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In-situ Monitoring of Additive Manufacturing

Davide Cannizzaro, Antonio Giuseppe Varrella, Stefano Paradiso,
Roberta Sampieri, Enrico Macii, Massimo Poncino, Edoardo Patti and
Santa Di Cataldo

AbstractAdditiveManufacturing, in great part due to its huge advantages in terms of
design flexibility and parts customization, can be ofmajor importance inmaintenance
engineering and it is considered one of the key enablers of Industry 4.0. Nonetheless,
major improvements are needed towards having additive manufacturing solutions
achieve the quality and repeatability standards required by mass production. In-situ
monitoring systems can be extremely beneficial in this regard, as they allow to
detect faulty parts at a very early stage and reduce the need for post-process analysis.
After providing an overview of AdditiveManufacturing and of the state of the art and
challenges of in-situ defectsmonitoring, this chapter describes an in-house developed
system for detecting powder bed defects. For that purpose, a low-cost camera has
been mounted off-axis on top of the machine under consideration. Moreover, a set of
fully automated algorithms for computer vision and machine learning enables allow
the timely detection of a number of powder bed defects along with the layer-by-layer
monitoring of the part’s profile.

1 Introduction

Additive manufacturing (AM) is the process of joining materials layer by layer to
create objects, starting from a three-dimensional (3D) model. AM uses computer-
aided-design (CAD) software to drive a 3D printer towards creating precise geo-
metric shapes. Afterwards, the CAD model is converted into a series of layers and
instructions suitable for a printer, and then the layers are printed sequentially. AM
is one of the most promising manufacturing technologies [10] that are emerging in
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the context of Industry 4.0. The first machine for AM was developed in 1984 by
Chuck Hull [25], the founder of 3D Systems, a well-known company that develops
3D printers. The first prototype was expensive thus making it inaccessible to the
wide market. However, the constant improvements in hardware and software solu-
tions, affecting their performance and reducing their cost, has results in the spread
of 3D printers in many industrial fields [37]: in the past few years, many industries
have already embraced AM technologies, and they are beginning to incorporate AM
in their production lines and business models [31]. This is especially true for the
medical, automotive and aerospace sectors, where AM is pushing forward innovative
applications such as custom-made implants and prosthetic, as well as lightweight
and complex components of cars and airplanes [12, 23, 33, 40]

Themain advantages of AMover traditional technologies aremass customization,
on-demand and decentralized manufacturing, freedom of design, and the ability to
manufacture complex structures and fast prototyping. In otherwords, AM technology
allows mass customization at low cost, implying that industries can design and
personalize parts production with small efforts and without lengthy delivery time,
or even have parts printed directly at the local distributors or service providers’
premises, reducing the delivery time and the logistics requirements [36].

As it makes it possible to produce critical spare parts in small quantities at
a very low cost and even to print such parts locally, AM technologies, together
with predictive analytics and digitalization, could revolutionize the business models
of maintenance industry and fulfill the potentials of condition-based maintenance
(CbM) and predictive maintenance (PdM): in this scenario, heterogeneous sensors
can be used to continuously monitor the condition of critical parts, and data-driven
predictive models can be exploited to anticipate part failures and breakdowns, as
well as to plan local repairs or replacements of the damaged parts by means of AM,
with tremendous reduction of costs and time.

On the one hand, AM is considered one of the pillars of smart manufacturing
and maintenance industry. On the other hand, it is still in the early stage of devel-
opment [5]. Hence, it has some important drawbacks: build size limitations, long
production time, high equipment and maintenance costs, along with a lack of quality
assurance and process repeatability. Typically, an industrial 3D printer has a build
volume ranging from 100<<3 to 400<<3, which only allows printing objects with
a small size and packed effectively [11]. Due to this limitation, some parts require
to be manufactured in segments and assembled at the end. Additionally, the average
time to produce a single part is high [20], which currently makes AM more suitable
to mass customization manufacturing than mass production. Moreover, 3D printer
associated costs are higher when compared to traditional subtractive equipment. In
this context, research efforts in the field of predictive maintenance of AM machines,
which are currently at the very early stages, are expected to gain momentum in the
future.
As mentioned before, one of the major barrier in the widespread of AM is the lack of
quality assurance and repeatability. In particular, due to the complexity of additive
processes and of the parts to be produced, some defects might occur during the print-
ing process. To guarantee the quality standards required by industries (especially in



In-situ monitoring of AM 3

critical sectors like aerospace, automotive and healthcare) expensive and difficult
post-process inspection are necessary. In order to address the aforementioned in an
effective way, monitoring and control systems can be adopted for supervising the
AM process during the layering procedure, enabled by sensors integrated with to
the 3D printing machine. The real-time analysis of those sensor data can be useful
for the early detection of defective parts, or even to correct the process in order to
proactively address defects from occurring. In this regard, Machine Learning and
Computer Vision (CV) analytics can significantly contribute.

