
 
 

Doctoral Dissertation 
Doctoral Program in Management, Production and Design (33th Cycle) 

 

Making digitalization effective: an 
exploration of the complementarity 

between digital technologies and 
organizational practices in the Italian 

Automotive Component Industry 
 
 

Riccardo Ricci 
* * * * * * 

 
 

Supervisors 
Prof. Paolo Neirotti, Supervisor 

Prof. Emilio Paolucci, Co-supervisor 
 
 

 

Doctoral Examination Committee: 
Prof. Raffaella Cagliano, Polytechnic University of Milan 
Prof. Luca Gastaldi, Referee, Polytechnic University of Milan 
Prof. Aldo Geuna, University of Turin 
Prof. Guido Nassimbeni, University of Udine 
Prof. Valentina Lazzarotti, Referee, LIUC University Cattaneo 
 
 

Politecnico di Torino 
April 04, 2021



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This thesis is licensed under a Creative Commons License, Attribution - 

Noncommercial - NoDerivative Works 4.0 International: see 
www.creativecommons.org. The text may be reproduced for non-commercial 
purposes, provided that credit is given to the original author. 

 
 
 

I hereby declare that, the contents and organisation of this dissertation constitute 
my own original work and does not compromise in any way the rights of third 
parties, including those relating to the security of personal data. 

 
 
 

 
 
 

………………………………..... 
Riccardo Ricci 

Turin, April 04, 2021

http://www.creativecommons.org/


 
 

Summary  

Despite substantial investments in digital technologies, often driven by 
forward-looking national policies, manufacturing firms are still far from making 
digitalization effective with limited evidence of increased cost performance 
shifting away from the growth visions of “Smart Manufacturing” and “Industry 
4.0”. Early information system literature suggests that to make a return on 
technological investment companies must changes organizational practices e.g., 
in resources, activities, capabilities, and collaborations while adopting digital 
technologies. However, current digital technologies have new technological 
features including computing, connectivity, data storage and processing capacities 
requiring new organizational practices. The objective of this thesis is to understand 
what are the properties of digital technologies and how these enable and require 
changes to decision-making and governance practices to increase the cost 
performance of manufacturing firms. 

Using the automotive industry as the setting of the research, this thesis uses 
mixed-method research employing both quantitative data from 102 questionnaires 
and qualitative data from 10 case studies collected from a representative sample of 
Italian automotive suppliers. Adopting a phenomenon-based research approach this 
thesis started with a literature review on the main properties of two main forms of 
digital technologies that shape the digitalization phenomena: physical-digital 
interface technologies and network technologies. To investigate the 
complementarity between practices and digital technologies some logistic 
regressions have been performed keeping fixed the adoption of digital technologies 
and cost performance (the dependent variable). Having found some “surprising 

facts” this thesis uses an abductive approach and use a set of management theories 
to explain the results. 

Concerning the physical-digital interface technologies and network 
technologies, this thesis found respectively the properties of virtualization and 



traceability of physical devices in the shop floor, and accessibility and 
synchronization of a wide range of data throughout the organizations in a bi-
directional communication framework between information systems and physical 
devices. 

Concerning decision-making, the properties of these two forms of digital 
technologies make events, upon which decisions are made, respectively more 
analyzable and less equivocal making a data-driven decision-making approach 
diffused in the organization a compelling necessity to have an increased cost 
performance. It is urgent more than ever that the managers encourage a shift from 
an intuition-driven (experiential, unconscious, and holistic) to a data-driven 
decision-making approach (analytical, conscious, and sequential) through some 
practices that are discussed in this thesis. 

To make digitalization effective inside the factory, this thesis found that - at an 
increasing rate of technology complexity, customization levels, and novelty of the 
two different forms of digital technologies – manufacturing firms should rely on 
relational governance practices based on co-creation and continuous 
collaboration with technology partners like system integrators that would allow 
the reduction of transaction costs and the sharing of technological and domain 
knowledge. 

Concerning governance practices with customers, this thesis found that the 
traceability and virtualization properties of physical-digital interface technologies 
enhance the relational governance based on quasi-integration and trust. Second, the 
accessibility and synchronization of network technologies require long-term 
contractual governance because these technologies expose a supplier to 
opportunistic behaviors caused by behavioral uncertainty of customers. Taken 
together, the different forms of digital technologies and governance practices 
reduce the transaction costs among the partners and therefore increase incentives 
for suppliers to engage in process innovation activities aimed at reducing 
production costs. 

This thesis found some national approaches to digitalization by comparing 
Italy and the US automotive components industry reflecting institutional 
differences between the two countries. Using a comparable sample, this thesis 
found that Italian auto plants, while adopting less physical-digital interface 
technologies concerning the US due to smaller firms’ size, show a higher diffusion 

of network technologies and a data-driven decision-making approach. Due to the 
higher empowerment of workers in continuous improvement, the Italian approach 
to digitalization seems more a human-centered approach with a focus on data 



analysis and data integration. By contrast, the US approach to digitalization is more 
on the use of technology to face a critical skill gap. 

Overall, these results point out how complex is for automotive suppliers to 
introduce process innovations and to enhance cost performance in the digital 
transformation context. On one hand, to improve cost performance, they have to 
invest in different and highly specific sets of digital technologies and, on the other 
hand, to change decision-making approaches, to manage their interplay with the 
governance mechanisms with technological partners and customers. 
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Chapter 1 

Introduction 

1.1 Background 

The automotive industry – one of the largest and most dynamic manufacturing 
supply chains – is facing a great complexity due to new product and process 
requirements, that are subject to high levels of international standards on safety and 
quality, sustainability, and efficiency. The digital transformation of manufacturing 
can mitigate not only the complexity but also the volatility, uncertainty, and 
ambiguity currently faced by the increasingly competitive and digitalized 
automotive sector. The challenges of the COVID-19 pandemic have dramatically 
imposed further actions by managers increasing their awareness of the need to 
accelerate the digitalization and digital transformation1 to govern and not being 
overwhelmed by current change processes  (Hanelt, Bohnsack, Marz, & Antunes 
Marante, 2020). 

Yet, some key questions remain for managers. How should established 
manufacturing firms adopt digitalization? How they can create value from 
digitalization? Rather than trying to focus on the adoption of digital technologies 
only, managers need to focus on developing new organizational practices including 
governance practices, decision-making approaches, resources, activities, 
capabilities, and strategies that will allow the creation of value from digitalization 
(Björkdahl, 2020).  In this thesis, digitalization refers to the increased generation 
and analysis of data through the adoption of digital technologies (e.g. sensors, 
RFID, machine vision, human-machine interfaces, software, digital platform) in the 
firm’s product and inbound and outbound activities to increase internal efficiency 

and/or customer offerings  (Björkdahl, 2020) 
Investments in digitalization allow not only to “do new things”, but also to “do 

things better” through increased operational efficiency, cost reduction, and business 
process improvement. The thesis focus on the last outcomes.  A recent worldwide 
survey of 1,155 executives expects an average of 12.3% of cost reduction over five 
years (PwC, 2018). Indeed, digitalization can bring significant process 
improvements in manufacturing by reducing defects and reworks, minimizing 

 
1 The terms digitalization and digital transformation are used interchangeably in this thesis. 
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equipment breakdown and minor stoppages, increasing inventory control, supply 
chain transparency, safety, sustainability and ultimately reducing production cost 
(D. R. Sjödin, Parida, Leksell, & Petrovic, 2018). 

In the innovation management literature, operational efficiency is considered 
as the outcome of process innovations (Davenport, 1993; Trantopoulos, von Krogh, 
Wallin, & Woerter, 2017). Process innovation is “the implementation of a new or 

significantly improved production or delivery methods. This includes significant 
changes in techniques, equipment and/or software” (OECD 2005, p. 9).   

Implementing process innovations with digitalization (hereafter digital process 
innovation) is often highly problematic because it entails tacit knowledge, complex 
problem solving, learning by trial and error, and systemic changes into several 
components of a production system (Sjödin et al., 2018; Trantoupolos et al. 2017). 
The implementation of digital process innovations may lead to unanticipated 
technological challenges, new skills for the operating personnel, and significant 
change in the work practices (Trantoupolos et al. 2017). These complexities make 
digital process innovation a highly challenging and risky effort that extends well 
beyond the introduction of digital technologies (Sjödin et al., 2018). 

Attracted by an encompassing policy-driven innovation discourse under the 
label of Industry 4.0 (Reischauer, 2018), several manufacturing firms are investing 
in digital technologies. In Italy, this discourse initiated by the Minister of Economic 
Development at the end of 2016 which put forward a national plan “Industria 4.0” 

(hereafter Industry 4.0 National Plan) whose main measure was to stimulate the 
investment in the digitalization of manufacturing in the form of depreciation 
allowance but also into competence development and technological infrastructure 
(MEF, MISE, MIUR, & ML, 2018) 

As far as investment in digital technologies is economically feasible, thanks to 
these incentives, the key issue is not on the adoption of digital technologies per se, 
but how to purposefully use such technologies to increase the efficiency and 
therefore the competitiveness of the company. In other words, the key issue is how 
companies can generate value from digital technologies (Björkdahl, 2020; 
Martínez-Caro, Cegarra-Navarro, & Alfonso-Ruiz, 2020). Forward-looking 
managers should not think only economically on how to substitute old equipment 
or exploiting the financial advantages of national plans but on how such 
technologies once implemented will support innovation within the company 
(Trantoupolos et al., 2017). This forward-looking thinking offers far greater process 
innovation possibilities and greater cost reductions in the long term. 

The literature has already shown that most manufacturing firms are better at 
sensing technological opportunities but less in seizing and shaping such 
technological opportunities and transforming organizations (North, Aramburu, & 
Lorenzo, 2019). Digitalization is a great challenge for manufacturing firms. Late 
adopters risk risks to be driven out to the market by advanced competitors in the 
same industry (Müller, Buliga, & Voigt, 2018) or the value being captured from 
firms outside the industry offering data analytics services (Susan Helper, Martins, 
& Seamans, 2019).  Despite operational efficiency is a primary driver of 
digitalization investments, there is limited empirical evidence on the relationship 
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between the adoption of digital technology and cost performance (Lorenz, 
Benninghaus, Friedli, & Netland, 2020; Guilherme Luz Tortorella & Fettermann, 
2017). 

We know from thirty years of academic research on information and digital 
technologies that without organizational and managerial changes cost performance 
improvement is limited if not null (for a recent review see e.g. Martínez-Caro et al., 
2020). Yet, an investigation of the much-needed practices in the digitalization era 
is lacking from the empirical investigation. In this thesis,  practice is referred to in 
the broadest sense of the word (encompassing e.g. decision-making approaches, 
governance practices, resources, activities, and capabilities).   

 

1.2 Research Questions  

As far as organizational practices are concerned, early research on enterprise 
information systems and the business value of information technology points to the 
need for changes in decision-making approaches toward data analysis and 
quantitative assessment (E Brynjolfsson, Hitt, & Kim, 2011), vertical collaboration  
(co-development and co-creation with partners at different levels of the value chain 
e.g. technology vendors, system integrators) and horizontal collaboration or 
governance (with partners at the same level of the value chain e.g. customers, 
suppliers) to have a business value from the investment in information technology 
(Melville et al., 2004). However, current studies do not consider the properties of a 
new generation of information technologies driving by recent technological 
advancements (e.g. in the fields of sensors, data storage and processing, 
connectivity protocols, and standardization) (Hanelt et al., 2020; Youngjin Yoo, 
Boland Jr, Lyytinen, & Majchrzak, 2012). 

The main objective of this thesis is to explore how digital technologies enable 
and require changes to decision-making approaches and governance practices to 
increase the cost performance of manufacturing firms. This thesis analyses the 
impact of digitalization on organization at different levels: internally to the firm, 
concerning decision-making, and externally concerning horizontal and vertical 
governance practices.  Such a multi-level approach is needed given the 
pervasiveness of digitalization that has the potential to transform not only the 
structure of the whole organization but also its relationship with external partners 
in the ecosystem (Nambisan, Wright, & Feldman, 2019). 

