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ABSTRACT

Metamaterials and photonic/phononic crystals have been successfully developed in recent years to achieve advanced wave manipulation and
control, both in electromagnetism and mechanics. However, the underlying concepts are yet to be fully applied to the field of fluid dynamics
and water waves. Here, we present an example of the interaction of surface gravity waves with a mechanical metamaterial, i.e., periodic
underwater oscillating resonators. In particular, we study a device composed of an array of periodic submerged harmonic oscillators whose
objective is to absorb wave energy and dissipate it inside the fluid in the form of heat. The study is performed using a state-of-the-art direct
numerical simulation of the Navier–Stokes equation in its two-dimensional form with free boundary and moving bodies. We use a volume of
fluid interface technique for tracking the surface and an immersed boundary method for the fluid–structure interaction. We first study the
interaction of a monochromatic wave with a single oscillator and then add up to four resonators coupled only fluid-mechanically. We study
the efficiency of the device in terms of the total energy dissipation and find that by adding resonators, the dissipation increases in a nontrivial
way. As expected, a large energy attenuation is achieved when the wave and resonators are characterized by similar frequencies. As the num-
ber of resonators is increased, the range of attenuated frequencies also increases. The concept and results presented herein are of relevance
for coastal protection applications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0048613

I. INTRODUCTION

In recent years, the field of mechanical metamaterials and pho-
nonic crystals has seen a rapid development and captured increasing
interest.1 These are engineered materials that have been developed to
alter the standard properties of wave propagation such as dispersion,
refraction, or diffraction. Metamaterials are usually arranged in peri-
odic patterns, at scales that are comparable or smaller than the wave-
lengths of the phenomena they influence. The simplest effect is that
when waves propagate in a periodic structure, the dispersion relation
displays banded structures with frequency regions that are forbidden,
called bandgaps. This effect, for example, can be obtained in phononic
biatomic materials.2 The concept of metamaterials was first developed
in the field of optics3 and later extended to phononic crystals and elas-
tic waves.2 Some work on the interaction of gravity waves with a mac-
roscopic periodic structure (a sinusoidal floor) has already been
presented in the past (see Refs. 4 and 5). Results indicated the existence
of a mechanism of resonant Bragg reflection occurring when the

wavelength of the bottom undulation is one-half the wavelength of the
surface wave. Further studies on the interactions of waves with peri-
odic structures can be found in Refs. 6–8. Other examples of wave
manipulation properties, for example cloaking, can be obtained by
employing an engineered elastic buoyant carpet placed on water9 or
by a radial arrangment of vertical cylinders.10

The interaction of ocean waves with solid structures is a long-
standing problem in fluid mechanics.11 A theoretical approach based
on the direct use of the equations of motion, even in their simplified
version, is not always feasible, especially when geometries are not sim-
ple and bodies are moving because of hydrodynamical forces. In the
latter cases, an experimental approach is often impractical, as the mea-
surement of pressures and of the velocity field around the moving
bodies may not be straightforward. Numerical methods, despite their
complexity, offer an important alternative to study wave–structure
interaction and to design structures. With respect to standard fluid
mechanics, the main complication that arises is due to the presence of
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a free surface which substantially increases the difficulty of the numeri-
cal treatment. Some studies in the literature assume that the flow is
irrotational and inviscid so that the potential flow equations can be
solved and forces are limited to pressure.12,13 However, when the goal
is to study the overall effect of wave attenuation and the energy dissi-
pated in the bulk of the fluid, vorticity and viscosity cannot be
neglected, and the full Navier–Stokes equations need to be computed:
recent works14,15 have provided evidence that viscosity plays an
important role, especially close to resonant conditions. To this end,
direct numerical simulation (DNS) of a free surface flow interacting
with a structure represents a powerful tool that can provide a detailed
representation of the flow field and of the fluid–structure interaction.