Empowered by the aforementioned, themain focus of this chapter is in-situ defects
monitoring in one of the most diffused metal AM technology, that is Direct Metal
Laser Sintering (DMLS). In the following sections, a brief introduction of the main
AM technologies available in the market is provided (Section 2), along with the
state of the art in the field of monitoring systems (Section 3). Then, follows a near
real-time AM monitoring system applied in an industrial use case, using visible-
range cameras and computer vision algorithms (Section 4). Finally, the experimental
results are discussed (Section 5) to conclude with Section 6.

2 Additive Manufacturing: process and methods

The main steps of a typical AM process are illustrated below in Fig. 1. It starts from a
3D CADmodel of the products, then the model is converted into a stereolythography
(STL) file format that describes the surface geometry of the object to be printed. The
STL is processed by a slicer, a software that converts the model into a series of thin
layers, and produces instructions tailored to a specific AM system. Finally, the final
product may undergo a subtractive finishing process to achieve higher quality.

1
CAD-based 
3D model

2
.STL file

3
Sliced layers

4
AM system

5
End-part
printed

FINAL PRODUCT

Fig. 1: AM Process: main phases.
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In AM, many methods and materials are used to meet the demand for printing
complex structures at fine resolutions. Fig. 2 shows the main technologies and the
respective materials used. Stereolithography, Multi Jet Fusion, and Selective Laser
Melting are intended for plastic materials. Instead, Fused Deposition Modelling and
Laminated Object Manufacturing use both composite and plastic materials, while
DMLS and Electron Beam Melting are suitable only for metal products.

Additive 

Manufacturing

Material 

Extrusion

Fused Deposition 

Modelling

Powder Bed 

Fusion
Polymerization

Stereolithography Multi Jet Fusion
Direct Metal 

Laser Sintering

Electron Beam 

Melting

Laminated Object 

Manufacturing

Sheet 

Lamination

Selective Laser 

Sintering

PlasticPlastic Composite Plastic PlasticMetal MetalPlasticComposite

Fig. 2: AM technologies

The Polymerization process uses ultraviolet light to transform a plastic polymer from
liquid to solid.

• Stereolithography is a liquid-based process that uses ultraviolet light (or electron
beam) to initiate a chain reaction on a layer of photosensitive polymer [21].
Typically, a post-process treatment such as heating or photo-curing is required
for some printed parts in order to achieve the desired mechanical performance.
Stereolithography is suitable for high-quality parts with a fine resolution as low
as 10`< [38]. However, it is relatively slow and expensive, suitable only for
limited materials like resins that change their structure after intense exposure to
ultraviolet light.

Material Extrusion is a process where a spool of material goes through a heated
nozzle in a continuous stream to build a 3D object.

• FusedDepositionModeling uses a continuous filament of a thermoplastic polymer
to print an object. The process is based on the extrusion of a heated thermoplastic
filament through a nozzle tip that deposits precisely the material on the platform
to build the part. The main advantages are that no chemical post-processing or
curing is required leading to an overall reduction of the costs [9]. However, the
process does not allow high resolutions (< 0.25<<) with respect to other AM
processes.

Sheet lamination is an AM methodology where thin sheets of material are bonded
together to form a single piece that is cut into the desired 3D object.
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• Laminated Object Manufacturing is one of the first commercial methods ever
developed. It is based on a layer-by-layer cutting and lamination of sheets or rolls of
material [28]. This process allows to reduce the cost of tooling and manufacturing
time, and it is one of the most used AM methods for larger structures. However,
Laminated Object Manufacturing has some disadvantages like inferior surface
quality (without post-processing) and lower dimensional accuracy compared to
the powder bed methods.

Powder Bed Fusion (PBF) involves spreading powder material on top of the previous
layers through a recoater, with a reservoir providing new material supply. A heat
source, typically a laser or electron beam, selectively melts together each layer of
powder [16].

• Direct Metal Laser Sintering (DMLS) is one of the most used PBF technologies
in AM, and hence is the main focus of this chapter. It allows to print parts with
a 95% density without requiring any additional post-build sintering [22]. The
DMLS process was developed by EOS GmbH, and it was first introduced in
the EOS M250 machine in 1995. It uses a laser that is directly exposed to the
metal powder in liquid phase sintering. Fig. 3 depicts the schematic picture of
the instrument used for DMLS. The chamber is filled with an inert gas to avoid
oxidation of the powder. The powder bed is heated to almost the melting point of
the material and it is controlled by a piston that is lowered the same amount of the
layer thickness each time a layer is finished. The powder allocated in the powder
source chamber is spread using a recoater. The excess powder is removed and
then the laser fused the powder at a specific location for each layer specified by
the design. Nowadays, DMLS is the most widespread technique for metal, thanks
to its trade-off between printing accuracy and cost [7].

