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Abstract—Approaches for reconstructing signals encoded with
Compressed Sensing (CS) techniques, and based on Deep Neural
Networks (DNNs) are receiving increasing interest in the litera-
ture. In a recent work, a new DNN-based method named Trained
CS with Support Oracle (TCSSO) is introduced, relying the signal
reconstruction on the two separate tasks of support identification
and measurements decoding. The aim of this paper is to improve
the TCSSO framework by considering actual implementations
using a finite-precision hardware. Solutions with low memory
footprint and low computation requirements by employing fixed-
point notation and by reducing the number of bits employed
are considered. Results using synthetic electrocardiogram (ECG)
signals as a case study show that this approach, even when used in
a constrained-resources scenario, still outperform current state-
of-art CS approaches.

I. INTRODUCTION

Nowadays an increasing number of applications require
tight constraints in terms of energy consumption and com-
putational cost. An important example is given by medical
systems designed to continuously monitor a patient condition
without running out of energy [1]. Due to this, it is essential
to find a way to acquire and transmit important information in
a way capable of reducing as much as possible the required
energy.

The use of the Compressed Sensing (CS) approach [2]–
[4] allows for such a desired energy reduction. Under the
assumption of a sparse input signal (that is commonly verified
in many physical phenomena), CS can simultaneously acquire
and compress an input signal with a simple linear projection
on a set of sensing waveforms. In this way, values called
measurements are obtained, and even if their number can be
much smaller than the number of samples required according
to the Nyquist-Shannon theorem, they are enough for a correct
signal reconstruction. It is intuitive that being able to reduce
the number of measurement may ensure a large energy saving
at acquisition time.

The drawback of this approach is the effort necessary to
reconstruct the signal given the compressed measurements.
Reconstructing is indeed a quite complex task, that theoreti-
cally requires linear programming approaches [5]. To simplify
reconstruction, many alternative methods have been proposed
such as Spectral Projected Gradient for `1 Minimization
(SPGL1) [6] and the Generalized Approximate Message Pass-
ing (GAMP) [7], or iterative methods such as the Orthogonal
Matching Pursuit (OMP) [8] and the Compressive Sampling
Matching Pursuit (CoSaMP) [9].

In the effort of reducing signal reconstruction complexity,
also methods based on Deep Neural Networks (DNNs) have
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Fig. 1. General scheme of the TCSSO framework. The signal x is converted
into a set of measurements y by an analog CS encoder (a), performing a signal
manipulation that can be also modeled as a layer of a DNN (b). Finally the
decoder (c) performs reconstruction by first support estimation ŝ and then
signal magnitude evaluation x̂.

been proposed [10]–[17]. For example in [14] authors pro-
posed a stacked denoising autoencoder (SDA) inspired by
iterative solvers. It is implemented using a 3-layer neural
network to retrieve encoded sparse images. In [16] authors
have proposed a similar approach which uses a DNN inspired
by the Iterative Shrinkage-Thresholding Algorithm (ISTA)
[18] named ISTA-Net, which optimizes the solution of BP to
decode compressed images. Again, in [15] a fully-connected
DNN has been applied to measurements of videos for fast
recovery and improved reconstruction quality. Finally a deep
learning framework applied to EEG signals is presented in
[17] where three different DNNs have been optimized together
to perform binary measurement matrix multiplication, non-
uniform quantization and signal recovery.

In this paper we assume that the CS encoder is built upon
an analog circuit with a limited precision (as for [19]–[21]),
and we focus on the decoding approaches based on DNN.
Differences and novelty of our work with respect to other
solutions can be summarized as follows. First, as schematized
in Figure 1, reconstruction is achieved as a two-step process,
where we initially estimate, by means of a DNN, the support of
x (roughly speaking, defined as the set of the most important
signal components), that is then used to recover the signal with
standard linear algebraic operations. By modeling the linear
projections of the acquisition process as an additional layer
of the DNN performing the support estimation, we are also
able to optimize the acquisition stage. This approach has been
introduced in [22] and known as Trained CS with Support
Oracle (TCSSO).