In this work, we consider the interaction of gravity waves with a
periodic structure composed of “internal” resonators, i.e., waves interact
with submerged harmonic oscillators which are coupled only fluid-
mechanically. To begin with, we work in a two-dimensional framework;
therefore, strictly speaking, our waves are characterized by infinitely
long crests and the oscillators are cylinders whose axes are parallel to
the crests. We solve the full Navier–Stokes system of equations coupled
with the volume of fluid (VoF) method for the interface tracking and
the immersed boundary method (IBM) for the fluid– structure interac-
tion. The cylinders undergo the hydrodynamic forces (pressure and vis-
cous stress) of the wave motion and an elastic force that tends to restore
the system back to the equilibrium position. The analysis has been con-
ducted for a variable number of resonators per wavelength and chang-
ing their natural frequency. It is worth mentioning that the system we
are considering is similar to systems for wave energy conversion, on
which there is a rich literature ranging from point-absorbers15–17 to full
modeling of the solid structure.12,18 However, the focus here is on the
interaction of a wave with a periodic structure rather than on the con-
version of energy from a single oscillator.

II. METHODOLOGY
A. The numerical method

We solve the full Navier–Stokes system of equations:

qð@tuþ u � ruÞ ¼ �rpþr � ðlDÞ þ qgþ f ; (1)

r � u ¼ 0; (2)

with u ¼ ðu;wÞ the velocity field, p the pressure field, D the deforma-
tion tensor defined as Dij ¼ ð@iuj þ @juiÞ=2, g the gravity vector and f
the IBM force which enforces the no-slip boundary condition at the
solid boundary. The material properties q and l are related to the vol-
ume fraction fieldFðx; tÞ as

qðFÞ ¼Fq1 þ ð1�FÞq2; (3)

lðFÞ ¼Fl1 þ ð1�FÞl2; (4)

where q1, q2, l1, and l2 are the density and viscosity of the two fluids;
the volume fraction field (defined as the volumetric ratio of the two
fluids in each computational cell) is advected by the flow with the fol-
lowing equation:

@tFþr � ðFuÞ ¼ 0: (5)

The motion of the resonators is given by Newton’s law

mi
d2Xi

dt2
þ jiðXi � X0;iÞ ¼ Fi; (6)

where Xi is the position of the center of mass of the ith resonator, mi

its mass, ji is the elastic constant, X0;i the equilibrium position and Fi
the integral of the hydrodynamic forces acting on it. This force is com-
puted by integrating the pressure (p) and the viscous stress tensor (s)
over the surface of the solid body as follows:

F ¼
ð
S

s� pIð Þ � ndS: (7)

By computing the force in this way, all terms typically used in the
description of point-absorbers (such as viscous damping and radiation
damping) are included, and Eq. (7) provides a more general and accu-
rate description of the solid body motion.

Modeled in this way, the resonator has a natural frequency
xr ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
. In the real system, resonators would correspond to

reversed pendula anchored at the bottom; for waves of small ampli-
tude, as in this study, the vertical motion of the resonators can be
neglected, hence, we solve Eq. (6) only for the horizontal motion, with
Fi being the horizontal component of the integral of the hydrodynamic
loads acting on the ith resonator; the motion in the vertical direction is
set to zero.

The Navier–Stokes equations are advanced in time using a
second-order Adams–Bashforth scheme and a fractional step method
is employed19 for the coupling with the pressure; the resulting Poisson
equation for the pressure is solved employing a Fast Direct Solver. All
derivatives are discretized with a second-order central difference
scheme apart for the diffusion term in the Navier–Stokes equations,
for which a WENO scheme is used.20 The IBM is implemented using
the direct forcing approach21 with interpolations performed in the
direction normal to the interface. For the fluid–structure interaction, a
strong coupling is adopted with an iterative solver based on the
Hamming method.22 The solver is limited to non-deformable solid
bodies, which allows for more efficient computations. A detailed
description of the solver with validations and preliminary results can
be found in Ref. 23. A sketch of the periodic structure of four resona-
tors immersed in a fluid and forced by surface gravity waves is shown
in Fig. 1.