Powder

sourcePart

Recoater

Off-axis camera

Overflow

Laser

Inert gas filled

atmosphere

Fig. 3: DMLS set-up.
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• Electron BeamMelting is a relatively novel process that involves an electron laser
beam powered by high voltage in the range of 30− 60:+ to melt the powder [29].
The process is similar to DMLS but, in this process, the part is printed in a high
vacuum chamber to avoid oxidation. Due to the high power produced by the laser,
the penetration depth in the powder bed is greater with respect to DMLS. This
high power could lead to the formation of cracks on the surface of the material,
reducing the process stability.

• Multi Jet Fusion is an AMmethod developed by Hewlett-Packard. It creates parts
additively thanks to a multi-agent printing process. Multi Jet Fusion manufac-
turing technique is particularly useful to create unique plastic parts with a good
surface finish [17]. However, only a few plastic materials are suitable for theMulti
Jet Fusion method.

• Selective Laser Sintering (SLS) is another printing process similar to DMLS,
where a powder is sintered or fused by applying a laser beam. While DMLS
is suitable only for metals, SLS can be used with various polymers. The main
disadvantage compared to DMLS is that the accuracy is limited by the size of
particles of the material. However, it allows a fine resolution and high quality for
printing complex structures [1].

3 In-situ monitoring: current solutions

To this date, many AM systems do not have the capability to assess the quality of
their products that they produce, unless with time-consuming and expensive post-
process analysis. This majorly affects the overall time and cost of the production.
To address this issue, many AM companies are providing software for near real-
time visualization and monitoring of several process parameters. Nonetheless, these
commercial solutions are generally limited in their scope: they do not develop a
fully automated quality control strategy, and they fail to detect minor defects in the
printed part [8]. Moreover, they are either not available on older machine models that
are currently used by manufacturers, or typically require an expensive and complex
set-up process.

Even though the data processing capabilities are still limited, most of themachines
that are now available on the market allow to keep track of the history and behavior
of the most important parameters of the machine for the entire job process. These
parameters are related to either basic process conditions like laser power, build
platform temperature, process chamber and ambient atmosphere, recoater speed,
etc. or machine conditions like cooling system status, electrical power levels, powder
source level, etc. [26]. Up-to-date machines can also be equipped with increasingly
complex hardware like high-speed and infrared cameras, thermocouples, pyrometers,
photo-detectors, that allow to monitor directly or indirectly many process parameters
that are involved into the generation of defects.

Taking advantage of such advanced sensors, researchers are using an increasing
amount of data analytics approaches to address the problem of AM monitoring and
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control, mostly combining off-lineMachine Learning (ML)methodswith other types
of algorithms, depending on the nature of the sensor data [6, 24, 42].

With the use of optical sensors (either in the visible or in the Infra-Red range) to
acquire images of the build chamber, many approaches combine ML together with
Computer Vision algorithms to performAMdefect analysis. For example, in [34] the
authors propose a Convolutional Neural Network (CNN) for autonomous detection
and classification of different type of anomalies. They extract the relevant features
from the images and train the algorithm to detect possible part damages, incomplete
spreading of powder, and recoating errors. In [3], the authors propose an online
monitoring algorithm that uses computer vision to detect defect formation in every
layer of the PBF process. They collect a set of images with a high-resolution camera,
and analyze the images to detect layers with low quality of fusion or defects. In [41],
the authors utilized a high-speed camera to acquire the powder bed images. Then,
they combined a Support Vector Machines with a CNN to analyze the images and
detect possible defects during the printing process.

Other researches focus on more unconventional types of data sources. For exam-
ple, in [35, 39] PBF defects are detected based on acoustic emissions acquired by
either microphones of optical fibers, using different types of neural networks like
Deep Belief Networks or Spectral Convolutional Neural Networks for the classi-
fication task. Finally, in [15], heterogeneous data from a combination of different
sensors are collected from the laser system, powder bed and recoating process in an
Electron Beam Melting system, and then fed into a Support vector data description
(SVDD) model to find major deviations from the expected pattern (e.g., cracks and
holes on the surface). A disadvantage of the latter approaches is that they generally
require invasive modification on the machine and expensive hardware additions for
the data collection.

