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Abstract—Leakage discharge currents represent one of the
most detrimental factors for the maximum hold time in analog
sample-and-hold circuits. Apart from the obvious passive solution
of enlarging the sampling capacitor, alternatives based on active
circuits have been proposed. We focus here on an existing
solution which has proven to be effective in reducing the leakage
discharge, hence extending the hold time, by a factor of 20. Being
based on a feedback circuit built around the hold capacitor, it
is paramount to understand its stability properties. This work
tries to close the gap by analyzing the closed-loop stability of
the nominal circuit. Classical control systems techniques are
employed to thoroughly analyze the dynamic behaviour of the
feedback circuit, highlighting the detrimental effect of device
mismatches.

I. INTRODUCTION

The accuracy of many analog data processing systems,
including Analog-to-Digital converters, can be traced back to
the reliable storage of analog quantities over time. For slowly
varying signals, or in applications where several signal samples
have to be collected before processing, leakage phenomena
may cause a decay of the stored information and dramatic
worsening of system performance [1]–[3].

With specific reference to the typical sample-and-hold cell
of Fig. 1(a), we observe that when the switch is in the off
state, current will still flow through its channel and diffusion,
as long as a voltage difference appears across them.

A straightforward approach to countering the leakage-
induced discharge is to enlarge the hold capacitor, with the
downsides of a reduced bandwidth, increased loading of the
input driver and a severe area penalty. Therefore, several
solutions based on active circuits have been proposed in the
Literature. In [4] current mirrors are employed to replicate the
leakage current of the main switch, which is then injected with
opposite polarity on the storage node, while in [5] a voltage
buffer forces the same voltage on the source, drain and bulk
terminals of the switch in the off state to minimize the voltage
drop across the channel and diffusions and, consequently, their
leakage currents.

In this paper, we will focus on the architecture described in
[6], which is potentially able to detect and compensate even
low-amplitude leakages by observing and reacting to their
integral. The stability properties of the compensator are in-
vestigated, highlighting the importance of parameter matching
in order to guarantee the expected behaviour of the circuit.
The paper is structured as follows. Section II presents the
compensation circuit, its operating principle and a convenient
block-diagram description in Laplace domain. The nominal
circuit response to the relevant external inputs is computed
in Section III, while parameter mismatch is considered in

Section IV. In Section V the effect of a dominant pole in the
transconductors is observed. Numerical results are presented
in Section VI. Finally we draw the conclusion.

II. LEAKAGE COMPENSATION ARCHITECTURE

In its most trivial form, a sample-and-hold circuit consists
of a capacitor, as in Fig. 1(a), tracking the input voltage until
its access transistor M1 is in the ON state. As soon as the
transistor turns OFF, the charge in the capacitor is fixed and
the voltage information is available for other circuits to operate
on. A real MOS transistor in its OFF state, however, does
not completely isolate the capacitor, causing a discharge over
time because of leakage currents through the channel and the
diffusions.

In general, once a signal sample is stored, the input voltage
will still vary. Since this makes the analysis more complex,
let us limit ourselves to the “T” shaped switch topology of
Fig. 1(b) [7]. Among its advantages, this solution removes the
input voltage dependency by shorting the inner node to the
reference voltage. Moreover, transistors M2 and M3 will be
replaced by a Norton equivalent model as depicted in Fig. 1(c).

The leakage current cancellation circuit is shown in
Fig. 1(d). It was originally introduced in [6] and experi-
mentally validated, observing up to ×20 reduction of the
voltage decay with respect to an uncompensated hold cell.
The circuit requires a replica of the original hold cell where
the capacitance is scaled down by a factor k < 1. Having
unequal values, their discharge rates will differ, resulting over
time in an increasing voltage vdiff(t) = vh(t) − vrep(t).
A compensation current iinj(t), proportional to vdiff(t), is
injected back into both cells, reducing the net current flow
through the capacitors.

Assuming R → ∞, a steady state condition is reached
with the leakage current IL compensated exactly and the
hold voltage, after an initial decay, preserved indefinitely.
Conversely, finite resistance values prevent a steady state
condition from being achieved and require appropriate sizing
of the loop elements in order to satisfy admissible voltage drop
specifications.