B. Initial conditions

The initial wave profile g and velocity field u ¼ ðu;wÞ are taken
from linear theory and are, respectively,

FIG. 1. Sketch of the periodic structure of resonators interacting with a surface
gravity wave.
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gðx; 0Þ ¼ a cos ðkxÞ; (8)

and

uðx; 0Þ ¼ axekz cos ðkxÞ; (9)

wðx; 0Þ ¼ axekz sin ðkxÞ; (10)

with a the wave amplitude, k ¼ 2p=k the wavenumber, k the wave-
length and z¼ 0 the still water level, and z pointing upward. The
wave frequency x is given by the dispersion relation for water waves
in deep water x ¼

ffiffiffiffiffi
gk

p
. The initial velocity field in air is equal to

that in water with the horizontal component u having a negative
sign. To avoid high shear stress across the interface at the beginning
of the simulation, the initial volume fraction is filtered with a bilin-
ear interpolation which results in a spread of the interface over
three cells. Note that this operation is performed only for the initial
profile. The computational domain is a square of lateral size k,
the radius of the resonators is r ¼ 0:057k, and the distance from
the center of mass of the resonators and the still water level is
d ¼ 0:094k. The Reynolds number based on the wavelength and

phase speed is set to Re ¼ qg1=2k3=2=l ¼ 105, with q and l the

density and viscosity of the high-density phase. All simulations are
performed with a grid of 512� 512 computational nodes.

We performed simulations for different numbers of resonators
per wavelength and different values of the ratioX ¼ xr=x. The differ-
ent cases are studied by changing the proper frequency and number of
the oscillators, while keeping the amplitude and the length of the initial
sinusoidal wave unchanged. This choice prevents a priori any change
in the wave steepness, which would in turn affect the nonlinearity of
the wave dynamics.

III. RESULTS

We first consider a single resonator placed at the center of the
domain where a monochromatic wave of wavelength k¼ 1 (in nondi-
mensional units) propagates. In Fig. 2 we report snapshots of the hori-
zontal velocity component u, the interface location and the oscillator
position for the case X¼ 1 at four instants of time,
t=T ¼ 0:5; 1; 1:5; 2, with T the wave period. Wave motion forces the
resonator to move due to the pressure and viscous stress distribution;
the resonator, then, is pulled back to its original position by the elastic
force and starts to oscillate around its equilibrium position. This
motion induces perturbations on the interface, clearly visible at a later

FIG. 2. Snapshot of the horizontal component u of the velocity field at four instants of time for the case with X¼ 1. The vertical white line is located at the center of the domain
and it is reported as reference to underline the motion of the resonator (multimedia view: https://doi.org/10.1063/5.0048613.1).
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stage of the process [Fig. 2(d)], leading to vorticity production at the
surface, which enhances the energy dissipation.

In Fig. 3 we show the time history of the displacement of the cen-
ter of mass of the resonator for X¼ 1, i.e., when the frequency of the
wave is equal to the frequency of the resonator, and for X ¼ 0:25, i.e.,
the frequency of the wave is four times the frequency of the resonator.
In one period, the wave has traveled the full domain. Due to the peri-
odic boundary conditions, the wave re-enters the domain from the left
with a reduced amplitude, both because of its natural decay due to vis-
cosity and because of the interaction with the resonators. Therefore,
the resonator oscillates with a decreasing amplitude (as highlighted in
Fig. 3), since it is forced by waves whose amplitude is decreasing in
time. In the inset of the figure, we plot the wave amplitude (computed
as the difference between the maximum and minimum value of the
surface elevation) vs time for the same cases: the simulation with
X¼ 1 exhibits a stronger decrease in wave amplitude which is in line
with an increase in dissipation, as discussed below.

We find very instructive to show the space–time plots of the sur-
face elevation, displayed in Fig. 4. The presence of the resonator induces
a local perturbation of the surface elevation; this is clearly visible in the
top panel of Fig. 4, corresponding to the case with a fixed cylinder
located at x=k ¼ 0:5. Additionally, when the solid body oscillates, the
interaction with the propagating surface gravity wave leads to the gener-
ation of a wave traveling in the opposite direction with respect to the
original one. This is highlighted in the middle panel of Fig. 4 by a brown
line. For this simulation, the period of the resonator is four times the
wave period (X ¼ 0:25) and after approximately four nondimensional
time intervals, there is an inversion of the direction of propagation of
the wave, which is again recovered after four more wave periods. For
the case X¼ 1, bottom panel of Fig. 4, a similar dynamics takes place
on a shorter timescale but the evolution of the free-surface is less
regular.