The main contribution of this work is to face the problem of
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Fig. 2. Testing is performed by varying fy , fw and fp in the TCSSO recon-
struction framework which represent the number of fractional bits employed
in the fixed-point notation of input compressed data, DNN parameters and
sparsity matrix, respectively.

implementing the DNN in a resource constrained environment
such as an edge computing node. Even if it has been shown
that recovering via DNN may require a lower computational
effort with respect to a traditional approach, the complexity
of these solutions makes efficient implementation challenging.
We aim to move a step into the direction of reducing the CS
reconstruction complexity by investigating how reconstruction
quality is affected when the DNN proposed in this paper is
inferred on a device where only finite resolution arithmetic
units are available. In particular, we consider the case where
a limited resolution is used for representing input data, DNN
parameters and the CS sparsity matrix (see Section II).

Results are proposed considering synthetically generated
electrocardiogram (ECG) signals, and by comparing perfor-
mance of the proposed approach to that achieved by state of
the art CS approach.

The paper is organized as follows: Section II reviews
CS theory, defines the DNN-based CS decoder and how
the involved operations could be implemented in fixed-point
resolution. The performance is shown in Section III and finally
the conclusion is drawn.

II. COMPRESSED SENSING AND TCSSO
CS is a technique introduced to lower the energy required

for the acquisition of a signal with respect to traditional
approaches based on the Nyquist-Shannon theorem.

Mathematically, let us consider a stream of signal samples,
and chop it into many subsequent windows, each of them
represented as a n dimensional vector x. CS can be applied if
every possible input instance x is sparse. Given an orthonormal
sparsity matrix D P Rnˆn, and being ξ P Rn the representa-
tion of x in D, i.e., the vector such that x “ Dξ, x is sparse
if ξ has at most κ ! n non-zero elements, i.e., only a few
coefficients of ξ are significant. The significant elements of ξ
are indicated with the support of the signal.

For sparse signals, it is possible to define a CS encoder
stage that represents the information content of x with only
m ă n values which are the projections on the rows of a
predefined sensing matrix A P Rmˆn so that y “ Ax and
where CR “ n{m expresses the achieved compression ratio.

Such a simple encoding approach is balanced by a quite
complex decoding, i.e., the task of recovering ξ (or x “ Dξ)
from y. This is an ill-posed problem, since an infinite number

of vectors ξ may be mapped into the same measurement vector
y. In other words, since m ă n, bringing back the signal
from an m dimensional space to an n dimensional space has
not a unique solution. To overcome this impasse, CS decoders
exploit the fact that only κ values in ξ are non-zero. One of the
most classical approach is Basis Pursuit (BP), that performs
the inversion by selecting the sparsest vector ξ over all possible
vectors for which the measurement equation y “ Ax “ ADξ
holds. Mathematically

ξ̂ “ arg min
ξPRn

}ξ}1 s.t. }y ´ADξ}2 ă ε.

where the `1-norm } ¨ }1 promotes sparsity and x̂ “ Dξ̂ is the
reconstructed signal.

Standard CS theory at first proposed matrices whose entries
are instances of independent and identically distributed (i.i.d.)
Gaussian random variables [4], [23], [24] to be used as sensing
matrix A to be paired with the CS decoder. Later, A matrices
composed by instances of i.i.d. antipodal random variables
i.e., with a Bernoulli distribution, were also employed without
degradation in reconstruction performance [25]. In the follow-
ing we always refer to the latter case.

A. Trained CS with Support Oracle

In this work we employ the TCSSO method recently intro-
duced in [22]. In detail, TCSSO first uses a DNN to perform
divination of the signal support ŝ of x, i.e., to predict which are
the non-zero elements of vector ξ from measurements y. Then,
this information is used to evaluate the non-null values of ξ
through Moore-Penrose pseudoinverse and to finally recover
x.

The DNN is built as follows:
‚ the first layer applies the projection y “ Ax and is used

only during training to optimize the sensing matrix; it
has n inputs and m outputs, no bias, linear activation
function. The sensing matrix is chosen to be antipodal
because this would greatly ease the encoder physical
implementation [26];

‚ from the second layer the oracle is built with m inputs
and three hidden layers with 2n, 2n and n neurons each
and ReLU activation function;

‚ finally the output layer uses a sigmoid activation function
αpaq “ 1{ p1` e´aq to evaluate vector o P Rn which
represents the probabilities of ξ coefficients to be non-
zero.