Recent literature demonstrates data-driven techniques being promising to monitor
and improve AM processes. Nonetheless, the application to real-world industrial
scenarios is often limited by a number of factors. First, by the need of complex
and expensive hardware. Second, by current limitations in the efficient collection,
storage, annotation, and integration of the sensed data. Moreover, ML techniques,
and especially deep learning, typically require to be trained on a large amount of
annotated data (e.g., for image-based systems, a large amount of images of the
powder bed per each possible defect and condition). Considering that the intentional
production of defective parts is not viable in industry, as it is costly and time-
consuming, the generation of a significant training set becomes an issue.

To address this problem, ML can be put at work even to create synthetic and real-
istic images, resembling the ones obtained during the print of a defective part [2]. In
this regard, one of the most promising approaches is Generative Adversarial Network
(GAN), a generative model characterized by training a pair of neural networks (a
generator and a discriminator) in competition with each other [14]. Among the many
families of GANs recently proposed by literature, Conditional GAN (CGAN) uses
an additional input in the generator network to direct the generation process [27],
obtaining very good results in many data augmentation tasks. While GANs are be-
coming very popular in many Computer Vision tasks, the application to the AM
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sector is still limited. In [13], the authors developed a CGAN to produce synthetic
data using as input the layer-by-layer images captured with a near-infrared high-
resolution camera. As conditional images, the authors use a synthetic picture of the
shape of the built artifact, and then they generate the corresponding near-infrared
image, which mimics the characteristics of the captured ones. Ideally, a similar ap-
proach may be used for more complex tasks involving a large number of defects,
like the one addressed by our case-study. More specifically, starting from an original
image without flaws, CGAN can generate synthetic images of defects, augmenting
the training set for defect classification. Unfortunately, the amount of data needed
to train a standard CGAN for this purpose would not be much lesser than the one
needed to train a classifier from scratch. To overcome this problem, in the present
study a very promising architecture called ConSinGAN [19] is employed, that is able
to learn generative models from a single training image (more details will follow in
the next sections).

At present, the use of real-time monitoring systems in AM, coupled withMachine
Learningmodels and, eventually, data augmentation strategies, is still mainly applied
to the early detection of layer defects, for part qualification purposes. Given the lack
of maturity of AM for mass production, little attention has been devoted so far to
monitoring the status and health of the AM machine, for predictive maintenance
purposes. Nonetheless, the extensive undergoing research in the field of sensing
technology and ML models for AM defect analysis and process characterization is
creating a solid background for future developments, where similar concepts may be
easily applied to the early detection ofmachine anomalies and failure prediction. This
is expected to enabled significant advantages in terms of reduced unnecessary post-
processing analysis, equipment replacement, increased process safety, availability,
and efficiency.

4 Case-study: layer-wise defects monitoring system for DMLS
based on visible-range imaging

In this section, a fully-automated framework for layer-wise defects monitoring in
DMLS AM is presented. The system is based upon an off-axis low-cost optical
sensor for image acquisition of the powder bed and the manufactured object during
the layering process. Then, a set of fully-automated tools based on Computer Vision
and ML allow the detection of possible defects of the part that are hard to spot by
visual inspection. The prototype was designed in a real-world industrial scenario and
developed on top of a fully operative DMLSmachine, in an automotive company. By
allowing the early stopping/correction of the faulty artefacts, this system is expected
to improve process repeatability and majorly reduce human intervention, with major
positive impacts on the production costs.

Together with the data collection and the automated defects detection methods,
a first prototype of synthetic image generation leveraging ConSinGAN is proposed,
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which starts from the images acquired with the proposed fully-automated framework
to produce synthetic images addressing two different types of powder bed defects.

4.1 Data acquisition and processing system

The implemented monitoring system is built upon low-cost hardware and camera on
top of an EOS M290 DMLS printer in an automotive company. As shown in Fig. 4,
it includes:

• an Arduino Uno computing platform directly connected with the 3D printer used
to manage the system, trigger the camera, and take images of the powder bed.

• an IDS UI-1540-SE 1.31Mpix camera (1280 × 1024 resolution). The camera is
triggered through the Application Programming Interface (API) made available
by the manufacturer. The acquisition is off-axis with respect to the optical path
of the laser.

• A standard PC running Linux, to collect images in the Portable Network Graphics
(PNG) format with a resolution of 1280 × 1024 and run the image analytics
algorithms.

PR

5V

LASER

PR

5V

RECOATER

ARDUINO 
UNO PC

MAIN

CONTROL UNIT
CIRCUIT

CAMERA

SYSTEM

CIRCUIT

THREADS

LOG

SERIAL

Fig. 4: In-situ monitoring system.