The Nobel prize Herbert Simon argued that management is essentially 
organizational decision-making (Herbert A Simon, 1960): all organizational actions 
are initiated by decisions, and all decisions are commitment to actions. Therefore, 
a key to understand how data generated by digital technologies create value is to 
study how it drives decision-making (Bokrantz, Skoogh, Berlin, Wuest, & Stahre, 
2020). Two main approaches can be found in manufacturing firms: the intuition-
driven decision making (experiential, unconscious, and holistic) and the data-driven 
decision making (analytical, conscious, and sequential) (Flores-Garcia, Bruch, 
Wiktorsson, & Jackson, 2019). Some scholars argue that decision-making should 
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be largely based on data analysis which could lead to better outcomes (e.g. E 
Brynjolfsson et al., 2011; Provost & Fawcett, 2013). Others suggest a more 
balanced approach where judgment and experience should be considered as well 
(e.g. Shah, Horne, & Capellá, 2012). In the management practice, confusion arises 
on which is the optimal decision-making approach when adopting digital 
technologies to achieve efficiency improvements. This thesis compares these two 
approaches, focusing on a particular subset of decision-making related to cost 
reduction, i.e. those “production decisions” taken at an operational level (Bloom, 
Garicano, Sadun, & Van Reenen, 2014). The first objective of this thesis is therefore 
to analyze the different approaches toward decision-making while adopting digital 
technologies and how these are linked to cost performance. The first research 
question of this thesis is the following:  

RQ1. What decision-making approach (intuition-driven vs data-driven) is 
the most beneficial to increase cost performance as manufacturing firms 
adopt digital technologies? 

 
Research has shown that the governance of inter-organizational relationships 

has a positive effect on the performances of supply chains (Dyer, 1996; Roehrich, 
Selviaridis, Kalra, Van der Valk, & Fang, 2020). Nowadays, the emergence of new 
ICT-based technologies, which drive digitalization, is varying the density of 
interactions between buyers and suppliers (Brun, Gereffi, & Zhan, 2019). Partners 
in the dyadic supply chain relationship should be aware of the implications that 
digitalization has on the governance of the relationships to manage transaction 
costs. An important source of transaction costs is behavioral uncertainty which 
refers to the ambiguities in understanding a partner’s behavior due to the possibility 
of “strategic non-disclosure, disguise, or distortion of information” by the exchange 

partners (Williamson, 1985). Scholars argue that to manage behavioral uncertainty 
in inter-organizational relationships buyers and suppliers have two main 
governance practices: contractual and relational (G. Cao, Duan, & Li, 2015). 
Contractual governance manages the inter-organizational relationship by formal 
and explicit agreements that specify obligations and roles of exchange partners (e.g. 
concerning quality, price, delivery, reliability). By contrast, relational governance 
is based on relational norms such as trust, information sharing, partner flexibility, 
and joint problem-solving. Both supply chain governance mechanisms have been 
proved to have a positive effect on cost performance (Blome, Schoenherr, & 
Kaesser, 2013). It is widely acknowledged that information technologies support 
information and process integration in supply chain relationships. Thus, it is not a 
surprise the emergence of new digital technologies has spurred interest in supply 
chain research (e.g. Fatorachian & Kazemi, 2020). Current research has mainly 
focused on the effect of enterprise information systems (Jean, Kim, Lien, & Ro, 
2020) and the perspective of customers (e.g. Blome et al., 2013).  

However, digital technologies pose new challenges and opportunities for 
supply chain governance. A recent survey involving more than 1000 firms in the 
US and Europe found that only 8 % give a customer access to production 
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information (Fetterman, 2019). Indeed, the collection and analysis of real-time data 
from digital technologies pose a new opportunity for control of customers that could 
use opportunistically such data how the suppliers use the production resources and 
possibly opt for a more efficient supplier. At the same time, digital technologies 
promise to increase the integration between customers and suppliers enhancing 
trust-based relationships. The second objective of this thesis is to provide a detailed 
understanding of how digitalization enables and requires changes to governance 
practices concerning relational and contractual governance. The third research 
question is the following: 

RQ2. What governance practices (relational vs contractual) in the supply 
chain relationship are the most beneficial to increase cost performance 
as manufacturing firms adopt digital technologies? 

 
To make digitalization effective, most manufacturing firms rely on external 

knowledge and technology sources and in particular on system integrators thanks 
to their ability to ability to combine and integrate different technologies based on 
hardware and software technological elements and to provide plant data and 
network connectivity (Kahle, Marcon, Ghezzi, & Frank, 2020). In this vein, 
innovation scholars found that modern-day manufacturing firms tend to rely on few 
and selected knowledge sources when focusing on process innovation because that 
it facilitates the exchange of tacit knowledge and its recombination with 
technological knowledge (Lorenz et al., 2020; Terjesen & Patel, 2017; 
Trantopoulos et al., 2017).  However, it remains unclear when collaboration with 
external knowledge sources is beneficial to increase cost performance vis-à-vis the 
adoption of digital technologies (Lorenz et al., 2020). 

The implementation of digital technologies (i.e. digital process innovation) 
entails a significant degree of uncertainty among the various partners, due to highly 
specialized knowledge that needs to be integrated (Kostis & Ritala, 2020). 
Reducing such uncertainty is critical for ensuring the successful execution of 
industrial B2B projects. This type of uncertainty is defined as interpretative 
uncertainty (Weber & Mayer, 2014), which refers to the misalignment of views on 
the process and the outcome due to the competence and domain-expertise difference 
among the firms involved (Kostis and Ritala, 2020). Weber and Mayer (2014) 
proposed that this type of uncertainty derives not from the transaction 
characteristics but different relational characteristics (i.e. the attributes of the parties 
relative to one another) such as industry and technology membership. In this thesis, 
an additional source of uncertainty is introduced that has not yet been analyzed in 
the context of industrial relationships: technology characteristics. To manage and 
reduce interpretative uncertainty resulting from the implementation of digital 
technologies firms should configure proper governance practices that reduce such 
interpretative uncertainty. The literature argues that governance practices between 
a customer and technological partner should move from transactional to relational 
as the relationship unfolds (Sjödin, 2019) relying on co-creating logic and long-
term commitment 
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However, there is no empirical evidence if and when these governance practices 
between system integrators and manufacturers lead to cost performance 
improvements for manufacturers. Current research discusses the evolution of 
governance practices mainly using a time-based perspective (Kamalaldin, Linde, 
Sjödin, & Parida, 2020). However, it remains unclear what triggers the change of 
governance practices from transactional to relational apart from time. Recently, 
Sjödin (2019) proposes to focus on the technological characteristics in terms of 
complexity, novelty, and customization when selecting appropriate governance 
practices in joint process innovation projects. To fill this gap, the third research 
question of this thesis is the following:  

RQ3. What governance practices (transactional vs relational) with system 
integrators are the most beneficial to increase cost performance as 
manufacturing firms adopt digital technologies? 

Finally, this thesis provides some preliminary analysis of the impact of 
institutional conditions of countries on digitalization approaches by firms (Hanelt 
et al., 2020). The extent to which digitalization happens is a result of different 
elements including the types of management practices and digital technologies 
adopted but also the industry environment (Mithas, Tafti, & Mitchell, 2013) and 
country-level policies (MacDougall, 2014). The legal and infrastructural 
conditions of a country can exhort a great impact on the way digitalization is tackled 
and therefore its impact on the productivity of firms operating under the 
institutional laws and setting of the country (Hanelt et al., 2020). Different countries 
have introduced different national plans to increase the investment of private sectors 
to retain competitiveness at the country level such as the “Manufacturing USA” and 

the “Industria 4.0” in Italy. The fourth research of this thesis is the following: 

RQ4. Are there different national approaches to digitalization in two 
major industrialized nations like Italy and the US that reflect 
institutional differences? 

 

1.3 Framework of analysis  

1.3.1 Digitalization 

 
Digitalization can be defined as the increased generation, analysis, and use of 

data through the adoption and implementation of digital technologies (e.g. sensors, 
RFID, machine vision, human-machine interfaces, software, platform) in the firm’s 

product and inbound and outbound activities to increase internal efficiency and/or 
increasing customer offerings (Björkdahl, 2020).  

Recent advancements in hardware (e.g. miniaturization, efficient batteries), 
open and standard communication protocols (e.g. MT Connect, OPC Unified 
Architecture), algorithms for data storage and processing (e.g. Hadoop, NoSQL), 
and algorithm advancement in the field of Artificial Intelligence (e.g. machine 
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learning) (Figure 2) - have enabled the emergence of a new set of properties (e.g. 
traceability, virtualization, synchronization) of digital technologies that are 
different from the previous generation of information and communication 
technologies characterized by automation technologies and enterprise information 
systems (Hanelt et al., 2020). The so-called digital properties emerge by embedding 
computing capabilities in what used to be a non-digital artifact. In this vein, physical 
objects become programmable, addressable, senseable, memorizable, traceable, 
and associable (Y. Yoo, 2010).  

The challenges and opportunities of digitalization have had a major impact on 
both business executives and policymakers. Digitalization has come to be seen as 
the fourth industrial revolution after the steam power, electricity, and automation 
that enable respectively the three preceding revolutions. Following the German 
government who first introduced the term “Industry 4.0”, different countries have 

introduced national plans to increase the investment of private sectors to retain 
competitiveness at the country level e.g. in Italy “Piano Industria 4.0”, in France 

“Industrie du Futur”, Smart Manufacturing in the United States, etc. 
Recent studies in the digitalization domain argue that there is a need to look at 

the unique properties or features of digital technologies to study how organizations 
need to adapt to technological implementation to increase cost performance 
(Cagliano, Canterino, Longoni, & Bartezzaghi, 2019; Cimini, Boffelli, Lagorio, 
Kalchschmidt, & Pinto, 2020). This point is echoed by organizational scholars who 
contend that digitalization should not view merely as the context for innovation, but 
increasingly as an operant resource that fuel innovation activities (Lusch & 
Nambisan, 2015). Nambisan et al., (2019) argued: “it becomes imperative that 
studies incorporate characteristics innate to digital technologies as key 
explanatory factors in theorizing on the nature and process of innovation”. By 

bridging organizational literature (e.g. Kallinikos, Aaltonen, & Marton, 2013; Y. 
Yoo, 2010) and operation management literature (e.g. Culot, Nassimbeni, Orzes, & 
Sartor, 2020; Alejandro Germán Frank, Dalenogare, & Ayala, 2019), this thesis 
adapts and identifies the properties of two forms of digital technologies provided 
by Culot et al., (2020) physical-digital interface and network technologies. 

The adoption of these two bundles of technologies pertains to two different 
stages of technology adoption which different maturity models and change 
management studies integrate albeit with different terminology (e.g. Agarwal & 
Brem, 2015; Schuh, Anderl, Gausemeier, ten Hompel, & Wahlster, 2017; D. R. 
Sjödin et al., 2018). In the first stage, physical-digital interface technologies (e.g. 
sensors, man-machine interfaces, machine vision, RFID, bar code) are introduced 
to collect real-time data and information from the shop floor and to support work 
processes (e.g. quality control, work instructions, monitoring and control of 
equipment). At this stage, the data generated from digitization technologies remains 
disconnected and in silos systems (Agarwal & Brem, 2015). In the second stage, as 
data increase in volume, variety, and velocity and opportunities to link these data 
increase (Cui, Kara, & Chan, 2020), firms engage in data integration efforts 
implementing network technologies (e.g. digital platforms, Manufacturing 
Execution Systems) that integrates shop-floor data with enterprise information 
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system data (Cui et al., 2020; Schuh et al., 2017). These two stages of “digitization” 

and “integration” are recurring as the introduction of new physical-digital interface 
technologies triggers a new data integration process through the implementation of 
network technologies. 

Physical-digital interface technologies include mainly a set of hardware 
components to identify each device univocally and in real-time (Kallinikos et al., 
2013; Youngjin Yoo et al., 2012), tracing its status (and the change in it) as it moves 
along the production process (Lasi, Fettke, Kemper, Feld, & Hoffmann, 2014). In 
other words, they allow full traceability of product and process-related data. 
Traceability allows one to keep track of the six basic elements describing an event 
(When, Where, Who, What, How, and Why; e.g. when, by whom, where and what, 
how a product component was manufactured) (Pigni, Piccoli, & Watson, 2016). 
Embedded sensors can track product and process-related data during the 
manufacturing processes such as (depending on the type of processing e.g. 
lamination, molding, milling, etc.) workpiece temperature, environmental 
humidity, noise or acoustic emissions, vibrations, (tool and deformation) speed, 
(frictional, compressive and cutting) forces, etc.  Connected to the traceability of 
physical objects, being them equipment or product components, is the second 
property of physical-digital interface technologies: virtualization. In this context, 
virtualization is defined as the ability to represent and simulate faithfully the 
behaviors of a physical device or a process (Bailey, Leonardi, & Barley, 2012). 
Virtualization can range from a simple approach, where only a set of data is 
gathered and make available in the virtual world, to more complex approaches, 
where physical objects or processes are simulated to predict their dynamics and 
behaviors (Tao & Zhang, 2017).  

