
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

CLoTH: A Lightning Network Simulator / Conoscenti, Marco; Vetrò, Antonio; De Martin, Juan Carlos. - In: SOFTWAREX.
- ISSN 2352-7110. - STAMPA. - 15:(2021), p. 100717. [10.1016/j.softx.2021.100717]

Original

CLoTH: A Lightning Network Simulator

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.softx.2021.100717

Terms of use:

Publisher copyright

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.softx.2021.100717

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2907592 since: 2021-06-17T15:00:31Z

Elsevier BV

SoftwareX 15 (2021) 100717

t
b

p
s
t
a
b
c
a
c
t
t

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

CLoTH: A Lightning Network Simulator
Marco Conoscenti ∗, Antonio Vetrò, Juan Carlos De Martin
Nexa Center for Internet & Society (DAUIN), Politecnico di Torino, Corso Duca Degli Abruzzi, 24, Torino, Italy

a r t i c l e i n f o

Article history:
Received 23 January 2021
Received in revised form 14 May 2021
Accepted 19 May 2021

Keywords:
Lightning Network
Bitcoin
Blockchain
Payment-channel networks
Scalability
Simulator

a b s t r a c t

Payment-channel networks are one of the most promising solution to the well-known issue of
blockchain scalability. In this work we present CLoTH, a simulator of the Lightning Network — the
mainstream payment-channel network, used in Bitcoin. CLoTH simulates the execution of payments in
a payment-channel network and produces performance measures such as the probability of payment
success and the average payment time. To the best of our knowledge, CLoTH is the only simulator
that faithfully reproduces the Lightning Network code functions, and this ensures the reliability of
simulation results. In this work we provide a detailed description of the new, refactored, publicly-
usable version of CLoTH, and we show simulations on the multi-path-payment feature, a recent
Lightning Network feature that aims to minimize payment failures.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.1-beta
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00019
Code ocean compute capsule https://codeocean.com/capsule/1325800/tree
Legal code license GNU General public license v3.0
Code versioning system used git
Software code languages, tools, and services used C, python, bash
Compilation requirements, operating environments & dependencies Linux operating system
If available link to developer documentation/manual https://github.com/marcono/cloth/blob/master/README.md
Support email for questions marco.conoscenti@polito.it

1. Introduction

Blockchain-based cryptocurrencies cannot scale [1–3]: the
ransaction throughput is capped by a limit imposed to the
lockchain growth, which aims to keep it small in size.
Payment-channel networks (PCNs) are one of the most

romising and investigated solutions to the issue of blockchain
calabilty [4–11]. PCNs enable off-chain payments, i.e., payments
hat are not required to be registered on the blockchain and
re not subject to its throughput limit. A payment channel is a
idirectional channel that allows two parties to exchange off-
hain payments. A PCN is a network where off-chain payments
re routed, so that parties not directly connected by a channel
an exchange off-chain payments. In principle, PCNs are designed
o work in a trustless way: a party does not lose its funds even if
he other parties are not trustworthy and misbehave.

∗ Corresponding author.
E-mail address: marco.conoscenti@polito.it (Marco Conoscenti).

The Lightning Network (LN) [4], which is built on top of the
Bitcoin blockchain, is the most used, developed and researched
PCN [12–16]. At the time of writing, there are around 15 thou-
sands of nodes and 36 thousands of channels, and more than
one thousand of bitcoins (equivalent to 33 billions of dollars) is
allocated in the LN.

The LN, however, presents issues that deserve thorough inves-
tigations. First, payment channels are characterized by a limited
economic capacity, thus capping the amount of payments that can
be exchanged on the LN. Second, payment channels are subject to
unbalancing, a situation in which one of the channel directions
becomes unusable because of lack of funds. Third, offline or
malicious nodes can cause relevant damages, such as long-lasting
locks of payments and increased payment time.

We developed CLoTH1 [17], a simulator of the Lightning Net-
work and PCNs, to study capabilities and limitations of such

1 The name ‘‘CLoTH’’ is a play on words that contains the reverse of ‘‘HTLC’’,
the main building block of the LN, explained in the next sections.
ttps://doi.org/10.1016/j.softx.2021.100717
352-7110/© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100717
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100717&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00019
https://codeocean.com/capsule/1325800/tree
https://github.com/marcono/cloth/blob/master/README.md
mailto:marco.conoscenti@polito.it
mailto:marco.conoscenti@polito.it
https://doi.org/10.1016/j.softx.2021.100717
http://creativecommons.org/licenses/by/4.0/

Marco Conoscenti, Antonio Vetrò and Juan Carlos De Martin SoftwareX 15 (2021) 100717

n
t
s
t
s

a
t
p
a

v
r
w
t
T
w
w
s

(
m
d
o
t

r
b
d
r
u
i

2

d
p
L
a

c
p
p
d
l
d
t
e
s
n
p
o

c
a
e
a
s

3

b
p
a
c

etworks. The originality of CLoTH is that it faithfully reproduces
he LN code functions, and this ensures the reliability of the
imulation results. CLoTH can serve for several purposes, such as
est of new functionalities of PCNs before implementing them,
imulation of attack scenarios, study of the scalability of PCNs.
As input, CLoTH takes a PCN and a list of payments. It runs
discrete-event simulation, which simulates the execution of

he input payments on the input network. It produces statistical
erformance measures, such as probability of payment success
nd average payment time.
We already published a description of a previous alpha-

ersion of CLoTH [18]. In the meantime we updated CLoTH to
eflect the relevant modifications of the LN protocol. Moreover,
e radically refactored the simulator in order to make it easy
o use by anyone who aims to systematically analyze PCNs.
herefore, CLoTH is now beta, it is public (while in previous works
e made it available only for reproducibility), and in this work
e provide an exhaustive explanation of this new version of the
imulator.
In addition, we show simulations on multi-path payments

MPP), a feature that consists in splitting large payments into
ultiple small ones. Simulation results prove that this feature re-
uces the probability that payments fail for the absence of a route
f channels. These simulations are presented also as a showcase
o illustrate and explain the functioning of the simulator.

The paper is structured as follows. In Section 2, we present the
elated work focusing on other LN simulators. In 3, we provide the
ackground on the functioning of the LN. We illustrate CLoTH in
etail in Section 4. In Section 5, we show and discuss simulation
esults on MPP, providing also an illustrative example on the
sage of CLoTH. Finally, we conclude our work and discuss the
mpact of the simulator in Section 6.