The image acquisition is automatically triggered by 3D printer states, exploiting the
signals emitted respectively by the action of the laser and of the recoater, by means
of photo-resistors. By doing so, the system is able to acquire images of the powder
bed before and after each layer is printed, without requiring any user interaction.
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4.2 Defects detection algorithms

The proposed solution includes a set of near real-time image analytic algorithms
that allows the detection of five different powder bed defects, as well as continuous
monitoring of the profile of the object that is being printed. The algorithms are based
on image processing and Machine Learning and were developed in Python using
OpenCV and Keras standard libraries.
Fig. 5 (a)-(e) show five main categories of defects targeted by our system:

• Holes (Fig. 5 (a)): localised lacks of metallic powder that create small dark areas
in the powder bed image. The origin is a lack of powder due to bad regulation of
the dosing factor.

• Spattering (Fig. 5 (b)): droplets of melted metal ejected from the melt pool and
landed in the surroundings.

• Incandescence (Fig. 5 (c)): high-intensity areas in the completed layer image,
resulting from an excess of laser energy density and a consequent inability by the
melt pool to cool down correctly.

• Horizontal defects (Fig. 5 (d)): dark horizontal lines in the powder bed caused
by the incorrect spreading of the powder, possibly because of the geometric
imperfection of the piece or of the metallic powder.

• Vertical defects (Fig. 5 (e)): vertical undulation of the powder bed, consisting
of alternated dark and light lines along the direction of the recoater’s path. The
origin is either a mechanical interference between the part and the recoater or a
mechanical defect of the recoater’s surface.

Each of these powder bed defects is known to cause either porosities or microstruc-
tural alterations in the printed parts, as well as lower mechanical characteristics.
The pipeline for run-time defects detection consists of several image processing
steps.

• Normalization (Fig. 6 (a)): the images are first normalised against a common
reference frame, in order to correct uneven illumination problems. To do so, an
image of the powder bed is acquired before the start of the layering process and
used as a reference throughout.

• Contrast enhancement (Fig. 6 (b)): a standard background subtraction algorithm
is applied to make the objects more distinguishable from each other, as well as
from the background [30].

• Objects identification (Fig. 6 (c)): intensity discontinuities are identified bymeans
of automated intensity thresholding algorithm. This provides a rough identifica-
tion of the different objects in an image.

• Morphological filtering (Fig. 6 (d)): specific objects are recognized based on
their shape, exploiting morphological algorithms. More in detail, Watersheds,
and Hough transform, followed by standard morphological regularization (i.e.,
opening, closing, holes filling), are respectively applied to identify round-shaped
and horizontal/vertical lines. Based on the specific shape and number of detected
objects, the software identifies a specific category of defect.
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(a) Holes (b) Spattering (c) Incandescence

(d) Horizontal (e) Vertical (f) Profile monitoring

Fig. 5: (a)-(e) Examples of powder bed defects targeted by the system. (f) Profile
monitoring example.

As an example, in Fig. 6 is presented the pipeline applied to detect a spattering
defect, showing the outcome of each intermediate step. Spattering is indeed one of
the defects that most frequently happen during powder bed fusion: it involves tiny
particles of liquid metal being ejected from the laser’s path, which may contaminate
the powder bed and create issues such as porosity, roughness, and lack of adhesion
in the finished parts. At the end of the last step in Fig. 6 (i.e. morphological filtering),
the most relevant spatters are identified.

4.3 Part profile monitoring algorithm

Besides powder bed defects detection, the system includes a fully automated profile
monitoring suite that is able to monitor the profile of the build on a layer-by-layer
basis (see an example in Fig. 5 (f)). This task has additional algorithmic and compu-
tational challenges compared to basic powder bed defects because the printed parts
may have very different shapes and dimensions.
In our solution, profile monitoring is addressed as a semantic segmentation problem.
Semantic segmentation aims to cluster parts of an image together, which belong to
the same object, using a pixel-level prediction to classify each pixel in an image
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(a) Normalization (b) Contrast enhancement

(c) Objects identification (d) Morphological filtering

Fig. 6: Example of spattering defects detection pipeline.