In the following, we will quantify the dissipated power during the
wave propagation as a function of X and of the number of resonators
per wavelength. Due to the nonstationary nature of the system, these
quantities must be described in a time-dependent fashion. When a

surface gravity wave of small amplitude (i.e., small steepness e ¼ ak)
propagates freely, its total energy decays with an exponential rate equal
to EðtÞ ¼ Eð0Þe�2ct , as described by Landau and Lifshitz.24 Here, the
wave energy E(t) is the sum of the kinetic and potential contribution
defined as

EðtÞ ¼ KðtÞ þ UðtÞ ¼ 1
2

ðk

0

ðg

�h
qjuj2dzdx þ

ðk

0

ðg

�h
qgzdzdx � �U ;

(11)

FIG. 3. Time history of the center of mass displacement of one resonator placed in
the middle of the domain for two different values of X; the inset shows the wave
amplitude vs time for the same cases.

FIG. 4. Space–time evolution of the surface elevation: (top) X¼ 0; (middle)
X ¼ 0:25; and (bottom) X¼ 1. The two lines in the middle panel highlight forward
(black line) and backward (brown line) propagating waves.
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where z ¼ �h is the position of the flat bottom, z ¼ gðx; tÞ is the dis-
placement of the surface with respect to its equilibrium position and
�U ¼

Ð k
0

Ð 0
�h qgzdzdx ¼ �qgkh2 the potential energy of the still water

level. E(0) is the initial energy budget of the wave and c ¼ 2�k2 is the
decaying rate, � being the kinematic viscosity of the fluid. As men-
tioned, our aim is to evaluate the effect of the resonator on the propa-
gation of the wave for different values of the frequency of the
resonator xr. If the oscillator were in vacuum or in a low-density fluid,
its frequency would simply be given by xr ¼

ffiffiffiffiffiffiffiffiffi
j=m

p
; however,

because of the presence of a dense fluid, a proper evaluation of the lat-
ter also needs to account for the added mass given by the surrounding
fluid, which results in a frequency xr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=ðmþ qwVÞ

p
, with V

the volume of the resonator.
We start by studying the interaction of a single resonator with

the wave. Depending on the ratio X, the energy transfer from the wave
to the resonator can be more or less effective. The efficiency of the
energy transfer from waves to the resonators is more clearly visible in
the total energy history of the wave displayed in Fig. 5. The plot shows
that small and large values of X are associated with smaller dissipation,
whereas values of X close to unity are more dissipative. In these cases, a
large amount of energy is lost in few wave periods. To quantify this
effect, we have performed a fit of these curves with an exponential of
the form EðtÞ � Eð0Þ exp ½�Dt�. The coefficients of the fit are reported
in Fig. 6, where we show the results for simulations with up to four res-
onators. The curves show a clear dissipation peak around X¼ 1. The
plots include the results for arrays of fixed cylinders, labeled by X¼ 0.
Independently of the number of resonators, we observe a range of fre-
quency ratios, between 0 and 1, for which the dissipation is smaller
than for the case of fixed resonators. This dip is particularly evident for
the case of one resonator per wavelength and is reduced when the
number of cylinders is increased. The dissipation then increases and
displays a peak for X � 1. For X > 1, it decreases and appears to
approach an asymptote close to the value found for fixed cylinders. It
is worth noticing that the curves in Fig. 6 resemble the curves reported
for a system for wave energy conversion18 in which the focus is on
maximizing the extracted power. This seems to indicate that the system