In the following, for a comprehensive analysis of the
properties of the system, we assume that the replica circuit is
not identical to the original one due, for example, to circuital
mismatch. In details, assuming t = 0 is the sampling instant,
the main inputs applied to the circuit are the sampled voltages
vh(0−) = V0 and vrep(0−) = V0 + ∆V0 and the constant
leakage current ILu(t), where u(t) is the unitary step function,
valued 1 for t ≥ 0 and zero otherwise. One of the main sources
for the sampling voltage error ∆V0 is the charge injected by
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Fig. 1. (a) Basic implementation of a sample-and-hold circuit. (b) Implemen-
tation by means of a T-shaped switch. (c) Equivalent circuit for (b) in the
hold mode. (d) Schematic of the leakage compensator analyzed in this paper.

the access transistors upon their transition to the off state, an
effect that depends on the capacitance values, asymmetric by
design. As such, it will affect even the nominal circuit.

The Laplace-domain block-diagram description of the com-
pensator is depicted in Fig. 2. Notice how the initial conditions
applied to the capacitors act as currents in the transformed
domain. This is obtainable by transforming the constitutive
equation of a linear capacitor taking into account its initial
condition [8]:

Ic(s) = L{iC(t)} = L
{
C
dvC(t)

dt

}

= C
(
sL{vC(t)} − vC(0−)

)

= sCVc(s)− CvC(0−)

Ic(s) + CvC(0−) = sCVc(s) .

Two transformed currents flow through the capacitor, the sec-
ond of which represents the initial conditions and corresponds
to a constant in Laplace domain.

The equivalent load impedances in each cell are:

Zh =
Rh

1 + sRhCh
Zrep =

Rrep

1 + skRrepCh
.

III. ANALYSIS OF THE NOMINAL CIRCUIT

We will initially neglect any mismatch, i.e., Rrep = Rh.
The transconductances will be considered identical as well,
and without any reactive effect, i.e. gm1(s) = gm2(s) = gm0.

Being the circuit linear, we apply the superposition principle
and derive the response Vh(s) with respect to each input:

Vh(s) = H|V0
V0 +H|∆V0

∆V0 +H|IL
IL
s
.

Elementary algebraic manipulations lead to the desired transfer
functions, approximated under the assumption of gm0Rh � 1:

H|V0
(s) ' gm0R

2
h(1− k)Ch

1

(1 + τ1s)

H|∆V0(s) ' −gm0R
2
hkCh

1

(1 + τ1s)(1 + τ2s)

Fig. 2. Complete block diagram of the compensator.

H|IL(s) ' −Rh
1 + T1s

(1 + τ1s)(1 + τ2s)
,

with:

τ1= gm0R
2
h(1− k)Ch , τ2=

k

1− k
Ch
gm0

, T1 = kRhCh .

Being both τ1 and τ2 positive, the two poles lie in the left
half-plane, hence the system is stable for all parameter values.
The dominant (slowest) time constant, τ1, is given by the
time constant of the original hold cell (without compensation),
RhCh, increased by a scaling factor gm0Rh(1 − k) � 1.
The voltage decay can therefore be slowed down as much as
needed by increasing the transconductance. At the same time,
τ2 becomes increasingly smaller. Notice also how H|V0

is a
single-pole transfer function.

The time-domain response vh(t) is given by the sum of
corresponding terms:

vh|V0
(t) ' V0 exp

(
− t

τ1

)

vh|∆V0(t) ' −∆V0
k

1− k

[
exp

(
− t

τ1

)
− exp

(
− t

τ2

)]

vh|IL(t) ' −RhIL
[
1− exp

(
− t

τ1

)
(1)

+
k

1− k
1

gm0Rh
exp

(
− t

τ2

)]

The sampled voltage decays according to the nominal time
constant. The voltage asymmetry ∆V0, applied to the replica
cell, is propagated to the original cell and attenuated at least by
a factor k

1−k . The effect of the leakage current is also slowed
down by the increased time constant.

According to the expressions in (1), the circuit can sig-
nificantly reduce the leakage-induced discharge, though the
assumptions of identical values for some of the parameter
are not realistic and the effect of their asymmetries must be
evaluated.

IV. EFFECTS OF DEVICE MISMATCHES

The condition of exactly equal resistances, transconduc-
tances and leakage currents will be nearly impossible to
achieve in practice. Although mismatches in leakage currents
will not change the stability properties of the system, being
only a different input signal for the same feedback loop, their
effect has to also be evaluated and, if needed, mitigated.
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A (constant) asymmetry in the leakage current can be
modeled as a ∆ILu(t) flowing through the replica cell.
The additional term in the expression of Vh(s) is given by
H|∆IL(s) ·∆IL/s, with:

H|∆IL(s) ' gm0R
2
h

1

(1 + τ1s)(1 + τ2s)
.

The corresponding time-domain contribution is:

vh|∆IL(t) ' gm0R
2
h∆IL

[
1− exp

(
− t

τ1

)
(2)

+
k

g2
m0R

2
h(1− k)2

exp

(
− t

τ2

)]
.

