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Abstract

The pulsatility of the inferior vena cava (IVC) reflects the volume status

and the central venous pressure of patients. The standard clinical indicator

of IVC pulsatility is the caval index (CI), measured from ultrasound (US)

recordings. However, its estimation is not standardized and prone to arte-

facts, mostly related to IVC movements during respiration. Thus, we used

a (recently patented) semi-automated method that tracks IVC movements

and averages the CI across an entire section of the vein, which provides a

more stable indication of pulsatility. This algorithm was used to estimate the

CI, pulsatility indicators reflecting either respiratory or cardiac stimulation

and the mean diameter of IVC. These IVC indices, together with anthropo-

metric information, were used as potential features to build an innovative

model for the estimation of the right atrial pressure (RAP) recorded from

49 catheterized patients. An exhaustive search was carried out for the best
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among all possible models which could be obtained by using combinations

of these features. The model with minimum estimation error (tested with

a leave-one-out approach) was selected. This model estimated RAP with

an error of about 3.6±2.6 mmHg (mean±standard deviation; whereas, the

error when using only operator measured variables, without the use of the

software, was about 4.0±2.5 mmHg). These promising results underline the

need for further study of our RAP estimation method on a larger dataset.

Keywords: Inferior Vena Cava, Ultrasound, Right Atrial Pressure,

Pulsatility, Caval Index, Regression Model
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Introduction1

The pulsatility of the inferior vena cava (IVC), estimated from ultra-2

sound (US) measurements by a non-invasive procedure, reflects the intravas-3

cular volume status of critical patients (Finnerty et al. (2017))(Au and Fields4

(2017))(Airapetian et al. (2015))(Charbonneau et al. (2014)). It has been in-5

vestigated in many applied studies, e.g., in cardiology patients with heart6

failure (Wattad et al. (2015)), pulmonary hypertension (Galié et al. (2016)),7

in critical patients (Akkaya et al. (2013)), in case of liver fibrosis or cirrho-8

sis (Kitamura and Kobayashi (2005)), in healthy blood donors (Lyon et al.9

(2005)) and healthy paediatric patients (Haines et al. (2012)).10

However, the classical procedure (based on subjective measurements of11

the operator) is not standardized (Wallace et al. (2010))(Resnick et al. (2011))12

(Zhang et al. (2014)) and is affected by artefacts, like those induced by the13

movements of the vessel relative to the transducer during the respiratory14

cycle (Blehar et al. (2012)).15

In recent works (Mesin et al. (2015))(Mesin et al. (2018)), a semi-automated16

method has been introduced to track the movements of the IVC in long-axis17

US scans in order to compensate for respiration artefacts. Tests in simu-18

lations indicate that the method provides a more precise estimation of the19

IVC local pulsatility compared to the classical measurements (Mesin et al.20

(2015)). Moreover, computing the vein diameters from an entire portion of21

the vessel (Mesin et al. (2018)) and in an orthogonal direction to the IVC22

midline (Pasquero et al. (2015)) allows the retrieval of overall pulsation in-23

formation of the considered vein portion.24

Here, the classical and semi-automated approaches are further investi-25
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gated in terms of the possibility of extracting information on the central26

venous pressure (CVP). Patients with different cardiopathies were first in-27

vestigated using US scans and then catheterized to measure the right atrial28

pressure (RAP, assumed approximately equal to the CVP). Different patient29

characteristics (anthropometric and IVC statics and dynamic behaviour, esti-30

mated either using the classical or the semi-automated approach) were used31

to build regression models for the RAP estimation. Those with minimum32

error were selected.33

Materials and Methods34

Automated detection of the IVC borders35

The algorithm proposed in (Mesin et al. (2018)) was used to process US36

video-clips. In brief, the algorithm (implemented in MATLAB R2018a, The37

Mathworks, Natick, Massachusetts, USA) processes each frame of an US38

B-mode video-clip of a longitudinal view of the IVC. A continuous measure-39

ment of the diameters along a whole portion of the IVC is computed after40

compensating for possible IVC movements.41

In the first frame of the clip, the user indicates the location of the vein,42

two reference points (which are then tracked to estimate IVC movements and43

deformations), the most proximal and distal lines to be considered and the44

location of the borders of the vein along the most proximal line. The software45

then uniformly distributes a number of lines between the most proximal46

and distal borders indicated by the user. The borders of the vein are then47

automatically detected along all these lines. Their location and direction are48

updated for each frame depending on the movements of the reference points.49
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The most proximal and distal lines were selected trying to include the50