From vector o we select a vector ŝ P t0, 1un such that its
generic element ŝj “ 1 if oj ą oth and ŝj “ 0 otherwise. oth
is a threshold value obtained in the validation phase. Before
that in the training phase we adopt a loss function which gives
us the total component-wise clipped cross-entropy between
original support s P t0, 1un and o

X “ ´
ÿ

j|sj“1

logcε pojq´
ÿ

j|sj“0

logcε p1´ ojq

where ε is a small value and logcεp¨q is a clipped log function
defined as mintlog2p1´ εq,maxtlog2pεq, log2p¨quu.
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Fig. 3. Performance for TCSSO with synthetic ECG dataset performed with fixed-point oracle and infinite precision pseudoinverse with the variation of fw .
The colored area in the background shows the probability of obtaining a given RSNR value while the values for fw “ 5 are shown on the histograms. The
ARSNRs of TCSSO and of rakeness-based BP method are highlighted.

With the estimated support, non-null coefficients of ξ̂ are
computed as follows

ξ̂|ŝ “
`

AD|ŝ
˘:
y “

`

B|ŝ
˘:
y (1)

where p¨q: is the Moore-Penrose pseudoinverse operation, ξ|ŝ P
Rκ̂ is a vector that collects the entries of ξ̂ corresponding to
ones in ŝ, D|ŝ P Rnˆκ̂ is a matrix whose columns correspond
to the columns of D selected by the ones in ŝ and κ̂ counts
ones in ŝ 1. In (1), B|ŝ is also implicitly defined. We retrieve
ξ̂ from ξ̂|ŝ by rearranging the coefficients as described by ŝ

and finally x̂ “ Dξ̂, where x̂ is the reconstructed signal.

B. Fixed-point implementation

We want to study how this method behaves when we
work on low-precision fixed-point values. Training of the
DNN and a first evaluation of the performance are done with
infinite precision (i.e., using a high-precision floating point
representation).

As in our framework we are assuming that measurement
evaluation is done in analog domain, allowing a theoretical
infinite precision, as for [21], in practice the measurements
have a finite resolution dependent on the implementation.
Given a normalized measurement vector y P r´1, 1q with
infinite resolution, we define the fixed-point finite-resolution
equivalent as

y1i “ ty ¨ 2fy s ¨ 2´fy for i “ 1, . . . ,m

where t¨s is the round to nearest operation, y1i is the finite
resolution version of the i-th entry of y and fy is the number of
fractional bits we want to employ so that the numeric precision
we obtain is ε “ 2´fy . The representation of y1 includes also
1 sign bit. We also define W as the set the DNN parameters
used for support divination with infinite precision. We want
to test how the Support Oracle would perform with a reduced
resolution of the parameters by employing a fixed-point set

W 1
i “ tWi ¨ 2

fw s ¨ 2´fw with Wi PW

where fw is the number of fractional bits employed for the
representation along with 1 sign bit and 1 integer bit.

1κ̂ is such that κ ď κ̂ ď rankpB|ŝq in case of correct support estimation

Matrix D and matrix B are used in the pseudoinverse phase
of the reconstruction and can be expressed in fixed-point form
as

B1ij “ tBij ¨ 2
fps ¨ 2´fp for

"

i “ 1, . . . ,m
j “ 1, . . . , n

D1ij “ tDij ¨ 2
fps ¨ 2´fp for i, j “ 1, . . . , n

where fp is the number of fractional bits used to encode the
values of the two matrices. The values of the two matrices need
also 1 sign bit while only B1 requires 2 additional integer bits.
Fixed-point matrix inversion and more specifically the Moore-
Penrose pseudoinverse operation, which requires the singular
value decomposition (SVD), are non-trivial tasks both in terms
of computational complexity optimization and minimization of
errors and their implementation is not obvious [27]–[30]; as
working on this is not the specific target of this analysis, for
now we have performed the second task with infinite precision
while reducing only the precision of matrices B and D in
order to save memory. The employment of efficient methods to
perform the whole operation completely in fixed-point notation
will be assessed in future works. A summary of fixed-point
resolution reduction is shown in Figure 2.