This time, the gm0Rh factor that slows the decay down also
acts as a scaling coefficient for the entire expression. Under
the reasonable assumption of hold times much smaller than
the dominant time constant τ1, equation (2) becomes:

vh(t)|∆IL(t) ' 1

Ch(1− k)
∆ILt .

The circuit behaves almost as an ideal integrator of the leakage
current mismatch term, with an effective capacitance close to
the hold capacitance Ch. The only terms that can limit the
error due to such an asymmetry, once the hold time is selected,
are the value of Ch, which should be enlarged if needed, and
the amount of current ∆IL, which has to be minimized by
ensuring that the transistors in both cells are as matched as
possible. Parameter k is already assumed to be small, hence
its effect is not significant in this expression.

The presence of mismatch terms affecting Rrep = Rh(1 +
∆Rh/Rh) and gm2 = gm0(1 + ∆g/gm0), modifies the circuit
open-loop gain, which becomes:

T ′ = gm0

(
1 +

∆gm0

gm0

)
Rh(1 + ∆Rh/Rh)

1 + skRhCh(1 + ∆Rh/Rh)

−gm0
Rh

1 + sRhCh
.

The zeroes of the corresponding characteristic equation 1 +
T ′ = 0 represent the time constants of the systems. While
τ2 is mostly unaffected, the dominant time constant indeed
becomes:

τ ′1 ' RhCh(1− k)
gm0Rh

1 + gm0Rh

(
∆Rh

Rh
+ ∆gm0

gm0
+ ∆Rh

Rh

∆gm0

gm0

)

' RhCh(1− k)
∆Rh

Rh
+ ∆gm0

gm0
+ ∆Rh

Rh

∆gm0

gm0

. (3)

Whenever the 1 at the denominator becomes negligible, i.e.
gm0R � 1 and the mismatch terms are significant, the sign
of the time constant is determined by those of the ∆Rh/Rh
and ∆gm0/gm0 terms, which are unknown a priori. The time
constant can therefore become negative and the exponential
decay may turn into an exponential growth of the output
voltage vh(t), i.e. a right half-plane pole arises. Hence the
system is conditionally stable, depending on the statistical
properties of the mismatch terms.

Note however that, to first order, the absolute variations
|vh(t)− V0| are independent of the sign of τ ′1 for t� τ ′1,.

As a final note, since the dominant time constant is limited
in magnitude by the ∆Rh/Rh and ∆g/gm0 terms, a further
increase of the transconductance is ineffective in reducing the
observed voltage decay and requires either a reduction of the
mismatch terms or an increase in Ch.

V. STABILITY WITH A DYNAMIC TRANSCONDUCTANCE

Up to this point, the transconductances have been consid-
ered as constants, resulting in compensator dynamics which
are at most those of a second order system, with two real poles.
Here we will consider identical transconductances with a
dominant pole, i.e. gm1(s) = gm2(s) = gm(s) = gm0

1
1+s/pg

.
The order of the system is thus increased, and complex
conjugate poles may arise, leading to damped oscillations in
the system response.

Two cases will be presented, the first in which the pole fre-
quency is independent of gm0, the second where the frequency
is given by gm0

Cg
, as it happens in a two-stage transconductance

amplifier with gm0 determined by the input stage only.
The open-loop gain with a dynamic conductance is ex-

pressed by:

T ′′ = gm0
1

1 + s/pg
(Zrep(s)− ZH(s)) .

The characteristic equation 1 + T ′′ = 0 is linear in gm0 and
can be studied with the standard root locus technique [9].

With n = 3 poles and m = 1 zero in the expression T ′′,
control systems theory guarantees that the complex conjugate
poles arising for any value of gm0 will not give rise to
instability, since the root locus will follow vertical asymptotes,
whose angles with respect to the positive real axis are:

θa,ν =
2ν − 1

n−mπ =

{
π

2
,

3

2
π

}
,

with ν ∈ {0, 1} the index of the pole. The asymptote crosses
the real axis at a point:

σa =
1

n−m

(
n∑

i=1

pi −
m∑

i=1

zi

)

= −1

2

(
1

RhCh
+

1

kRhCh
+ pg

)
, (4)

with pi and zi the poles and zeroes of T . If the pole frequency
−pg is independent of the transconductance and pg > 0, then
the system is unconditionally stable.

If instead pg = gm0

Cg
, i.e., proportional to the transconduc-

tance, the characteristic equation can be manipulated into an
expression quadratic in gm0. The standard root locus technique
is no more applicable and we would have to resort to the
polynomial root locus method [10]. Its most peculiar feature is
that each point of the root locus may be obtained for multiple
values of the gain variable that parametrizes the curve (in our
case, gm0). Since our interest is mainly in the stability of
the feedback loop, we will limit our analysis to finding the
conditions of system instability.