entire vein portion that was visualized for the whole video-clip. In optimal51

conditions, the available tract was between the confluence of the hepatic veins52

into the IVC and the caudate lobe of the liver. However, for most patients,53

the available portion of the vein was smaller.54

Once the superior and inferior borders of the vein (in the tract under55

investigation) have been obtained, the software computes the IVC midline.56

This is defined as the mean curve between the two borders. The curvilinear57

abscissa is then computed along the midline. Five points are then uniformly58

distributed along this line (i.e., with the same curvilinear distances between59

neighboring points), considering its extension from the 20% point to the60

80% point of its length (the edges of the tract were excluded). Then, the61

orthogonal sections, in respect to the IVC midline, passing from each of the62

5 points are considered and the pulsatility of the IVC is estimated for each63

of them in terms of the caval index (CI)64

CI =
maxt (D(t))−mint (D(t))

maxt (D(t))
(1)

where D is the estimated diameter series over the time variable t (in a specific65

section) and max/min indicate local extrema. Local maxima and minima66

are computed for each respiration cycle. Averaging across different cycles, a67

stable estimation of pulsatility is computed for each section. Finally, a CI68

accounting for the overall pulsatility of the considered portion of the vein can69

be obtained by averaging the estimates across different sections (see (Mesin70

et al. (2018)) for details).71

The following additional pulsatility indices (RCI and CCI) were also es-72

timated. The vein dynamics were considered as resulting from two different73
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stimulations, induced by either respiration or heartbeats, respectively. The74

effect of respiration was computed by low pass filtering the whole diameter75

time series with a cut-off frequency of 0.4 Hz. The cardiac contribution was76

obtained by high pass filtering the whole diameter time series with a cut-off77

frequency of 0.8 Hz (both filters were 4th order Butterworth; they were used78

twice, once with time reversed, in order to remove phase distortion and de-79

lay). From the two filtered time series, applying again the definition of CI80

given in (1), the respiratory caval index (RCI) and the cardiac caval index81

(CCI) were obtained.82

Experimental data83

The study was approved by the Ethics Committee of the University Hos-84

pital of Trieste and complies with the principles of the Declaration of Helsinki.85

Informed consents were obtained from the patients participating in the study.86

We prospectively enrolled 62 patients (consecutively from 1/12/2015 to87

1/9/2017) undergoing echocardiographic assessment and right heart catheter-88

ization (RHC) for all clinical indications. Some of them were excluded, for89

the following technical problems: IVC not visible (due to either abdominal90

gas, excessive fat tissue, low definition of the edges of the vein) and paradox-91

ical IVC movements (distal collapse and proximal dilatation or vice versa).92

Finally, 49 patients with good US scans (i.e., allowing reliable processing)93

could be included in the study (26 males and 23 females; mean±standard94

deviation - STD: age 62.2±15.2 years, weight 71.7±15.3 kg, height 168.1±9.395

cm). The selected patients had the following pathologies: 28 patients (57%)96

were affected by various heart disease (hypertensive, ischemic, valvular, toxic97

and tachy-induced cardiomyopathy), 10 patients (20.4%) had hypertrophic,98
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dilated or restrictive cardiomyopathy and 11 patients (22.5%) showed non99

group 2 pulmonary hypertension. The following machines were used to record100

the US video-clips: VIVID E9, VIVID I and VIVID Q, by General Electric101

(Wauwatosa, WI USA); iU22, by Philips (Bothell, WA USA). A scan of at102

least 5 seconds of the IVC in the longitudinal axis was performed by B-Mode103

echocardiography during at rest breathing with sub-costal approach. Clas-104

sical estimation of CI was obtained by measuring subjectively maximal and105

minimal diameters (we refer to it as the ”manual” estimation).106

Multi-parameter model107

The following 5 features were recorded from each patient: age, height,

weight, body surface area (BSA) and sex. Moreover, further parameters

were extracted from US scans using either the manual or the semi-automated

approach. Specifically, via the manual approach, we measured the mean di-

ameter and the caval index, here called CImanual to distinguish it from that

obtained by the semi-automated method. In this way, 7 features were con-

sidered, i.e., the general 5 features listed above plus these last 2 features.

