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H I G H L I G H T S

• A bottom-moored Spar-buoy OWC is simulated using a nonlinear Froude-Krylov model.

• Drag forces due to real fluid effects are estimated using experimental data.

• The numerical model detects the occurrence of parametric resonance in pitch & roll.

• Numerical results are validated using model-scale experiments in a wave tank.

• Parametric resonance shows a reduction in energy conversion efficiency up to 53%.
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A B S T R A C T

The wave energy sector has faced enormous technological improvements over the last five decades, however,
due to the complexity of the hydrodynamic processes, current numerical models still have limitations in pre-
dicting relevant phenomena. In particular, floating spar-type wave energy converters are prone to large un-
desirable roll and pitch amplitudes caused by a dynamic instability induced by parametric resonance. Detecting
this phenomenon accurately is essential as it impacts drastically on power extraction, structural loads and
mooring forces. This paper presents the validation of results from a numerical model, capable of detecting
parametric resonance, using experimental data. Experiments were carried out for a scaled model of the Spar-
buoy OWC (Oscillating Water Column) device at a large ocean basin. The buoy uses a slack-mooring system
attached to the basin floor. The scaled turbine damping effect is simulated by a calibrated orifice plate. Two
different buoy draft configurations are considered to analyse the effect of different mass distributions. The
numerical model considers the nonlinear Froude-Krylov forces, which allows it to capture complex hydro-
dynamic phenomena associated with the six-degree-of-freedom motion of the buoy. The mooring system is
simulated through a quasi-static inelastic line model. Real fluid effects are accounted for through drag forces
based on the Morison’s equation and determined from experimental data. The comparison of results from reg-
ular-wave tests shows good agreement, including when parametric resonance is detected. Numerical results
show that parametric resonance can produce a negative impact on power extraction efficiency up to 53%.

1. Introduction

Parametric resonance is a nonlinear phenomenon that can occur in
dynamic systems, and is characterized by not being externally induced
[1]. The occurrence of parametrically excited motions in ocean en-
gineering applications has motivated its research in this area [2].

Historically, it became relevant due to its influence on the stability of
containerships [3], which can cause large roll angles and, consequently,
the damage of the ship and its cargo. Criteria [4] and models [5] for
containers have been developed. Spar platforms, typical of deep water
applications, are also prone to parametric resonance [6], in conven-
tional spars [7] as well as deep draft multi-spar [8]. When they are
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subject to large heave amplitudes due to wave action, the stability
characteristics are affected, and pitch and roll can become internally
excited. The occurrence of parametric resonance is also observed in
wave energy converters (WECs), which are recently attracting greater
interest to diversify the renewable energy mix [9]. It is more commonly
detected in heaving spar-type devices, and has the consequence of in-
ducing large undesirable roll and pitch amplitudes, which impacts ne-
gatively on the WEC power extraction. This phenomenon has been
identified in the wave-tank testing of several heaving WECs, and it is
more notably relevant for devices that are designed to perform with
large heave motions: a floating cylindrical OWC (Oscillating Water
Column) [10], a free-floating sloped device [11], a self-reacting 2-body
device [12], and on a prototype of the Spar-buoy device, without [13]
and with [14] fins to limit instability. The numerical simulation of this
phenomenon requires a model capable of dealing with nonlinear hy-
drodynamics effects. Even though this type of model is not commonly
used for the performance evaluation of WECs, a few addressed this
issue: with a panel-meshed approach for the SEAREV [15] and Wa-
vebob [12] devices; with an analytical approach for a Sparbuoy-like
[16] and a single point absorber [17] device; through computational
fluid dynamics [18]. However, the comparison with validation of these
results is still scarce in the literature. In heaving WECs, parametric
excited motions in roll and pitch can occur when the metacentric height
presents a time-varying amplitude that affect the restoring character-
istics in those modes [7]. Those motions are internally excited if the
incident wave frequency is near or at twice the value of the corre-
sponding natural frequency. The amount of damping present in the
system limits the amplitude of the internally excited motion. Further-
more, a similar effect can be observed due to instantaneous pressure
variations on the WEC wetted surface [6].

In this paper, we focus our research on a floating oscillating water
column WEC with axisymmetric geometry, the Spar-buoy OWC, which
can be installed far from [19] or close to [20] a breakwater. In general,
a floating OWC device consists of a semi-submerged structure with an
inner hollow section [21], opened to the sea water and connected to the
exterior atmosphere through an air turbine [22]. The volume of water
moving inside the hollow section is known as the OWC. The wave ac-
tion generate motions on the buoy and on the OWC, which creates
cyclic compressions and expansions of the volume of the air chamber
above the inner free surface, forcing an airflow through the turbine.
Since the airflow is bidirectional, a turbine with self-rectifying char-
acteristics is required [23]. In the case of the Spar-buoy OWC, the de-
vice is characterized by a floating module connected to a vertical
hollow tube where the OWC and air chamber are located. This concept
was initially developed in the 1940s for small navigation buoys, pro-
viding initial framework for analysis [24], experiment [25] and design
[26]. The possibility of applying this technology in large arrays at off-
shore locations, where more space and more energy are available,
makes it an option with large potential for extensive production of
electricity. Geometry and turbine optimizations of this device, for
maximizing power extraction, were reported in the literature: [27] fo-
cuses on performance evaluation, [28] on hydrodynamic optimization,
[29] on the conversion principle and turbine characteristics, and [30]
on empirical models for stationary OWC. Efficient designs required a
combination between the inertia of the buoy and of the OWC, with a
tendency for the OWC having the largest possible inertia and the buoy
having large heave amplitudes. Two relevant operational conditions
were identified for the turbine. The first one refers to a turbine with a
low damping effect, where efficient energy conversion occurs near the
buoy and OWC heave natural frequencies. The second one is associated
with an high damping condition, the relative motions between the buoy
and OWC are small and efficient energy absorption is observed at a
frequency between the buoy and OWC heave natural frequencies. For
simulations with a real wave climate, the optimal turbine damping ef-
fect was found to be between the two options above, where a large
range of frequencies presented a relatively good energy absorption

[28]. One of the optimum geometries obtained in [28] was tested at
model scale in a wave flume, with the buoy limited to oscillate only in
heave [31]. Damping due to real fluid effects were determined from
regular wave tests. The same geometry was tested with a slack-mooring
system in a wave flume [32], and in wave tank at a larger scale [13].
The occurrence of parametric roll and pitch resonance was identified in
those experiments. An experimental study, at a small scale, on the re-
duction of parametrically excited motions was carried out by applying
vertical fins, in the radial direction, on the exterior surfaces [14]. The
fins showed an increase of the damping effect but they did not sig-
nificantly reduced the amplitudes of the parametrically excited mo-
tions.

In this paper we study the occurrence of parametric resonance in
roll and pitch in a Spar-buoy OWC device equipped with a three-line
slack-mooring system. Data from regular wave experimental tests is
used to validate results from a nonlinear Froude-Krylov model. Two
buoy configurations, with different draft and mass distribution, are
analysed. The comparison of the numerical results with simplified
analytical solutions is carried out. The impact of roll and pitch para-
metric resonance on the power conversion efficiency is evaluated. The
conclusion summarizes our findings and presents discussion on the
advantages and limitations of the numerical model.

2. Occurrence of parametric resonance

Parametric resonance in floating spar-type structures is a nonlinear
phenomenon that induces a dynamic instability in the device, which
can result in large roll and pitch motions. The large motions on these
modes occur even when they are not being excited externally by in-
coming waves, as long as the ideal conditions are present. To explain
this phenomenon, let us consider a device with axisymmetric geometry,
with a reference frame at the free surface, where the x-axis has the same
direction as the wave propagation and the z-axis is vertical and pointing
upwards. The translations on the direction of x-, y- and z-axis are named
as surge x1, sway x2 and heave x3, respectively. The rotations over the
same axes are denominated as roll x4, pitch x5 and yaw x6. Due to
symmetry, the device is only excited by waves in surge, heave and
pitch. However, due to the dynamic instability, motion can be induced
in all six modes. To understand this effect, we consider the uncoupled
roll motion equation,

+ + + =M A d x
dt

B dx
dt

ρgVGMx( ) 0,44 44
2

4
2 44

4
4 (1)

where M44 is the inertia coefficient, A44 is the radiation added inertia
coefficient, B44 is a linearised damping coefficient, which includes
damping due to wave radiation and viscous effects. The term ρgVGM in
Eq. (1) represents the hydrostatic stiffness in roll (as a consequence of
symmetry, the same term is applicable for pitch), where ρ is the water
density, g is the acceleration of gravity, V is the buoy displaced volume,
and GM is the metacentric height. By definition [33], the natural fre-
quency in roll ωn,4 is given by

=
+

ω
ρgVGM

M A
,n,4

2

44 44 (2)

with M44 and A44 taken relative to the centre of gravity.
The GM is an indicator of static stability in floating structures [34].