Network technologies include mainly a set of software components with the 
aim of quickly, reliably, and safely integrating vertically (across manufacturing 
stages i.e. from production planning, scheduling, maintenance, quality control to 
actual manufacturing) and horizontally (across product lifecycle stages i.e. from 
product development to sustainment) different streams of data in a unified corporate 
business system realizing the concept of digital thread and extended enterprise 
(Helu, Hedberg, & Barnard Feeney, 2017). Network technologies collect, integrate, 
and process sensory data from equipment and product components (both historical 
and real-time data), product data (e.g. design parameters from a CAD file, G-code 
file from a CAM file), production data (e.g. process order information), and 
business data (e.g. sales data from CRM system, accounting data from ERP, SCM, 
etc.) commonly managed in enterprise information systems such as MES, ERP, 
PLM, CRM (Cui et al., 2020; Helu et al., 2017). Network technologies enable 
accessibility, that is the ability to provide easy access to a heterogeneous and 
common pool of data coming from digitized devices and enterprise information 
systems such as sensory and enterprise data by different employees, departments, 
and business partners (i.e. customers, systems integrators, suppliers). Accessibility 
is similar to the concept of communality as long as the data access is provided 
through a common and integrated pool of data (Phang, Kankanhalli, & Tan, 2015). 
Network technologies enable synchronous communication between and among 
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digitized devices and enterprise information systems (Fatorachian & Kazemi, 
2018). The synchronization ensures that data in enterprise information systems are 
always updated and in real-time, thereby increasing opportunities for optimization 
and automation of the factory (Cui et al., 2020; Porter & Heppelmann, 2015). For 
instance, the process states of machines can be used for real-time production 
planning and scheduling tasks (Lenz, Wuest, & Westkämper, 2018). Since it would 
be challenging to perform one-to-one integration (if not impossible) among 
different business systems, network technologies leverage the data aggregation 
layer and require only one connection with the platform (Helu et al., 2017). In this 
vein, new software or applications (e.g. a warehouse management system) can be 
easily synchronized with digitized devices and other enterprise information systems 
(Helu et al., 2017). 

1.3.2 Theoretical approach 

The interplay between technology and organizational practices has been 
analyzed in the literature using theoretical lenses such as Socio-Technical System 
View (Trist, Higgin, Murray, & Pollock, 2013), Information-Processing View 
(Galbraith, 1974), the complementarity perspective (Milgrom and Roberts, 1995), 
affordances for organizing (Zammuto, Griffith, Majchrzak, Dougherty, & Faraj, 
2007). These theories have been influenced by the Contingency Theory (Van de 
Ven, Ganco, & Hinings, 2013).  The Contingency Theory is the main foundation 
for organizational design (Joseph, 2018), postulating that there is no best 
organizational arrangement (Van de Ven et al., 2013). The central tenet is designing 
arrangements of complementary and reinforcing organizational elements (internal 
fit) as well as aligning these to the environmental contingencies (external fit). Only 
when there is both an internal fit and external fit organizations can expect to 
increase performance. Seminal articles adopting a contingent-based perspective are 
those of: (i) Burns and Stalker (1961) who distinguished between two ideal types 
of organization: mechanistic and organic organizations as the opposite along a 
continuum depending on environmental uncertainty; (ii) Woodward (1965) who 
found significant variations in organizational structures, the span of control and use 
of written communication depending on the technology complexity that she 
classified into unit and small-batch, large batch, mass production, and process 
production. Eventually, environment, technology, and organizational size became 
the three legs of Contingency Theory (Zammuto et al., 2007). More recently, in the 
Industry 4.0 domain, some scholars revamp the contingency theory (Bokrantz, 
Skoogh, Berlin, Wuest, et al., 2020) and specifically using the socio-technical 
system view. Contingent variables range from technological complexity (measured 
as the number of technologies adopted and their integration) (Cagliano et al., 2019) 
to technological characteristics (Cimini et al., 2020). 

However, the contingency theory present some limitations i.e. an exclusive 
focus on efficient factors, restricting free managerial choice, and neglecting the 
development of capabilities (Sousa & Voss, 2008). These limitations mean the 
Contingency Theory does not always prescribe deviations from contingency-
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determined patterns (Sousa & Voss, 2008). To address these, researchers propose 
to adopt additional theories (Sousa & Voss, 2008) and novel methods (Van de Ven 
et al., 2013). This thesis adopts additional theories (Sousa & Voss, 2008), and in 
particular: the Information-Processing View (IPV) (Galbraith, 1974), the 
Organizational Sensemaking (OS) (K. E. Weick, 1995), the Knowledge-Based 
View (KBW) (Grant, 1996). and the Transaction Cost Economics (TCE) 
(Williamson, 1985)  

The aim of this thesis is not to provide a theoretical contribution to those 
theories that are well-consolidated but to use these theories to understand the 
phenomenon of digitalization that is when and how digitalization increases cost 
performance. In this vein, this thesis adopts two approaches: theoretical 
contextualization and phenomenon-based research (Ketokivi & Mantere, 2010; von 
Krogh, 2018).  

The theoretical contextualization approach is the application of multiple 
theories as an integral part of the reasoning and specifically in the inference process 
(Bokrantz, Skoogh, Berlin, Wuest, et al., 2020; Ketokivi & Mantere, 2010). 
Through this abductive reasoning approach, empirical results and theories are 
investigated simultaneously to provide the best explanation for the occurrence of 
specific results (i.e. inference to the best explanation). In this vein, the research 
effort was directed to provide the best explanation of the empirical results based on 
existing theoretical prescriptions that is the ability of a theory to explain the results 
regardless of the measurement of the underlying key theoretical concepts (Ketokivi 
& Mantere, 2010). In this thesis, the inference process is when and how 
digitalization and practices jointly affect cost performance.  

Phenomenon-based research is the study of the novel and emergent phenomena 
rather than theory testing (Von Krogh, Rossi-Lamastra, & Haefliger, 2012). A 
phenomenon can be defined “as regularities that are unexpected, that challenge 

existing knowledge (including existing theory) and that are relevant to the scientific 
discourse (Von Krogh et al., 2012; pp. 278). Phenomenon-based research aims to 
“capture, describe and document, as well as conceptualize, a phenomenon so that 

appropriate theorizing and the development of research designs can proceed” (Von 
Krogh et al., 2012; pp. 278). The phenomenon-based research has some advantages 
including a better understanding of emergent phenomena, the alignment of practical 
relevance and academic rigor, the development of new theories by (i) referring to 
existing theory (ii) integrating, modifying, or adapting exiting theories (iii) or 
inductively generate new theoretical concepts (Von Krogh et al., 2012). Phenomena 
can be of different types arising from natural to social science. In the management 
research, the focus is on social and organizational phenomena including, for 
instance, open-source software, transnational corporations (Von Krogh et al., 
2012), digitalization, and artificial intelligence (a subset of digitalization) (von 
Krogh, 2018). 

Phenomenon-based research and theoretical contextualization share the 
abductive reasoning approach (Bamberger, 2018; Bokrantz, Skoogh, Berlin, & 
Stahre, 2020). The thesis uses this approach by using a set of management theories 
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to describe the organizational and social phenomenon of digitalization (Bamberger, 
2018). 

Figure 1 provides the research framework for this thesis. 
 

 
Figure 1. The research framework of the thesis 

 

1.4 Empirical research setting 

To investigate the research questions, this thesis focuses on the Italian 
automotive component industry. The choice of the automotive industry is 
relevant for at least two main reasons. First, the study of automotive is of great value 
per se given that it has a high employment share and account for a greater part of 
the GDP of most advanced countries. For instance, in Italy, the turnover of the 
automotive industry accounts for 5,9% of the Italian GDP (Barazza & Coccimiglio, 
2019). Second, the automotive industry is subject to greater competitive pressure 
than other industries, which has to deliver complex industrial products subject to 
high levels of international standards, quality, and efficiency (Liao, Deng, Liao, & 
Zhang, 2020; Qamar, Hall, & Collinson, 2018) which determine a continuous need 
to innovate production process to stay ahead of the competition. Therefore, it is 
easier that firms in this industry are earlier adopters of new digital technologies 
(PwC, 2018) and thus to study technology-enabled organizational transformations.  

The research method used a mixed-method approach involving the analysis of 
both quantitative and qualitative data. Concerning quantitative data, the thesis used 
a multi-respondent and comprehensive quantitative survey issued to human 
resource, plant, and sales managers of the entire population of the Italian 
automotive supply firms between March 2019 and February 2020. The survey was 
conducted with the support of ANFIA (the major Italian industrial automotive 
association) and the Chambers of Commerce of Turin. The unit of analysis of the 
survey is the plant. A total of 101 auto suppliers’ plants participated in the survey, 

mainly SMEs operating as tier 1 (40%) and tier 2 (25%), constituting a sample 
representative of the population in terms of plant size, geographical region, and 
supply chain position. Response rates were 5% over the population and 18% over 
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the sampling frame of firms that were provided by ANFIA and the Turin Chambers 
of Commerce. A parallel and fully comparable survey of US firms active in the 
automotive sector has been performed by Case Western University, New York 
Stern University, and local automotive associations. 

The quantitative survey was accompanied by fourteen case studies undertaken 
in the Turin metropolitan area. The cases have been performed in this area because 
several automotive suppliers are located here working direct or indirect customers 
of FCA and the proximity to German carmakers and suppliers. The case studies 
allow investigating more deeply organizational practices as firms adopt digital 
technologies. 

1.5 Research findings and contributions 

1.5.1 Decision-making approaches 

Concerning decision-making, this thesis starts with the assumption that two 
main decision-making approaches can be found in manufacturing firms: intuition-
driven decision-making and data-driven decision-making. The intuition-driven 
decision-making approach refers to affectively charged judgments that arise 
through rapid, non-conscious, and holistic associations (Dane & Pratt, 2007), By 
contrast, the data-driven decision-making involves quantitative assessment, 
decomposition, and recombination of data and information that arise through slow, 
conscious and sequential associations (Julmi, 2019). In principle, there is no 
superior decision-making approach (Flores-Garcia et al., 2019) as the optimal 
approach to be used depending on the context i.e. on the structuredness of events 
upon which decisions are made. The structuredness of an event refers to the extent 
to which events can be decomposed and approached sequentially by applying 
objective, widely accepted decision procedures and rules, and by relying on 
unequivocal interpretations (Flores-Garcia et al., 2019). From this definition, it 
follows that two main variables describe the structuredness of an event: 
equivocality and analyzability (Flores-Garcia et al., 2019). Equivocality refers to  
numerous and conflicting interpretations about an event, and it is associated with 
problems such as a lack of consensus, understanding, and confusion. Analyzability 
refers to the degree to which it is possible to use computational, objective rules and 
procedures as opposed to personal judgment and experience (Flores-Garcia et al., 
2019). Analyzability can be further decomposed into detectability (the extent to 
which is possible to capture one or more 5W+H of an event), measurability (the 
extent to which such 5W+H can be empirically assessed), and interpretability (the 
extent to which a firm can achieve the needed understanding of the event) (Pigni et 
al., 2016). This thesis asserts that the adoption of physical-digital interface 
technologies, and their subsequent interconnection through network technologies, 
can respectively increase the analyzability and reduce the equivocality of events.  

Under these conditions, to exploit the value of digital technologies and increase 
cost performance, this thesis found a data-driven decision-making approach widely 
diffused in the plant is a precondition to increase cost performance. Through some 
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case studies, this thesis found that to diffuse a data-driven decision-making culture 
companies should invest in lean production, assigning to management measurable 
and attainable objectives, and training employees in data analysis and analytical 
skills.  

 

1.5.2 Governance practices with customers 

Concerning governance practices with customers, this thesis starts with the 
consideration that contractual and relational governance mechanisms are 
considered the most effective mechanisms for successful inter-organizational 
relationships in supply chains (G. Cao et al., 2015; L. Poppo & Zenger, 2002). The 
opportunities offered by digitalization allow companies to embrace new approaches 
to manage and govern supply chain processes with novel technological and 
analytical methods, thereby creating incentives for significant performance 
improvements and added value (Büyüközkan & Göçer, 2018).  The results reveal 
that the properties of synchronization and accessibility, which are ensured by 
network technologies, and contractual governance - in particular in the long-term 
dimension - are complementary, while virtualization and traceability, enabled by 
physical-digital interface technologies, are complementary with relational 
governance in the suppliers’ effort to increase cost performance. 

