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ABSTRACT: 

Degradation patterns are the visible consequence of the impacts of environmental factors and biological agents on stone heritage. 

Accurately documenting them is a key requisite when studying exposed stone antiquities to interpret weathering causes, identify 

conservation needs, and plan cleaning interventions. However, a significant gap can be identified in practical automatized procedures 

for mapping patterns on stone antiquities, such as ancient stelae. This work evaluates a workflow that uses visible and near-infrared 

imaging, combined with machine learning-based digital image segmentation tools, to classify degradation patterns on marble stelae 

correctly and cost-effectively. For this work, different classification methods are considered. Results are analyzed using error 

matrixes and reference degradation maps. The application cases include stelae displayed in the courtyard of the Archaeological 

Museum of Eretria (Euboea, Greece). The proposed methodology aims at being easily adapted to facilitate the conservators’ work. 

1. INTRODUCTION

Stelae—slabs or blocks of stone, usually standing upright on the 

ground—were often used for dedicatory purposes in ancient 

Greece. They serve as essential sources of evidence for ancient 

history through their inscriptions (Bodel, 2012) and materiality. 

Typically made of marble, they were carved in relief and often 

decorated. In the same way as other stone antiquities, ancient 

stelae are subject to degradation due to weathering caused by 

environmental factors and biological agents (Savković et al., 

2016). Assessing and understanding the complex process of 

stone weathering is crucial for the conservation of stelae. 

Defining and mapping their surface patterns is the first critical 

step towards diagnosing degradation-inducing factors and 

agents (Delgado Rodrigues, 2015). The method of mapping 

historical stone surfaces is a well-established non-invasive and 

non-destructive technique that allows the registration of 

information about degradation forms in a detailed and 

reproducible way (Heinrichs, 2008; Delegou et al., 2013). 

Mapping the formation, intensity, and spatial distribution of 

stone patterns can accelerate drawing conclusions and reduce 

required diagnostic surveys and sampling. This procedure is 

often conducted by hand, manually utilizing computer-assisted 

design (CAD) and spatial information systems (SIS)-based 

platforms and photographs as reference, or with specialized 

software (Puy-Alquiza et al., 2019; Siedler, Vetter, 2015). 

Digital image processing (DIP) can serve as an effective 

mapping alternative (Cossu, Chiappini, 2004; Moropoulou et al., 

2013; Adamopoulos, Rinaudo, 2021), and in order to produce 

semantically accurate classification results, it requires the 

conservators’ input. 

1.1 Scope and Aims 

Recently, advances in DIP have allowed the automatization of 

segmentation and classification for cultural heritage 

applications through machine learning (ML)-based methods 

(Grilli et al., 2018). However, implementations aimed towards 

degradation mapping are often case-specific, designed for 

heritage of large dimensions, or require substantially large 

image datasets to successfully train the involved algorithms for 

optimal results (Kwon, Yu, 2019; Pathak et al., 2021)—

especially when deep learning algorithmic processes are 

involved. These characteristics make mapping approaches not 

easily adaptable and impractical for the detailed degradation 

documentation of small-sized stone antiquities. Therefore, more 

universally useful and agile solutions should be considered that 

have the ability to contribute to conservation planning. 

The presented research takes into account that methods for 

mapping the degradation of marble stelae (and other stone 

antiquities) should be practical, reproducible, and cost-efficient. 

A workflow for two-dimensional mapping based on low-cost 

visible and near infrared-spectrum imaging and ML tools is 

designed and then evaluated for annotating identified surface 

patterns. In section 2 of this paper, the methodology is 

described, including image capturing, preparation, and mapping 

approach. In section 3 follows a summary of the application, 

which addresses instrumentation, ML algorithmic 

implementations utilized for mapping and the evaluation 

approach. The presentation and evaluation of results follow in 

section 4; in section 5, some concluding remarks are attempted. 

2. METHODOLOGICAL APPROACH

Taking into consideration that visible and near infrared (NIR)-

spectrum images as well (De Roy et al., 2016; Adamopoulos, 

Rinaudo, 2020; 2021), are useful for the digital mapping of 

sculptured stone surfaces’ preservation state, the proposed 

procedure employs dual-band imaging. The methodology starts 

from the acquisition of the required images, continues with the 

pre-processing of the captured images to acquire spatially and 

radiometrically corrected data input for the classification, and 
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ends with the thematic mapping of the degradation patterns 

through ML-based classification of the false-color images—

which combine RGB and NIR information. The summary of the 

methodological workflow is presented in Figure 1. 

 

 

Figure 1. The workflow of the mapping methodology. 

 

2.1 Image Acquisition 

The proposed method employs affordable sensing techniques to 

acquire the true color (RGB) and NIR-reflectance images. NIR 

images can be captured using consumer-grade DSLR cameras 

after modified by replacing the internal NIR-blocking filter with 

a visible opaque filter, significantly increasing the camera’s 

NIR sensitivity (Verhoeven, 2008). Inserting a NIR-pass filter 

in front of the lens will allow pure NIR imaging and can be 

chosen to capture particular wavelengths depending on specific 

needs. Low ISO values are being selected during acquisition to 

reduce on-image noise. The images are acquired as parallel as 

possible to the object, with the same camera positioning (to 

avoid varying occlusions) and homogeneous exposure. They are 

captured to fit the object in a single frame, while simultaneously 

achieving resolutions sufficient for the degradation mapping. 

