cycle
periods cases, we conduct three different operation times as
indicated in Table IV. Figure 10 shows that the cluster of the
dots becomes flatter than in 3-minute scenarios, which tells
that all differences have minor variance compared to the ones
of the 3-minute cycle period cases.

Table IV
MEASUREMENT RESULTS STATISTICS OF PRACTICAL BOARD WITH

LITHIUM-ION BATTERY.

Cycle

Period

Operation

Time (mins)

Maximum

Difference

Minimal

Difference

Average

Difference

3 mins

1,320 2.05% 1.82% 1.89%
1,440 2.08% 1.88% 1.94%
1,488 2.02% 1.81% 1.88%
1,740 1.90% 1.72% 1.78%

10 mins
4,960 0.20% 0.20% 0.20%
5,160 0.19% 0.19% 0.19%
5,440 0.18% 0.18% 0.18%

30 mins 33,000 0.09% 0.09% 0.09%
60 mins 78,000 0.08% 0.08% 0.08%

Because the overall measurement becomes extremely time-
consuming with 30-minute and 60-minute cycle periods, it
becomes impractical to perform multiple measurements on
each cell as we did when cycle periods are 3 and 10 minutes.
Hence, we only performed one measurement on each cell with
the same predefined operation time as indicated in Table IV to
compare the difference between optimal and worst schedules.
The cluster of the dots in Figure 10 and the quantitative values
in Table IV illustrate that the difference between optimal and
worst schedules is diminishing as the length of the cycle period
increased, and the difference keeps stable with using different
batteries. The 3-minute and 10-minute cycle length results
also indicate that various operation time does not affect the
difference between two schedules. This is due to the fact that,
since the execution times of all tasks are the same and only the
cycle period changes, the duty cycles tend to become similar,
and therefore the difference fades away. As prolonging the
cycle period virtually increases the time spent by the device
in an idle state, we can infer that the device’s static power is
marginal, and increasing the cycle period will basically make
the impact of the schedule virtually irrelevant.

Again, this is consistent with the conclusion drawn in [7],
where it was observed by simulation that, as the cycle pe-
riod increases, the impact of the task scheduling on battery
discharge time becomes negligible.

3) Measurements Results of Primary AA battery: This
experiment aims at assessing whether the recovery effect,
which can be significant in primary batteries, yields different
considerations with respect to the previous section.

For every single measurement in the experiments using
primary batteries, we need a battery group that includes three
primary batteries connected in series to satisfy the board
power supply. Therefore, two battery groups are required to
accomplish one comparison between the full serial and the
full parallel schedules. We conducted 18 comparisons with 36
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battery groups (108 batteries) for four different cycle periods
(3-minute, 10-minute, 30-minute, and 60-minute). Figure 11
shows the difference between optimal and worst schedules
under four different cycle periods. Notice that each point rep-
resents a comparison. We performed twice the measurements
for each operation time. The two points of the 30-minute and
60-minute cycle have the same operation time as shown in
Table V. The points belong to the 3-minute and 10-minute
cycle periods have four and three different operation times,
respectively, as indicated in Table V.
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Figure 11. Primary battery practical board measurement results using with
3, 10, 30, and 60 minutes cycle period.

Figure 11 shows the overall results of different cycle
periods, and they indicate that the difference between the
two schedules in the primary battery cases does not decrease
monotonically as the cycle length gets, which is different as
illustrated by lithium-ion battery cases shown in Figure 10.
When the cycle period is 10 minutes, it has the most significant
difference among other cycles. Simultaneously, the difference
in 30-minute and 60-minute cycle cases diminishes with the
cycle increases as lithium-ion battery cases.

Table V
MEASUREMENT RESULTS STATISTICS OF PRACTICAL BOARD WITH

PRIMARY BATTERY.

Cycle

Period

Operation

Time (mins)

Maximum

Difference

Minimal

Difference

Average

Difference

3 mins

900 2.33% 2.00% 2.17%
918 2.29% 1.96% 2.12%
960 2.19% 2.19% 2.19%

1,120 2.06% 2.06% 2.06%

10 mins
4,140 3.86% 3.62% 3.74%
4,200 3.81% 3.81% 3.81%
4,460 3.98% 3.76% 3.87%

30 mins 18,000 1.83% 1.67% 1.75%
60 mins 48,000 1.13% 1.13% 1.13%

For the experiments with a 3-minute cycle period, the idle
time in the full parallel schedule is about 2.5 times longer
than the full serial one so that the battery can exploit recovery
further. This results in the full parallel schedule being better
than the serial one, as shown in Figure 12, it indicates that
the difference of discharge times is only 2.19% when the
operation time is 16 hours. The numerical results of other
operation times under a 3-minute cycle period scenario are
listed in Table V: all the differences are less than 2.35%.