Physical-digital interface technologies, thanks to their ability to create real-time 
information transparency, encourage the development of trust between parties and 
provide a digital means for collaboration with the customers to pinpoint localized 
production problems or to find improvement opportunities. On the other hand, 
network technologies enable full and real-time transparency of process-related 
information and require long-term contractual governance that signals the 
commitment of suppliers to not exploit such an integration opportunistically, since 
it increases the visibility of customers on supplier’s processes. This thesis 
speculates that in the case of seamless integration of process information, it is not 
enough to have relational norms and trust and that a formal and explicit shared 
commitment is also required. 

Conversely to what was expected, the technologies that enable synchronization 
and accessibility do not appear to be linked to relational governance. This result is 
counter-intuitive, considering the growing literature on how the increased 
connectivity and seamless integration of information enhance further sharing and 
cooperation that would eventually increase the cost performance of suppliers (e.g. 
Fatorachian & Kazemi, 2020). Nevertheless, this can be interpreted as an enhanced 
capability of suppliers to prevent possible forms of opportunistic behavior, due to a 
closer dependency on customers (as an “indirect effect” of integration), as well as 

a way of maintaining selected information asymmetries and of leaving space for 
flexibility in production settings. Although a collaborative relationship allows both 
parties to obtain benefits, a conflicting element is inevitably embedded in the inter-
organizational relationship, especially in the automotive supply chain sector, due to 
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the tendency of firms to protect individual competitive advantages, such as cost 
performance (Huang, Han, & Macbeth, 2020). 

 
 

1.5.3 Governance practices with system integrators 

To make digitalization effective inside the factory, this thesis found that - at an 
increasing rate of technology complexity, customization levels, and novelty of the 
two different forms of digital technologies – manufacturing firms should rely on 
forms of relational governance practices based on co-creation and continuous 
collaboration with technology partners like system integrators that would allow the 
reduction of transaction costs but more importantly the sharing of technological and 
domain knowledge and process of sensemaking of new technologies.   

The implementation of physical-digital interface, with properties of 
virtualization and accessibility, does not require systemic changes into 
manufacturing infrastructures as they touch only isolated point of the factory (e.g. 
equipment, production line, etc.); they require limited customization to be operative 
by relying on plug-and-play installation; they are better-known technologies since 
they exist in the manufacturing domain as operation and automation technologies 
since decades. Therefore, the lower levels of complexity, customization, and 
novelty of these technologies determine lower levels of interpretative uncertainty. 
As a result, this thesis found that when firms adopt only physical-digital interface 
technologies their relationship with system integrators can be based on market-
based or transactional-based interactions which are relative only to the purchase 
and installation of the technologies. The combination of technology adoption and 
transactional governance practice was found to be positively related to cost 
performance. 

By contrast network technologies require the integration of data flows and the 
connection of equipment and information systems involving significant integration 
and systemic changes in the technological infrastructure of firms; they also require 
significant customization level to adapt network technologies with systems and 
processes already present in the firms; they are based on novel architectures such 
as Service-Oriented Architecture, new technologies such as cloud computing and 
data lakes that are relatively new to manufacturing firms. Therefore, the higher 
levels of complexity, customization, and novelty of these technologies determine 
high levels of interpretative uncertainty and in turn, the relationship with system 
integrator should be based on relational-based governance such as co-creation and 
continuous collaboration to have a successful project implementation and there 
more probabilities to increase cost performance. Moreover, a system integrator can 
become active partners in supporting the firms in reducing production costs by 
offering them tailored data analytics services to pinpoint production problems and 
provide solutions. The combination of physical-digital interface and network 
technologies adoption and relational-based governance practices of co-creation and 
continuous collaboration was found positively related to cost performance. 
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1.6. Conclusions 

Prior research has focused on the complementarity of information and 
communication technologies and organizational practices, overlooking the 
properties of a new generation of digital technologies (E. Brynjolfsson & Hitt, 
2000; Hanelt et al., 2020). While following this stream of research, this thesis 
contributes to a more recent literature stream that examines the impact of new 
digital technologies on organizational performance (e.g. Lorenz et al., 2020; 
Martínez-Caro et al., 2020; Trantopoulos et al., 2017). The first contribution is the 
identification of the properties of the two forms of physical-digital interface 
technologies and network technologies previously identified (Culot et al., 2020). 
Future research can use the properties of these two technologies to investigate other 
organizational issues such as competence and skills development with training 
practices, privacy issues related to the control of workers' activities, new 
mechanisms for knowledge search and recombination. 

These results of this thesis point out how complex is for manufacturing firms 
to make decisions about digitalization investments at the process level and to 
enhance cost performance. On the one hand, they have to invest in different and 
highly specific sets of digital technologies and, on the other hand, to change 
decision-making approaches, to manage their interplay with the governance 
mechanisms with technological partners and customers.  
 

1.6 Thesis Structure 

This thesis is structured as follows. Chapter 2 discusses digitalization, digital 
process innovation, and provides the results of a literature review on the properties 
of digital technologies. Chapter 3 briefly illustrates the management theories that 
will be used in this thesis. Chapter 4 illustrates the automotive industry as the 
research setting of this thesis providing the rationales of focusing on the automotive 
industry, the main industry characteristics, the main digitalization trends along with 
a description of the research method. These three chapters are a preamble to the 
investigation of the research questions in the following chapters. Chapter 5, Chapter 
6, and Chapter 7 discuss the interplay between digital technologies on hand, and 
decision-making approaches, governance practices with customers, and governance 
practices with system integrators on the other hand, on firms’ effort to increase cost 
performance. Chapter 8 provides a comparative analysis between Italy and the US. 
Chapter 9 provides a summary of the research findings, the theoretical 
contributions, and managerial recommendations. 
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Chapter 2 

Literature review on digitalization 

2.1 Introduction 

This chapter provides the definitions of digitalization and related terms (e.g. 
Industry 4.0), the digital technologies that are part of the digitalization 
phenomenon, the challenges of implementing digital technologies in manufacturing 
organizations (i.e. digital process innovations), and discuss the properties of two 
subsets of digital technologies: physical-digital interface technologies and network 
technologies. Along with the next chapter, this chapter provides a preamble to the 
following parts of the thesis. The method used in this chapter is a systematic 
literature review on two literature streams that investigate the implications of digital 
technologies from different perspectives: organizational and information system 
literature on one hand and operations management literature on the other hand. Both 
literature streams agree that there is a need to look at the unique properties or 
features of digital technologies to study how organizations need to adapt to 
technological implementation to increase cost performance (Cagliano et al., 2019; 
Cimini et al., 2020; Lusch & Nambisan, 2015). The review process started with a 
search query on the SCOPUS database limiting to peer-reviewed academic articles 
(excluding conference papers and non-academic articles) using both keywords from 
organizational literature (e.g. digitalization, digitization, digital technologies) and 
operation management literature (e.g. Industry 4.0, Smart Manufacturing, Industrial 
Internet) covering the period until September 2020 (Table 1). The outcome of these 
search query results in 861 papers. After reading the abstract of each article, the 
papers were grouped into two subsets referring to physical-digital interface 
technologies and network technologies while others not relevant were excluded. 
These two subsets were later expanded with two other queries that the use of some 
specific keywords (e.g. internet of things, IoT, digital twin for physical-digital 
interface technologies; digital infrastructure, digital platform, digital thread for 
network technologies) that have been retrieved after reading the most relevant 
papers of the first search query (Table 1). However, at this stage, the keywords 
“properties” and “principles” were excluded to include the papers that do not 

explicitly review these concepts but provides the characteristics of these 
technologies (Table 1). Furthermore, a set of other papers have been retrieved 
looking at the reference of the papers and added to these two subsets. Compared to 
the literature review performed by Culot et al., (2020), this thesis adds the analysis 
of organizational and information system literature where the discussion of digital 
properties is much more consolidated. 
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Table 1. Literature review scope and methodology 

Field Value 
Subject area Business; Management and Accounting; 

Economics, Econometrics and Finance; 
Decision Science; Engineering 

Source type Journal 

General digitalization literature 
Keywords (("digit* technolo*"  OR  "digitalization"  

OR  "Industr* 4.0"  OR  "Smart 
Manufacturing"  OR  "Industrial Internet" 
)  AND ( "propert*"  OR  "principle*" )) 

Output 861 papers 

Physical-digital interface technologies 
literature 

 

Keywords ("digit* technolo*"  OR  "digitalization"  
OR  "Industr* 4.0"  OR  "Smart 
Manufacturing"  OR  "Industrial Internet" 
) AND  ( "internet of things"  OR  "IoT"  
OR  "digital twin" )   

Output 460 

Network technologies literature  
Keywords ("digit* technolo*"  OR  "digitalization"  

OR  "Industr* 4.0"  OR  "Smart 
Manufacturing"  OR  "Industrial Internet" 
) AND (“digital infrastructure” OR “digital 

platform” OR “digital thread”) 
Output 138 

 
This chapter is structured as follows. In section 2.2, the digitalization 

phenomenon is defined, followed by a discussion of the term “Industry 4.0” which 

is widely used among practitioners. Since this thesis uses the Italian automotive 
industry as the setting of this research, section 2.2.1 illustrates briefly the Industry 
4.0 National Plan conceived by the Italian Ministry of Economic Development at 
the end of 2016. Section 2.3 provides the challenges of digital process innovation. 
This chapter concludes with a discussion of the properties of the two forms of digital 
technologies identified in section 4.4.  

2.2 Understanding digitalization 

Digitalization can be defined as the increased generation, analysis, and use of 
data through the adoption and implementation of digital technologies (e.g. sensors, 
RFID, machine vision, human-machine interfaces, data lakes, data warehouse) in 
the firm’s product and inbound and outbound activities to increase internal 

efficiency and/or increasing customer offerings (Björkdahl, 2020). 
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Recent advancements in hardware (e.g. miniaturization, efficient batteries), 
open and standard communication protocols (e.g. MT Connect, OPC Unified 
Architecture), algorithms for data storage and processing (e.g. Hadoop, NoSQL), 
and algorithm advancement in the field of Artificial Intelligence (e.g. machine 
learning) (Figure 2) - have enabled the emergence of a new set of properties (e.g. 
traceability, virtualization, synchronization) of digital technologies that are 
different from the previous generation of information and communication 
technologies characterized by automation technologies and enterprise information 
systems. The so-called digital properties emerge by embedding computing 
capabilities in what used to be a non-digital artifact. In this vein, physical objects 
become programmable, addressable, senseable, memorizable, traceable, and 
associable (Y. Yoo, 2010).  
 

 

Figure 2. Inter-connected trends 

 
The challenges and opportunities of digitalization have had a major impact on 

both business executives and policymakers. Digitalization has been recognized as 
the fourth industrial revolution after the steam power, electricity, and automation 
that enable respectively the three preceding revolutions. Following the German 
government who first introduced the term “Industry 4.0”, different countries have 

introduced national plans to increase the investment of private sectors to retain 
competitiveness at the country level e.g. in Italy “Piano Industria 4.0”, in France 

“Industrie du Futur”, Smart Manufacturing in the United States, etc. 
From a technical point of view, Industry 4.0 refers to “the digitalization of the 

manufacturing sector, with embedded sensors in virtually all product components 
and manufacturing equipment, ubiquitous cyber-physical systems, and analysis of 
all relevant data” (McKinsey Digital, 2015). It is composed of three main 
dimensions: (1) digitalization of manufacturing processes to enable decentralized, 
data-driven decision-making; (2) smart manufacturing through cyber-physical 
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systems that provide a virtual representation of the factory and permit real-time 
monitoring and self-controlled production systems; (3) inter-company connectivity 
between suppliers and customers within the value chain that increase information 
sharing and transparency (Arcidiacono, Ancarani, Di Mauro, & Schupp, 2019; 
Müller et al., 2018) 

The fact a digital revolution is for the first time is predicted rather than being 
observed raises critics about the clarity of the phenomena with multiple definitions, 
different technologies, and unclear boundaries. In this respect, Reischauer (2018) 
argues that Industry 4.0 represents a policy-driven innovation discourse aimed at 
institutionalizing a Triple Helix model of collaboration between government, 
academia, and enterprises. In this respect, an industrial revolution is not shaped by 
technological advancements only, but it is also an outcome of social and political 
factors (Reischauer, 2018). The role of such policy-driven innovation discourse is 
to legitimate the innovation activities of actors under the direction of digitalization 
(Reischauer, 2018). For instance, by establishing pilot lines and research programs 
in universities and research centers, an enterprise may do the same because its 
actions are now legitimate by the external environment. While it is yet to be seen if 
these policy-driven initiatives will determine a revolution, it is unquestionable that 
these policies have determined an increase of investment in digital technologies in 
all manufacturing industries (Bratta, Romano, Acciari, & Mazzolari, 2020). 
Crucially, the realization of a revolution that manifest in a leap of productivity in 
all the economy occurs when organizations re-arrange organizational and 
managerial practices. Remarkably, it took 30 years after the first introduction of 
energy into factory to manifest the second industrial revolution characterized by 
mass production because firms needed a new set of workers equipped with new 
skills and because previous equipment, previously located closed to source of 
power, had to be amortized before being replaced. 