according to a category. In other words, image segmentation becomes a binary clas-
sification task, where each pixel needs to be labeled as belonging to the object of
interest (in our case, the printed part) or the powder bed.
To achieve this purpose, a U-Net architecture is employed [32], a deep learning
algorithm that was initially designed for biomedical image segmentation and then
successfully applied to many different Computer Vision applications. The network
implements an end-to-end fully convolutional network (FCN) composed of convo-
lutional and pooling layers without any dense layer, which makes it suitable for any
image size. As shown in Fig. 7, the architecture is composed of two paths. The first
path (encoding) is the contraction path or encoder used to capture the context in
the image. It consists of a stack of various convolutional and max-pooling layers
with gradually decreasing feature map dimension. The second path (decoding) is
a symmetric expanding path or decoder used to enable precise localization using
transposed convolutions. In the presented approach, the U-Net follows the imple-
mentation suggested by [32]. The encoding path consists of the repeated application
of two 3 × 3 convolutions, with Rectified Linear Unit (ReLU) as activation function
and a 2 × 2 max pooling operation. The decoding path consists of an upsampling of
the feature map (up-conv) followed by a 2 × 2 convolution with ReLU as activation
function, a concatenation with the correspondingly cropped feature map from the
contraction path, and two 3×3 convolutions, each followed by a ReLU. The copy and
crop are necessary due to the loss of border pixels in every convolution. At the final
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layer, a 1 × 1 convolution is used to map each feature vector to the desired number
of classes. In total, the network has 23 convolutional layers.

In this application, the two classes to be classified are the foreground (i.e., the
printed part) and the background (i.e., the powder bed). First, it was used as input
images with a size of 360 × 480. Then, the input size was fine-tuned on a validation
set consisting of images of a representative PBF layer, and finally set the optimal
size to 320 × 320.

INPUT OUTPUT

UP-CONV 2x2

CONV 3x3, ReLU

COPY AND CROP
MAX POOL 2x2

CONV 1x1

LAYER

ENCODING DECODING

Fig. 7: U-Net architecture.

4.4 Dataset augmentation with GAN

Unfortunately, training ML algorithms to AM defect classification requires a large
number of training images, with and without defects. As anticipated in Section 3,
this is difficult to obtain in a real-world industrial setting, especially for the defect
categories. To overcome this issue and increase the number of defective images
available for the training, the discussed solution adopts an extended version of
Conditional Generative Adversarial Network, ConSinGAN [19]. While traditional
GANs still require large datasets for the training, ConSinGAN is able to generate
synthetic data starting froma single image. This characteristic is ofmajor importance,
given the very limited number of defective images.

As shown in Fig. 8, a classic GAN architecture is composed of two Neural
Networks, the Generator and the Discriminator, that compete to produce a generative
model. The generator network produces synthetic data starting from the input, with
the aim of obtaining data that resembles the real and available samples. At the same
time, the discriminator network is a binary classifier that is trained to distinguish the
synthetic samples produced by the generator from the real ones. The training phase
consists of an adversarial process between the two networks, in which the generator
tries to increase the error rate of the discriminator, while the latter tries to distinguish
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real and synthetic data. Hence, the core idea is to implement an indirect training of
the generative model through the discriminator: the generator has no direct access
to real data, and interacts only with the discriminator [4].

GENERATOR

DISCRIMINATOR RESULTS

IMAGE
INPUT

REAL
SAMPLES

NOISE

FAKE SAMPLES
GENERATED

FINE TUNING

Fig. 8: Generative Adversarial Network architecture.

The ConSinGAN is structured in a multi-stage and multi-resolution approach, as
shown in Fig. 9. First the ConSinGAN uses, as input for few iterations, an image
with a coarse resolution to learn mapping a random noise vector z to a low-resolution
image (See Generator Phase 0 in Fig. 9). After the initial training has converged,
the size of the generator is increased, adding three additional convolutional layers.
Each stage takes as input the raw features from the previous stage, and a residual
connection is used in each stage to feedforward the last convolutional layer (See
Stage 1 in Fig. 9). The process is repeated N times until the desired output resolution
is reached. The synthetic image created by the generator is given as input to the
discriminator, together with a real image from the dataset. The discriminator is
trained to discern if the images given are real or synthetic, comparing them.

FAKE

REAL

DISCRIMINATOR

DECISION

GENERATOR

PHASE 0

GENERATOR

PHASE 1

GENERATOR

PHASE N

z

z

z

STAGE 0 STAGE 1 STAGE 2

CONVOLUTION UPSAMPLING + 

NOISE

RESIDUAL

CONNECTION

LEGEND

Fig. 9: ConSinGAN architecture [19].
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The most critical part of the synthetic image generation is the image harmonization
(see an example in Fig. 10). It consists in transforming a composite image, called
naive (Fig. 10 (b)), into a realistic image by applying to the changes made the same
style and appearance of the original image, called training (Fig. 10 (a)). The output of
this process is a synthetic image similar to the original one (Fig. 10 (c)). To perform
this process, the network is first trained to learn a generative model from the original
image. Then, given the naive image as input, it tries to transform it into an image
that should resemble the original learned distribution. Once the model is trained on a
specific image, various synthetic images can be generated by varying only the naive
picture.

(a) Training image (b) Naive image (c) Harmonized image

Fig. 10: Example of image harmonization [19].