. Related work

The Million Channels Project [19] is a simulator of the LN
esigned by one of the LN developer, Rusty Russel. The main
urpose of this simulator is to study the ability to scale of the
N. The simulator is able to create large networks, which are an
ccurate evolution of the current LN topology.
In [20], the authors propose and evaluate a routing proto-

ol for PCNs by simulations. The authors of the Flare routing
rotocol [10] run simulations with 100,000 nodes to study the
erformance of their proposed protocol. In [21] Piatkivskyi et al.
eveloped a LN simulator to evaluate the approach of splitting
arge payments into small ones. Their simulator is a multi-agent
iscrete-event simulator built for general purpose PCN simula-
ions. In [22], Ruozhou Yu et al. implemented a simulator to
valuate a payment routing mechanism called CoinExpress. Their
imulator is a PCN simulator based on the network simulator
s-3. Stasi et al. [23] developed a simulator to evaluate some im-
rovements to the LN protocol. Finally, Reynolds [24] developed
calm code for basic simulations on LN.
The key feature of CLoTH is that it accurately reproduces the

ode of the LN (specifically, the functions implementing routing
nd the mechanism of payment exchange — called HTLC). This
nsures the validity of the simulation results produced by CLoTH,
nd it makes CLoTH unique and different from the other PCN
imulators that we found in literature.

. Background: the Lightning Network

The LN is the mainstream PCN, built on top of the Bitcoin
lockchain, to enable unbounded off-chain payments. The LN
rotocol specifies how to open and manage payment channels
nd how to route off-chain payments in a network of payment
hannels. In the following, such specifications are detailed.

3.1. Payment channel

Let us consider an example in which Alice and Bob open a
payment channel, Alice allocates 0.5 BTC in the channel and Bob
allocates 0.5 BTC in the channel.

To open a payment channel in the LN, it is necessary to make
a transaction in the Bitcoin blockchain, called funding transaction.
Therefore, Alice and Bob create the funding transaction, where
each of them inserts 0.5 BTC — i.e., the funds they want to
allocate in the channel. Once the transaction is registered in the
blockchain, the channel is considered open. The initial Alice’s
balance in the channel is 0.5 BTC and the initial Bob’s balance in
the channel is 0.5 BTC. The total channel capacity is the sum of
the balances — in the example, 1 BTC.

Once the channel is open, the two parties can exchange off-
chain payments. To do so, they update the state of their balances.
For example, if Alice wants to transfer 0.1 BTC to Bob, Alice
decreases its balance by 0.1 BTC and Bob increases its balance
by 0.1 BTC. Therefore, at the end of the payment, Alice’s balance
is 0.4 BTC and Bob’s balance is 0.6 BTC.

If the two parties want to close the channel, they have to make
another transaction in the Bitcoin blockchain, called commitment
transaction. This transaction returns the bitcoins of the channel
to their respective owners, according to the last state of the
balances in the channel. In the example above, the commitment
transaction returns 0.4 BTC to Alice and 0.6 BTC to Bob.

3.2. Network of payment channels

The LN allows parties not directly connected by a payment
channel to exchange off-chain payments. In this case, the pay-
ment is routed across multiple channels that connect the pay-
ment sender and the payment receiver.

In LN the exchange of a payment across multiple channels
is done via a specific contract called HTLC (Hashed Timelock
Contract). The HTLC ensures trustlessness: a party involved in a
payment route is guaranteed not to lose money, even in case the
other parties in the route misbehave. The HTLC implements off-
chain conditional payments in a payment channel. For example,
when Alice establishes an HTLC of value 0.1 BTC in the channel
with Bob, it means that Alice will pay Bob 0.1 BTC if Bob shows a
certain valueR (called preimage). Otherwise, if Bob does not show
R within a certain timeout, the payment does not take place.

It is called hashed timelock contract because it contains both
an hash and a timelock. The first is the hash of the preimage R
used to verify that a party knows R and therefore that the con-
tract can be fulfilled (i.e., the payment can occur). The timelock is
the Bitcoin implementation of a timeout: if the timeout expires,
the contract is failed and the payment does not occur.

By means of the HTLC, it is possible to exchange a payment
across multiple channels. Let us consider the example in which
Alice wants to pay 0.1 BTC to David but she has not a direct
channel with David. However, Alice has a channel with Bob, Bob
a channel with Carol and Carol a channel with David. Alice can
use all these channels to send 0.1 BTC to David.

To do so, an HTLC is established in each channel traversed by
the payment. All the HTLCs require the same preimage R to be
fulfilled. First, David generates R and gives Alice the hash of R.
After that, HTLCs containing the hash of R are established in all
the involved channels. When the HTLCs have been established in
all the channels, David shows R to Carol and Carol pays 0.1 BTC
to David; Carol shows R to Bob and Bob pays 0.1 BTC to Carol;
Bob shows R to Alice and Alice pays 0.1 BTC to Bob. At the end,
0.1 BTC was transferred from Alice to David and the balances in
the channels were updated accordingly.

Finally, it is important to mention that nodes in the LN take
some fees for forwarding payments. In the example above, Alice
adds some fees to the amount of the payment, to be paid to Bob
and Carol.
2

Marco Conoscenti, Antonio Vetrò and Juan Carlos De Martin SoftwareX 15 (2021) 100717

4

P
t
e
p
p

n
p
t
i
t

4

4

r
t

. CLoTH: Software description

CLoTH is a PCN simulator written in C. As input, it takes a
CN and a list of payments. Then, it simulates the execution of
he input payments in the input network, by running a discrete-
vent mapping of the LN code functions. As output, it produces
ayment-related performance measures (such as probability of
ayment success and average payment time).
The execution flow of the simulator consists of three phases:

etwork and payment generation, simulation, and production of
erformance measures. In Sections 4.1, 4.2, 4.3, we describe the
hree phases of the simulator in details, while in Section 4.4 we
llustrate the changes of this new version of CLoTH with respect
o the previous one.

.1. First phase: Network and payment generation

.1.1. Data structures
Fig. 1 shows the main attributes of the data structures rep-

esenting payments and PCNs in CLoTH. A channel connects
wo nodes (each one represented by an ID) and has a certain
economic capacity. In addition, since a channel is bidirectional,
namely, payments can traverse it both from node1 to node2
and from node2 to node1, it contains two edges, each one
representing a direction of the channel. An edge contains: the
ID of the channel the edge belongs to; the available balance in
the direction represented by the edge; and the policies it applies
to the payments that flows through the edge. These policies are:
base and proportional fee, which constitute the fee required for
forwarding a payment in the direction of the edge (proportional
fee depends on the payment amount, while base fee is constant);
the timelock of the HTLCs established in the direction of the edge;
and the minimum value allowed for payments forwarded in the
direction of the edge. A payment is described by a sender, a
receiver, the payment amount and the payment start time.

4.1.2. Input modes
The simulator provides two possible input modes for populat-

ing the data structures:

1. Random generation. In this input mode, nodes, edges, chan-
nels and payments are randomly generated basing on a
few input parameters, such as the number of channel per
node, the average channel capacity, the average payment
amount.

2. Read from files. CSV files are provided to the simulator,
where the exact attributes of each node, channel, edge and
payment are specified. This second input mode allows the
simulation of payments on real PCNs: for instance, it is
possible to provide the current nodes, channels and edges
of the LN and simulate payments on this network.

It is possible to mix the two input modes, e.g., nodes, chan-
nels and edges are read from files and payments are randomly
generated.