In the case of the 10-minute cycle period, the situation is,
however, reversed as illustrated by Figure 12 and Figure 13.

As the idle state intervals are similar for the two schedules,
and both allow a good amount of recovery between two
consecutive cycles, the full serial schedule now outperforms
the full parallel one due to its relatively low maximum current
magnitude. The cluster of green colour points in Figure 11
shows that the variance of the difference between different
batteries and operation times is insignificant; Table V indi-
cates its maximum difference is 3.98%, while the minimum
difference is 3.62%.
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Figure 12. Primary battery with 3-minute cycle and 960 minutes operation
time: Voltage traces of last 14 cycles from 918 to 960 minutes.
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Figure 13. Primary battery with 10-minute cycle and 4,200 minutes operation
time: Voltage traces of last 20 cycles from 4,000 to 4,200 minutes.

The 30-minute and 60-minute cycle period cases have
a relatively smaller difference than the short cycle cases,
which are around 1.75% and 1.13% as indicated in Table V,
respectively. The full serial schedule is better than the full
parallel one. This is because the long enough idle interval for
both schedules can fully exploit the recovery effect and the full
serial schedule has less rated capacity effect. Furthermore, with
the growth of the operation duration, the low duty cycle leads
the relative difference between the two schedules to diminish
because most of the time in each cycle is in an idle state.
It is equivalent to saying that the schedule has only a tiny
portion in each cycle affecting the operation time; therefore,
the impact of different schedules on the overall operation time
fades away.

It is emphasized again that this is consistent with the results
obtained from [7]: as the cycle length grows, the effect of
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different schedules on the battery discharge time becomes neg-
ligible. Concerning the magnitude of the difference between
schedules, this experiment is consistent with the results of
the lithium-ion battery’s measurements. However, the recovery
effect is not negligible and can reverse the two schedules’
relative performance (with parallel being better than serial).
Generally speaking, we can say that the recovery effect is the
dominating effect for the AA primary battery when the cycle
period is short, and the rated capacity effect is the dominating
effect when the cycle period is extended.

C. Experiments on a Synthetic IoT Device
The main limitation of the practical IoT device used in

the previous section is that the design space exploration of
the task schedule is limited due to minor differences in the
power consumption among the four sensor modules, as shown
in Table I. In particular, the air quality and poisonous gas
sensor modules have similar power consumptions, and the
same applies to the temperature and noise sensor modules. In
order to allow a better design space exploration, we designed
a synthetic multi-sensor device by using a programmable load
generator, which can emulate a device equipped with sensors
that have more diverse load power values.

1) Synthetic Multi-sensor IoT Device Configuration: This
experiment assumes that the multi-sensor IoT device we used
is equipped with six different sensor modules. Table VI shows
the power consumption of the six emulated sensor modules;
we assume the power supply of each module is fixed as 3.3V,
and the minimum board supply voltage of the device is 3.5V.

Table VI
POWER CONSUMPTION OF EACH MODULE IN THE SYNTHETIC DEVICE.

Module Active Power (mW) Idle Power (mW)

Sensor 1 300 12.00
Sensor 2 250 10.00
Sensor 3 200 8.00
Sensor 4 150 6.00
Sensor 5 100 4.00
Sensor 6 50 1.50

MCU 30-20-10 0.75
Transmitter 30 0.75

The operations are the same as our practical IoT device. The
same lithium-ion battery NCR18650B and primary AA battery
E91 are adopted in the synthetic scenarios. We also used the
method of [7] to explore the optimal energy-efficient schedule
and obtained the same results as the previous prototype IoT
device, the full serial task schedule (best) being more energy-
efficient than the full parallel task (worst). Therefore, the full
serial and full parallel task schedules are deployed in this
experiment. Additionally, we also selected one intermediate
schedule. The details of three task schedules deployed in
synthetic IoT device are as follows:

• Full serial schedule: all sensors are activated one after
another in non-increasing order of power consumption.
Each sensor has a 15-seconds sampling period. After
all the sensors finish sampling, MCU is activated for 3
seconds to manipulate the captured data. Then the trans-
mitter starts to transfer data and finishes data transmission

after 2 seconds. As soon as the transmitter finishes the
operation, the device goes to the idle state until the next
cycle starts.

• Full parallel task schedule: instead of activating the
sensors sequentially, all the sensors are activated simulta-
neously by a 15-seconds sampling period at the beginning
of each cycle. The following procedure is identical to the
full serial policy.

• Intermediate task schedule: the six sensors are divided
into three groups. The sensors in each group collect data
simultaneously. Groups are activated one after another in
serial. After all groups finish sampling, the rest procedure
is identical to the previous two schedules.