For static stability, GM needs to be higher than zero. Note that V and
GM can vary over time when buoy oscillates, particularly when the
motion is in heave. It follows that the hydrostatic stiffness in the roll
DoF (K4) is time-dependent, since it is defined as:

=K t ρgV t GM t( ) ( ) ( ).4 (3)

The K4 variation is associated with the changes of the centre of
buoyancy, waterplane area, and submerged volume. Considering that
the buoy is excited by a monochromatic wave with frequency ω, the
induced heave motion produces a sinusoidal variation of K4 over time,
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which can be described by

= + ∊K t K ωt( ) (1 cos ),4 4 (4)

where K4 is the hydrostatics stiffness in still water conditions and ∊ is
the dimensionless amplitude of the hydrostatic stiffness variations,
∊ = −K K K( )/(2 )4,max 4,min 4 . The parameters K4,max and K4,min represent
the maximum and minimum values of K4 over a wave cycle. By con-
sidering = = + =τ ωt μ B ω M A ω ω, ( ( )), Δ ( / )44 44 44 n,4

2 and = ∊Λ Δ, we
can rewrite Eq. (1) as

+ + + =d x
dτ
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τ x(Δ Λcos ) 0.
2

4
2

4
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Eq.(5) is known as the damped Mathieu equation, a particular case of
the Hill differential equation [35].In the case of damping being zero
( =μ 0), the equation becomes the Mathieu differential equation.For
some combination of Δ and Λ values, the solution of Eq.(5) is un-
stable.In practice, it means that the floating structure becomes dyna-
mically unstable in roll, and therefore subject to parametric re-
sonance.As a consequence, the roll amplitude increases over time in the
absence of any external excitation until a threshold value is reached,
which is normally achieved by the balance with other nonlinear phe-
nomena (e.g., variation of the waterplane area or damping from viscous
fluid effects).Stability diagrams, defined as Δ versus Λ, are used to
identify the unstable regions.Using a perturbation method (see e.g.
[36]), it is possible to determine the limits of stability of this equa-
tion.These curves are calculated through a power series expansion

O= + + + +nΔ /4 Δ Λ Δ Λ Δ Λ (Λ )2
1 2

2
3

3 4 , where n is the order of the
parametric peak and Δi are the power series coefficients (for

= …i 1, 2, ).Fig.1 presents a stability diagram for a Spar-buoy OWC
device, presenting the two most significant zones of instability.The first
zone is observed in the vicinity of =Δ 1/4, which corresponds to

=ω ω2 n,4.The range of values of Δ covered by the instability region
tends to increase with the increase of Λ.This implies that cases with
larger K4 amplitude display a larger range of frequencies that can in-
duce unstable motions.The second zone, appears near =Δ 1, i.e.near
the roll natural frequency ( =ω ωn,4).In Fig.1, the limits of stability for

=μ 0 are obtained by considering a 6th-order power series expansion
of Δ. The curves with ≠μ 0 are represented by a 1st-order approx-
imation of Δ for the curves in the vicinity of =Δ 1/4 ( =n 1) and by a
2nd-order approximation of Δ for the curve in the vicinity of =Δ 1
( =n 2). In addition, two curves are shown, representing the constant
values of dimensionless hydrostatic stiffness amplitude variation ∊ over
a large range of frequencies.

Typical deep-water spar platforms used in the oil and gas industry
have the pitch/roll and heave natural periods around 60 s and 30 s,
respectively [7]. The relation between these natural periods make these

platforms prone to parametric resonance in roll when they are excited
by long swells around 30 s, as heave can be highly amplified due to
resonance, and the conditions for the first instability zone of Fig. 1 are
reached. In the case of these platforms, damping heave plates can be
used to prevent large heave amplitudes and mitigate the occurrence of
parametric resonance.

In the case of spar-type wave energy converters, the heave natural
period of the device is within the typical wave frequency for efficient
energy absorption (8–12 s) [32]. The roll/pitch natural period is around
(15–25 s), i.e., near the condition =ω ω2 n,4 of the first instability zone.
Up to date, there are no effective methods to mitigate parametric re-
sonance in spar-type wave energy converters. In addition, the applica-
tion of damping heave plates is not convenient, since in addition to
reduce heave amplitudes, they would also reduce the wave energy
absorption efficiency.

The use of a one-degree-of-freedom model, as the one described in
Eq. (5), allows detecting the occurrence of the parametric resonance.
This model is helpful at an initial development stage to avoid design
configurations that could be prone to this dynamic instability. How-
ever, to study complex motion couplings in 6 degree-of-freedom sys-
tems, which include mooring lines and power take-off systems, and to
evaluate the level of magnitude of this dynamic instability, a more ef-
fective model is required, as the one that is presented in this paper. An
additional advantage of using a 6 degree-of-freedom model is the eva-
luation of the nonlinear Froude-Krylov pressure variations on the de-
vice hull, which can induce instability in a similar way as the hydro-
static stiffness variation [6].

In axisymmetric geometries, transverse modes subject to unidirec-
tional waves, such as roll and sway, are not externally excited. Since
parametric resonance occurs due to an instability, an asymmetry in the
time-domain solution is required to allow the roll motion to settle. In
general, this is done by considering an initial condition slightly dif-
ferent from zero, which will provide an initial energy to this state. The
small roll perturbation will be magnified if the conditions are adequate.
Due to the unstable and nonlinear behaviour of these problems, the
initial conditions may influence the settling of the permanent regime.
Therefore, it is important to verify if the solution depends on the system
initial conditions [12].

3. Experimental setup

The experimental testing of an 1:32nd-scale model of the Spar-buy
OWC was carried out at the COAST laboratory ocean basin (Plymouth,
UK). The basin is 15.5 m wide, 35 m long and has the possibility of
adjusting the water depth up to 3 m through the use of a movable floor.
For the testing of the isolated Spar-buoy OWC model, a water depth of
2.5 m was considered, corresponding to 80 m at full scale. The wave
generation system consists of 24 individually controlled hinged flap
paddles with wave absorption capability. The dissipative beach has a
convex shape for a better wave absorption performance. Only regular
and long-crested waves are considered in this work.

The experiments were designed by adopting the Froude scaling
criterion [37]. The Spar-buoy OWC geometry was based on the 16 m
diameter and 48 m draft device optimized for a wave climate from a
location off the Portuguese western coast [28]. A a perspective view of
the model is shown in Fig. 2. The cylindrical and conical surfaces were
built from welded steel plates, whereas the toroidal shape at the bottom
was made of concrete using a steel mesh. The latter part represented the
fixed ballast section. Above it, a variable ballast section allowed the
adjustment of the model mass by adding or removing steel plates. This
flexibility allowed the testing of model configurations with different
drafts and mass distributions At the top of the air chamber, an orifice
plate was used to replicate the turbine damping effect at model scale.
Three pulleys were fixed to the exterior surface of the buoy near the free
surface, which functioned as the fairleads for the mooring lines. Each
mooring line was attached to a S-beam load cell at the top of the device

Fig. 1. Stability diagram for detecting the occurrence of parametric resonance,
for different values of dimensionless damping μ. The shaded zones represent
the unstable regions. The dashed lines show curves with constant dimensionless
metacentric height amplitude ∊.
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and fitted to the inner part of the fairlead. This configuration allowed
the assessment of the mooring line tension at the fairlead through an
axial force measurement. The mooring lines were anchored on the floor
through heavy concrete blocks.

Fig. 4 shows a schematic representation of the wave tank with the
position of the model in the experiments. Eight resistive wave gauges
(WG1, WG2, …, WG8) were used to measure the free surface elevation
on different positions in the tank. Wave gauge WG8, positioned aside
the device, was used to determine the incident wave conditions at the
device location, i.e., already accounting for reflections on the absorp-
tion beach. The measurements of this wave gauge were compared with
the ones from a wave gauge at the device location in its absence. Since
small differences were found, WG8 was considered as an adequate
proxy.