In the case of the first input mode, to randomly generate the
topology of the PCN the scale-free network model is used. The
degree distribution of this network model follows a power law,
which is commonly observed in network theory [25]. This allows
the generation of a realistic network starting from a real network
topology. Specifically, in CLoTH the random network is generated
starting from the existing topology of the LN. New nodes are
added to this existing network, and the probability of connecting
nodes is directly proportional to their degree: i.e., the higher
the number of already open channels of a node, the higher the
probability that new nodes will open a channel with that node. In
this way, the random network generated realistically reproduces
the LN. Table 1 shows the input parameters of the first input
mode.

Table 1
CLoTH input parameters.
Name Description

n_new_nodes The number of nodes of the random network,
added to the ones already present in the LN
topology (which serves as model for the
random network).

n_channels The number of channels for each one of the
node specified in the previous parameter.

capacity The average channel capacity expressed in
satoshisa (the mean of a uniform gaussian
distribution).

faulty_probability The probability that a node is faulty when
asked to forward a payment.

payment_rate The average number of payments per second.
In particular, the payment inter-arrival time is
modeled as a negative exponential random
distribution.

n_payments The total number of payments to be simulated.

payment_amount The average payment amount expressed in
satoshis (the mean of a uniform gaussian
distribution).

mpp A 0/1 value that indicates whether to activate
or not the multi-path-payment feature, which
consists in splitting a large payment in small
ones to maximize the chances of success

a1 satoshi corresponds to 10−8 bitcoin.

4.1.3. Multithread execution
Once the input network and payments have been defined and

before running the simulation, the simulator launches parallel
threads. Each of this thread runs Dijkstra’s algorithm to find an
initial path for each of the payments. In fact, Dijkstra’s algorithm
is the most time-consuming task of the simulator, and executing
it in parallel reduces the run time.

4.2. Second phase: Simulation

CLoTH is a discrete-event simulator. Events are extracted from
a queue (implemented by a heap) where they are ordered ac-
cording to their occurrence time. When an event is extracted, the
simulation time (which is discrete) is advanced to the occurrence
time of the event and the event is processed by a function.

4.2.1. Events
In CLoTH, an event always refers to a payment and indicates a

processing phase of the payment: for example, the event find_-
path indicates that a path for the payment has to be found. Fig. 2
shows the state diagram of simulator events. It represents the
flow of the simulation phase and it is as follows.

First, a path for a payment is searched using Dijkstra’s al-
gorithm specifically adapted to a PCN (find_path event). If a
path is not found because channel capacities are lower than the
payment amount, the payment is split in two sub-payments,
whose amounts are half the original payment amount (this is
the multi-path-payment feature). If paths for these payments are
not found, the payment is definitely failed. Instead, If a path is
found, the payment sender sends the payment to the first hop of
the path (send_payment event). Each hop of the path forwards
the payment up to the payment receiver (forward_payment
event). If there are no errors, the payment arrives to the receiver
(receive_payment event). Then, each hop propagates the suc-
cess result of the payment back in the path (forward_success
event), and at the end the payment sender receives the success
result (receive_success event). If instead an error occurred
(e.g., there is not enough balance in a channel to forward the
3

Marco Conoscenti, Antonio Vetrò and Juan Carlos De Martin SoftwareX 15 (2021) 100717

p
t
t

4

e
c

S
a
T
t
m
d

i

Fig. 1. CLoTH data structures.

Fig. 2. CLoTH events state diagram.

ayment), each hop propagates the fail result of the payment back
o the sender (forward_fail event), which at the end receives
he fail result (receive_fail event). Failed payments can be
re-attempted, but the LN imposes a timeout of 60 seconds: if a
payment does not succeed within that time, it fails definitely.2

.2.2. Functions
Each event is processed by a function of the same name of the

vent. The functions of CLoTH reproduce the functions of the LN
ode. In particular, lnd is taken as a reference implementation,
and the current version of CLoTH is based on lnd-v0.10.0-
beta. lnd is the Golang implementation of LN and, as well as
the other implementations (i.e., c-lightning3 and eclair4),
it fully conforms to the so-called Basis of Lightning Technology
(BOLT), the LN specifications.5 The reason of choosing lnd is that
it is the most documented of the LN implementations in terms of
comments to the code.

In particular, CLoTH simulates two modules of lnd: rout-
ing and htlcswitch. The routing module is in charge of
finding the paths of payments, and in CLoTH it is simulated
by the find_path function (plus the functions in CLoTH file
routing.c internally called by find_path). The htlcswitch
module implements the exchange of HTLC messages to manage
sending, forwarding and receiving of a payment, and it is sim-
ulated by all the remaining functions in file htlc.c (except for
find_path). Specifically, the htlcswitch module manages the
exchange of three main messages: UpdateAddHTLC, Update-
FulfillHTLC, UpdateFailHTLC. UpdateAddHTLC is a message
used to establish an HTLC in a channel, UpdateFailHTLC and
UpdateFulfillHTLC to fail and fulfill an HTLC previously es-
tablished.

2 This timeout has not to be confused with the timelock discussed in
ection 3. The timelock is a timeout set in an HTLC contract established in
single payment channel, to unlock the funds in case the HTLC is not fulfilled.
he 60-seconds timeout, instead, refers to the entire life cycle of a payment: if
he payment is sent back to the sender because some errors occurred, and if
ore than 60 s has elapsed since the first attempt of the payment, the sender
efinitely fails the payment.
3 https://github.com/ElementsProject/lightning.
4 https://github.com/ACINQ/eclair.
5 https://github.com/lightningnetwork/lightning-rfc/blob/master/00-

ntroduction.md.

Table 2 shows the mapping between simulation functions and
the lnd functions. The table shows, for a function of CLoTH, the
functions of lnd simulated, and it indicates also the type of HTLC
message processed and the node processing it (since the lnd
functions have different behaviors depending on the message and
the node).

The mapping between CLoTH and lnd functions represents
the originality of CLoTH: to the best of our knowledge, CLoTH is
the unique simulator that accurately simulates the LN code.

In Appendix A we show the listings of the functions and we
explain them in detail.

4.3. Third phase: Performance measures production

At the end of the simulation, CLoTH outputs some information
on each payment in file payments_output.csv, namely, the
payment start and end time, the result of the payment (success or
not), the number of attempts, the route traversed by the payment,
the fee of the payment.

To convert this per-payment information into statistical per-
formance measures, we use the batch means method [26]. This
method produces measures that are not influenced by the initial
transient state of the simulation, where the system is not stable.
The batch means method consists in removing the initial tran-
sient state and dividing a simulation run into multiple batches,
which are statistically independent among each other. The per-
formance measures are zeroed and re-computed at each batch.
Each final performance measure is the statistical mean of that
measure over the batches and is also characterized by variance
and 95% confidence interval.

To ensure the validity of the batch means, it is necessary that
the duration of the simulation run is greater than the maximum
payment time (which in the case of the LN corresponds to 60 s,
i.e., the payment timeout).

Table 3 shows the performance measures generated by CLoTH.