Using the semi-automated approach, we computed the mean diameter (aver-

aging across different respiration cycles and the 5 sections) and 3 pulsatility

indices, i.e., CI, RCI and CCI (thus the semi-automated approach considered

9 features, i.e., the 5 general features listed above plus these 4 features). An

inverse relation was assumed between the central pressure and the caval in-

dices. A number was also added to the denominator in order to avoid division

by zero and maximize the correlation between the measured RAP and the

pulsatility indices. Thus, instead of using CImanual, CI, RCI, CCI as features,
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we used
1

CImanual + a0
,

1

CI + a1
,

1

RCI + a2
,

1

CCI + a3

respectively, where a0=0.7, a1=2.4, a2=0.8, a3=0.3.108

The information contained in the features was used to estimate the RAP.109

The full dataset was split into training and test sets with a leave-one-out ap-110

proach (Theodoridis and Koutroumbas (2008)). The training set was further111

split into two parts: 75% to train the models and 25% to validate them. Fifty112

random selections of training and validation sets were considered in order to113

get a robust selection of the best model.114

Based on the training set, linear regression was used to map the input115

features into the RAP. Two different cases were considered, including only116

features measurable by either the manual or the semi-automated approaches.117

All combinations of features were considered as inputs to build different re-118

gression functions (comprehensive search): all possible choices of a single119

feature, all pairs, triplets, ... until using all the features. Considering maps120

with the same number of input features, the one providing the best gener-121

alization to the validation sets (i.e., minimum mean estimation error on the122

validation sets) was then selected as optimal and applied to the test data.123

The optimal model was almost always the same.124

The performances of the regression models were evaluated by considering125

the mean of the absolute value of the errors on the test set126

E = |xr − xm| (2)

where xr and xm are the outputs of the multivariate regression model and127

the measured RAP, respectively. Moreover, the standard deviation and kur-128

tosis of the estimation error were computed. The mean value and standard129
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deviation of errors quantify the accuracy of the estimation, while the kurtosis130

focuses on the tails of the error distribution and it measures large, spurious131

errors.132

To choose the optimal dimension of the model, the one with best perfor-133

mances on the test set was selected.134

Results135

Table 1 provides some general anthropometric and clinical information136

on the patients. Table 2 reports catheterization and echocardiographic data,137

as well as some information on the video processing by the semi-automated138

algorithm.139

Figure 1 and Table 3 show the variables recorded from the patients used140

to build the models for the estimation of RAP. Their relation with RAP is141

shown. Notice that most anthropometric indices have a low correlation with142

RAP. On the other hand, some relation is found between RAP and the fea-143

tures extracted from the IVC. For example, the index with most correlation144

with the RAP is IVC mean diameter (both when measured manually and145

automatically, but with more correlation in the latter case). In addition, the146

pulsatility indices show a good inverse correlation with RAP (again, more147

correlation is found considering the automated estimation). Other IVC size148

and pulsatility indices show some correlation with RAP (but were not shown149

in Figure 1 and Table 3): for the minimum diameter, the correlations were150

55.3 and 67.4%, for the maximum diameter 54.9 and 59.0%, for the manual151

and semi-automated methods, respectively; for 1/(RCI + a2) the correlation152

was 57.5%, for 1/(CCI + a3) it was 61.1%.153
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Figure 2 shows the best estimation models. In both cases, the low dimen-154

sional models provided better generalization to the test set (so that overfit-155

ting was found as the model included many variables). Specifically, the best156

model when using the manual approach uses only one feature to fit RAP:157

RAPManual
est = 0.55Dm (3)

where Dm is the mean diameter measured in mm. This model suggests a158

direct proportionality between the central pressure and IVC diameter. The159

mean absolute error of this model is 4.04 mmHg (STD equal to 4.79 mmHg,160

kurtosis 1.94). Considering two variables, the best model is161

RAPManual
est = 0.52Dm + 0.0085 age (4)

where age is the age of the patient measured in years (mean absolute error162

4.14 mmHg, STD 4.87 mmHg, kurtosis 1.89). This second model selected163

again the mean diameter of the IVC and added a correction term due to the164

age. Notice that a pulsatility index is not chosen to be included in the best165

models, even if Figure 1 and Table 3 show that CImanual has a high inverse166

correlation with RAP. Indeed, the manually estimated caval index and diam-167

eter are quite redundant (the correlation between the measured diameter and168

1/(CImanual + a0) is equal to 48%), so that the additional information pro-169

vided by the measured IVC pulsatility was not relevant enough to contribute170

to a reduction of the estimation error.171

The best model when using the semi-automated approach uses the 2172

features which are most correlated with RAP, reflecting the size of the vein173

and its pulsatility:174

RAPest =
4.13

CI + a1
+ 0.52Dm (5)
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It has a mean absolute error of 3.64 mmHg on the test set (STD equal to175