For the analysis of the device performance several parameters were
measured. These included the motion of the device, the air pressure
difference inside the air chamber, the displacement of the OWC relative
to the buoy, the loads on the mooring lines, and the incident wave
conditions. The data acquisition system was placed near the device
using a gantry platform positioned above the device. All data were
captured with the same time reference. The six-degree-of-freedom
motion of the buoy was recorded using a motion-tracking system
Oqus300+ developed by Qualisys. This system uses the measurements
of several reflective targets attached to the buoy, via six infrared
cameras placed around the basin, to detect the motion in each degree of
freedom. The relative motion between the OWC and the buoy was
measured by an ultrasonic sensor TSPC-30S1–232 manufactured by
SENIX. The sensor, fixed to the top of the air chamber and facing the
free surface, was able to measure displacements from 110 mm to
4000 mm. The tensions on the mooring lines at the fairlead were
measured by three S-beam load cells, DBBSM-25Kg-003–017 manu-
factured by Applied Measurements Ltd, with a measurement range
between 0 and 250 N. The air pressure difference between the air
chamber and the atmosphere was measured by a ultra low pressure
sensor installed on the buoy. The differential pressure sensor

DC010NDC4, developed by Honeywell, had a range between −2500
and 2500 Pa. Four pressure taps, installed on the top of the air chamber,
were connected to the sensor though flexible plastic tubes. The mass
flow rate through the orifice was determined from the pressure differ-
ence signal by applying the flow-rate-versus-pressure-drop relationship
of the orifice plate, which was obtained though calibration. Fig. 3
presents a view of the model with the measuring equipment installed.

In these tests, two model configurations were considered, each one
with a different variable ballast mass. Therefore, for each configuration,
the buoy presented distinct draft, mass and mass distribution. The
characteristics of each configuration are presented in Table 1. The same
mooring system was used for both configurations. It consists of three
lines (ML1, ML2, ML3), made from six strand steel wire, equally spaced
in the tangential direction around a vertical axis located at the centre of
the buoy in still water conditions, as shown in Fig. 4. Each line con-
necting the buoy fairlead to the floor was divided into three segments
(with lengths L L,1 2 and L3), with a clump weight and a jumper (or
riser) at the connections of the segments, as shown in Fig. 5. Such a
mooring concept is popular in wave energy applications [38], since it is
able to keep the device in station while having little influence on the
response in the DoF in which energy is extracted [39]. Through the
control of the mass and density of the clump weight and jumper, it is
possible to control the stiffness and pretension of the mooring system
[40]. Relevant full-scale parameters of the mooring system are pre-
sented in Table 2.

Fig. 2. Three-dimensional representation of the Spar-buoy OWC model, re-
levant components, reference frame in still water conditions, and oscillating
modes.

Fig. 3. View of the model from the gantry platform, with identification of
model components.

Table 1
Physical characteristics of the Spar-buoy OWC model, for the two mass dis-
tributions considered.

Parameter Config. D1 Config. D2

Buoy diameter, d1 [m] 16.00 16.00
OWC diameter, d2 [m] 5.89 5.89
Total length [m] 64.06 64.06
Floater section draft l1 [m] 6.17 7.91
Buoy draft, lt [m] 49.17 50.91
Air chamber height, lc [m] 14.89 13.15
z-coordinate of CoB, zB [m] − 22.99 − 22.24
z-coordinate of CoG, zG [m] − 28.50 − 31.96
Metacentric height, GM0 [m] 6.73 10.81
Displaced volume, V [m3] ×2.5986 103 ×2.9013 103

Buoy mass, m [kg] ×2.6027 106 ×2.9140 106

Mom. inertia around x-axis at CoG, Ixx [kg m2] ×1.4437 109 ×1.5310 109

Mom. inertia around z-axis at CoG, Izz [kg m2] ×0.1002 109 ×0.1118 109
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4. Numerical model

The leading criteria for the definition of a numerical model is the
definition of an appropriate compromise of accuracy and computational
time [41], compatible with the specific application the model is in-
tended to serve [42]. The objective of this paper is to produce and
validate a numerical simulation tool to inform and guide the design of
the floater, the air turbine configuration, and the mooring system.
Therefore, medium–high speed of computation is a mandatory re-
quirement in order to investigate a wide variety of wave conditions and
device configurations. However, a major objective is to detect para-
metric resonance, which was found to be detrimental for power ex-
traction [17] and potentially threatening the floater and mooring sur-
vivability [43]. Since parametric instabilities are due to time-varying
parameters of the system [1], nonlinear models are required. However,
fully-nonlinear models, either based on computational fluid dynamics
(CFD) [44] or on potential flow [45], as well as weakly-nonlinear po-
tential flow models [46], although virtually able to articulate para-
metric resonance, are too computationally expensive for extensive de-
sign applications.

Partially-nonlinear potential flow models are a more parsimonious
option, since only the most important nonlinearities are implemented.
In particular, for the device considered in this paper, it is possible to
assume linear radiation and diffraction forces, since the characteristic
wavelengths are much larger than the horizontal dimension of the de-
vice, and its dynamics are governed by Froude-Krylov forces [47].
Nonlinear Froude-Krylov models have been implemented in the litera-
ture, showing good agreement with experimental data and confirming
the ability to detect parametric resonance for spar-like WECs [48].
However, such models describe the wetted surface through panel-dis-
cretization, hence implementing computationally-expensive re-meshing

routines, hindering their application for extensive design studies.
Nevertheless, a more computationally-efficient approach was recently
developed [49], which exploits the axisymmetric assumption to provide
an analytical representation of the wetted surface. This model was
shown to be able to articulate parametric resonance of a simplified
Spar-buoy-like device, both in regular [50] and irregular [51] waves.
The present paper purports to validate this modelling approach by
comparison with experimental data, described in Section 3. The de-
tailed description of the numerical model is provided in the following
sections.

Fig. 4. Schematic representation of the ocean basin, model position, mooring lines (ML1, ML2, ML3) and wave gauges (WG4, WG6, WG8). The dimensions presented
refer to full scale.

Fig. 5. Schematic representation of a single mooring line and connection to the buoy and to the tank floor.

Table 2
Mooring system parameters at full scale, considering the different locations of
the fairlead for configurations D1 and D2.

Parameter Value

Line diameter, dL [mm] 32
Net line linear density, wL [kg m−1] 34.82
Jumper mass, mJ [kg] 4030.46
Jumper density, ρJ [kg m−3] 123.00
Clump-weight mass, mC [kg] 36139.83
Clump-weight density, ρC [kg m−3] 8097.50
Length of line anchor-jumper, L1 [m] 143.28
Length of line jumper-clump-weight, L2 [m] 37.01
Length of line fairlead-clump-weight, L3 [m] 50.40
Anchor radius, rA [m] 211.2
Anchor z-coordinate, zA [m] −80
Fairlead radial coordinate, rF [m] 9.28
Fairlead z-coordinate (config. D1), zF ,1 [m] −0.82
Fairlead z-coordinate (config. D2), zF ,2 [m] −2.58

G. Giorgi, et al. Applied Energy 276 (2020) 115421

5



4.1. Hydrodynamic model

Linear potential flow theory can be applied by assuming inviscid,
irrotational and incompressible fluid motion. Under such conditions, a
boundary element method (BEM) software can be used to compute
hydrodynamic characteristics of the floater, namely added mass, ra-
diation damping, Froude-Krylov force, and diffraction force. The com-
mercial software WAMIT [52] is preferred, since it better handles
problems with thin elements and moonpools [53]. WAMIT is a panel
method code that applies Green’s theorem to derive velocity potentials
on a spatial distribution of singularities over the wetted surface of the
floater under the still water level (SWL). In WAMIT, apart from stan-
dard source-type singularities, dipole-type singularities can be used to
better describe zero-thickness regions of the floater. Furthermore, a
higher-order method can be used to represent the velocity potential in a
continuous fashion by means of B-splines [28]. The irregular-frequency
problem affecting the velocity potential, which normally occurs in free-
surface piercing bodies, is removed by closing the inner floater volume
at the free surface.

The device is considered as a two-body system composed of the
floater (first body) and of the water column enclosed by the floater
(second body), which moves along the OWC tube. In particular, the top
part of the water column is treated as a heaving rigid cylindrical piston,
with cross sectional area equal to the moonpool area, and of finite
height (5 m), as suggested in [28]. Therefore, there are seven degrees of
freedom (DoFs), six of the floater, and the 7th of the water piston. The
hydrodynamic parameters are computed around a point on the sym-
metry axis of the system and at the SWL. Fig. 6 shows the resulting
added mass and radiation damping curves, for configuration D2, in all
significant DoFs (off-diagonal terms are symmetric and, due to sym-
metry, sway and roll are equal to surge and pitch, respectively, while
yaw is null). Froude-Krylov force curves are presented in Fig. 10 in
Section 4.2.1. Hydrodynamic coefficients for configuration D1 are si-
milar to D2, since the main difference is the mass distribution.

Although WAMIT returns parameters in the frequency domain, the
equation of motion should be written in the time domain in order to
include nonlinearities. Thanks to Ogilvie’s relationship [54], radiation
effects can be computed, in time domain, through direct computation of
the convolution integral of the radiation impulse response function.
Alternatively, a more computationally convenient approach is to im-
plement a state space approximation of the convolution integral, ob-
tained through a finite-order identification by moment-matching [55].