 

2.2.1 The Italian national plan “Industria 4.0” 

An example of a policy-driven innovation discourse is the “Piano Industria 4.0” 

(hereafter Industry 4.0 National Plan) introduced at the end of 2016 by the Italian 
Minister of Economic Development. The Industry 4.0 National Plan had three main 
pillars/objectives: (i) increase investments in digital technologies through fiscal 
incentives; (ii) raise awareness and competence through new public-private 
partnership (e.g. digital innovation hubs and competence center) and strengthening 
of technical high institutes; (iii) advancing the technological infrastructure via 
capillary diffusion of ultra-wideband communication infrastructure and promotion 
of technological standard (MEF et al., 2018). 

Among the three objectives, the first received the greatest attention from 
policymakers and entrepreneurs mainly due to the delay of policymakers to set 
policies for the establishment of competence centers, which have started to operate 
only recently. The key measure was an increase of depreciation allowance, i.e. the 
amount a firm can reduce its taxable income, by a percentage of the 140% (rather 



 

20 
 

than 100%) on of the purchase cost of fixed capital (e.g. machinery, robots; the so-
called hyper-depreciation) and 250% on the purchase cost of software and 
connectivity technologies (i.e. super-depreciation) (Perani, Costa, & De Santis, 
2019). 

This led, in the first year, to a €7 Bn investment connected to the hyper-
depreciation measures, out of which 83% originated in manufacturing (Bratta et al., 
2020). The majority of recipient firms were SMEs located in the Northern regions 
(Bratta et al., 2020). A criticism often leveled at the Industry 4.0 National Plan is 
its focus on technological investments while the policy for the development of 
competencies (e.g. training paths in competence centers) had been considered only 
later. This advanced the idea the main outcome of the plan has been in substituting 
old machinery or retrofitting existing equipment (Perani et al., 2019). While this 
could have a short-term impact in reduced investment costs, such an adoption 
process may be accompanied by a limited or partial recognition of the long-term 
benefits ignited by the adoption of digital technologies. Despite the critics, the 
Industry 4.0 National Plan has been an enabler of investments in digital 
technologies. Recent research by the Italian Ministry of Economy and Finance 
found that around 85% of firms that benefit from hyper-depreciation in 2017 had 
never invested in digital technologies before (Bratta et al., 2020).  The same 
research also found that this investment had positive net effects on employment for 
younger individuals and those blue-collar in medium-skills occupations (Bratta et 
al., 2020). It has also the merit to shift the focus of politics on the industrial policy 
after a long time. However, it remains to be seen if competence centers and digital 
innovation hubs will favor the development of competence of Italian firms, 
including automotive suppliers. 

 

2.3 Digital process innovation 

As far as digital technologies are implemented to improve processes (and not 
product), digitalization involves many process innovations. Process innovation is 
an important component for the competitiveness of firms because it helps the firm 
achieve greater operational efficiencies, improve product features, and quality 
(Womack, Jones, & Roos, 1990). Process innovation refers to “the implementation 

of new or significantly improved production or delivery methods. This includes 
significant changes in techniques, equipment and/or software” (OECD. et al., 2005, 
p. 9). The exemplary process innovations are the assembly line introduce by Henry 
Ford to produce the Model T, which paves the way for mass production, and lean 
production (Womack et al., 1990). Indeed, not all the process innovation have a 
similar impact but occur in factories through small-scale changes in the methods of 
production, often involving routine operational improvements (Reichstein & Salter, 
2006). Reducing the time for prototype development, designing a new plant layout, 
purchasing and installing new equipment, integrating new and existing machinery, 
conducting pilot runs are all examples of process innovations (Trantopoulos et al., 
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2017). There is an agreed consensus that process innovation to be effective need 
changes in structure, management, and work practices (Davenport, 1993). 
Applications of the steam engine, for instance, required significant reorganization 
of the factory production (Ettlie & Reza, 1992). The outcomes of process 
innovation include reducing time-to-market, improving product quality, production 
flexibility, and delivery reliability (Flores-Garcia et al., 2019; Trantopoulos et al., 
2017), but scholars tend to agree that process innovation activities aimed ultimately 
at lowering production cost, thus making cost reduction a key operationalization 
(Trantoupolos et al., 2017) 

The current generation of process innovation is increasingly digital, driven by 
the application of digital technologies (Lorenz et al., 2020; D. R. Sjödin et al., 
2018). Digital process innovation is at the core of digitalization and Industry 4.0. 
Fichman et al., (2014) defined digital process innovation as significantly new 
(from the perspective of the adopter) ways of doing things in an organizational 
setting that are embodied or enabled by digital technologies. 

Digital process innovation is often highly problematic due to unique properties 
of digital innovations (Henfridsson & Bygstad, 2013; Youngjin Yoo et al., 2012), 
which require recombination of tacit and explicit knowledge, complex problem 
solving, learning by trial and error, and systemic changes into several components 
of a production system (D. R. Sjödin et al., 2018; Trantopoulos et al., 2017). The 
implementation of digital process innovations may lead to unanticipated 
technological challenges, new skills for the operating personnel and significant 
change in the work practices (Trantopoulos et al., 2017). These complexities make 
digital process innovations a highly challenging and risky effort that extends well 
beyond the introduction of digital technologies (D. R. Sjödin et al., 2018). 

 

2.4 Properties of digital technologies 

Digital technologies come in many features, including computing, 
communication, connectivity, and data processing capacities (Bharadwaj, El Sawy, 
Pavlou, & Venkatraman, 2013). Recent literature reviews argue that there is the 
need to limit and focus on specific technologies (Oesterreich & Teuteberg, 2016; 
Pfohl, Yahsi, & Kurnaz, 2015) and to group them concerning their purposes and 
characteristics (Cagliano et al., 2019; Cimini et al., 2020). In a similar vein, 
organizational scholars argue that digitalization should not view merely as the 
context for innovation, but increasingly as an operant resource that fuels innovation 
activities (e.g. Lusch & Nambisan, 2015). Nambisan et al., (2019) argue “it 
becomes imperative that studies incorporate characteristics innate to digital 
technologies as key explanatory factors in theorizing on the nature and process of 
innovation”. By bridging organizational literature (e.g. Kallinikos et al., 2013; 
Youngjin Yoo et al., 2012) and operation management literature (e.g. Culot et al., 
2020; Alejandro Germán Frank et al., 2019), this thesis aims to identify the 
properties of digital technologies in the manufacturing context. Some authors 
discuss the principal features of digital technologies under Industry 4.0. Hermann 
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et al.,  (2016) discuss four design principles: interconnection, information 
transparency, technical assistance, and decentralized decisions. Mittal et al., (2019) 
provide an exhaustive list of characteristics which they group in compositionality, 
context awareness, heterogeneity, interoperability, and modularity. However, these 
characteristics are mainly at a macro level and they do not distinguish the property 
of different forms of digital technologies. To fill this gap, this thesis focus on two 
forms of digital technologies: physical-digital interface technologies and network 
technologies (Culot et al., 2020). These will be discussed in the following 
paragraphs along with their properties. 

 

2.4.1 Physical-digital interface technologies 

From a technological point of view, implementing digital process innovations 
requires data access, computation, and communication technologies with acting 
hardware components to bridge the physical reality of equipment and product 
components with the cyber-space (Balsmeier & Woerter, 2019; Culot et al., 2020). 
This subset includes the Internet of Things and the Cyber-Physical Systems (Culot 
et al., 2020). However, these technologies are quite generic representing mainly 
concepts rather than actual technologies. The base technologies of this subset 
include sensors, tracking technologies (such as RFID, bar codes, smart label), 
machine vision and visualization technologies (such as augmented and virtual 
reality, display touch, wearables) 

Physical-digital interface technologies include mainly a set of hardware 
components to identify each physical device univocally and in real-time (Kallinikos 
et al., 2013; Youngjin Yoo et al., 2012), tracing its status (and the change in it) as 
it moves along the production process (Lasi et al., 2014). In other words, they allow 
full traceability of product and process-related data. Traceability is defined as “the 
ability to discover the history of decision in the [product] lifecycle; to control the 
quality of data, products, and processes; and to understand the relationship 
between assets” (T. D. Hedberg, Krima, & Camelio, 2019; p. 1). Traceability allows 
to keep track of the six basic elements describing an event (When, Where, Who, 
What, How and Why; e.g. when, by whom, where and what, how a product 
component was manufactured) (Pigni et al., 2016) As far as product components 
are concerned (which include final products, assemblies or single parts), they 
become information carriers as they contain information of the entire lifecycle 
phases (Anderl, 2015). For instance, machine vision technologies can track product 
components as they move along the production lines, especially in those situations 
in which it is difficult to attach other identification technologies (e.g. in harsh 
working environments) (Anderl, 2015). Machine-embedded and machine vision 
sensors can monitor in-process quality parameters and end-of-line product quality 
and store these data in databases allowing full traceability of product quality (Moru 
& Borro, 2020). Similarly, tracking technologies (such as RFID, NFC, bar codes 
and smart labels) enables the traceability of product components useful for logistic 
and supply chain such as real-time inventory status and location (Anderl, 2015; 
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Halawa et al., 2019). The same discussion applies also to machines, tools, dies, and 
other equipment where embedded sensors can track product and process-related 
data during the manufacturing processes such as (depending on the type of 
processing e.g. lamination, molding, milling etc.) workpiece temperature, 
environmental humidity, noise or acoustic emissions, vibrations, (tool and 
deformation) speed, (frictional, compressive and cutting) forces, etc.  The 
traceability of objects has a twofold implication. On the one hand, traceability 
guarantee that the component is produced according to the specifications providing 
a safety legal measures in case of product issues. On the other hand, if product 
issues arise the traceability of product components but also of equipment allow to 
isolate the related component of the same lot and then to undertake recall actions 
(Alejandro Germán Frank et al., 2019), understand the root cause of quality issues 
(e.g. machine operating at a lower speed, excessive tool wear, an operator not well-
trained etc.), and prevent future production disturbances. 

Connected to the traceability of physical objects, being them equipment or 
product components, is the second property of physical-digital interface 
technologies: virtualization. In this context, virtualization is defined as the ability 
to represent and simulate faithfully the behaviors of a physical device or a process 
(Bailey et al., 2012). Virtualization can range from a simple approach, where only 
a set of data is gathered and make available in the virtual world, to more complex 
approaches, where physical objects or processes are simulated to predict their 
dynamics and behaviors (Tao & Zhang, 2017). Virtualization is the ability to create 
a digital twin of a physical device or process (Tao et al., 2018). Concerning product 
components, virtualization means that data may not only related to nominal 
geometry but also tolerances, material specifications, component list, process 
specifications, and inspection requirements thereby providing a direct link with 
manufacturability and quality inspection (T. Hedberg, Lubell, Fischer, Maggiano, 
& Feeney, 2016). Like traceability, virtualization apply also to machines, tools, 
dies, and other equipment. For instance, machine vision can be applied to the 
condition monitoring of tools degradation in machining processes (Lins, de Araujo, 
& Corazzim, 2020).  

Virtualization enables processes of understanding, interacting, and predicting 
the behavior of physical objects or processes. From operating through virtual 
models to control machines and production processes, physical-digital interface 
technologies increasingly allow operating within digital models to enable the 
understanding, study, and experimentation. On the other hand, virtualization 
determines an increase of cognitive overload, an increase of “informated” work, 
and may cause a lack of trust in digital models or representations (Bailey et al., 
2012).  As far as machine tools (i.e. a machine that cut, shape, finish or other rigid 
materials), the most common application of virtualization in the shop-floor is 
predictive maintenance (Bokrantz, Skoogh, Berlin, Wuest, et al., 2020),  Literature 
shows that the more data sources are used to retrieve different kind of data (e.g. 
RFID tags and readers, power meters, accelerometers, acoustic emission sensors, 
coordinate measuring machines, etc.), the more the digital twin is a faithful 
representation of the physical process and therefore the better the ability to predict 
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the maintenance requirements (C. Liu, Vengayil, Zhong, & Xu, 2018). Concerning 
product components, the most direct application of virtualization is the prediction 
of product quality. Indeed, maintenance and product quality are related and it easy 
to find applications that estimate both (Lenz et al., 2018). 