4.48 mmHg, kurtosis equal to 2.09). The best models using either 1 or 3176

features are given by the following expressions177

RAPest = 0.60Dm (6)
178

RAPest =
3.98

CI + a1
+ 0.52Dm + 0.0008 age (7)

and have a mean estimation error of 3.78 and 3.71 mmHg, with STD of the179

error equal to 4.53 and 4.55 and kurtosis of 2.02 and 2.03, respectively. Notice180

that these 3 models are built upon the same predictors. The mean diameter181

is the main feature (it is also the index with the highest correlation with RAP182

among the considered features, as shown in Figure 1). CI is used to fit the183

data better, by adding a slight modification to the model with a single feature184

(indeed, the coefficient multiplying the diameter is reduced when comparing185

the models with either 1 or 2 predictors and the additional term 1/(CI+a1),186

directly correlated with RAP, is multiplied by a positive coefficient). Finally,187

the best model using three features, in addition to the previous information188

on IVC size and pulsatility, includes age (with a positive contribution, i.e., a189

larger RAP is obtained for older patients, as also indicated by the positive190

correlation shown in Figure 1. Notice, when comparing this model with the191

one with two indices, that the contribution of IVC diameter is unaltered and192

only the coefficient multiplying the pulsatility term is varied, i.e., slightly193

decreased to add the contribution of age).194

The Bland-Altman plots shown in Figure 2 (considering the best manual195

and semi-automated models) indicate that the range of estimation error is196

between ±10 mmHg, but for more than 65% of tests the estimation error was197
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lower than 5 mmHg. For both models, there is a bias, as the errors are mainly198

positive and negative for low and large values of RAP, respectively, indicat-199

ing an average underestimation of the variations of RAP among different200

patients. However, this bias is lower for the model based on semi-automated201

estimation of features (slope of interpolation line equal to 0.75 and 0.53 for202

the manual and semi-automated models, respectively).203

Discussion204

Estimating RAP from US scans is a difficult inverse problem. Some rela-205

tion between size and pulsatility of IVC and the pressure in the right atrium206

has been suggested in the literature and collected into guidelines (Lang et al.207

(2015))(Rudski et al. (2010)). However, the lack of standardization of the208

procedure meant some doubts have arisen on the reliability of the estimates209

(Magnino et al. (2017)). Recent developments have allowed more accurate210

and repeatable estimation of the dynamics of the IVC, due to the tracking211

of the vein (Mesin et al. (2015)) and to the average of information from an212

entire tract of the vessel (Mesin et al. (2018)) provided by an innovative213

semi-automated algorithm.214

This work shows that, in line with (Magnino et al. (2017)), IVC pulsatility215

investigated with the classical procedure does not provide stable information216

on RAP. However, the information extracted by the innovative algorithm can217

be profitably used to get an estimation of RAP that showed an average error218

of about 3.6 mmHg.219

A limitation of our study is that the method was tested on a small220

database, as processing was successful only for 49 out of 62 patients. Future221
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developments will include the engineering of the software in a US system,222

so that the original data could be directly processed and a real time render-223

ing could guide the operators in order to acquire video-clips for which the224

processing is feasible.225

Some properties of the patients were not available, but they could af-226

fect the estimation of the RAP. For example, IVC pulsatility also depends227

on the volume status of the subject (which could be in part investigated228

by bioimpedance analysis), compliance of the vein and interaction with sur-229

rounding tissues. Some information could also possibly be extracted from230

short axis scans of the vein (Folino et al. (2017)).231

Thus, there is room to improve the estimation model, by extending the232

dataset, updating the processing algorithm (by integrating it with the ac-233

quisition of the US scan) and including more information on the patients.234

However, the preliminary results are promising and indicate that the semi-235

automated processing (including IVC movement tracking and the investiga-236

tion of an entire portion of the vessel) is useful for better characterization of237