4.4. The new version of CLoTH

We already published previous works on CLoTH [18,27]. How-
ever, in the meantime the protocol of LN underwent important
modifications, therefore, the code of CLoTH was updated to reflect
the new version of the protocol. In addition, we performed an
extensive refactoring, to make the simulator public and easy
4

https://github.com/ElementsProject/lightning
https://github.com/ACINQ/eclair
https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.md

Marco Conoscenti, Antonio Vetrò and Juan Carlos De Martin SoftwareX 15 (2021) 100717

T
M

able 2
apping between CLoTH functions and lnd-v0.10.0-beta functions.
CLoTH function lnd functions Node Message

find_path sendpayment, resumePayment,
applyPaymentResult, RequestRoute

Sender –

send_payment handleLocalDispatch, handleDownStreamPkt,
SendMessage

Sender UpdateAddHTLC

forward_payment handleUpstreamMsg, processRemoteAdds,
handlePacketForward, handleDownStreamPkt,
SendMessage

Hop UpdateAddHTLC

receive_payment handleUpstreamMsg, processExitHop, SendMessage Receiver UpdateAddHTLC

forward_success handleUpstreamMsg, processRemoteSettleFails,
handlePacketForward, handleDownStreamPkt,
SendMessage

Hop UpdateFulfillHTLC

forward_fail handleUpstreamMsg, processRemoteSettleFails,
handlePacketForward, handleDownStreamPkt,
SendMessage

Hop UpdateFailHTLC

receive_success handleUpstreamMsg, processRemoteSettleFails,
handleLocalResponse

Sender UpdateFulfillHTLC

receive_fail handleUpstreamMsg, processRemoteSettleFails,
handleLocalResponse

Sender UpdateFailHTLC

Table 3
CLoTH performance measures.
Name Description

Success Probability of payment success.

FailNoPath Probability of payment failure for no path. It
occurs when Dijkstra’s algorithm is not able to
find a path between the payment sender and the
payment receiver. This may be due to the fact
that channel capacities are lower than the
payment amount.

FailNoBalance Probability of payment failure for no balance. It
occurs when a node tries to forward the payment
to the next node and there is not enough balance
in the edge connecting the two nodes.

FailOfflineNode Probability of payment failure for offline nodes.

FailTimeout Probability of payment failure for timeout
expiration.

Time Average payment time (only for successful
payments).

Attempts Average number of attempts before completing a
payment (only for successful payments).

RouteLength Average number of hops in payment routes (only
for successful payments).

to use by anyone. Therefore, the present work is intended to
provide an exhaustive explanation of this new usable version of
the simulator, which is enough different from the previous one to
deserve its own publication and which is now completely public
(differently w.r.t previous versions, which we made available only
for reproducibility). In synthesis, the main changes to previous
version of CLoTH are the following:

• Full-code refactoring (elimination of global variables, use of
meaningful variable and function names, etc.) and minor
bug fixes.

• Implementation of the scale free network model to generate
random networks that realistically reproduce the LN.

• Implementation of an input parser which reads the sim-
ulation input parameters from a text file. This avoids to
use an external library to parse more complex types of file
(e.g. JSON), thus reducing the external dependencies of the
code.

• Modularization. The organization in files of the simula-
tor code now reflects the different modules: network and

payments generation, simulation, and production of perfor-
mance measures. Files network.c and payments.c imple-
ment network and payments generation, respectively. The
discrete-event simulation core engine is implemented in
cloth.c. The functions of the LN simulated are in htlc.c
and routing.c. The production of performance measures is
implemented in a python script named batch-means.py.
Such a modularization guarantees that any other PCN can
be simulated by CLoTH with minimum effort: it is just
necessary to replace htlc.c and routing.c with the logic
of the PCN to be simulated.

• Update of the LN code functions simulated, to be compli-
ant to lnd-v0.10.0-beta (the previous version of CLoTH
was based on lnd-v0.5.0-beta). In this regard, the main
changes were:

– A new version of Dijkstra’s algorithm in which the
distance metric also depends on the probability of suc-
cessfully forwarding a payment (computed using the
results of the previous payments).

– Functions and data structures that manage the pay-
ment results (to be used in Dijkstra’s algorithm).

– The multi-path-payment (MPP) feature.
– The non-strict-forwarding feature. When a node A for-

wards a payment to node B, this feature allows node
A to use any of its channels with node B, instead of
strictly using a specific one.6

In Table 4, we show a quantitative description of the changes:
we select a few measurements from the analysis of the two
versions of the code with the quality management tool Sonar-
Cloud78. The table shows that the overall quality of the code has
notably improved, with a drastic reductions of code smells and
the removal of duplicated code. Despite the new protocol features
added, the dimensions of the codebase are more compact in the
new version: this is due to the heavy refactoring described above.
Also, both cyclomatic and cognitive complexity has been reduced,
making the new version more intelligible.

6 This feature is currently disabled in CLoTH, as it requires the simulation of
the blockchain. The feature will be enabled in future work, when CLoTH will
simulate also the blockchain.
7 Analysis of the old version of CLoTH is available here: https://sonarcloud.

io/dashboard?id=marcono_sonar-cloth.
8 Analysis of the new version of CLoTH is available here: https://sonarcloud.

io/dashboard?id=marcono_cloth.
5

https://sonarcloud.io/dashboard?id=marcono_sonar-cloth
https://sonarcloud.io/dashboard?id=marcono_sonar-cloth
https://sonarcloud.io/dashboard?id=marcono_cloth
https://sonarcloud.io/dashboard?id=marcono_cloth

Marco Conoscenti, Antonio Vetrò and Juan Carlos De Martin SoftwareX 15 (2021) 100717

T
Q

t
L
c
s
s
i
s
A

5

t
i
o

w
w
g

p
o
d
n
c
t
i
i
g
n
p
s
f

d
m
a
s
t
p
s

o

c
i

1
n

able 4
uantitative changes between previous and current version of CLoTH.

CLoTH
alpha

CLoTH
v1.1-beta

Maintainability Code smells 919 247
Redundancies in code Duplicated lines 76 0

Duplicated blocks 4 0
Size Lines of code 2796 2229

Statements 1970 1491
Functions 99 90

Complexity Cyclomatic complexity 389 351
Cognitive complexity 494 386

5. MPP simulations

In this Section we discuss the simulations that aim to show
he effect of the multi-path-payment feature implemented in the
N. When a path for a payment is not found because channels
apacities are lower than the payment amount, the MPP feature
plits the payment into two sub-payments: the amount of each
ub-payment is half the amount of the original payment, thus
ncreasing the chances of finding channels able to forward the
ub-payments to the receiver. More details on this feature are in
ppendix A.1.