Taken together, the traceability and virtualization properties of physical-digital 
interface technologies allow to access and collect a range of process- and product-
related data that can be later processed by employees to troubleshoot root causes or 
predict the occurrence of quality and equipment issues. The two properties increase 
the analyzability of events and problems (i.e. the degree to which problems or 
activities require objectives procedures as opposed to personal judgment or 
experience) (Flores-Garcia et al., 2019). Indeed, the data generated from multiple 
sources is ready for univariate and multivariate analysis (e.g. correlation, clustering, 
regression) and machine learning algorithms could be implemented to predict the 
occurrence of production problems (e.g. quality issues, equipment breakdown).  

 

2.4.2 Network technologies 

Once the necessary data on physical devices have been collected, network 
technologies provide the necessary (and ideally seamless) integration to make the 
product and process data analyzable, accessible, and easily exchanged within and 
across the organizational boundaries (Culot et al., 2020). Network technologies 
enable the digital thread concept defined as the process of linking disparate 
systems across the product lifecycle and throughout the supply chain (T. Hedberg, 
Feeney, Helu, & Camelio, 2017). Network technologies ensure an improved 
physical-to-digital and digital-to-physical transfer capabilities (Fatorachian & 
Kazemi, 2020), with virtual prototypes and design requirements in the digital-space 
that are bridged with the products to be realized, the materials to be handled and the 
operational processes to be managed, with a multiplicity of business partners and 
employees having access to them. 

Network technologies include mainly a set of software components with the 
aim of quickly, reliably, and safely integrating vertically (across manufacturing 
stages i.e. from production planning, scheduling, maintenance, quality control to 
actual manufacturing) and horizontally (across product lifecycle stages i.e. from 
product development to sustainment) different streams of data in a unified corporate 
business system realizing the concept of digital thread (see above) and extended 
enterprise (Helu et al., 2017). Network technologies collect, integrate, and process 
sensory data from equipment and product components (both historical and real-time 
data), product data (e.g. design parameters from a CAD file, G-code file from a 
CAM file), production data (e.g. process order information), and business data (e.g. 
sales data from CRM system, accounting data from ERP, SCM, etc.) commonly 
managed in enterprise information systems such as MES, ERP, PLM, CRM (Cui et 
al., 2020; Helu et al., 2017). It should be noted here that many of these technologies 
exist in manufacturing for decades. However, these systems have two main 
drawbacks (Cui et al., 2020). First, they lack sensory data and therefore are not able 
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to track real-time changes in the factory and the supply chain (Fatorachian & 
Kazemi, 2018). Second, they are developed by multiple vendors using different 
interfaces and protocols resulting in siloed data sources and information 
(Fatorachian & Kazemi, 2018; Helu et al., 2017). Moreover, as a new system is 
introduced point-to-point integrations with the other systems are necessary. 
Network technologies advance a new era for enterprise information systems 
through the capture of real-time and historical shop-floor data and system 
integration enabled respectively by new or improved physical-digital interface 
technologies, standards, and protocols, (e.g. MTConnect, OPC UA), 
consumerization of digital technologies (Bygstad, 2017) on the one hand; new data 
infrastructures (Helu et al., 2017; Lenz et al., 2018), big data technologies (e.g. 
Hadoop, Spark) (Cui et al., 2020) and cloud computing on the other hand. In this 
respect, network technologies advance the integration between lightweight IT and 
heavyweight IT (Bygstad, 2017), between operational and information 
technologies (Agarwal & Brem, 2015; Lenz et al., 2018)  

In a data-driven manufacturing organization, the data infrastructure should 
ensure access to their systems just like a user surfs the internet through a web 
browser or mobile applications (e.g. production manager, maintenance employees, 
customers, etc.). Related to this is the need to support multiple users with different 
needs and viewpoints. Second, the data infrastructure has to deal with the 3Vs 
challenges of big data: Volume (terabytes of data size), Velocity (ingesting or 
processing data in streams or batches, in real-time or non-real-time), Variety 
(structured, semi-structured, unstructured data coming from different sources) (Cui 
et al., 2020). To accomplish these challenges, new data infrastructures are proposed 
in the literature such as 4-tiers and Service-Oriented Architecture (SOA) 
architectures (Fatorachian & Kazemi, 2018; Helu et al., 2017), hybrid data 
infrastructure with data lakes and data warehouses at their centers (Cui et al., 2020; 
Fang, 2015), new conceptual models (Tao & Zhang, 2017), big data and cloud 
computing technologies (Coronado et al., 2018; Cui et al., 2020). Data lakes are 
defined as firm-wide data platforms for storing and analyzing different sources of 
unstructured data in their native formats (Fang, 2015). Data warehouses are 
defined as enterprise-wide data management for collecting, pre-processing, and 
analyzing the different sources of mainly structured data (Fang, 2015). 
Unstructured data are any kind of data that cannot be arranged in rows and columns 
without losing inner information. Good examples are sensor readings, CAD models, 
textual documents, videos, images. Structured data are considered any kind of data 
that can be arranged into columns and rows without losing information. Good 
examples are computer data logs, excel files, CSV files, ERP data. It is estimated 
that the average information system contains 15% structured data and 85% 
unstructured (Cui et al., 2020). Cloud computing can be defined as a technology 
for on-demand network access to a shared pool of configurable computing 
resources (e.g. networks, servers, storage, applications, and service) that can be 
provided with minimal management effort or service provider interaction (Mell & 
Grance, 2011).  
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While the technical characteristics of data architectures, data lakes, data 
warehouse, cloud computing, and big data technologies are out of the scope of this 
paper, what is important to note here is the increased tendency of manufacturing 
firms to use network technologies (a collection of the aforementioned software 
technologies) to collect sensory and enterprise data from different sources into a 
unified system departing from the traditional siloed perspective among different 
manufacturing systems (Björkdahl, 2020; Cui et al., 2020; Fatorachian & Kazemi, 
2018; Helu et al., 2017; Lenz et al., 2018; D. R. Sjödin et al., 2018).  

Some commercial examples of network technologies are provided in the 
appendix (Table A1). In the literature, some open-source approaches are proposed, 
especially suitable for SMEs (e.g. Coronado et al., 2018; Kwon, Monnier, Barbau, 
& Bernstein, 2020; Lenz et al., 2018). 

Having discussed briefly the core technologies and data infrastructure, the 
properties of network technologies are provided below. Network technologies 
enable accessibility, that is the ability to provide easy access to a heterogeneous and 
common pool of data coming from digitized devices and enterprise information 
systems such as sensory and enterprise data by different employees, departments, 
and business partners (i.e. customers, systems integrators, suppliers). Accessibility 
is similar to the concept of communality as long as the data access is provided 
through a common and integrated pool of data (Phang et al., 2015). While different 
actors have different objective functions, needs, and viewpoints (Lenz et al., 2018), 
the accessibility characteristic of network technologies enhances the level of 
integration (Culot et al., 2020; Fatorachian & Kazemi, 2018) -  e.g. between product 
development and manufacturing, between maintenance and quality  (Lenz et al., 
2018) through performance indicators than span across multiple application 
domains e.g. Overall Equipment Effectiveness (OEE), Life-Cycle Assessment 
(LCA) and Life-Cycle Cost (LCC) (Lenz et al., 2018). Having access to all available 
data creates the opportunity to unveil new patterns that were hidden in the data 
(Lenz et al., 2018) thereby increasing generativity i.e. the creation of new 
knowledge (Youngjin Yoo et al., 2012). For instance, during the design and 
engineering of novel products knowing in advance the impact of a certain parameter 
creates new knowledge and therefore advances the competitiveness of the 
organization (Lenz et al., 2018). Accessibility also favors agility defined in this 
context as the ability to implement changes in the company in the real-time and to 
adapt to new events (e.g. a production line breakdown, a change in product 
requirements) (Schuh et al., 2017). By integrating and make widely available data, 
network technologies enhance agility by reducing the response time latency for 
corrective actions, for instance when production problems arise because data is 
ready for the analysis of root cause and the effectiveness of corrective actions can 
be easily monitored (Pigni et al., 2016; Schuh et al., 2017). Moreover, by 
representing a single source of truth the accessibility/commonality characteristic of 
network technologies increases the efficiency (Lenz et al., 2018) as it avoids 
unnecessary redundancies (e.g. in the duplication of data), increases task 
performance (e.g. engineering tasks), and prevents the “reinventing the wheel” 

issue so that the time is not spent on developing knowledge that has already been 
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accumulated. Another organizational implication of accessibility/commonality is 
the reduction of equivocality (i.e. multiple and conflicting interpretations among 
different actors and employees about activities) since data represent facts and single 
sources of truth which reduce the equivocality of events. Moving outside the focal 
enterprise, it is clear how accessibility enhances the level of coordination and 
collaboration with supply chain partners (Chatterjee, Segars, & Watson, 2006; 
Farahani, Meier, & Wilke, 2016), but also new mechanisms of collaborations with 
system integrators based more on service rather than standard product provision 
(Kamalaldin et al., 2020). However, accessibility poses also new challenges caused 
by the increased behavioral uncertainty of partners determined by opportunistic 
behaviors. For instance, a customer may use opportunistically shared data (e.g. on 
resource allocation and status, material usage, job scheduling etc.) to understand 
how its suppliers use their production resources, control them and possibly opt for 
more efficient supplier at the end of the contract. In this respect, partners should not 
exhibit a  tight control of network technologies because it hinders the generativity 
potential of the network technologies (Youngjin Yoo et al., 2012). 

Network technologies enable synchronous communication between and among 
digitized devices and enterprise information systems (Fatorachian & Kazemi, 
2018). The synchronization ensures that data in enterprise information systems are 
always updated and in real-time, thereby increasing opportunities for optimization 
and automation of the factory (Cui et al., 2020; Porter & Heppelmann, 2015). For 
instance, the process states of machines can be used for real-time production 
planning and scheduling tasks (Lenz et al., 2018). Since it would be challenging to 
perform one-to-one integration (if not impossible) among different business 
systems, network technologies leverage the data aggregation layer and require only 
one connection with the platform (Helu et al., 2017). In this vein, new software or 
applications (e.g. a warehouse management system) can be easily synchronized 
with digitized devices and other enterprise information systems (Helu et al., 2017). 
Synchronization facilitates the digital-to-physical transfer capability (i.e. from 
product design to manufacturing). Accounting for sensors-based data, a 3D digital 
product model can better delineate product and manufacturing information 
(Ghobakhloo, 2018; Tao et al., 2018), Drawing on different standards (e.g. STEP, 
G-Code, MT Connect, QIF) and virtualization technologies (e.g. equipment-
embedded sensors or machine vision sensors), the “as-executed” physical product 

and its “as-inspected” virtual product (e.g. obtained with, can be compared with 

“as-designed” or “as-planned” 3D digital product model (Anderl, 2015; Helu et al., 
2017; Kwon et al., 2020), obtaining an accurate quality inspection of each product 
component (Moru & Borro, 2020) Table 2 summarizes the properties of network 
technologies and their organizational implications. 
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Table 2. Properties of digital technologies 

Forms of digital technologies Properties Description Organizational Implications2 References 

Physical-digital interface 
technologies  
 
(Definition: a collection of 
mainly hardware technologies 
to bridge the physical reality of 
equipment and product 
components with the cyber-
space e.g. sensors, machine 
vision, RFID, smart labels, 
augmented/virtual reality) 
 
(Related Industry 4.0 concepts: 
Digital Twin, Internet of 
Things) 

Traceability Ability to identify each object 
(e.g. equipment or product 
components), locate, retrieve 
status (e.g. “in use, in storage, 

being retrieved”) in real-time.  
This data (“traces”) is recorded 

into “memories” that keep track 

of the six basic elements of an 
event (Who, Where, When, What, 
Why, How) e.g. when a product 
component was processed? 

• Increasing monitoring and control by 
tracking activity and authenticating 
objects 

• The object “traces” can be used for 

guaranteeing product safety and for 
troubleshooting quality or equipment 
issues 

• The trustworthiness of data provenance 
and/or parts manufactured 

 

(Anderl, 2015; 
Balsmeier & 
Woerter, 2019; 
Halawa et al., 
2019; T. D. 
Hedberg et al., 
2019; 
Kallinikos et 
al., 2013; Lasi 
et al., 2014; 
Moru & Borro, 
2020; Pigni et 
al., 2016; 
Youngjin Yoo 
et al., 2012)  
 

Virtualization Ability to represent and simulate 
faithfully the behaviors of a 
physical device or a process using 
sensor-based data (e.g. 
temperature, humidity, acoustic 

• Increase the analyzability of events (e.g. 
machine breakdown, quality issues) 

• Operating within digital representations 
• Cognitive overload, increased analytics, 

“informated” work 

(Anderl, 2015; 
Bailey et al., 
2012; 
Ghobakhloo, 
2018; T. 