A 2nd-order Runge–Kutta time-integration scheme is used to de-
termine the response of the system. The constant time step is used,
achieving a satisfactory compromise between accuracy and computa-
tional time. Convergence is studied by considering the response am-
plitude operator (RAO) in linear conditions, i.e. with a small wave and a
fictitious linear mooring stiffness, and with zero PTO damping. The
RAO is reconstructed, in time domain, by considering a wide range of
regular waves with period Tw, and constant wave height, =H 0.02w m.
The time step ( tΔ ) is chosen to beT /50w . Furthermore, in order to verify
the correctness of implementation, the accuracy of the radiation ap-
proximation, and the convergence of the time step, the resulting re-
sponse is compared to the RAO computed through the frequency do-
main curves from WAMIT, as shown in Fig. 7 for configuration D2.

4.2. Equation of motion

As discussed in Section 4.1, a 7-DoF system has to be defined, which
is obtained by adding the OWC displacement to the 6 DoFs of the
floater. In this section, for sake of clarity and generality, the 6-DoF
dynamics of the floater are first presented. It is then straightforward to
expand the system to 7 DoFs, since the coupling between the floater and
the OWC happens mainly through the power take-off system (turbine
and air chamber) and, to a lesser extent, through wave radiation and
viscous damping.

The dynamics and kinematics of the floater are conveniently re-
presented by two right-handed frames of reference, as schematically
shown in Fig. 8 for a generic axisymmetric device. The first frame
x y z( , , ) is inertial (world-fixed), with the x-axis along and in the same
positive direction of the wave propagation, the z-axis pointing upwards,
and with the origin at the still water level and lying on the axis of the
buoy at rest. The inertial frame is used to describe the body displace-
ments (ζ ), divided into translations (p) and rotations (Θ):

= ⎡
⎣

⎤
⎦

= ⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ζ
x
y
z

ϕ
θ
ψ

p
Θ

p Θ, , ,
(6)

where x is surge, y is sway, z is heave, ϕ is roll, θ is pitch, and ψ is yaw.
The second right-handed frame of reference is ̂ ̂ ̂x y z( , , ), fixed with

the body, hence non-inertial, and initially overlapping with the inertial
frame when the buoy is at rest. The body-fixed frame is convenient for
writing the dynamic equation of the system, since the inertial properties
remain constant in time. Therefore, both forces and velocities are

Fig. 6. Added mass (A) and radiation damping (B) coefficients as a function of the wave frequency for configuration D2.
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represented in the body-fixed frame, along the axis of the buoy.
Velocities (ν), divided into translation (v) and rotations (ω), are defined
as:

̂
̂
̂

= ⎡⎣ ⎤⎦ = ⎡
⎣⎢

⎤
⎦⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ⎡

⎣
⎢

⎤

⎦
⎥ν ω ω

u
v
w

x
y
z

p
q
r

v v,

̇
̇
̇

, .

(7)

It is worth remarking that forces and velocities are along time-
varying axes, while displacements are along fixed axes. In linear hy-
drodynamic models there is no difference between such axes, based on
the assumption of small displacements. However, in a nonlinear ap-
proach, a mapping from body- to world-frame velocities should be
applied, at each time step, in order to obtain the correct displacements.
One possible mapping is the following:

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ =×

×
ζ ω ν

p
Θ

R 0
0 T

v J̇ ̇
̇ ,Θ

Θ
Θ

3 3

3 3 (8)

where RΘ is the rotation matrix, depending on the Euler angles Θ,
defined according to the 3–2-1 convention as:

̂ ̂ ̂= =
⎡

⎣
⎢
⎢

− ⎤

⎦
⎥
⎥

⎡

⎣
⎢

−

⎤

⎦
⎥

⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

cψ sψ
sψ cψ

cθ sθ

sθ cθ
cϕ sϕ
sϕ cϕ

R R R R
0
0

0 0 1

0
0 1 0

0

1 0 0
0
0

,z ψ y θ x ϕΘ , , ,

with c and s standing for cos() and sin() trigonometric operators, re-
spectively. RΘ is applied to translational velocities. TΘ is applied to
rotational ones, and is defined as follows:

=
⎡

⎣

⎢
⎢

−
⎤

⎦

⎥
⎥

sϕtθ cϕtθ
cϕ sϕ

sϕ cθ cϕ cθ
T

1
0
0 / /

,Θ

(9)

where t stands for the tan() trigonometric operator. Note that the sin-
gularity of TΘ in ± π/2 is usually not an issue in wave energy appli-
cations, since the amplitude of the pitch angle is, by design, always
expected to be smaller than π/2.

Another consequence of using a body-fixed frame are Coriolis and
centripetal forces, which are normally neglected under the assumption
of small rotational velocities. Let us define, for convenience of notation,
the skew-symmetric operator S  → ×: 3 3 3 as

S S
⎧

⎨
⎩

∈ =
⎡

⎣

⎢
⎢

−
−

−

⎤

⎦

⎥
⎥

⎫

⎬
⎭

λ λ
λ λ

λ λ
λ λ

: ( )
0

0
0

.3 Δ
3 2

3 1

2 1 (10)

It follows that S S= −λ λ( ) ( )T , and that the cross-product can be
written as:

S× =λ λa a( ) (11)

Using such a notation, it is possible to define Coriolis and centripetal
forces as [56]:

S S S

S S S
= = ⎡

⎣
⎢

−
−

⎤

⎦
⎥⎡⎣ ⎤⎦ν

ω ω
ω ω ω

M M
M

F C
r

r I
v( ) ( ) ( )

( ) ( ) ( )
,g

g
Cor Cor

r (12)

where M is the mass of the body, rg is the vector from the origin of the
body-fixed frame (reference point) to the centre of gravity, and Ir is the
matrix of the moments of inertia with respect to the reference point.

Finally, the dynamical equation in 6 DoFs for the floater becomes:

Fig. 7. Magnitude of the response amplitude operator (RAO) for configuration D2, under linear conditions (wave amplitude of 0.01 m and linearized mooring forces)
and with no power take-off damping, computed using a frequency domain (FD) data and a time domain (TD) model with a time step equal to π

ω
1

50
2 .

Fig. 8. Inertial frame x y z( , , ), with the origin at still water level (SWL), and
body-fixed (non-inertial) frame ̂ ̂ ̂x y z( , , ), after an arbitrary displacement. At
rest the two frames coincide. Velocities according to the inertial frame x y z( ̇, ̇, )̇
and the body-fixed frame u v w( , , ).

G. Giorgi, et al. Applied Energy 276 (2020) 115421

7



∑
⎧

⎨
⎩

=

+ =

ζ ν

ν ν

J

M C F

̇

̇ Cor
i

i

Θ

(13)

where M is the inertial matrix and Fi comprises all external forces,
namely diffraction, Froude-Krylov, radiation, drag, power take-off, and
mooring loads. Note that ∈F 6 is a generalized force, composed of a
linear force vector ∈f 3, and a torque vector ∈τ 3. While radiation
and diffraction can be assumed as linear, a nonlinear representation of
FK forces, viscous drag effects, PTO force, and mooring loads is im-
plemented, as further explained in Sections 4.2.1, 4.2.2, 4.2.3, and
4.2.4, respectively. Finally, note that the 6-DoF dynamic system in (13)
for the floater is readily expanded to 7-DoFs by appending the water
column velocity to ν and expanding M J C, , CorΘ , and F accordingly.

4.2.1. Nonlinear Froude-Krylov force
Froude-Krylov forces are defined as the integral of the undisturbed

pressure field (P) over the wetted surface of the floater. In the linear
approximation, it is assumed that the relative motion between the body
and the free surface is small, so that FK forces are computed with re-
spect to the mean wetted surface. On the contrary, nonlinear FK force
calculations are performed with respect to the actual instantaneous
wetted surface (S t( )w ):

∬= + P dSf f n ,FK g S t( )w (14a)

∬= × + ×τ P dSr f r n ,FK g g S t( )w (14b)

where fg is the gravity force, n is the unity vector normal to the surface,
r is the generic position vector, and rg is the position vector of the
centre of gravity. The undisturbed incident pressure field of an uni-
directional regular wave is defined as:

⎜ ⎟
⎛
⎝

⎞
⎠

= − + −
′ +P x z t ρgz a ωt kx k z h
kh

, , cos( ) cosh( ( ))
cosh( )

,
(15)

where a ω, , and k are the wave amplitude, frequency, and wavenumber,
respectively, ρ the water density, g the acceleration of gravity, h the
water depth, and ′z the vertical coordinate modified according to
Wheeler’s stretching [57].