Fig. 11 shows an example ofAM image generationwith the ConSinGAN. To generate
new images presenting defects, the image harmonization process is carried out as
follows: i) the generator is trained using a real image capturedwithout defects (Fig. 11
(a)); ii) a naive image is created applyingmodifications to the training image by using
a photo editing software (Fig. 11 (b)); iii) the naive images is harmonized to resemble
the training image characteristics (Fig. 11 (c)). In this way, the synthetic defects are
assimilated into the original image.

(a) Training image (b) Naive image (c) Synthetic image

Fig. 11: Example of image generation
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The data generated can be used to increase the dataset available to both the train
and validation phases of defect detection algorithms, breaking down the costs of
generating a huge set of real defect data.

5 Experimental results

To validate the defect detection algorithms, a set of pre-annotated images was used
with all the defects targeted by the proposed system. For the five main categories of
defects, we run a statistical validation by analyzing whether the algorithm identified
the defect or not, using metrics that are widely accepted in classification tasks:

• Accuracy: it represents the number of correct classifications with respect to the
total cases.

�22DA02H =
)% + )#

)% + )# + �% + �#
• Precision: it is the fraction of relevant cases among the retrieved instances.

%A428B8>= =
)%

)% + �%

• Recall: it is the fraction of the total amount of relevant instances that were
retrieved.

'420;; =
)%

)% + �#

In this work, True Positives (TP) represent the instances when the algorithms were
able to detect a defect that was really present. True Negatives (TN) represent the
instances when a given defect was not present, and the algorithm was right in not
detecting it. False Positive (FP) and False Negative (FN) represent the possible errors
of the algorithms, respectively in detecting a defect that was not present, or not being
able to identify a defect that was present. Table 1 reports the results obtained on a
test set of 24 images with different powder bed conditions and defects.

Table 1: Defects detection algorithms validation

Holes Spatt. Incand. Horizontal Vertical
TP 14 22 15 11 6
TN 8 1 4 11 16
FP 2 1 5 1 0
FN 0 0 0 1 2

Accuracy 91.3% 95.8% 79.2% 91.6% 91.67%
Precision 87.5% 95.6% 75% 91.6% 100%
Recall 100% 100% 100% 91.6% 75%
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For all the five defects, the results of the metrics considered are ≥ 75% with
the worst results for the Incandescence defects (Precision: 75%) and Vertical defects
(Recall: 75%). According to our tests, Incandescence proved to be the most challeng-
ing defect to be recognized, probably due to the high pixel luminosity variation. On
the other hand, Spattering defects are the easiest due to the high amount of spatters
generated.

For the profile monitoring task, the validation exploits the Sørensen–Dice coeffi-
cient (DSC) to compare the profile segmentation obtained with our algorithm against
a manually obtained ground truth. This metric is used to gauge a 0 to 1 similarity of
two binary images, as follows:

�(� =
2|- ∩ . |
|- | + |. |

where |- | and |. | are the number of pixels of the two images (in our case, the
automatic segmentation and the ground truth) and |- ∩. | the number of pixels that
are common to both images. Fig. 12 shows an example of this procedure, with (a)
the binary mask obtained by manual segmentation, used as the ground truth, and (b)
the binary mask obtained by our profile monitoring suite.

(a) Ground Truth (b) Automatic algorithm

Fig. 12: Profile monitoring: validation example.

In the conducted tests, a very good similarity between automated segmentation
and manual ground truth was obtained, with mean DSC value equal to 0.878, when
computed on each single segmented object, and to 0.911, when computed on each
layer image taken as a whole.

Finally, Table 2 reports the execution time of all the tested algorithms. As can
be seen from the reported values, execution times are all below 2.5B, which is well
below the time elapsing between two subsequent layers. Profile monitoring is the
algorithm taking the longest time (2.461B) because it involves running a deep neural
network. The other algorithms, which exploit standard image processing operations,
are all below 1B of execution.
As final step, the results of the synthetic data generation process were validated. In
the implemented prototype, the image augmentation was preliminarily carried out
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Table 2: Mean execution time of the algorithms.

Operation Time [s] Operation Time [s]
Holes 0.791 Horizontal 0.593

Spattering 0.574 Vertical 0.932
Incandescence 0.821 Profile monitoring 2.461

on two types of defects: holes and horizontal. We assessed the results obtained by the
ConSinGan through a most widely used GAN evaluation metric, that is the Fréchet
Inception Distance (FID) [18]:

��� = | |`- − `. | |2 + )A (Σ- + Σ. − 2
√
Σ-Σ. )

Where - is the set of real images, . is the set of synthetic images; `- and `. are
the feature-wise mean of the real and generated images, respectively; Σ- and Σ.
are the covariance matrix for the real and generated feature vectors, respectively; )A
refers to the trace operation in matrix, which is the sum of the diagonal elements;
| |`- − `. | |2 refers to sum squared difference between the two mean vectors.