The three deployed task schedule are sketched in Figure 14.

Figure 14. Three task schedules deployed in the experimental measurement.

2) Synthetic Device Measurements Setup: The constructed
measurement environment is shown in Figure 15. We used a
programmable electronic load (RIGOL DL3021) [50], which
generates the power consumption trace corresponding to the
desired task schedule (component B). The battery gauge
(component F) measures the lithium-ion battery discharge
characteristics, and the multimeter (component A) measures
the AA battery discharge characteristics. The component C
shown in the Figure 15 is programmable linear DC power
supply [51], it is used for recharging lithium-ion battery.

Figure 15. Synthetic device measurement environment: (A) HP 34401A
digital multimeter; (B) RIGOL programmable electronic load DL3021; (C)
RIGOL programmable linear DC power supply DP711; (D) Texas Instrument
BqStudio software interface; (E) Panasonic NCR18650b lithium-ion battery;
(F) Texas Instruments battery gauge BQ27Z561.
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The measurement procedure is the same as in previous
experiments. The fully charged battery is connected with the
programmable load generator. We calibrate the initial battery
voltage before each task schedule is executed as described
before; then, the three schedules are executed for the same
predefined operation time to compare the difference of battery
voltage traces. We adopted three lithium-ion batteries and 162
primary batteries (each measurement need three cells to satisfy
the board minimal operation voltage, and each comparison
need three runs with three schedules shown in Figure 14)
in the following measurement with different cycle periods,
and we also defined various operation time as we did in
previous experiments to investigate the influence of cycle
length, operation time, and different batteries.

D. Measurements Results of Synthetic IoT Device
1) Measurements Results of Lithium-ion Battery: Figure 16

graphically shows the voltage discharge traces of 5-minute
cycle and 5,280 minutes operation time obtained by the
measurements. As before, we measured energy efficiency in
terms of the residual battery voltage. After discharging 5,280
minutes, the full serial schedule exhibits the largest residual
battery voltage, which is 3,789mV; the battery SOC is around
55% at this point; followed by the intermediate one and the
full parallel being the worst.
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Figure 16. Lithium-ion battery with 5-minute cycle and 5,280 minutes
operation time: Voltage traces of last 40 cycles from 5,080 to 5,280 minutes.

As we did the measurements for the industrial IoT device,
we conducted multiple measurements by considering three
different lithium-ion batteries, four distinct cycle periods,
and numerous operation time as illustrated in Figure 17 and
Table VII.

Figure 17 shows that all the measurement results obtained
using a synthetic device are entirely consistent with those on
the practical device, despite the more considerable variance
of the sensor’s current. The difference between the worst
schedule and the optimal schedule is monotonically decreasing
as the cycle period increases, as indicated by the cluster
of points in Figure 17 becomes flatter as the cycle period
increases. Note that the full serial schedule is always the
energy-optimal one as shown in Figure 16, even if by a
small amount. Table VII exhibits that the maximum difference
among all these different conditions for the synthetic IoT
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Figure 17. Lithium-ion battery synthetic experiment results with 5, 10, 30,
and 60 minutes cycle period using 3 different batteries.

Table VII
MEASUREMENT RESULTS STATISTICS OF SYNTHETIC DEVICE WITH

LITHIUM-ION BATTERY.

Cycle

Period

Operation

Time (mins)

Maximum

Difference

Minimal

Difference

Average

Difference

5 mins

4,950 3.43% 3.33% 3.37%
5,120 3.52% 3.32% 3.42%
5,280 3.22% 3.12% 3.19%
5,500 3.27% 3.18% 3.21%

10 mins
9,000 2.22% 2.11% 2.19%
9,200 2.31% 2.09% 2.20%
9,400 2.28% 2.17% 2.21%

30 mins 38,250 1.02% 0.94% 0.97%
60 mins 84,000 0.79% 0.71% 0.74%

device with lithium-ion battery is 3.52%, and the minimal
difference is only 0.71%.

2) Measurements Results of Primary AA Battery: The
battery setup is the same as the experiment on the practical
device: three AA batteries are connected in series, and the
discharge conditions are identical to the case of lithium-ion
batteries. We applied then the same three schedules discussed
in the previous section.

The battery voltage traces of three task schedules with a
5-minute cycle and 3,180 minutes operation time are depicted
in Figure 18. The plots show that the residual battery voltages
of the three different schedule are almost indistinguishable
towards the end of each cycle, and their difference becomes
negligible. The difference between full serial and full parallel
schedules is only 1.57%. We conducted the measurements
with other operation times as shown in Table VIII, and for
each operation time, we measured twice. All the measurement
results are plotted by the red points in Figure 19. The rows
belong to the 5-minute cycle period category in Table VIII
indicate the maximum difference between full serial and full
parallel schedules is 1.68%, and the minimum difference is
1.45% under different operation time conditions.