.1. Simulations design

We ran two simulation campaigns using the current version of
he simulator: in one the MPP feature is activated, in the other it
s not. The remaining parts of the code (e.g., Dijkstra’s algorithm
f lnd-v0.10.0-beta) are exactly the same.
For populating network and payments of these simulations,

e used the two different input modes of the simulator: the net-
ork was read from CSV files, and the payments were randomly
enerated using the simulator input parameters.
For what concerns the network, as input to the simulator we

rovided the real LN: we took a snapshot of nodes and channels
f the LN on December 17th, 2020,9 by launching command
escribe-graph on a lnd node. Therefore, nodes and chan-
els of the simulations (together with their attributes: channel
apacity, base and proportional fee, minimum HTLC policy, and
imelock policy) are exactly the ones of the LN on that date. The
nitial balances of channels (i.e., the fraction of the channel capac-
ty that each node of the channel owns), instead, were randomly
enerated in our simulations.10 The reason is that balances are
ot publicly available: to guarantee privacy, balances are kept
rivate in the LN. In addition, the probability of faulty nodes was
et to zero, as we were not interested in studying the behavior of
aulty nodes.

For what concerns the simulated payments, they were ran-
omly generated using the following parameters: average pay-
ent rate, total number of payments, and average payment
mount. The average payment rate was set to 100 payments per
econd, because the LN is supposed to support a high payment
hroughput to let the blockchain scale. The total number of
ayments was set to 50,000 in order to generate a long-lasting
imulation, as required by the batch means analysis.
The average payment amount is the only varying parameter

f the simulations: in each of the two campaigns (one with MPP

9 At that moment, in the LN there were 6006 active nodes and 30457 active
hannels, the average channel capacity was around 3.4 millions of satoshis, and
ts standard deviation was around 9.6 millions of satoshis.
10 For each channel, a random number uniformly distributed between 0 and
is generated and it corresponds to the fraction of the channel capacity that a
ode of the channel owns as balance.

and the other without MPP) we ran 5 simulations, one for each of
the following average payment amounts (expressed in satoshis):
10, 102, 103, 104, 105. We did not consider the variation of the
other input parameters because we were interested in studying
the MPP feature only, and it is the payment amount that directly
affects this feature: in fact, the higher the payment amount, the
higher the probability that the MPP feature is activated and the
payment is split in smaller shards.

The rationales of the interval boundaries of the average pay-
ment amount were the following. The default minimum HTLC
policy in LN is 1 satoshi, meaning that most nodes will refuse pay-
ments below 1 satoshi, therefore we decided to set the minimum
of the interval to 10 satoshis. We decided to set the maximum to
105 satoshis because in preliminary simulations we noticed that,
when payment amounts are on average 106 satoshis, most of the
payments (around 94%) failed, given the current limited capaci-
ties of LN channels (as said above, the average channel capacity
in LN is 3.4 millions satoshi with a high standard deviation).

5.2. Illustrative example of a simulation run

A simulation is started by running the script run-
simulation.sh. As input it takes the seed of the simulation
(used for the random variables) and the directory where to store
the output files.

The simulator reads input parameters from a file called
cloth_input.txt. In Appendix B a listing of an input file shows
the format and the entries this file should contain to run a simula-
tion. In case of simulations with randomly generated network and
payments, after the network and payments generation phase, the
simulator stores these randomly generated data on files chan-
nels.csv, edges.csv, nodes.csv and payments.csv. In case
instead of reading from files, those files must be provided to the
simulator as input. Files nodes_template.csv, channels_-
template.csv edges_template.csv, payments_template.
csv in the GitHub repository show the attributes that the files
must contain to correctly run a simulation.

After the simulation phase, CLoTH generates files nodes_-
output.csv channels_output.csv, edges_output.csv,
payments_output.csv, containing the state of nodes, channels,
edges and payments at the end of the simulation. In particular,
payments_output.csv is used by the batch-means script to
compute the final performance measures, stored in cloth_-
output.json. In Appendix C we show the log of an entire
simulation.

5.3. Simulation results

Figs. 3 show the statistical mean of the probability of success,
failure for no path and failure for no balance of payments (see
Section 4.3 for the explanation of the performance measures).
We do not show confidence intervals because, in any simulation,
they resulted almost identical to the mean. The x axis is the log
of the average payment amounts. The two curves represent the
case with MPP and without MPP. We slightly misaligned the dots
to make them distinguishable in case of very similar values. The
probability of failures for timeout expiration and offline nodes are
not showed because they resulted zero in every simulation.

With regards to the failures for no path (Fig. 3b), especially
for the highest payment amounts, they were significantly lower
with MPP than without MPP: when average payment amounts
are 105 satoshis, the MPP feature halves the failures for no path
(around 30% against 60%). This shows the effectiveness of MPP
in reducing failures for no path: large payments are split in two
smaller payments, and nominal channel capacities are able to
forward the split payments.
6

Marco Conoscenti, Antonio Vetrò and Juan Carlos De Martin SoftwareX 15 (2021) 100717

i
t
M
M

e
s
f
t
t

n
L
s
t
o
b
p
u

6

N
r
r

s
A

Fig. 3. MPP simulation results.

Despite this, the probability of payment success only slightly
ncreased with MPP, as Fig. 3a shows. The maximum difference
ook place at average payment amount set to 104, where with
PP the success probability was around 8% higher than without
PP.
The reason of these results is that, although channels have

nough capacities, there is not enough balance to forward the
plit payments. In fact, Fig. 3c shows that probabilities of failure
or no balance were higher with MPP: the payments for which –
hanks to MPP – a path was found, failed because in a channel of
he path there was no balance.

We can conclude that MPP is effective in reducing failures for
o path (which is the aim of this feature). However, in the current
N many payments still fail because of no balance. A possible
olution is to combine MPP with re-balancing approaches in order
o increase the success rate of payments, especially of payments
f the order of 104 and 105 satoshis. For instance, MPP could
e combined with the passive rebalancing approach that we
roposed in [27] and that we proved effective against channel
nbalancing.

. Impact and conclusions

In this work we described CLoTH, a simulator of the Lightning
etwork and of payment-channel networks. CLoTH is a faithful
eproduction of the LN code functions, therefore it produces
eliable performance measures.

For what concerns the impact of the simulator, it can serve for
everal purposes, to researchers and also in commercial settings.
mong the possible uses we mention the following:

• Test of new functionalities. New functionalities of PCNs
(such as rebalancing approaches, path-finding algorithms)
can be implemented in the simulator to study their ef-
fectiveness, before directly implementing them in the PCN
software (we studied rebalancing approaches in [27]).

• Analysis of attack scenarios. This makes possible to un-
derstand the actual risks of attacks on PCNs and design
countermeasures. For example, it is possible to study an at-
tack in which irrational malicious nodes – after establishing
HTLCs for payments – intentionally become unresponsive,
thus locking the payments for a long time (because of the

timelock set in the HTLCs). Another possible attack that can
be simulated is the denial of service directed to the most
central nodes of the LN, to understand whether the network
still works even if the central nodes are not available.

• Estimation of fee revenues. By the simulator it is possible
to answer questions that are useful in commercial settings,
such as: how many fees can be earned by a node in a specific
network position and with a specific set of open channels.