The FID value ranges between 0 and plus infinite: a value near to 0 means that
the two images are the same, while a very high value means that the two images are
completely different.

Fig. 13 shows an example of a real image without defects (a) and a synthetic
image (b) with holes defects, as generated by our approach. As it can be seen, the
two images are quite similar, corresponding a FID value of 85.74.

(a) Real image (b) Synthetic image

Fig. 13: Comparison between a training image and a synthetic one with defects
(holes).

Table 3 reports the results obtained after 2000 steps, on a test set of 20 generated
images with holes and horizontal defects. As expected, the FID shows similar results
for all the generated images. This is due to the fact that the synthetic images were
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generated starting from same training set, and that the added defects are quite similar.
The FID values of the synthetic images are also quite small, demonstrating a good
similarity to real ones with the same defects.

Table 3: ConSinGAN results

Synthetic image 1 2 3 4 5 6 7 8 9 10
FID 131.07 156.45 93.66 85.74 97.74 107.27 103.71 119.70 93.49 99.81

Synthetic image 11 12 13 14 15 16 17 18 19 20
FID 110.82 90.14 102.64 117.35 127.00 101.58 112.89 98.61 111.51 103.21

As a final experiment, the synthetic images were tested with the defects detection
algorithms. Table 4 reports the results obtained on a test set of 24 synthetic images
with holes and horizontal defects, generated with the ConSinGAN.

Table 4: Defects detection results on artificially generated images

Holes Horizontal
TP 8 8
TN 14 12
FP 1 2
FN 1 2

Accuracy 91.7% 83.3%
Precision 88.9% 80.0%
Recall 88.9% 80.0%

For both the defects, the results of the considered metrics (Accuracy, Precision, and
Recall) are ≥ 80% with the worst results for the Horizontal defects (Precision and
Recall: 80%). Hence, according to the experiments conducted, the defect detection
results are similar to the results obtained with real images. The holes detection algo-
rithm has better Accuracy and Precision with synthetic images (Accuracy: 91.6%,
Precision: 88.9%) than with real images (Accuracy: 91.3%, Precision: 87.5%), while
the Recall is better with the real images (Recall with synthetic images: 88.9%, Recall
with real images: 100%). Instead, the horizontal detection algorithm has accuracy,
precision and recall better with real images (Accuracy: 91.6%, Precision: 91.6%,
Recall: 91.6%) than with synthetic images (Accuracy: 83.3%, Precision: 80.0%, Re-
call: 80.0%) Sure indeed, holes are easier to detect compared to horizontal defects,
that can be easily confused with the powder bed background. However, on the test
case with synthetic images, the metrics results for the horizontal defect were similar
to those with real images, with a small reduction of performance ≤ 12% for the
worst-case Recall.
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6 Conclusion and future works

Computer Vision and ML have proven to be promising approaches for the in-situ
monitoring of the AM process. Nonetheless, the actual use of these approaches in a
real industrial scenario is still limited due to a number of challenges. First of all, the
lack of effective data collection infrastructure specifically devoted to AM. Second,
the necessity to train the models on large annotated datasets, which are typically
costly and difficult to obtain in industrial environments.

This chapter presented a low-cost camera-based in-situ defects monitoring system
for metal PBF and data generation. The preliminary prototype, developed and tested
in a real industrial scenario of an automotive company, includes: i) a set of run-time
Computer Vision andML algorithms to detect five different categories of powder bed
defects, as well as the layer-wise monitoring of the profile of a printed part and ii) a
synthetic image generation model, for data augmentation purposes. Experimental
results suggest that the algorithms have a good performance in terms of defect
detection accuracy and profile segmentation and they are suitable for near real-
time execution with low-cost hardware. The framework is currently being extended
to provide layer-by-layer comparisons between the profile of the printed part (as
returned by the profile monitoring suite) and the desired profile as defined by the
slicer. This will allow a near real-time automated detection of any profile alterations
during a build.

In its current form, the presented framework only allows the continuous mon-
itoring of the AM part, and the timely detection of macroscopic defects based on
the real-time comparison with a baseline. Nonetheless, the continuous growth of
collected images is creating a solid ground for future extensions in the direction
of predictive analytics. In this regard, it is planned to integrate the available image
dataset with process parameters as well as with post-process information (i.e., results
of quality and mechanical tests on the finished parts, as well as historical information
about part breakdowns), in order to train models able to predict and possibly correct
the failure of a part, applying process optimization strategies.
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