Solving the integrals in (14) requires, in general, computationally
demanding mesh-based approaches. However, computationally effi-
cient approaches are available for axisymmetric bodies [42], exploiting

cylindrical coordinates (ϱ, ϑ) to achieve an analytical representation of
the wetted surface:

̂
̂
̂

⎧

⎨
⎩

=
=
=

∈
⎡

⎣

⎢
⎢
⎢

−
⎞

⎠

⎟
⎟

∧ ∈
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x f
y f
z

π π
(ϱ, ϑ) (ϱ)cosϑ
(ϱ, ϑ) (ϱ)sinϑ
(ϱ, ϑ) ϱ

, ϑ , ϱ ϱ , ϱ1 2

(16)

where f (ϱ) is a generic function of the vertical coordinate ϱ, describing
the profile of revolution of the axisymmetric body. Since it is con-
venient to define the FK integrals in the body-fixed frame of reference,
the pressure field must be mapped from the global to the body-fixed
frame. Moreover, note that describing the FK integrals in the body-
frame also reduces the number of integrals to be computed, since cy-
lindrical sections have horizontal normals (the integral in heave is
zero), and disks sections have vertical normals (integrals in surge and
sway are null) [49]. After some manipulations [42], the integral in
(14a), for example, becomes:

̂ ̂ ̂∬

∫ ∫

⎜ ⎟

⎜ ⎟

= + ⎛
⎝

⎞
⎠

= + ⎛
⎝

⎞
⎠

×
−

P x y z dS

P d d

f R f n

R f e e

, ,

ϱ, ϑ ( ) ϱ ϑ,

FK
T

g S t

T
g π

π

Θ

Θ

( )

ϱ

ϱ
ϱ ϑ

w

1

2

(17)

where eϱ and eϑ are the unit vector along ϱ and ϑ, respectively. Note that
when internal patches (facing the water column) are considered, the
sign of the normal vector in (17) should be reversed. The integral in
(17) is solved numerically, using a 2D-quadrature scheme for trape-
zoidal integration [58]. An open source Matlab demonstration toolbox
for definition and computation of nonlinear FK forces for axisymmetric
floaters is available at [59].

Fig. 9 shows, for an arbitrary displacement of the buoy and wave
field, the configuration in both the world-frame (on the left) and the
body-frame (on the right), and the corresponding mapping of the free
surface elevation. Note that the mesh-like representation in Fig. 9 has a
mere visualization purpose, since the surfaces are described analytically
and no mesh is needed.

Note that the considered geometry is rather complex, with several
changes of cross-sectional area. Twelve different patches can be iden-
tified, namely 5 cylindrical sections, 4 conical sections, 2 quarters of
torus, and a disk for the inner piston. This increases the overall com-
putational time, since each patch requires an independent formulation,
hence raising the number of integrals to be computed. However, it is

Fig. 9. Example of displaced buoy D2, in the world frame (on the left) and body-fixed frame (on the right), with corresponding mapped wave field and its intersection
with the buoy.
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worth remarking that equally considering all patches is likely to be
unnecessary, since some patches are relatively small and/or so deep
that the dynamic pressure has already significantly decayed.
Nevertheless, since the purpose of this paper is validation rather than
computational time minimization, no simplifying assumption has been
investigated.

Finally, in order to verify the correctness of the implementation of
the NLFK integrals and mapping functions, as well as validating the
modelling approach, it is possible to compare linear and nonlinear FK
forces calculations under linear conditions. In fact, considering no
displacement and a very small wave amplitude (0.01 m), both linear
and nonlinear forces must agree, as shown in Fig. 10.

4.2.2. Viscous drag force
In un-damped systems, meeting the frequency condition is sufficient

for the arise of parametric resonance. Conversely, in real applications,
an additional necessary condition for the appearance of parametric
instability is that the internal parametric excitation exceeds the
damping of the system. Likewise, the severity of the parametric re-
sponse is a direct consequence of dissipative effects. Therefore, an ap-
propriate modelling of viscous effects is essential for studying para-
metric resonance.

In potential flow-based nonlinear models, viscous drag forces are
commonly included by means of a Morison-like term, which suggests a
quadratic dependence of the drag force on the relative velocity between
the body and the fluid. Given a variable cross sectional area and since
the total length of Spar-buoy OWC device is comparable to the decay
rate of the fluid velocity with water depth, it is convenient to imple-
ment an integral approach to the Morison-like equation [32]. In parti-
cular, the viscous force (Fvis) is defined for an infinitesimal cross sec-
tional area of the buoy, perpendicular to ̂z , and then integrated over the
whole length. The cylindrical coordinates of the nonlinear Froude-
Krylov framework, described in Section 4.2.1, can be used to compute
such integrals, applying a similar mapping of the fluid velocity from the
world frame to the body-fixed frame.

For surge and sway DoFs, drag forces result in:

∫= − ρC f u u dF (1) 1
2

2 (ϱ) ϱ,vis d c r r, ϱ

ϱ

1

2

(18a)

∫= − ρC f v v dF (2) 1
2

2 (ϱ) ϱ,vis d c r r, ϱ

ϱ

1

2

(18b)

where Cd c, is the drag coefficient around a circular cylinder, ur and vr
are the horizontal relative velocities along ̂x and ̂z , respectively. Note
that, as shown in (16), f2 (ϱ) represents the function describing the buoy
diameter variation with depth.

The infinitesimal viscous force contribution in (18) also generates a
viscous torque, acting in roll and pitch:

∫= ρC f v v dF (4) 1
2

2 (ϱ) ϱ ϱ,vis d c r r, ϱ

ϱ

1

2

(19a)

∫= − ρC f u u dF (5) 1
2

2 (ϱ) ϱ ϱ.vis d c r r, ϱ

ϱ

1

2

(19b)

The drag torque in yaw is assumed to be dependent only on the
buoy rotation ( = ωr (3)) and is caused by the friction with the sur-
rounding fluid, quantified by the drag coefficient Cd,6. Considering the
linear velocity of a point on the external surface equal to the rotational
velocity times the distance from the axis, yaw component of the viscous
force becomes:

∫= −πρC f r r dF (6) (ϱ) ϱ.vis d,6 ϱ

ϱ 4

1

2

(20)

Finally, drag forces in heave due to the interaction with the external
wave field and the friction with the water column (F3,7) are:

̂ ̂ ̂ ̂= − − −F ρC A z z z z1
2

( ̇ ̇ ) | ̇ ̇ |,d p3,7 ,37 7 7 (21a)

∫= −F π ρC f w w dF (3)
2

(ϱ) ϱ,vis d r r3,7 ,3 ϱ

ϱ 2

1

2

(21b)

where Ap is the cross sectional area of the water piston, Cd,3 the drag
coefficient in heave, and wr is the relative heave velocity of the buoy
with respect to the fluid. Note that F3,7 acts on the water column as a
reaction force, hence with opposite sign.

The drag coefficients (C C C, ,d c d d, ,3 ,37, and Cd,6) can be chosen as the
ones minimizing the error between the numerical model and a higher-
fidelity benchmark, either using CFD simulations or experimental data.
In this work, a sensitivity analysis of the simulated response to different

Fig. 10. Froude-Krylov force coefficients as a function of the wave frequency for configuration D2, computed via linear (WAMIT) and nonlinear (NLFK) models,
under small wave-amplitude conditions (0.01 m wave amplitude and fixed floater).
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combinations of drag coefficients has been performed and most sig-
nificant results are discussed in Section 5.

4.2.3. Power take-off force
The power take-off system of an OWC is an air turbine, which

converts the bidirectional air flow induced by the OWC motion inside
the floater. The pressure drop across the turbine can be simulated at
model scale using an orifice plate [60].

The effect of air compressibility inside the chamber has been ne-
glected since, while it introduces a phase lag between the water column
and the floater motion, affecting power conversion, it usually does not
have a significant impact on the hydrodynamic response of the floater,
especially in rotational DoFs. However, note that air compressibility
effects are negligible at small scale testing but not at full-scale.
Therefore, under normal operation, the interaction between the water
piston and the floater occurs due to the pressure variations inside the
air chamber, which in turn depends on the relative displacements and
on the diameter of the orifice plate [32]:

̂ ̂ ̂ ̂= − −F
ρ A

π C d
z z z z

8
( ̇ ̇ ) | ̇ ̇ |PTO

a a

d

3

2 2
0
4 7 7

(22)

where ρa is the air density, Aa is the cross-sectional area of the air
chamber (equal to Ap), Cd is the discharge coefficient ( =C 0.6466d for
the orifice plate used in the experiments), d0 is the diameter of the
orifice plate, and ̂z7̇ is the velocity of the water column along the axis of
the buoy. Note that FPTO acts on both the buoy and the water column,
but with opposite sign.