In order to evaluate the presence of roots with positive real
part in a polynomial equation ansn+ . . .+a1s

1 +a0 = 0, we
can readily apply the Routh-Hurwitz criterion [9]. The method
requires the construction of a table whose top two rows contain
the polynomial coefficients in a specific order, as in Table I,
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TABLE I
ROUTH-HURWITZ TABLE FOR THE CHARACTERISTIC POLYNOMIAL WHEN

THE DOMINANT POLE IN gm(s) IS PROPORTIONAL TO gm0 .

3 a3 = kR2
hC

2
hCg a1 = g2m0R

2
hCh (1− k)

2 a2 = (1 + k)RhChCg a0 = gm0

1 b1 =
gm0RhCh

1+k

[
(1− k2)gm0Rh − k

]

0 c1 = gm0

constructed under the assumptions gm0Rh � 1 and RhCh �
Cg/gm0. In a third order equation, two more elements have
to be evaluated, whose expressions are:

b1 =
a2a1 − a3a0

a2
, c1 =

b1a0

b1
= a0 .

The criterion states that, moving along the first column,
every change of sign of the elements in consecutive rows
corresponds to a root with positive real part. Conversely, sign
permanence is equivalent to a root with negative real part. All
the terms but b1 are always positive, hence the stability of the
closed loop system depends on the sign of b1. If positive, all
roots have negative real part, if negative, a couple of unstable
roots arises. The corresponding inequality

(
1− k2

)
gm0Rh > k

is immediately verified under the initial assumption gm0R�
1, hence the closed-loop system is stable.

VI. NUMERICAL RESULTS

The root loci of the closed-loop system, parameterized by
the value of gm0, are shown in Fig. 3. They have been
evaluated for Rh = 1 GΩ, Ch = 100 pF and k = 0.1.
Parameter values have been selected to validate the analytical
models and may be far from realistic conditions. Plots (a) and
(b), correspond to the model with a constant transconductance,
with no reactive effects. The system is a second-order one,
with clearly separated real roots. In Fig. (b) the positive
zero for a ∆gm0/gm0 = −0.1 determines a transition to
unstable behavior as gm0 increases. Conversely, in 3(c) a
dominant pole in gm(s), at -5 krad/s, results in a third-order
system, possibly with a pair of complex-conjugate poles. The
vertical asymptote abscissa has a real part of -2.55 krad/s as
computable also by (4). Finally, Fig.(d), (e) and (f) depict the
loci for Cg/Ch = 1/50, 1/100, 1/1000, respectively. As the
ratio becomes smaller, the region enclosed by the complex
conjugate loci shrinks. That same region is characterized by
extremely low values of transconductance and may not be
observed in practice.

The transient behaviour of vh(t) in different operating
conditions has been verified in SPICE simulations and is
depicted in Figure 4. The V(vh_no_comp) curve represents
the uncompensated voltage decay of a hold cell, with a leakage
current IL = 10 nA and an sampled voltage V0 = 1 V.
Applying around the cell the compensator without any mis-
match, the V(vh_nom) waveform is obtained, showing a
fast, limited-amplitude initial transient followed by a slower
decay. The addition of an asymmetry on the transconductance
∆gm0/gm0 = −0.1 determines the exponential growth of
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Fig. 3. Root loci for the closed loop poles of the leakage compensator as
a function of the gm0 parameter, in S. (a) Nominal circuit. (b) Circuit with
a ∆gm0/gm0 = −0.1 mismatch term. (c) Nominal circuit with a constant
pole in gm(s). (d) Nominal circuit with a gm(s) pole proportional to gm0,
pg = gm0/Cg , with Cg ∈ {Ch/50, Ch/100, Ch/1000}. Both plot axis
employ a symmetric log scale so that positive and negative values can be
represented over a wide range. The region x ∈ [−1, 1], y ∈ [−1, 1] is in
linear units.

Fig. 4. Transient behaviour of the voltage in the hold cell for several system
configurations. The subplot on the right provides the zoomed-in view of the
rectangular region highlighted on the left.

V(vh_mism). Finally, a constant pole in gm(s), together
with the previous mismatch, results in the damped oscillations
observed in V(vh_dyn).

VII. CONCLUSION

This work has analyzed the stability properties of a specific
leakage current compensation circuit. Mismatches have proven
to be critical, as their induced instability requires a reduction
of the hold time. Damped oscillations can be observed when
the transconductor dominant pole is considered. Numerical
simulations validate the analytical results.
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