• Analysis of scalability. The simulator is able to simulate large
PCNs (as we did in [18]), thus allowing researchers to study
in which configurations (e.g. number of channels per node,
average channel capacity) such networks can scale.

• Study of specific use cases. It is possible to simulate specific
use cases of PCNs, e.g. the service providers scenario that we
studied in [27], in which many payments are sent to specific
service-provider nodes.

Finally, in future work we plan to conduct some simulations
on the attack scenarios described above, and we will keep adding
the features implemented in the LN to the simulator as well. We
also plan to integrate CLoTH with other simulators: first, with
a blockchain simulator [3,28], to study the interactions between
blockchain and PCNs; second, with a network simulator (such as
ns-3) to capture the impact of communication networks on PCNs
performance.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

Marco Conoscenti wishes to thank Dr. Federico Spini, who is
one of the first that had the idea to simulate the LN (in the long
hot summer of 2017). He supervised the author in the design and
development of the first version of CLoTH.

Appendix A. Functions

In this Section we explain the main functions of CLoTH.
7

Marco Conoscenti, Antonio Vetrò and Juan Carlos De Martin SoftwareX 15 (2021) 100717

A

t
p
6
i
a
o
v
p

n
v
b
a
t
m
t
s
t
t
s
a

(
a
e
t
w
a
p
O

i
t

.1. Find path

Listing 1 shows a simplified version of find_path, the func-
ion that simulates the search of a payment path done by the
ayment sender. First, the function checks whether more than
0 s has elapsed since the start of the payment: if so, the payment
s terminated (because the LN imposes a timeout of 60 s for
ttempting a payment). Then, the function calls the lnd version
f Dijkstra’s algorithm for searching for a path. Such modified
ersion leverages a specific distance metric, consisting of two
arts.
The first part considers timelock and fees imposed by a chan-

el (see Section 4.1.1 for details on timelocks and fees). The lnd
ersion of Dijkstra’s algorithm tends to find a path that minimizes
oth fees and timelocks. The second part of the distance metric is
probability based on the results of the previous payments. Each
ime a LN node sends a payment, it records the result of the pay-
ent. In particular, for each channel traversed by the payment,

he node stores the amount of the payment and whether it was
uccessfully forwarded in that channel or instead it failed. Having
his information on previous payments, the node can calculate
he probability that a new payment of a certain amount will be
uccessfully forwarded by a channel. The lnd version of Dijkstra’s
lgorithm tends to find paths that maximizes this probability.
If a path for the payment is found, it is sent along the path

see function send_payment). It may happen that a path for
payment is not found because channels do not have enough
conomic capacity to forward the payment. If this happens, if
he multi-path-payment feature is activated, and if the payment
as not already split, the payment is split in two shards, the
mount of each is half of the original payment amount. In case a
ath is not found for the shards, the payment is definitely failed.
therwise, the shards are sent along the paths found.
It is important to notice that payment->amount, in this and

n the other functions, contain also the fees that must be payed
o the forwarding nodes.

Listing 1: Find-Path Function.
void f ind_path (payment) {

i f (payment−>duration > 60000) {
end_payment (payment) ;
return ;

}
path = d i j k s t r a (payment) ;
i f (path != NULL) {

generate_event (send_payment , payment) ;
return ;

}
i f (!mpp_active | | payment−>sp l i t) {

end_payment (payment) ;
return ;
}

payment−>sp l i t = 1;
shard1 = new_payment(payment−>amount /2) ;
shard2 = new_payment(payment−>amount /2) ;
path1 = d i j k s t r a (shard1) ;
path2 = d i j k s t r a (shard2) ;
i f (path1 == NULL | | path2 == NULL) {

end_payment (payment) ;
return ;
}

generate_event (send_payment , shard1) ;
generate_event (send_payment , shard2) ;

}

A.2. Send payment

Listing 2 shows a simplified version of send_payment, the
function that simulates the sending of a payment by the payment
sender. The function first checks whether the next node of the
path is offline: this simulates the situation in which a node is
offline and cannot forward a payment. The function then checks
whether there is sufficient balance in the edge to forward the
payment. If the checks passed, the edge balance is decreased and
the payment is forwarded to the next node, otherwise the failure
is processed by the sender (see function receive_fail).

Listing 2: Send-Payment Function.

void send_payment (payment) {
i f (next_edge_node_offline) {

payment−>error . type = OFFLINENODE;
payment−>error . edge = next_edge ;
generate_event (rece ive_ fa i l , payment) ;
return ;
}

i f (next_edge−>balance < payment−>amount) {
payment−>error . type = NOBALANCE;
payment−>error . edge = next_edge ;
generate_event (rece ive_ fa i l , payment) ;
return ;

}
next_edge−>balance −= payment−>amount;
generate_event (forward_payment , payment) ;

}

A.3. Forward payment

Listing 3 shows the simplified version of forward_payment.
This function simulates the forwarding of a payment by an in-
termediate node in the route. Similarly to send_payment, this
function both checks whether the next node is offline and the
balance. It also checks whether the payment respects the poli-
cies of the forwarding edge (for the sake of simplicity, currently
CLoTH does not simulate the case in which these policies are not
respected). If the checks passed, the payment is forwarded to the
next node in the path or to the payment receiver.

Listing 3: Forward-Payment Function.

void forward_payment (payment) {
i f (next_edge_node_offline) {

payment−>error . type = OFFLINENODE;
payment−>error . edge = next_edge ;
generate_event (forward_fai l , payment) ;
return ;
}

can_send_htlc = check_balance_and_policy (next_edge) ;
i f (! can_send_htlc) {

payment−>error . type = NOBALANCE;
payment−>error . edge = next_edge ;
generate_event (forward_fai l , payment) ;
return ;

}
next_edge−>balance −= payment−>amount;
generate_event (receive_payment , next_event_time) ;

}

8

Marco Conoscenti, Antonio Vetrò and Juan Carlos De Martin SoftwareX 15 (2021) 100717

A

T
m
c
t

A

f
f
a
a
t

A

o
s
v
s
i
b
p

A

t
c
i
w
p
r

.4. Receive payment

Listing 4 shows a simplified version of receive_payment.
his function simulates the reception of a payment by the pay-
ent receiver. It increases the balance of the edge of the receiver
hannel and forwards the success result of the payment back to
he previous hop of the payment path.

Listing 4: Receive-Payment Function.
void receive_payment (payment) {

this_edge−>balance += payment−>amount;
generate_event (forward_success , next_event_time) ;

}

.5. Forward success and forward fail

Listings 5 and 6 represents the simplified functions
orward_success and forward_fail, respectively. These
unctions simulates the forwarding of the success/fail result of
payment by an intermediate node of the payment path. They
djust the edge balances of the channels involved, according to
he payment result, and propagates the result back.