III. RECONSTRUCTION PERFORMANCE

We measure performance on a synthetic ECG dataset gen-
erated as in [31] using the same parameters described in [32].
The dataset is composed of 8ˆ 105 instances each of them of
size n “ 128. A portion of the dataset which is the 80%
of the total number of windows is used for both training
(generation of A and the set of DNN parameters W ) and
evaluation (define the threshold value oth). The remaining
20% is employed as test set for performance assessment. As
sparse matrix D we refer to the n ˆ n matrix representing
the Symlet-6 wavelet family transformation. Training of the
DNN is performed with stochastic gradient descent through
500 epochs with a mini-batch size of 30 instances using Keras
API with Tensorflow backend [33], [34] while inference is
performed with a specially designed C++ framework which
works with fixed-point notation.

As a figure of merit for assessing the performance of the
TCSSO we use the Reconstruction Signal to Noise Ratio
which is defined as follows

RSNR “

ˆ

}x}2
}x´ x̂}2

˙

dB
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Fig. 4. Performance for TCSSO with synthetic ECG dataset performed with infinite precision oracle and fixed-point B and D matrices with the variation of
fp. The colored area in the background shows the probability of obtaining a given RSNR value while the values for fp “ 10 are shown on the histograms.
The ARSNRs of TCSSO and of rakeness-based BP method are highlighted.

We aggregate RSNR values for the test set by computing the
average value (ARSNR) and by evaluating the probability of
obtaining a given RSNR value. Each signal in the test set has
been corrupted by additive white Gaussian noise to emulate
possible sources of nonidealities. Added noise is such that
intrinsic SNR is 60 dB.

Our goal is to measure how the reduction of data precision
for measurements y, for the DNN parameters W and for
the matrices D and B impacts on the reconstruction of the
compressed ECG signals. We take as reference the perfor-
mance of a state-of-art method named rakeness-based CS
[32], [35], which consists in the design of a sensing matrix
adapted to the class of ECG signals, coupled with the standard
BP decoder. Performance of this reference is evaluated with
infinite precision.

A. Support Oracle with fixed-point precision

There are three degree of freedom we can work on when
trying to reduce the complexity of the TCSSO: fy , fw and
fp. In this first phase Support Oracle performance alone is
assessed by divining the support of ξ with low values of fy and
fw while virtually keeping fp to maximum, i.e. we perform
pseudoinverse operations with infinite precision.

In order to reduce the degrees of freedom we choose to
fix fy to 7 bits that is the value after which, if fw “ fy ,
performance starts to deteriorate. We reduce further only fw
to minimize also the memory footprint of the application.
Results can be seen in Figure 3 for CR values that go
from 4 to 5.3. Even with low precision DNN parameters
this method outperforms the aforementioned state-of-art CS
approach (RAK+BP), whose performance is null for CR ą 4.
Furthermore, with fw “ 7 performance is about the same we
have with infinite resolution.

B. Pseudoinverse operation with fixed-point precision

In the second phase we evaluate how using low values of
fp for matrices D and B affects the pseudoinverse operations
while support divination is performed with infinite resolution
(fy and fp are virtually kept to the maximum).

In Figure 4 we can see how performance varies with values
of fp which go from 16 bits to 5 bits. Performance starts to
decrease at fp “ 10. With a higher compression ratio the
RSNR values are less sensitive to the variation to fp.
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Fig. 5. RSNR histogram for TCSSO with synthetic ECG dataset performed
with fixed-point oracle and fixed-point B and D matrices: fy “ 7, fw “ 5
and fp “ 10. ARSNRs of TCSSO, rakeness-based BP and SDA are
highlighted.

C. TCSSO with fixed-Point precision

Finally, based on the discussed results, we set fy “ 7,
fw “ 5 and fp “ 10. It should be noted that, by reducing
the precision of y during the computation of ξ̂|ŝ, we are
introducing a quantization error we didn’t estimate before.
Nevertheless we observe in Figure 5 that, with this setting,
the overall performance is mainly influenced by the resolution
reduction of the DNN parameters.

IV. CONCLUSION

The recently introduced CS paradigm named TCSSO is con-
sidered in this paper. TCSSO relies on a DNNs that is trained
with the aim of joint optimizing both encoder and decoder
stages, and relies on the separation of the compressed signal
reconstruction into two tasks: support estimation and inversion
of the encoded measurements. In this paper, the framework is
improved by considering a fixed-point implementation with
a reduced number of bits for data, network parameters and
sparsity matrix. The scenario given by synthetic ECG signals
is investigated as a case study. Achieved results show that
the considered approach performs better with respect to other
state-of-art approach even with a low resolution implementa-
tion.
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