4.2.4. Mooring force
The mooring system, schematically shown in Fig. 11, is based on the

experimental tests performed at the ocean basin of the University of
Plymouth (UK) [13]. It is composed of three lines equally spaced in the
circumferential direction relative to the buoy axis of symmetry at rest.
Each line is divided in ulterior three segments, connecting the anchor to
a jumper (line of length L1), then to a clump weight (line of length L2),
and finally to the buoy (line of length L3), as depicted in Fig. 5. Such a
mooring concept is popular in wave energy applications, since it is able
to keep the device in station while having little influence on the re-
sponse in the DoF were energy is extracted [39]. For this application,
the mass and density of the jumper (or riser) and the clump weight were
chosen to match the desired stiffness of the mooring system. Relevant
parameters for the equivalent full-scale model of the mooring system
are tabulated in Table 2.

A quasi-static model is defined to compute the tension on each line
depending on the 6-DoFs displacements of the attachment points of the
buoy and consequently obtain the total forces and torques acting on the
floater, around the origin of the body-fixed frame and along its axes.
Relying on the fact that for this system each line is always tensioned
and they have a relatively small mass, it is possible to treat each
mooring line as always straight. The problem can be simplified as two-
dimensional, by defining each mooring line on a vertical plane con-
taining the buoy fairlead and the anchor point. For each line, the po-
sitions of each component can be represented by the horizontal co-
ordinate r and the vertical coordinate z, considering the origin of the
referential at the anchor point. Consequently, for each line, two equa-
tions are written for the vertical and horizontal force equilibrium (Eqs.
(23) and (24), respectively), one for the torque balance (Eq. (25)), and
two for imposing geometrical constraints (Eqs. (26) and (27)):

− + + − + − =T w L L L F F TsinΦ ( ) cosΦ 0F 3 L 1 2 3 C J A 1 (23)

− =T TcosΦ cosΦ 0F 3 A 1 (24)

− + + + + − =T z T r w L r L r L r F r F rcosΦ sinΦ ( ) 0F 3 F F 3 F L 1 1 2 2 3 3 C C J J

(25)

+ + − =L L L rcosΦ cosΦ cosΦ 01 1 2 2 3 3 F (26)

− + − =L L L zsinΦ sinΦ sinΦ 01 1 2 2 3 3 F (27)

where rF and zF are the horizontal and vertical distances between the
buoy fairlead and the anchor, respectively, while FC and FJ are the net
force of the clump weight and jumper, respectively, obtained as the
balance between their weight and buoyancy. The horizontal distance of
the midpoint of line Li to the anchor is ri, for ∈i [1, 2, 3], while rC and rJ
are the horizontal distances of the jumper and clump weight from the
anchor, respectively. The variable wL represents the line submerged
weight per unit length. Such parameters are simple linear combinations
of the five unknowns of the system, which are: tension at the buoy
fairlead (TF), tension at the anchor (TA), and angles of each line to the
horizontal direction (Φ , Φ , Φ )1 2 3 , as shown in Fig. 11. Knowing the
tension and the angles of each line, it is possible to compute the total
force and total torque acting on the buoy. Note that the nonlinear
system of equations in Eqs. (23)–(27) is solved numerically, since no
explicit algebraic solution can be obtained.

5. Results

In order to give a closure to the numerical model described in

Fig. 11. Mooring system layout with three lines separated tangentially with an angle of 120°. Each line is divided in three segments of length L L,1 2, and L3. FC is the
net clump-weight force and FJ is the net jumper force (negative in the figure). The quasi-static model solves for the tension at the buoy fairlead (TF), the tension at the
anchor (TA), and the angles of the three lines (Φ , Φ1 1, and Φ3).
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Section 4, a set of drag coefficients should be identified. Moreover, an
appropriate description of dissipation mechanisms is important in the
study of parametric resonance, since viscous effects can hinder the full
development of the parametric resonance. All results in Section 5 are
presented for the set of all possible combinations of 2 values for each
one of the 4 drag coefficients (C C C C, , ,d c d d d, ,3 ,37 ,6), as shown in Table 3,
for a total of 16 combinations. However, note that, for sake of clarity,
Table 3 presents the most representative subset of a wider range of drag
coefficients that has been considered in the sensitivity analysis.

For each drag coefficient configuration (i), an accuracy metric (Πi)
has been defined in order to provide a global measurement of goodness
of fit over the whole range of waves considered and all DoFs. In each
wave (nw) and DoF (j), the relative error (ϖj

nw) has been defined as the
difference between the amplitude predicted by the experimental mea-
surement (computed as −ζ ζRMS j j( ( ) ( ))e e ) and the mathematical
model (computed as −ζ ζRMS j j( ( ) ( ))m m ), normalized by the maximum
amplitude registered in the experiments for that DoF:

⎜ ⎜ ⎟⎟

=

⎡

⎣

⎢
⎢
⎢
⎢

− − −

⎛
⎝

⎛
⎝

− ⎞
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⎞
⎠

⎤

⎦

⎥
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⎥
⎥

ζ ζ ζ ζ

ζ ζ
ϖ

RMS j j RMS j j

RMS j j

( ( ) ( )) ( ( ) ( ))

max ( ) ( )
j
n e e m m

i e e
n

w

w (28)

Consequently, for each configuration i, Πi is defined as the mean of
all ϖj

nw, so that the best configuration of drag coefficients is the one
with the lowest Π.

Table 3 presents the ratio between each Πi and the minimum value
found in those simulations (Πi,min), highlighting in bold the best com-
bination of drag coefficients. Since the motion of the floater is found not
to be significantly sensitive to the damping, due to viscous flow effects,
between the moonpool and the water column, only one Cd,37 value is
reported in Table 3 for brevity. Further discussion about the sensitivity
to drag coefficients is presented in Section 5.1.

Since parametric resonance, as discussed in Section 2, depends on
the natural periods (Tn) of the system, the numerical model is first used
to perform free-decay tests and estimate Tn, shown in Table 4. The
change in draft configuration affects mainly the roll and pitch natural
periods (23.2 s for D1 and 19.0 s for D2), so that parametric resonance
is expected around 11.6 s for D1 and 9.5 s for D2.

5.1. Regular waves tests

The regular wave conditions considered in the experimental

campaign are replicated in the numerical model, at full scale. For va-
lidation purposes, in order to have the same conditions between nu-
merical and physical models, the free surface elevation recorded from
the wave probes in the tank is used as input to the numerical model. In
order to replicate the transient and the inherent inaccuracies of the
physical wave tank, the regular wave is treated as irregular, i.e., as a
combination of a discrete number of regular wave components.
Therefore, the pressure and fluid velocity fields, needed for the com-
putation of NLFK and viscous drag forces integrals, also are described as
the superposition of different frequency components [52].

The wave height (Hw) and wave period (Tw) are computed by means
of a fast Fourier Transform (FFT), where Tw is the period of highest
spectral energy content, and Hw is the mean of the highest 1/3 waves,
taken between two consecutive down-crossing of the free surface ele-
vation after the transient period of time. Fig. 12 shows the set of con-
sidered waves, highlighting low-amplitude (black squares) and high-
amplitude (blue circles) wave conditions, defined with respect to an
arbitrary wave height threshold of 2 m.

Figs. 13–16 show a comparison between the numerical and ex-
perimental regular-wave results of the time traces of the buoy response.
Results in heave, roll, and pitch are presented for the wave conditions
highlighted in Fig. 12. Parametric resonance in roll is observed in
Fig. 13 (wave condition W1.1), for configuration D1, and in Fig. 14
(wave condition W2.1), for configuration D2. Examples of time traces
where parametric roll is not triggered, obtaining a pure heave-pitch
response with the same frequency as the incident wave, are provided in
Fig. 15 (wave condition W1.2), for configuration D1, and in Fig. 16
(wave condition W2.2), for configuration D2. Pitch results with para-
metric resonance show an initial response with the same frequency as
the incident wave, which changes to half that frequency after the set-
tling of the dynamic instability. The pitch amplitude decreases as the
energy is transferred to roll. In all cases, the time series converge to a
permanent regime. The settling of roll is captured by the numerical
model, even though the maximum amplitude is not reached at the same
instant, which may be explained by the unstable nature of the problem
and its sensitivity small changes in its parameters. In Fig. 13 and
Fig. 14, the heave motion measured during the experimental tests
presents a decrease of amplitude after the triggering of the dynamic
instability. This decrease is not so clear in the numerical simulations.
Finally, some discrepancies are evident in the pitch response, especially
in Fig. 13, where the experimental time trace presents an initial rather
abrupt increase and decrease of motion, and finally reaches a steady
state lower than the one predicted by the numerical model. The main
candidate phenomenon of such a response, different from the simulated
one, is the coupling with the yaw response, shown in Fig. 17. The ex-
citation of yaw is nonlinear, mainly due to the 3-line mooring system
[61], and therefore sensitive to small inaccuracies in the mooring
system properties. Once activated, yaw motion is coupled to other DoFs
by means of the mooring system, effectively impacting the amplitude of
their response.