Alternatively, images can be acquired with a professional 

camera and then down-sampled during the data preparation 

phase based on scale specifications. 

 

2.2 Data Preparation 

Low-cost cameras allow versatility during data acquisition 

(Adamopoulos et al., 2019); however, harnessing the correct 

radiometric information in order to perform the degradation 

mapping or other classification accurately requires validation of 

the quality of collected images (Del Pozo et al., 2016)—

especially when modified cameras are employed (Webb et al., 

2018). Therefore, in order to ensure their quality, images are 

exported in uncompressed format, then reverse-debayered and 

color corrected (only the RGB images) with RawDigger 

software, corrected from vignetting and inhomogeneous 

illumination with ImageJ (Abràmoff et al., 2004), undistorted 

and rectified with HyperCube. Finally, synthetic pseudocolor 

images are composed of the green and red channels of the RGB 

image and the NIR-reflectance image (NIRRG image) after the 

latter has been manually matched to the former using common 

points. 

 

2.3 Mapping 

The classification of the degradation from the images is 

performed using machine learning models embedded in WeKa 

(Witten et al., 2011). Specifically, the ‘Trainable Weka 

Segmentation’ (Arganda-Carreras et al., 2017) plugin of 

ImageJ’s Fiji distribution is used (Schindelin et al., 2012). 

These models are trained by manually annotating small 

patches/regions of interest that correspond to each type of 

degradation identified. The categories of degradation vary 

depending on the case study. They are selected after visual 

inspection, using as a guide the manual or guidelines adopted by 

the respective archaeological/restoration agency. For this work, 

the ICOMOS-ISCS (2008) Illustrated glossary on stone 

deterioration patterns is considered. 

3. IMPLEMENTATION 

3.1 Materials 

The instrumentation used for the dual-band image acquisition 

included a modified Canon Rebel-SL1 digital camera (with a 

resolution of 5184 × 3456 pixels) with an external NIR-pass 

filter and a Canon EF-S 18–55 mm f/4–5.6 IS II zoom lens for 

NIR-reflectance imaging, and a smartphone employing a Sony 

IMX600 sensor (with a resolution of 3648 × 2736 pixels, at 

RAW capturing mode) with LEICA optics for color imaging. 

The antiquities involved in this work were eight inscribed and 

uninscribed stelae from the Archaeological Museum of Eretria 

in Euboea, Greece (Figure 2). Images of the stelae were 

captured, exported and prepared for digital processing as 

described in Section 2.2, considering a 1:2 scale. 

 

3.2 Classification 

The main identified categories of degradation on the stelae were 

moss-lichens, discoloration, crusts and black crusts, and were 

therefore selected as classes for the classification, along with an 

additional class for relatively healthy marble surfaces. Given the 

manual nature of selecting the classification classes and 

annotating the sample regions for training the classifiers, four 

different classifiers were trained to allow comparisons. All 

classifiers used for the degradation mapping were based on a 

decision tree learning method. The evaluated in ImageJ 

classifiers were the Random Tree, Random Forrest, Fast 

Random Forrest (Breiman, 2001), and j48 (Quinlan, 1993). The 

ML techniques were tested for four stelae, and then the trained 

classifiers were applied to the other four, which presented 

similar degradation patterns. 

 

3.3 Evaluation 

To evaluate the classification results, reference maps were 

constructed. RGB images were also involved in the evaluation 

to estimate the contribution of introducing near infrared-

spectrum data for improving the classification. Error matrixes 

were calculated as an accuracy metric to compare performances. 

The error matrix is a square array of values, which expresses the 

number of pixels assigned to a particular class in one 

classification relative to the number of pixels assigned to a 

particular class in another, reference, classification (Congalton, 

2020). The columns represent the reference map, while the rows 

indicate the classification generated from the ML techniques. 

The ration of correctly classified to the total number of pixels is 

another important metric, derivative of the error matrix. 

 

4. RESULTS AND DISCUSSION 

Table 1 reports the accuracy performance for the tested 

classifiers run on RGB and NIRRG images. 

 
 M.E. 18084 M.E. 980 M.E. 1357 M.E. 1131  

RGB 

0.73 0.78 0.83 0.90 j48 

0.71 0.77 0.82 0.95 RT 

0.75 0.81 0.84 0.94 RF 

0.76 0.82 0.84 0.97 FRF 

NIRRG 

0.74 0.79 0.84 0.94 j48 

0.81 0.85 0.86 0.94 RT 

0.79 0.81 0.85 0.95 RF 

0.78 0.85 0.86 0.98 FRF 

Table 1. Accuracy results for different classifiers. 
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Figure 2. Stelae at the Archaeological Museum of Eretria. 