Notice that the ranking of the schedules is now reversed: as
in the experiment using the industrial IoT prototype device,
the full serial schedule has the highest power consumption,
the full parallel schedule is the optimal energy-efficient one.

When switching to the experiments in which a 10-minute
cycle is used, the experiment results show that the full serial
schedule achieves the highest residual voltage, while the full
parallel schedule achieves the lowest residual voltage, as
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Figure 18. Primary battery with 5-minute cycle and 3,180 minutes operation
time: Voltage traces of last 12 cycles from 3,120 to 3,180 minute.
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Figure 19. Primary battery synthetic experiment results using with 5, 10, 30,
and 60 minutes cycle period.

Table VIII
MEASUREMENT RESULTS STATISTICS OF SYNTHETIC DEVICE WITH

PRIMARY BATTERY.

Cycle

Period

Operation

Time (mins)

Maximum

Difference

Minimal

Difference

Average

Difference

5 mins

2,970 1.68% 1.52% 1.60%
3,060 1.63% 1.47% 1.55%
3,180 1.57% 1.57% 1.57%
3,450 1.59% 1.45% 1.52%

10 mins
6,000 2.83% 2.67% 2.75%
6,300 2.70% 2.54% 2.62%
6,600 2.88% 2.73% 2.80%

30 mins 18,000 1.17% 1.17% 1.17%
60 mins 36,000 1.00% 0.83% 0.92%

shown in Figure 20. Table VIII lists the results of other
operation time under the 10-minute cycle period, indicating
the green dots cluster in Figure 19 has maximum difference
is 2.88% and the minimal difference 2.54%.

The results of the 10-minute cycle period conditions are
the same as the practical industrial IoT device’s measurement
results: the optimal schedule is flipped between full parallel
and full serial. We analyze the reasons for this above. The idle
time becomes large enough to allow all the three schedules to
exploit the recovery effect further; therefore, the rated capacity
effect becomes the dominant effect under 10-minute cycle
scenarios. Specifically, the shorter cycle period has a limited
length of the idle period; the schedule with a relatively long
idle period gives the battery a long time to exploit its recovery
effect, thus achieving high residual voltage. On the other hand,

when the idle period increases to longer enough in the long
cycle cases, all the schedules have adequate time to leverage
the recovery effect, then the rated capacity effect plays a
pivotal role in affecting the residual voltage.
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Figure 20. Primary battery with 10-minute cycle and 6,600 minutes operation
time: Voltage traces of last 20 cycles from 6,400 to 6,600 minute.

From the relative position of the dots cluster shown in
Figure 19, we observe that the results are similar to the results
of practical industrial IoT device with primary battery shown
in Figure 11. The different batteries and operation durations do
not affect the difference between optimal and worst schedules.
The difference under the 10-minute scenario has the largest
value among all cycle periods. The optimal schedule under
30-minute and 60-minute cases both are full serial schedule
as 10-minute scenario, and the differences between the two
schedules with 30-minute and 60-minute cycle period are
pretty small (around 1.0%) because of the super low duty
cycle and long operation time as described in practical IoT
device case.

V. CONCLUSIONS

As one of the possible knobs to reduce the energy demand of
embedded devices used for IoT applications, some researchers
have focused on designing a battery-aware power consumption
profile by acting on scheduling the tasks executed by the
device. In this work, the results of our measurements reveal
that this knob is not practical for such small-scale devices.
The impact of different task schedules in terms of the device
lifetime is negligible; this irrelevance is a consequence of the
relative low-power consumption of the workload, which hardly
triggers the non-ideal characteristics of the battery, and is due
to two main facts: firstly, to the nature of IoT workloads,
which perform relatively simple tasks and typically executed
periodically with quite low duty cycles; secondly, as these
devices are designed for a lifetime in the order of days or
weeks, batteries are sized to support these workloads for a
long period of times. Quantitatively, the maximum difference
between the schedule with the longest and shortest lifetimes
was 3.98% for primary batteries and 3.52% for rechargeable
batteries, which are in the range of error of the measurement
instrumentation. It is worth mentioning that, despite the slight
differences, as the theory suggests, in most configurations, a
schedule where all the tasks are executed serially yields the
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most extended lifetime, as this profile diminishes the battery
rated capacity effect. However, for primary batteries, where the
recovery effect is more pronounced than in rechargeable ones,
some configurations of the load and the amount of available
idle time can sometimes reverse this finding.
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