 
22 The list of organizational implications provided here is not meant to be exhaustive but to provide some examples related to the topics of the thesis. 
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emissions, pressure, speed). It 
ranges from a simple approach, 
where only a set of data is 
gathered and make available in 
the virtual world, to more 
complex approaches, where 
physical objects or processes are 
simulated to predict their 
dynamics and behaviors 

• Increased joint experimentation and 
prototyping with customers for 
effective collaboration through the 
sharing of context-sensitive data 

Hedberg et al., 
2016; Lins et 
al., 2020; Moru 
& Borro, 2020; 
Tao et al., 
2018) 

Network Technologies 
 
(Definition: a collection of 
software, systems, 
infrastructures, and platforms 
to integrate vertically and 
horizontally different streams 
of data in a unified corporate 
business system;  
 
(Industry 4.0 concepts: Big 
Data, Digital Thread) 

Accessibility 
(Communality) 

Ability to provide easy access to 
a heterogeneous and common 
pool of data coming from 
digitized devices and enterprise 
information systems  
 

• Increased internal integration and 
working toward common analytical 
objectives through shared performance 
indicators (e.g. OEE, LCA, LCC) 

• Make use of previously unknown 
mechanisms and knowledge hidden in 
the data to generate new knowledge 

• Increased agility and efficiency 
• Reduced equivocality of events 
• Enhanced coordination and 

collaboration with supply chain partners 
• Increased behavioral uncertainty 

increases the chances of opportunistic 
behaviors 

(Farahani et 
al., 2016; 
Garcia-Perez-
de-Lema, 
Madrid-
Guijarro, & 
Martin, 2017; 
Lenz et al., 
2018; Phang et 
al., 2015; Pigni 
et al., 2016; D. 
R. Sjödin et al., 
2018; 
Youngjin Yoo 
et al., 2012) 
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 Synchronization Ability to establish a bi-
directional communication 
framework between physical 
devices and enterprise 
information systems 
 

• Increased automation and optimization 
of tasks (e.g. production planning and 
scheduling, design and engineering) by 
linking machines and enterprise 
information systems together   

• A direct link between product design on 
the one hand and manufacturability and 
quality inspection on the other hand 
 

(Cui et al., 
2020; Helu et 
al., 2017; 
Kwon et al., 
2020; Lenz et 
al., 2018; 
Porter & 
Heppelmann, 
2015; Tao & 
Zhang, 2017) 
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Chapter 3 
 

Literature review on management 
theories 

3.1 Introduction 

Since digitalization is a pervasive phenomenon that affects organizations at 
different levels with the potential to transform not only the structure of the whole 
organization but also its relationship with external partners in the ecosystem this 
thesis adopts multiple management theories depending on managerial practice 
investigated. By following the abductive approach of theoretical contextualization 
in which results and theory are investigated simultaneously (Ketokivi & Mantere, 
2010), this chapter reviews the theoretical lenses that will be used in the following 
chapter. The theories review in this chapter are the Information-Processing View 
(IPV), the theory of Organizational Sensemaking (OS), the Knowledge-Based 
View (KBV), and the Transaction Cost Economics (TCE). Depending on the 
management practices, different theories are used in each of the following chapters 
(Table 3).  Given that these theories have been developed during a different 
generation of information technologies, which could explain the technological-
driven organizational change, this thesis enriches such established theoretical lenses 
by including the specific traits or properties of digital technologies. 
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Table 3. Chapter vs management theory 

Chapter Title Management theory 

5 
Making Digitalization effective 
through decision-making practices 

• Information-Processing View 
• Organizational Sensemaking 
• Knowledge-based View 

6 

Making Digitalization effective 
through governance practices with 
customers 

• Transaction Cost Economics 

7 
Making Digitalization effective 
through governance practices with 

• Knowledge-based View 
• Transaction Cost Economics 

 

3.2 Information-Processing View 

Decision-making has been investigated by different theoretical approaches. A 
common tenet of all such approaches is that of bounded rationality from the 
behavioral theory of the firm (Herbert Alexander Simon, 1997). Bounded 
rationality implies that humans have limited capacity to process information or 
consciously ignore information which determines sub-optimal decisions (Herbert 
Alexander Simon, 1997). The bounding capacity for rational decision-making 
arises from three sources: (i) the individual’s limitation in his mental skills, habits, 
and reflexes, (ii) the extent of information and knowledge possessed, and (iii) 
values that may diverge from organizational goals (Herbert Alexander Simon, 
1997). Starting from the assumption, organizational can increase coordination 
mechanisms (i.e. goals, hierarchies, rules, and incentives) that delegate decision-
making through the hierarchy (von Krogh, 2018). Starting from this, the IPV deals 
with the second source of bounded rationality i.e. lack and ambiguity3 of 
information that translates into task uncertainty. The IPV theorizes the condition 
under which organizations increasing or decreasing the information processing 
capacity of organizational members thereby reducing uncertainty (Galbraith, 1974). 
The IPV sees organizational members as information processors that must deal with 
task uncertainty and equivocality defined respectively as absence and ambiguity of 
information (Daft & Lengel, 1986; Galbraith, 1974). Uncertainty and equivocality 
determine the requirements to process more information for the execution of tasks. 
In line with the Contingency Theory, the tenet of IPV is to improve decision-
making by designing organizational arrangements that exhibit fit between 
requirements and capacities of information-processing using a variety of 
organizational practices that either increase the information processing capacity 
(vertical information systems, group meetings, direct contacts) or reduce the need 
of information processing  (i.e. slack resources, self-contained tasks).  

 
3 Ambiguity was added in a later theoretical development by Daft and Lengel (1986) 
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Current digital technologies that generate and collect a large volume and variety 
of data, and process them with high velocity reduce the cost of information 
processing and may reduce the need to invest in vertical information systems or 
lateral relations (Bokrantz, Skoogh, Berlin, Wuest, et al., 2020; von Krogh, 2018).  
As we will see, this requires a change in decision-making approaches. Using key 
concepts from the IPV this thesis will examine why a shift from intuition-driven to 
data-driven is much needed to tackle the opportunities and characteristics of digital 
technologies and therefore increase organizational performance. 

 

3.3 Theory of Organizational Sensemaking 

The static view of IPV has been criticized by the impersonal view (i.e. not 
socially constructed) of information processing. Organizations not only merely 
process information but also interpret information to achieve a shared interpretation 
of the environment which is inherently equivocal and uncertain at least at the 
beginning. When environmental changes, organizational members collect 
information and put their meaning upon experience and use the ascribed meaning 
for subsequent understanding and action (Choo, 1996). Stored interpretations are 
then used to deal with similar past events. In OS terms, decision-making is not only 
about making choices but also an arena to interpret and make sense of information 
and only after making choice or deliberating actions (Choo, 1996). Sensemaking 
allows people to deal with equivocality and uncertainty of the environment by 
creating rational accounts that enable actions (Maitlis, 2005). Sensemaking both 
precedes and succeeds choice-making (the output of decision-making): “sense-
making provides clear questions and answers” (K. Weick, 1995) that feed decision-
making (Maitlis, 2005). Similar to IPV, central to OS is the reduction of 
equivocality and uncertainty but unlike IPV that aim informs this with 
organizational practices that enhance the fit between information processing 
requirement and capacity, OS theorizes under the formation and reformation of 
social roles and relationships among a group of actors and sense-giving process (K. 
Weick, 1995). Sensemaking is often associated with critical thinking. People not 
only process information but also critic, question, argue, contradict, doubt, distrust, 
etc.  (Choo, 1996). 

Sensemaking is particularly relevant in the age of digitalization. The 
sensemaking process can explain why for instance even if data are collected with 
digital technologies they are not then used in decision-making (Bokrantz, Skoogh, 
Berlin, Wuest, et al., 2020). With an increasing volume, variety, and velocity of 
data and improved algorithms, employees increasingly need to make sense of these 
data which means understanding which problems should or could be addressed 
(Verganti, Vendraminelli, & Iansiti, 2020). Data are not explicable by themselves; 
they require human judgment and interpretation to make sense of this data and make 
a decision. Even when artificial intelligence can effectively search out optimal 
solutions in a predefined landscape, human decisions remain superior in 
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formulating problems worth solving by humans or machines and in the 
interpretation of the solutions proposed by algorithms (von Krogh, 2018). 

 

3.4 Knowledge-Based View 

The KBV raises similar critics to the IPV: organizations exist not only to 
process information efficiently to solve problems statically given to organizations 
but also to create information and knowledge by actively defining both problems 
and solutions (Nonaka, 1994). This is the premise of the Knowledge-Based View 
(KBV) of the firm (Grant, 1996). The KBV postulates on the conditions and 
practices under which organizations absorb external knowledge through search, 
assimilation, recombination, and application of existing and newly acquired 
knowledge and the impact of knowledge absorption on organizational performance 
(Cohen & Levinthal, 1990; Grant, 1996; Savino, Messeni Petruzzelli, & Albino, 
2017). KBV argues that a mix of knowledge, both codified and tacit is required to 
introduce innovation, a key form of knowledge creation (Nonaka, 1994). Explicit 
or codified knowledge is formal knowledge that is transmitted between individuals 
and groups. It is often articulated via formulas, rules, procedures, specifications, 
databases, etc. Tacit or implicit knowledge is a personal knowledge that is difficult 
to formalize or communicate. It consists of know-how, insights, and intuition 
arising from experience (Nonaka, 1994). Moreover, because organizations possess 
a different stock of knowledge, KBV also theorizes that organizations need to 
integrate specialists’ knowledge into the production of goods and services (Grant, 
1996). Commonly used practices to access and recombine tacit and explicit and 
different stock of knowledge are team involvement, personnel rotation, alliance, 
open-source platforms, university-industry collaborations, search depth, search 
breadth, etc.  (Savino et al., 2017). 

The impact of IT on knowledge creation has attracted significant interest in the 
research community for its ability to enable the search and recombination of 
knowledge (see Roberts et al., 2012 for a review). However, these studies focus on 
enterprise information systems, while the implication of “how digital technologies 
sustain and change the foundations of organizational learning, absorptive capacity, 
combinative capabilities, dynamic capabilities or shape open innovation and 
technological complementarities, remains underexplored” (Appio, Frattini, 
Messeni Petruzzelli, & Neirotti, 2018). 

3.5 Transaction Cost Economics 

The TCE is a general theory of the governance of exchange relationships among 
organizations (Ketokivi & Mahoney, 2020). The starting point of TCE is that 
whenever there is an exchange relationship between two parties (e.g. between a 
buying and a supplying firm) there are transaction costs consisting of expenses that 
occur ex-ante such as searching for partners, negotiating cost and writing contracts 
and ex-post such as enforcing contracts, monitoring performance, adjusting to 
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situational conditions, renegotiation and sometimes third-party mediation and 
arbitration, and in the extreme case litigation (Ketokivi & Mahoney, 2020; 
Williamson, 1985). Transaction costs, also called governance costs, arise from 
three main transactional factors: asset specificity, uncertainty, and frequency of 
interactions (Williamson, 1995).  