The response obtained with the numerical model is compared with
experimental results, over the whole range of wave conditions shown in
Fig. 12, by considering the root mean square (RMS) of the signals after
subtracting their mean values (the mean value is denoted by an over-
line). In this way, only the oscillating part of the signal is considered, as
shown in Figs. 17 and 18 for D1 and D2, respectively. Likewise, in
Fig. 12, experimental data is shown in black squares and blue circles,
indicating small and large waves, respectively. Similarly, numerical
results are shown by dot and star markers, respectively. Their colours
correspond to different drag coefficient configurations, as in Table 3.
Areas where the numerical model detects parametric roll are shaded in
light grey.

The region where parametric resonance is detected is consistent
with experiments, and agrees with the Mathieu-type instability model,
discussed in Section 2. In fact, non-zero roll response is found at about
half the roll/pitch natural periods (see Table 4), with higher amplitudes

Table 3
Significant set of drag coefficients used to produce results in Section 5.1. The
best configuration is for a relative error metric (Π /Πi i,min) of 1.

Cd c, Cd,3 Cd,37 Cd,6 Π /Πi i,min

2 0.175 0.2 0.1 1.0837
1.75 0.175 0.2 0.1 1.0000
2 0.15 0.2 0.1 1.0104
1.75 0.15 0.2 0.1 1.0866
2 0.175 0.2 0.125 1.1217
1.75 0.175 0.2 0.125 1.0211
2 0.15 0.2 0.125 1.0387
1.75 0.15 0.2 0.125 1.1265

Table 4
Natural periods Tn (in seconds) in several DoFs from full-scale numerical si-
mulations of free decay tests for different draft configurations (D1 and D2), as
in Section 3.

Surge & Sway Heave Roll & Pitch Yaw

D1 150 9.8 23.2 22.2
D2 150 10.1 19.0 23.5
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for configuration D1. However, only large waves cause a significant roll
response, since the higher incoming energy exceeds internal dissipa-
tions. The severity of parametric resonance is well captured by the
numerical model for all three wave conditions within the region of
parametric resonance in configuration D2, and for two wave conditions

out of three for configuration D1, with an overestimation of the roll
amplitude for the wave with the higher period. Comparing the two draft
configurations, D2 shows smaller roll responses.

When parametric resonance appears, there is an increase in roll and
pitch responses and, consequently, surge and sway, which are coupled

Fig. 12. Wave height Hw as a function of the wave periodTw from the regular-wave experimental tests, for draft configurations D1 (on the left) and D2 (on the right).
Black squares represent low-amplitude waves (specified wave height of 1.5 m) and blue circles represent high-amplitude waves (specified wave height of 5.0 m).
Examples of time traces of the buoy response to waves W1.1–2 and W2.1–2 are given in Figs. 13–16.

Fig. 13. Heave, roll, and pitch time traces, for
configuration D1, for wave condition W1.1 (see
Fig. 12). The blue solid lines represent the nu-
merical simulation and the black dashed lines
are the experiment.al measurements. (For in-
terpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)

Fig. 14. Heave, roll, and pitch time traces, for
configuration D2, for wave condition W2.1 (see
Fig. 12). The blue solid lines represent the nu-
merical simulation and the black dashed lines
are the experiment.al measurements. (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version
of this article.)

Fig. 15. Heave, roll, and pitch time traces, for
configuration D1, for wave condition W1.2 (see
Fig. 12). The blue solid lines represent the nu-
merical simulation and the black dashed lines
are the experiment.al measurements. (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version
of this article.)
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with the rotational DoFs. The response is due to the nonlinear mooring
effects, partially because of coupling between yaw with other DoFs.

Finally, Fig. 17 and 18 show that the nonlinear model produces a
satisfactory prediction of the planar motion response (surge-heave-
pitch), with higher accuracy for small waves.

The NLFK model is also able to articulate mean drift forces caused
by the time-varying wetted surface of surface-piercing bodies [56].
Fig. 19 shows the mean surge displacement caused by drift effects for
configurations D1 and D2. Overall, the nonlinear model tends to
overestimate the surge displacement. The most likely cause of such an
overestimation can be found in the uncertainties concerning the phy-
sical and numerical modelling of the mooring system. Due to drift ef-
fects, surge is highly dependent on the mooring system, which alone
provides the totality of restoring force, since the hydrodynamic stiffness
is null in the surge DoF. Consequently, discrepancies between the
physical tests and the mathematical model of the mooring system are
potentially hindering a correct reproduction of the mean drift dis-
placement. Such discrepancies may be due to either an over-simplified
mathematical model and to measuring inaccuracies during the experi-
mental campaign.

In order to assess the quality of mooring loads reproduction, the
quasi-static mooring model is run independently from the hydro-
dynamic code by directly feeding the model with the kinematics re-
corded during the experiments. In this way, having the same kinematics
in both the physical and numerical environments, differences between
measured and predicted tensions can be ascribed only to the re-
presentativeness of the mathematical model and the accuracy of ex-
perimental measures. Figs. 20 and 21 compare the mean and RMS

tension at the fairleads of each one of the three mooring lines. Note
that, before computing the mean and RMS, the pretension T0 has been
subtracted from the total fairlead tension Tm.

Overall, as expected due to the mean drift effect, average and RMS
tensions on the front line (ML1) are larger than on the rear lines (ML2
and ML3). A reasonably good agreement is found, between numerical
prediction and experimental measures, with higher accuracy for small
waves. However, relatively small differences in the mooring tension can
have a great impact on the mean surge displacement, since mooring
lines are the only elements providing a restoring effect in surge. This
reasoning is consistent with the discrepancies found in Fig. 19.

5.2. Computational time

Although this paper implements a computationally convenient
model, the main purpose is validation and detection of parametric re-
sonance, as opposed to computational time minimization. Therefore,
the computational times presented in this section should be considered
as suboptimal. However, this section presents a discussion on the most
important aspects determining the overall computational burden, the
description of the setup considered in this paper, and recommendation
on possible ways to potentially decrease the computational time with
no significant loss of accuracy.

The first trivial but most important parameter in determining the
total computational time is the time step, whose selection is led by a
convergence analysis and an arbitrary choice of computation/accuracy
compromise. In this work, as discussed in Section 4.1, δt is chosen equal
to T /50p .

Fig. 16. Heave, roll, and pitch time traces, for
configuration D2, for wave condition W2.2 (see
Fig. 12). The blue solid lines represent the nu-
merical simulation and the black dashed lines
are the experiment.al measurements. (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version
of this article.)

Fig. 17. Root mean square (RMS) of the oscillating response (after subtracting its mean), for draft configuration D1. Experimental results are shown with the same
markers as in Fig. 12, while simulated results are shown by disks and asterisks, for small and large waves, respectively. Different colours refer to different drag
coefficient combinations, as in Table 3.
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At each time step, the computational time is driven by the calcu-
lation of numerical integrals, mainly for NLFK forces (requiring two-
dimensional integrals), and secondly for viscous drag forces (requiring
one-dimensional integrals). Such a computational time depends on how
many integrals are computed and on the required accuracy of their

approximation. The number of integrals depends on the number and
type of sections, and the number of DoFs, as discussed in Section 4.2.1.
In this work, the full complexity of the buoy has been considered,
comprising of 12 sections in total (5 cylinders, 4 cones, 2 torus, 1 disk).
However, some of the sections are relatively small and/or deep, so that

Fig. 18. Root mean square (RMS) of the oscillating response (after subtracting its mean), for draft configuration D2. Experimental results are shown with the same
markers as in Fig. 12, while simulated results are shown by disks and asterisks, for small and large waves, respectively. Different colours refer to different drag
coefficient combinations, as in Table 3.

Fig. 19. Mean surge displacement caused by drift effects for draft configuration D1 (on the left) and D2 (on the right). Experimental results are shown with the same
markers as in Fig. 12, while simulated results are shown by disks and asterisks, for low-amplitude and high-amplitude waves, respectively. Different colours refer to
different drag coefficient combinations, as in Table 3. The shaded areas refer to regions where the numerical model detects parametric resonance, as shown in
Figs. 17 and 18.

Fig. 20. Mean (top) and root mean square (bottom) values of the tension of the three mooring lines (front line ML1 on the left, rear lines ML2 and ML3 in the middle
and on the right, respectively), for draft configuration D1. Experimental results are shown with the same markers as in Fig. 12, while simulated results are shown by
disks and asterisks, for small and large waves, respectively.
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their contributions are potentially negligible, while significantly af-
fecting the overall computational burden.

Another major parameter determining the computational time of
the numerical integration is the required accuracy of the approxima-
tion, defined by the relative and absolute tolerances [58]. In this work,
for sake of simplicity and accuracy, the same tolerances are assumed for
all simulations and DoFs, and through the whole time simulation (ab-
solute tolerance of 10 and relative tolerance of 0.005). Nevertheless, a
potential way to reduce the unnecessary computational time with no
relevant effect on the accuracy is to adopt an appropriate strategy to
modify the tolerances in a sensible way, depending on either the sea
state, the values of the displacements of each DoF, and/or the values of
the integral at the previous time step. However, this has not been in-
vestigated in this paper.