Listing 5: Forward-Success Function.
void forward_success (payment) {

this_edge−>balance += payment−>amount;
generate_event (receive_success , next_event_time) ;

}

Listing 6: Forward-Fail Function.
void forward_fa i l (payment) {

this_edge−>balance −= payment−>amount;
generate_event (rece ive_ fa i l , next_event_time) ;

}

.6. Receive success

This function, showed in listing 7, simulates the reception
f the success result of a payment by the payment sender. The
ender records the result of the payment: for each channel tra-
ersed by the payment, it registers the amount of the payment
uccessfully forwarded by the channel. As explained above, this
nformation is used in Dijkstra’s algorithm to calculate the proba-
ility that a channel successfully forwards a payment. Finally, the
ayment is terminated.

Listing 7: Receive-Success Function.
void receive_success (payment) {

record_payment_success_result (payment) ;
end_payment (payment) ;

}

.7. Receive fail

This function, showed in listing 8, simulates the reception of
he fail result of a payment by the payment sender. Also in this
ase, the sender records the result of the payment: a different
nformation is recorded depending on the reason of the failure,
hich can be either no sufficient balance in an edge or the
resence of an offline node in the route. Finally, the payment is

Listing 8: Receive-Fail Function.
void r e ce i ve_ f a i l (payment) {

this_edge−>balance += payment−>amount;
record_payment_fai l_result (payment) ;
generate_event (find_path , payment) ;

}

Appendix B. Input file

Listing 9 shows an example of the input file to be given as
input to CLoTH. In addition to the input parameters, cloth_-
input.txt contains also the filenames of files where to read the
nodes, channels and edges (in case generate_network_from_-
file is set to true) and where to read payments (in case
generate_payments_from_file is set to true). To correctly
run a simulation, the file cloth_input.txt must contain ex-
actly these entries.

Listing 9: File cloth_input.txt.

generate_network_from_file=true
nodes_filename=nodes_ln . csv
channels_filename=channels_ln . csv
edges_filename=edges_ln . csv
n_additional_nodes=
n_channels_per_node=
capacity_per_channel=
faulty_node_probabi l i ty =0.0
generate_payments_from_file= f a l s e
payments_filename=
payment_rate=100
n_payments=50000
average_payment_amount=10
mpp=1

Appendix C. Log of a simulation

Listing 10 shows the log of a simulation run by CLoTH: first,
network, payments and simulation events are generated; sec-
ondly, the threads running Dijkstra’s algorithm for each payment
are executed; then the discrete-event simulation is run; and
finally the batch-means script is executed.

Listing 10: Log of a simulation run.

NETWORK INITIALIZATION
PAYMENTS INITIALIZATION
EVENTS INITIALIZATION
INITIAL DIJKSTRA ’ S THREADS EXECUTION
Time consumed by i n i t i a l Di jkstra ’ s executions : 2861 s
EXECUTION OF THE SIMULATION
Time consumed by simulation events : 30.024121 s
COMPUTE SIMULATION OUTPUT STATS
Batch length : 15278.0 ms
Total simulated time : 458340.0 ms
SIMULATION OUTPUT STATS SAVED IN <cloth_output . json >

References

[1] Sompolinsky Y, Zohar A. Accelerating bitcoin’s transaction processing.
Citeseer; 2013, URL https://eprint.iacr.org/2013/881.pdf.

[2] Croman K, Decker C, Eyal I, Gencer AE, Juels A, Kosba A, Miller A, Saxena P,
Shi E, Sirer EG, et al. On scaling decentralized blockchains. In: International
conference on financial cryptography and data security. Springer; 2016, p.
106–25. http://dx.doi.org/10.1007/978-3-662-53357-4_8.
e-attempted, re-executing the function find_path.

9

https://eprint.iacr.org/2013/881.pdf
http://dx.doi.org/10.1007/978-3-662-53357-4_8

Marco Conoscenti, Antonio Vetrò and Juan Carlos De Martin SoftwareX 15 (2021) 100717
[3] Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Capkun S. On the
security and performance of proof of work blockchains. In: Proceedings
of the 2016 ACM SIGSAC conference on computer and communications
security. ACM; 2016, p. 3–16. http://dx.doi.org/10.1145/2976749.2978341.

[4] Poon J, Dryja T. The bitcoin lightning network: Scalable off-chain instant
payments. 2016, URL https://lightning.network/lightning-network-paper.
pdf.

[5] Decker C, Wattenhofer R. A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Symposium on self-stabilizing systems.
Springer; 2015, p. 3–18. http://dx.doi.org/10.1007/978-3-319-21741-3_1.

[6] Miller A, Bentov I, Bakshi S, Kumaresan R, McCorry P. Sprites and state
channels: Payment networks that go faster than lightning. In: Goldberg I,
Moore T, editors. Financial cryptography and data security. Cham: Springer
International Publishing; 2019, p. 508–26. http://dx.doi.org/10.1007/978-3-
030-32101-7_30.

[7] Raiden network. URL https://raiden.network/.
[8] Burchert C, Decker C, Wattenhofer R. Scalable funding of Bitcoin mi-

cropayment channel networks. R Soc Open Sci 2018;5(8):180089. http:
//dx.doi.org/10.1098/rsos.180089.

[9] Khalil R, Gervais A. Revive: Rebalancing off-blockchain payment networks.
In: Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security. ACM; 2017, p. 439–53. http://dx.doi.org/10.1145/
3133956.3134033.

[10] Prihodko P, Zhigulin S, Sahno M, Ostrovskiy A, Osuntokun O.
Flare: An approach to routing in lightning network. 2016, URL
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_
to_routing_in_lightning_network_7_7_2016.pdf.

[11] Gudgeon L, Moreno-Sanchez P, Roos S, McCorry P, Gervais A. SoK:
Layer-two blockchain protocols. In: International conference on financial
cryptography and data security. Springer; 2020, p. 201–26. http://dx.doi.
org/10.1007/978-3-030-51280-4_12.

[12] Lin J-H, Primicerio K, Squartini T, Decker C, Tessone CJ. Lightning network:
a second path towards centralisation of the Bitcoin economy. New J Phys
2020;22(8):083022. http://dx.doi.org/10.1088/1367-2630/aba062.

[13] Tikhomirov S, Moreno-Sanchez P, Maffei M. A quantitative analysis of
security, anonymity and scalability for the lightning network. IACR Cryptol
ePrint Arch 2020;2020:303, URL https://eprint.iacr.org/2020/303.pdf.

[14] Malavolta G, Moreno-Sanchez P, Schneidewind C, Kate A, Maffei M.
Anonymous multi-hop locks for blockchain scalability and interoperability.
In: NDSS. 2019, http://dx.doi.org/10.14722/ndss.2019.23330.

[15] Harris J, Zohar A. Flood and loot: A systemic attack on the lightning
network. In: Proceedings of the 2nd ACM conference on advances in finan-
cial technologies. AFT ’20, New York, NY, USA: Association for Computing
Machinery; 2020, p. 202–13. http://dx.doi.org/10.1145/3419614.3423248.

[16] Pérez-Solà C, Ranchal-Pedrosa A, Herrera-Joancomartí J, Navarro-Arribas G,
Garcia-Alfaro J. Lockdown: Balance availability attack against lightning
network channels. In: International conference on financial cryptography
and data security. Springer; 2020, p. 245–63. http://dx.doi.org/10.1007/
978-3-030-51280-4_14.