IVC pulsatility and its relation with RAP.238

An instrument implementing the algorithm described in this paper was re-239

cently patented by the Politecnico di Torino and Universitá di Torino (patent240

number 102017000006088).241

Conclusions242

A new promising technique has been introduced for the estimation of243

RAP. Higher accuracy is obtained when using a semi-automated method for244

the tracking and assessment of IVC pulsatility in an entire portion of the245
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vessel, than by considering manual subjective measurements (in the latter246

case, IVC pulsatility did not improve accuracy of RAP estimation).247

The non-invasive assessment of RAP could have an active role in the man-248

agement of patients. The new tool which has been proposed, if validated in249

further studies, could have an important role in a variety of clinical settings.250
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Figure Captions330

Figure 1: Different variables versus right atrial pressure (RAP), with indi-331

cation of the correlation.332

Figure 2: Performances of the best models for the estimation of RAP when333

using indices estimated with the standard (manual) or semi-automated334

approach. Bland-Altman plots show the difference between estimated335

and correct RAP versus their mean.336
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General Data Mean ± STD

Systolic Blood Pressure (mmHg) 115.9±21.1

Diastolic Blood Pressure (mmHg) 71.3 ± 9.8

Heart Rate (bpm) 75.4 ± 15.5

Smokers 6 (12.2%)

Essential Hypertension 31 (63.3%)

Dyslipidemia 10 (20.4%)

Diabetes 14 (28.6%)

Atrial Fibrillation 14 (28.6%)

COPD 4 (8.2%)

CKD 14 (28.6%)

Cardiomyopathy (HCM, DCM, RCM) 10 (20.4%)

Non Group 2 Pulmonary Hypertension 11 (22.5%)

MHD 28 (57.1%)

Table 1: Main features of the population (COPD: Chronic Obstructive Pulmonary Disease;

CKD: Chronic Kidney Disease; HCM: Hypertrophic Cardiomyopathy; DCM: Idiopathic

Dilated Cardiomyopathy; RCM: Restrictive Cardiomyopathy; MHD: Multifactorial Heart

Disease, i.e., hypertensive, ischemic, valvular, tachy-induced, toxic).
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Right heart catheterization data Mean ± STD

∆Echo-Cath Time (min) 213 ± 122

Mean Pulmonary Artery Pressure (mmHg) 33.4 ± 11.6

Right Atrial Pressure (mmHg) 10 ± 5.6

Echocardiographic data Mean ± STD

LV Ejection Fraction (%) 48.2 ± 19.7

Tricuspid Annular Plane Systolic Excursion (mm) 17 ± 4.7

RV FAC (%) 35.6 ± 12.8

Tricuspid E/E 5.6 ± 2.9

Tricuspid E/A ratio 1.2 ± 0.4

Expiratory IVC diameter (mm) 20.4 ± 5.5

Inspiratory IVC diameter (mm) 14.0 ± 6.5

IVC Collapsibility Index 0.35 ± 0.2

Measured Right Atrial Pressure (mmHg) 12.5 ± 7.4

Pulmonary Artery Systolic Pressure (mmHg) 53.0 ± 19.1

Video Processing Mean ± STD

Length of processed IVC tract (cm) 44.5±12.3

Duration of US video clips (s) 9.3±4.6

Identified respiration cycles 2.5±1.3

Identified heartbeats 13.8±7.5

Table 2: Echocardiographic and catheterization data (LV: Left Ventricle; RV: Right Ven-

tricle; FAC: Fractional Area Change; IVC: Inferior Vena Cava).
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Variable Mean ± STD CC with RAP

Age (years) 62.2±15.2 15.9%

Height (cm) 168.1±9.3 5.8%

Weight (kg) 71.8±15.3 14.9%

BSA (m2) 1.81±0.22 12.8%

Sex 23 females/26 males 4.2%

IVC mean diameter (manual estimation) 18.6±5.7 mm 56.7%

IVC mean diameter (semi-automated estimation) 15.9±6.9 mm 64.6%

CI (manual estimation) 28.7±16.0 % -43.5%

CI (semi-automated estimation) 36.7±23.2 % -62.9%

RCI 20.7±23.6 % -55.4%

CCI 20.5±22.9 % -56.0%

Table 3: Variables used as features for the estimation models and their correlation coef-

ficients (CC) with RAP (BSA: Body Surface Area; IVC: Inferior Vena Cava; CI: Caval

Index; RCI: Respiratory Caval Index; CCI Cardiac Caval Index).
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