Finally, Fig. 22 shows the relative computational time (trel) for both
draft configurations, where trel is defined as the ratio between run-time
and computational time. If =t 1rel , the simulation run in real-time,
while it is slower than real time if >t 1rel . Calculations have been
performed on a dedicated high-performance computer at Politecnico di
Torino (HPC@Polito), each simulation on a single core with CPU 2x

Xeon E5-2680 v3 2.50 GHz. The resulting relative computational time
in Fig. 22 varies from a minimum of 2.84 to a maximum of 9.53, with a
mean of 4.93 and standard deviation of 1.82. In the attempt to pre-
liminarily justify such variations, trel is plotted against the root mean
square of the different DoFs, showing a correlation between the in-
crease of heave (mainly) and surge/pitch (secondly), and the decrease
of computational time. On the other hand, when roll, sway, and yaw
become non-zero (when parametric resonance arises), the computa-
tional time is always relatively low. Therefore, a plausible explanation
could be that the constant tolerances affect the rate of convergence of
the numerical integration in a different way according to the magnitude
of the displacements in the different DoFs, i.e. the magnitude of Froude-
Krylov and drag forces. Therefore a conditional definition of numerical
integration tolerances, as opposed to constant, is likely to have the
potential to decrease the computational time. However, further in-
vestigation (outside the scope of this paper) is necessary to fully justify
the correlation shown in Fig. 22.

Fig. 21. Mean (top) and root mean square (bottom) values of the tension of the three mooring lines (front line ML1 on the left, rear lines ML2 and ML3 in the middle
and on the right), for draft configuration D2. Experimental results are shown with the same markers as in Fig. 12, while simulated results are shown by disks and
asterisks, for small and large waves, respectively, as in Figs. 17 and. 18.

Fig. 22. Relative computational time for both draft configurations, defined as the ratio between run-time and simulation time. Maximum value: 9.53; minimum
value: 2.84; mean value: 4.93; standard deviation 1.82.
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5.3. Discussion

This subsection purports to analyse and discuss with greater detail
the nonlinear behaviour of the system and its consequences on energy
generation. Systems with evident nonlinear dynamics should be studied
under different initial conditions, since multiple limit cycles and peri-
odic attractors may arise, depending on the initial state from where the
system is perturbed. Fig. 23 shows that the system studied in this paper
reaches the same roll limit cycle, regardless of the initial roll angle.
Note that the initial conditions are chosen both inside and outside of the
steady limit cycle. The only impact of different initial roll angles on the
system response is the duration of the transient before reaching the
permanent regime.

It is worth to reconstruct the stability diagram (Δ versus Λ) from
numerical simulations, and compare it with the analytical prediction of
the simplified Mathieu-Eq. 1-DoF model, shown in Fig. 1. Figs. 24 and
25 present such a stability diagram, derived from the 1-DoF model
described in Section 2, where the time-variations of the hydrostatic
stiffness are computed using the 6-DoF displacements predicted by the
NLFK model. The instantaneous metacentric height and submerged
volume are computed through integration within the NLFK framework
[59]. A comprehensive set of regular waves is considered, with Tw
ranging from 5 s to 20 s, with step of 0.25 s, and Hw ranging from 0.5 m
to 5 m, with an interval of 0.5 m. The dimensionless damping coeffi-
cient μ is obtained through the linearization of the damping forces
acting in roll (due to wave radiation and viscous fluid effects) [62], and
is frequency dependent. Fig. 24 shows the results for configuration D1,
while configuration D2 is presented in Fig. 25. The points with the
larger amplitudes in roll are located inside the stable region. Most
points outside the unstable region present either small or negligible roll
amplitudes. The high roll amplitudes outside the unstable region are
found for the higher amplitude waves, where the damping linearization
becomes less adequate. These points tend to appear for Δ values on the

left side of the stability region. Overall, the stability diagram based on
the damped Mathieu equation appears to be an adequate tool to detect
the occurrence of roll parametric resonance.

Fig. 26 presents numerical results of the capture width ratio (CWR)
versus the incident wave period Tw. Numerical simulations of the ex-
perimental tests are represented by black disks and the asterisks, while
the solid lines are obtained through numerical simulation of regular
waves with a constant Hw and considering a refined range of wave
periods. The nonlinear effect is clearly visible in both graphs through
the observation of the differences between lines tests with different
wave height. Beyond parametric resonance, nonlinearities may be
caused by the turbine damping effect and by the viscous fluid effects.

Fig. 23. Time traces (top) and phase portraits (bottom), for configuration D1 with wave W1.1 (left), and configuration D2 with wave W2.1 (right), for four different
initial conditions ( = ° ° ° °ϕ 0.25 , 5 , 10 , 15 ). The thick black line represents the steady limit cycle, which is the same for all initial conditions.

Fig. 24. Stability diagram (Δ versus Λ) for the first instability zone, as de-
scribed in Section 2, for configuration D1. The colour of the markers is pro-
portional to the roll amplitude.
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The detrimental effect of parametric resonance on the energy con-
version efficiency can be assessed numerically by considering the power
extracted with and without the evaluation of nonlinear Froude-Krylov
forces. The time-averaged extracted power (P ) is presented on the top
part of Fig. 27, which shows a sharp decrease around half the roll/pitch
natural period, where parametric resonance is expected to occur. In the
bottom part of Fig. 27, PΔ represents the relative difference between
the predicted mean extracted power with linear and nonlinear Froude-
Krylov forces, while all other nonlinearities remain the same. Note that
P <Δ 0 means that the predicted power in the NLFK model is lower. It

is clear that neglecting Froude-Krylov force nonlinearities when para-
metric resonance occurs causes a significant overestimation of the
power production. Conversely, a beneficial effect is found for config-
uration D2 for large waves at a period of about 12 s, which is due to the
water column dynamics. At the side of each PΔ map, there is the
percentage normalized difference, computed as the ratio between PΔ
and P . Note that such a ratio is not meaningful if computed in areas
where P , at the denominator, is too small. Therefore, this ratio is
shown only for the wave period of greatest interest where parametric
resonance occurs while the produced power is not negligible. A peak of
53% difference is obtained for a wave height of 3 m, effectively pro-
viding an evident and quantitative measure of the detrimental effects of
parametric resonance.

6. Conclusions

The accurate numerical simulation of wave energy converters re-
quires capturing a vast range of phenomena that affect their dynamics.
Roll parametric resonance is a highly nonlinear phenomenon originated
by a dynamic instability that can affect, mainly but not limited to, spar-

type heaving wave energy converters. Probably due to the complexity
of the model required to assess this instability, few works have been
dedicated to this issue.

In this paper we presented the validation of numerical results using
a 6-degree of freedom nonlinear Froude-Krylov model using data from
experimental model-scale tests of a Spar-buoy oscillating water column
device subject to regular wave conditions. The mooring system was
modelled in detail using a quasi-static model and drag forces, due to
viscous fluid effects, are considered for a more realistic simulation of
the system damping. Two mass distribution configurations of the Spar-
buoy oscillating water column are studied, which represent two dif-
ferent cases for the study of parametric resonance. For both config-
urations, the model was able to detect roll parametric resonance in all
tests except one, located at the border of the unstable region. This can
be justified by small inaccuracies in the model inputs, since this phe-
nomenon is sensitive to small changes in its parameters. The reduction
in heave that is observed in the experiments after the triggering of roll
parametric resonance was not so evident in the numerical simulations.
These discrepancies may be associated with the model not accounting
for all hydrodynamics effect of the water column, e.g. damping due to
sloshing. Stability diagrams, based on the damped Mathieu equation,
are commonly used to assess the occurrence of roll parametric re-
sonance through the evaluation of the hydrostatic stiffness variation.
This simplified model was able to detect the zones of large roll ampli-
tudes obtained by the nonlinear Froude-Krylov model with a reasonable
accuracy, which shows its applicability for design purposes, where less
detail is required. Using the numerical model, we were able to evaluate
the negative impact that parametric resonance has on the power ex-
traction. For a wave with a height of 3 m, a maximum reduction of 53%
on power performance due to parametric resonance was found.

This work presented an extensive validation of numerical results
with parametric resonance. Novelties in this study included the con-
sideration of viscous fluid effects on the buoy and a detailed description
of the mooring lines. Both effects are relevant for assessing the buoy
dynamics under roll parametric resonance. A more comprehensive de-
scription of the hydrodynamic effects inside the water column is likely
to provide an improvement on the accuracy of the numerical model,
which can be the subject of a future work.
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