[17] Conoscenti M. Marcono/cloth: cloth-v1.1-beta. 2021, http://dx.doi.org/10.
5281/zenodo.4457877.

[18] Conoscenti M, Vetrò A, De Martin JC, Spini F. The cloth simulator for
htlc payment networks with introductory lightning network performance
results. Information 2018;9(9):223. http://dx.doi.org/10.3390/info9090223.

[19] Russell R, Netti J. Letting a million channels bloom. 2019, URL
https://medium.com/blockstream/letting-a-million-channels-bloom-
985bdb28660b.

[20] van Schie A. Routing scalable bitcoin payments. 2015, URL http://pub.tik.
ee.ethz.ch/students/2015-FS/BA-2015-12.pdf.

[21] Piatkivskyi D, Nowostawski M. Split payments in payment networks. In:
Garcia-Alfaro J, Herrera-Joancomartí J, Livraga G, Rios R, editors. Data
privacy management, cryptocurrencies and blockchain technology. Cham:
Springer International Publishing; 2018, p. 67–75. http://dx.doi.org/10.
1007/978-3-030-00305-0_5.

[22] Yu R, Xue G, Kilari VT, Yang D, Tang J. Coinexpress: A fast payment routing
mechanism in blockchain-based payment channel networks. In: 2018
27th international conference on computer communication and networks
(ICCCN). IEEE; 2018, p. 1–9. http://dx.doi.org/10.1109/ICCCN.2018.8487351.

[23] Di Stasi G, Avallone S, Canonico R, Ventre G. Routing payments on
the lightning network. In: 2018 IEEE international conference on inter-
net of things (IThings) and IEEE green computing and communications
(GreenCom) and IEEE cyber, physical and social computing (CPSCom) and
IEEE smart data (SmartData). 2018, p. 1161–70. http://dx.doi.org/10.1109/
Cybermatics_2018.2018.00209.

[24] Reynolds D. Simulating a decentralized lightning network with 10 million
users. 2017, URL https://link.medium.com/CmXQ4f0Q8fb.

[25] Barabási A-L, Albert R. Emergence of scaling in random networks. Science
1999;286(5439):509–12. http://dx.doi.org/10.1126/science.286.5439.509.

[26] Jain R. The art of computer systems performance analysis: Techniques for
experimental design, measurement, simulation, and modeling. John Wiley
& Sons; 1990.

[27] Conoscenti M, Vetrò A, De Martin JC. Hubs, rebalancing and service
providers in the lightning network. IEEE Access 2019;7:132828–40. http:
//dx.doi.org/10.1109/ACCESS.2019.2941448.

[28] Alharby M, van Moorsel A. Blocksim: An extensible simulation tool for
blockchain systems. Front Blockchain 2020;3. http://dx.doi.org/10.3389/
fbloc.2020.00028.
10

http://dx.doi.org/10.1145/2976749.2978341
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://dx.doi.org/10.1007/978-3-319-21741-3_1
http://dx.doi.org/10.1007/978-3-030-32101-7_30
http://dx.doi.org/10.1007/978-3-030-32101-7_30
http://dx.doi.org/10.1007/978-3-030-32101-7_30
https://raiden.network/
http://dx.doi.org/10.1098/rsos.180089
http://dx.doi.org/10.1098/rsos.180089
http://dx.doi.org/10.1098/rsos.180089
http://dx.doi.org/10.1145/3133956.3134033
http://dx.doi.org/10.1145/3133956.3134033
http://dx.doi.org/10.1145/3133956.3134033
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://dx.doi.org/10.1007/978-3-030-51280-4_12
http://dx.doi.org/10.1007/978-3-030-51280-4_12
http://dx.doi.org/10.1007/978-3-030-51280-4_12
http://dx.doi.org/10.1088/1367-2630/aba062
https://eprint.iacr.org/2020/303.pdf
http://dx.doi.org/10.14722/ndss.2019.23330
http://dx.doi.org/10.1145/3419614.3423248
http://dx.doi.org/10.1007/978-3-030-51280-4_14
http://dx.doi.org/10.1007/978-3-030-51280-4_14
http://dx.doi.org/10.1007/978-3-030-51280-4_14
http://dx.doi.org/10.5281/zenodo.4457877
http://dx.doi.org/10.5281/zenodo.4457877
http://dx.doi.org/10.5281/zenodo.4457877
http://dx.doi.org/10.3390/info9090223
https://medium.com/blockstream/letting-a-million-channels-bloom-985bdb28660b
https://medium.com/blockstream/letting-a-million-channels-bloom-985bdb28660b
https://medium.com/blockstream/letting-a-million-channels-bloom-985bdb28660b
http://pub.tik.ee.ethz.ch/students/2015-FS/BA-2015-12.pdf
http://pub.tik.ee.ethz.ch/students/2015-FS/BA-2015-12.pdf
http://pub.tik.ee.ethz.ch/students/2015-FS/BA-2015-12.pdf
http://dx.doi.org/10.1007/978-3-030-00305-0_5
http://dx.doi.org/10.1007/978-3-030-00305-0_5
http://dx.doi.org/10.1007/978-3-030-00305-0_5
http://dx.doi.org/10.1109/ICCCN.2018.8487351
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00209
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00209
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00209
https://link.medium.com/CmXQ4f0Q8fb
http://dx.doi.org/10.1126/science.286.5439.509
http://refhub.elsevier.com/S2352-7110(21)00061-3/sb26
http://refhub.elsevier.com/S2352-7110(21)00061-3/sb26
http://refhub.elsevier.com/S2352-7110(21)00061-3/sb26
http://refhub.elsevier.com/S2352-7110(21)00061-3/sb26
http://refhub.elsevier.com/S2352-7110(21)00061-3/sb26
http://dx.doi.org/10.1109/ACCESS.2019.2941448
http://dx.doi.org/10.1109/ACCESS.2019.2941448
http://dx.doi.org/10.1109/ACCESS.2019.2941448
http://dx.doi.org/10.3389/fbloc.2020.00028
http://dx.doi.org/10.3389/fbloc.2020.00028
http://dx.doi.org/10.3389/fbloc.2020.00028

	CLoTH: A Lightning Network Simulator
	Introduction
	Related work
	Background: the Lightning Network
	Payment channel
	Network of payment channels

	: Software description
	First phase: Network and payment generation
	Data structures
	Input modes
	Multithread execution

	Second phase: Simulation
	Events
	Functions

	Third phase: Performance measures production
	The new version of

	MPP simulations
	Simulations design
	Illustrative example of a simulation run
	Simulation results

	Impact and conclusions
	Declaration of competing interest
	Acknowledgment
	Appendix A. Functions
	Find path
	Send payment
	Forward payment
	Receive payment
	Forward success and forward fail
	Receive success
	Receive fail

	Appendix B. Input File
	Appendix C. Log of a Simulation
	References