of submerged resonators is a rather efficient system in dissipating wave
power. As the number of resonators is increased, the dissipation also
increases. However, this is not a trivial effect due to the total viscous
drag of the cylinders on the fluid. Indeed, the ratio between the peak
value of the dissipation (around resonance) and the fixed-cylinder
value increases as the number of resonator increases between 1 and 3,
and appears to decrease with four resonators. This suggests that non-
trivial interaction effects are present. It is also interesting to observe
that the width of the dissipation peak, and therefore the range of fre-
quencies for which the dissipation is greater than the fixed-obstacle
case, becomes wider. Therefore, decreasing the ratio between the wave-
length of the wave and the wavelength of the periodic structures
enlarges the range of frequencies for which an array of resonators pro-
duces a gain in dissipated power with respect to an array of fixed
obstacles. An example of the flow field with four resonators and X¼ 1
is reported in Fig. 7. In this case, the characteristic size of the perturba-
tions induced by the resonators on the interface is of the order of the
size of the periodic structure. It is worth mentioning that, in the pres-
ence of a current, two main effects could be expected: (i) beacuse of the
Droppler shift, the frequency of the wave can be shifted with respect to
that without a current; this would simply lead to a horizontal shift of
Fig. 6; (ii) the current may result in an extra force on the cylinder due
to the exchange of the momentum between the current and the resona-
tor. Clearly, if the current is small compared to the velocities induced
by the waves, the effect is negligible. However, in the case of strong
currents, the cylinder may enter an overdamped regime and may no
longer oscillate. Notice that the present model can model the presence
of a current, since it can be included in the rhs of (6).

In Fig. 8 we report the time history of the center of mass of the
resonators for X¼ 1 and for a different number of resonators. In the
case of two oscillators [Fig. 8(b)], the curves have a Pearson correlation
index of about�0.94, indicating that the oscillators are in phase oppo-
sition, as also clearly shown by the plot. For the case of three oscilla-
tors, instead, the correlation indexes of the curves are all about �0.5
because of a phase shift in the motion of the resonators [Fig. 8(c)].

FIG. 5. Time history of the total energy vs the frequency ratio X for the case of one
single resonator.

FIG. 6. Dissipation coefficient D normalized with the value for simple traveling wave
D0 vs the frequency ratio X for different number of oscillators. In the inset the same
data are reported normalized with respect to the dissipation corresponding to the
case of fixed cylinders DX0 (computed separately for each case).
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Finally, in the last case, we find that the oscillators are correlated over
a distance equal to k=2, since the correlation coefficients for the first
and third resonator, as well as that for the second and fourth, are about
�0.97, while for the other pairs the coefficient is about 0.1.

IV. CONCLUSIONS

In this work, we have suggested to exploit the concept of
mechanical metamaterials in the field of fluid mechanics, using of sub-
merged resonators that interact with traveling waves, absorbing and
dissipating mechanical energy. In order to properly describe the
behavior of the system, we have simulated the full Navier–Stokes equa-
tions for multiphase flows with fluid–structure interaction; this
approach allows for a complete and detailed evaluation of hydrody-
namic forces acting on the resonators and of the energy dissipation.

We have performed simulations in a periodic square domain of
size equal to the wavelength of the wave, varying the elastic force act-
ing on the resonators (i.e., their natural frequency) and the number of
resonators per unit wavelength. We have computed the time history of
the wave energy and found a dissipation coefficient by fitting the

FIG. 7. Snapshots of the horizontal velocity component u, interface location and
resonators position for the case with four resonators and X¼ 1 after one wave
period. Colors as in Fig. 2 (multimedia view: https://doi.org/10.1063/5.0048613.2).

FIG. 8. Time history of the horizontal position of the center of mass of the oscillators: (a) case with 1 resonator (b) case with two resonators; (c) case with three resonators;
and (d) case with four resonators. For all cases X¼ 1.
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energy decay with an exponential function, similar to that of the vis-
cous dissipation of a simple traveling wave. By doing so, we have
found that there is a peak of dissipation when the frequency of the
wave and the frequency of the resonators approximately coincide. The
dissipation observed at the peak is much larger than that caused by an
array of fixed cylinders, so that the width of the peak represents the
range for which the oscillatory dynamics (and, possibly, the fluid-
mediated interaction among the structures) produces a gain in the dis-
sipated power. Finally, the presence of a dissipation peak centered
around a characteristic frequency suggests the presence of a bandgap
in the dispersion relations. The width of this bandgap should increase
with the number of resonators.

Future work will focus on coupling this system with a numerical
wave maker to properly evaluate the dispersion relation and also to
investigate the effect of resonator masses on the bandgap.
Additionally, the extension of the method to deformable solid bodies
could open the field of applications also to flexible underwater struc-
tures. This work could open new applicative possibilities to realize
low-cost, minimally invasive devices for ocean wave attenuation, con-
tributing to reduced costal erosion or protection of infrastructure such
as offshore platforms or harbors.
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