 

All approaches generated results with over 70% accuracy. 

Among them, consistently high accuracy results were achieved 

with the Random Tree implementation for the more decayed 

stelae and with the Fast Random Forest for the less decayed 

stelae. Figure 3 and Figure 4 present the comparison between 

reference maps and generated results. The ability of the random 

forest method to tackle problems in decision tree learning such 

as learning unusual irregular patterns and overfitting training 

data, by assigning random subsets of the training and from them 

random input feature subsets, facilitated better accuracies when 

the distinction between pathologies and cleaned/cleaner surface 

was clearer. However, when there was overlap between 

degradation forms, and when small enclaves of moss-lichens 

pixels were present inside discolored areas, the decision tree 

method, which uses all features of interest for the training, 

proved more efficient. 

 

It should be highlighted that the complexity of the stelae’s 

surface degradation can contribute to the misclassification of 

pixels. This becomes apparent from the higher accuracy values 

observed for Stelae M.E. 980 and M.E. 1131. The reference 

data consider the predominant form of degradation present at 

each part of the marbles’ surface, but, in fact, the different 

degradation forms can be overlapping, which means that these 

data are not perfect. Therefore, classifiers assume the reference 

data correct, but there is an uncertainty present, which rises as 

the number of degradation categories increases. This reflects on 

the misclassified pixels, which may not always be assigned to 

an incorrect class, but on a lesser dominant degradation 

category at a particular region of interest. 

 

 

 

 

Additionally, inhomogeneous reflectance caused by features 

induced due to material loss—on the micro and macro scale (i.e., 

erosion, pitting, missing parts)—can affect the performance of 

the classification and can usually not be mapped as they are 

overlapping and often caused by weathering phenomena such as 

biological colonization (Urzi, 2004). 

 

It is evident from error matrixes Table 2 and Table 3, that when 

multiple degradation forms were present, the most common 

misclassification was between moss-lichens and discoloration, 

but also clean surface and discoloration when discoloration was 

not very intense (considering the dual-band Random Tree 

approach as the most accurate for stelae 18084 and 1357). 

 

Including the near-infrared data generally improved accuracy 

slightly, and particularly for the more decayed stelae, which can 

be explained by the vastly different reflectance characteristics of 

the biodegraded areas at the NIR spectrum. 

 

 

Table 2. Error Matrix; degradation mapping of stela M.E. 

18084 through the Random Tree-based ML approach. 
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Figure 3. Classification results stelae M.E. 18084 and M.E. 980 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-M-1-2021 
28th CIPA Symposium “Great Learning & Digital Emotion”, 28 August–1 September 2021, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

 
12



 

 

Figure 4. Classification results stelae M.E. 1357 and M.E. 1131 
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Table 3. Error Matrix; degradation mapping of stela M.E. 1357 

through the Random Tree-based ML approach. 

The trained and tested classifiers were applied to the image 

composites of the other four stelae to complete the degradation 

mapping (Figure 5). 

 

 
Figure 5. Degradation mapping of stelae using the trained 

classifiers and the NIRRG composites. 

 

5. CONCLUSIONS 

The proposed approach allows the detailed 2D mapping of 

degradation caused by weathering on stelae and other stone 

antiquities. Forms of degradation are identified by visual 

inspection and then automatically annotated through a 

supervised machine learning-based approach, applied on images 

combining spatially and radiometrically corrected data collected 

at the visible and near-infrared spectrum. The methodology 

employs affordable equipment and few processing steps that do 

not require particular training or specialist software. This 

process speeds up the documentation steps that are usually 

conducted manually before conservation treatment of the stone 

surfaces and facilitates decisions regarding the required 

cleaning techniques. The proposed method can potentially assist 

the identification of areas for sampling and, subsequently, the 

in-depth investigations through laboratory testing. An 

interesting perspective would be integrating with other mapping 

and non-destructive on-site monitoring techniques (Akoglu et 

al., 2020). The approach is very adaptable, as it performed well 

for different case studies of stone stelae that presented 

dissimilar surface pathology. For practical reasons, some of the 

steps followed in this work may be skipped. If, for example, the 

camera sensor cannot be geometrically or radiometrically 

calibrated, the proposed approach can still produce degradation 

maps useful for conservation purposes. Including NIR images in 

the approach proved to increase the accuracy of the results for 

some cases, especially when biodeterioration was present; 

however, including only the true color images still provided 

high-accuracy results. Therefore, an unmodified camera can 

also be used to provide the necessary input for ML-based 

segmentation. 

 

To conclude, a critical issue observed in this work stems from 

the complexity of the mapped surfaces. Overlapping of 

degradation forms can cause some misclassifications, while 

more easily definable deterioration patterns can produce higher 

accuracy results. The subjective visual identification between 

less and more degraded surfaces that present the same 

pathology can also affect the approach’s performance. Features 

causes by material loss cannot be easily detected if they are not 

the cause for other degradation patterns (such as moss caused by 

concentrated moisture in the created cavities), and thus 

combining 3D approaches could be helpful in that direction. 
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