The objective of TCE is to minimize such transaction costs (arising from these 
sources) by choosing the optimal governance mechanism from a supply chain 
efficiency perspective (Ketokivi & Mahoney, 2020). Literature has largely focused 
on binary “make” or “buy” decisions, but TCE includes various hybrid governance 
forms, such as contractual and relational governance mechanisms (Z. Cao & 
Lumineau, 2015). Contractual governance refers to the extent to which exchange 
relationship is managed by a contract that specifies the responsibilities and the 
obligation of each party and includes penalties or safeguards in predefined terms 
(L. Poppo & Zenger, 2002) that may reduce opportunistic behavior (a driver of 
behavioral uncertainty) and therefore reduce transaction cost. Contracts are not all 
equals but they have different “variables” or “dimensions” to manage transaction 

costs such as duration, completeness, control clauses (flexibility vs rigidity) (Z. Cao 
& Lumineau, 2015). However, due to bounded rationality and information 
asymmetry contracts are incomplete, and firms should find different governance 
practices to manage inter-organizational relationships including credible 
commitments and safeguards such as long-term contracts, joint investments, 
personnel exchange (Halldorsson, Kotzab, Mikkola, & Skjøtt-Larsen, 2007) but 
also relational-based governance based on reciprocity, mutual understanding, 
fairness and shared identity (Laura Poppo, Zhou, & Li, 2016). Just as contractual 
governance is composed of multiple dimensions, the same holds for relational 
governance. According to Zaheer and Venkatraman (1995), there are structural and 
process dimensions of relational governance. Whereas structural dimension refers 
to the degree of hierarchical or market structuring of the relation, process dimension 
refers to expected and actual inter-firm activities that accompany the exchange 
within the framework of governance structure (Zaheer & Venkatraman, 1995). 
According to this conceptualization, relational governance entails a form of “quasi-
integration” governance structure indicating a stable, long-term relationship and 
high dependence of both supplier and customer for business performance while 
process dimensions entail both relational norms and trust (Artz & Brush, 2000). 
Whereas relational norms refer to expectations about behaviors that are least 
partially shared by a group of decision-makers and directed toward collective and 
group goals including elements such as flexibility, solidarity, information exchange, 
and participation (Y. Liu, Luo, & Liu, 2009); trust refers to confidence in the 
partner’s integrity, credibility, and benevolence in a risky exchange relationship (Z. 
Cao & Lumineau, 2015). Trust emphasizes the exchange’s cooperative atmosphere 

(Y. Liu et al., 2009). These structural and process dimensions are necessary to 
ensure that the relationship is continuous, collaborative, and trust-based to increase 
suppliers' incentive to invest in cost performance improvements (Helper et al., 
2014). 
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A note on transaction and production costs. Transaction costs and 
production costs are different but related costs. The difference is evident in 
corporate accounting where the former is treated as overhead costs, while the latter 
is a direct cost (Ketokivi & Mahoney, 2020). However, transaction costs and 
production costs are related to two different decisions. First, about governance 
choice, each party should compare production cost and transaction cost differentials 
(Ketokivi & Mahoney, 2020). For instance, a firm should consider the production 
cost savings from market-based transactions over lower transaction costs that an 
internal organization may face (Williamson, 1985). Second, concerning innovation 
activity decisions, lower transaction costs provide greater incentives to firms 
involved in the exchanging relationship to engage in innovation activities including 
product but also process innovations aimed at reducing production cost. For 
instance, demand uncertainty determines high transaction costs that force 
manufacturers to keep excess inventory or excess production capacity which in turn 
result in higher production costs and thus a lower cost performance. A similar 
pattern occurs in product development in which technological uncertainty results in 
both high transaction costs and production costs due to the difference between 
product design and manufacturability with subsequent delay and reworks. 
Contractual and relational governance mechanisms may lower transaction costs 
arising from uncertainty, asset specificity, and infrequent interactions (Dyer, 1997), 
and in turn provides greater incentive for the firms to engage in cost reduction 
activities (Blome et al., 2013). The fact that governance mechanisms may reduce 
both transaction and production costs is documented by Dyer (1997): “The 

transactor’s choice of governance structure influences the incentives of the 

transactors to engage in value creation behavior for non-contractible such as 
innovation, quality, and responsiveness” (pp 538). In the automotive industry, 

suppliers are more willing to bring to new ideas of cost reduction from value 
analysis and value engineering if the transaction costs are kept low by the 
governance mechanisms (i.e. contractual and relational) (Dyer, 1997). If suppliers’ 

expectations that cost savings will be jointly shared or even worse that cost savings 
ideas will be shared with other suppliers for competitive bidding decrease the 
incentive to invest in cost reduction initiatives. To sum up, the governance 
mechanisms aimed at reducing the transaction costs between the parties thereby 
creating incentives for value creation behavior that will ultimately increase cost 
performance (Dyer, 1997). The point here is that when transaction costs are high 
(low), the firm’s incentive and actual cost performance initiatives will be low 
(high). 
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Chapter 4 

The empirical research setting: the 
Automotive Component Industry 

4.1 Introduction 

The automotive industry is experiencing a period of market turbulence, rapid 
technological change, regulatory requirements (in terms of safety and 
sustainability), and dramatic recession due to the coronavirus health emergency. A 
recent large-scale survey report from 1154 executives of automotive firms report 
battery, fuel cell electric mobility, and connectivity, and digitalization as the key 
three megatrends until 2030 (KPMG, 2020). However, COVID-19 may now move 
the industry’s agenda from technology development to survival and operational 
needs (KPMG, 2020). In this scenario, the adoption of new digital technologies 
increases the chances of survival of automotive firms (Arcidiacono et al., 2019). 
There is the need to understand the practical responses in facing the comprehensive 
challenges of digitalization in the whole automotive supply chain (Lin, Lee, Lau, & 
Yang, 2018), especially considering the high competition of the automotive 
industry on technology and functionality of products and related complexity of 
development (Trautrims, MacCarthy, & Okade, 2017). Since the thesis uses the 
automotive industry as the setting of the research, this chapter describes the 
automotive industry, including key actors in the supply chain, the digitalization 
trends in this industry as well as the discussion of the research method used in this 
thesis. This chapter can be used to contextualize the other chapters that follow. The 
chapter is structured as follows. Section 3.2 illustrates the rationale for using the 
automotive industry as the research setting of this thesis. Section 3.3 provides the 
industry characteristics highlighting the increasing role of automotive suppliers. A 
section is dedicated to the Italian automotive industry. Section 3.4 provides the 
digitalization trends of the automotive supplier industry. The chapter concludes 
with a discussion of the research method including the description of the 
quantitative survey, the case studies, and the main quantitative measures used in the 
thesis related to the adoption of the physical-digital interface and network 
technologies and the cost performance measure.  

4.2 Why the Automotive Industry? 

This thesis focuses on manufacturing and specifically on the automotive 
industry. Manufacturing is often considered as the backbone of the economic 
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system of a country because it is a source of high-wage jobs, industrial and service 
innovation. It is also a source of attraction of innovative suppliers and experienced 
talent (Susan Helper, Krueger, & Wial, 2012; Womack et al., 1990). Among 
manufacturing industries, the automotive industry is regarded as one the most 
important in terms of GDP and employment. This thesis focuses on the automotive 
industry for the following reasons. 

First, it has a high employment share and accounts for a greater part of the GDP 
of most advanced countries representing a “strategic sector”. For instance, in Italy 

the automotive industry in its entirety accounts for approximately 258 thousand 
employees, representing 11,3% of manufacturing, and the annual turnover accounts 
for 5,9% of Italian GDP (Barazza & Coccimiglio, 2019). 

Second, the automotive industry is subject to greater competitive pressure than 
other industries, which has to deliver complex industrial products subject to high 
levels of international standards, quality, and efficiency (Liao et al., 2020; Qamar 
et al., 2018) which determine a continuous need to innovate production process to 
stay ahead of the competition. Therefore, it is easier that firms in this industry are 
earlier adopters of new digital technologies (PwC, 2018) and thus to study 
technology-enabled organizational transformations. Moreover, technologies and 
managerial practices, that in the automotive industry have been pioneered, are later 
transferred to other manufacturing industries (e.g. appliance industry). In this 
respect, the automotive industry has attracted significant interest in the research of 
inter-organizational relationship due to the changes and the differences of buyer-
supplier relationships especially in different countries such as Japan and Western 
countries and by the fact that inter-firm exchange is ubiquitous (e.g. S. R. Helper & 
Sako, 1995; Ketokivi & Mahoney, 2020) with outsourcing levels up to 80 percent 
(Gottge, Menzel, & Forslund, 2020).  

This thesis focus on the Italian automotive industry. The choice of a single 
country has also a methodological advantage. Institutional factors such as country 
legislation and policies may impact the level of adoption of digital technologies and 
the approach of firms to digitalization. For example, being in Italy the incentive 
scheme to adopt strongly linked to financial savings for the adoption of digital 
technologies, many companies just bought the technologies without considerations 
of organizational changes. At the same time, no incentives were given, if not later 
with the introduction of competence center and digital innovation hubs, to 
organizational redesign and training support. Thus, the same institutional context 
guarantees that all the surveyed firms have the same level of access to institutional 
opportunities related to technology adoption and support for organizational design. 
Similarly, the focus on a single industry set aside exogenous variation due to 
industry characteristics. 

Summarizing, even if a single country and industry studies may often lack 
generalizability, they have the advantage that the variables studied in this thesis are 
not dependent on exogenous factors but are endogenous to the firm. 
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4.3 The automotive industry and the role of suppliers 

The automotive industry is characterized by several players (Susan Helper et 
al., 2019; Womack et al., 1990). The OEMs or the automakers (such as FCA, 
Renault, Ford, Toyota) design, assemble, market and finally distribute cars with the 
help of and third-party logistic providers and distributors. They preside over a 
supply chain that includes large first-tier suppliers (who directly ship to the OEMs), 
who are in turn supplied by smaller second-tier, who are supplied by third-tier 
suppliers, and so on. The classification is blurry, as second-tier suppliers can also 
directly serve OEMs. Another classification proposed in Zirpoli and Moretti (2018), 
group the supply chain players in terms of competence and products. Accordingly, 
suppliers are divided into systems integrator and providers of modules (e.g. braking 
system, powertrain systems, glass modules), engineering and design (E&D) firms 
(e.g. prototypes, engine design, plant layout), specialized suppliers that provide 
components with a high technological level (e.g. dies, stamped products, chassis, 
engine components, suspensions and transmission component, infotainment, 
painting) and sub-suppliers that produce standard components or they offer a 
production process (e.g. turning, milling).  

From an almost vertically integrated industry, in which price was the main 
selection criteria for the supply, the industry has gradually moved to high 
fragmented and specialized industry, in which other supplier selection criteria such 
as quality, innovation, and technical capabilities have been more considered 
(Manello & Calabrese, 2019). Now, the industry is characterized by high levels of 
outsourcing (Gottge et al., 2020). This trend was largely spurred in the global 
automotive industry by the Japanese model of low vertical integration and supplier 
integration in just-in-time and lean production from the 1980s’ (Schulze, 
MacDuffie, & A. Täube, 2015), where these practices were already in place 
(Womack et al., 1990). 

OEMs are powerful actors in the automotive supply chain. By developing 
product architecture, design platforms, and specific models (Schulze et al., 2015), 
they have the power to determine (or at least set the basis of negotiation) product 
quality, product development timing, delivery, and costs (Gaddi, 2020). They also 
have the power to require suppliers to invest in managerial practices related to lean 
production (e.g. just-in-time, employee involvement, statistical process control, set 
up time reduction) in which they have already invested in their assembly plants as 
well as new digital technologies (Gaddi, 2020). Besides, they resist open and 
industry-wide standards to retain brand distinctiveness and control product design 
(Schulze et al., 2015). 

Nevertheless, the complexity of new product development, driven by 
technological advancements but also by environmental and safety requirements 
(Schulze et al., 2015), requires the integration of external partners with specialized 
knowledge. While OEMs maintain overarching technical knowledge and control of 
the product architecture (Schulze et al., 2015), suppliers are increasingly obtaining 
responsibilities in product development which require them to introduce product 
and process innovations to maintain the relationship. Firms that operate 
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downstream in the supply chain of the automotive industry produce more added-
value products and tend to be more specialized than firms operating upstream 
(Qamar et al., 2018). 

This allocation has multiple objectives: to lower the input costs of given 
products and components due to higher supplier’s specialization, to face the general 
shortage of qualified engineers/operators, to have a clear allocation of responsibility 
of the product development cycle, in terms of delivery mix and production volume, 
and to improve the control and responsiveness of a supply chain to guarantee on-
time availability, a higher quality of the end-products, and therefore a competitive 
advantage (Qamar et al., 2018) 

 Suppliers play an important role in determining the competitiveness of 
customers, as the cost of purchased material represents more than 50% of the 
customer’s sales (Tang, 1999), and many buyers identify key suppliers as they rely 
more and more on their performances (Trautrims et al., 2017). Having recognized 
this, OEMs have gradually shifted from a short-term, adversarial, and contractual 
relationship with the supply base to more long-term, collaborative, and trust-based 
governance to increase the suppliers' efforts to improve cost performance (S. Helper 
& Henderson, 2014). 

Another trend that automotive suppliers are facing is globalization (Schulze et 
al., 2015). Suppliers are being increasingly pressured to increase their productivity 
from countries with lower labor costs. Sometimes, this type of competition is 
created by OEMs which put suppliers in high-cost countries to confront those in 
low-cost countries (Gaddi, 2020).  

Such trends are determining increasing pressure for automotive component 
suppliers to increase cost performance by reducing costs. To do so, several plants 
are investing in digital technologies. In this respect, the research sample showed 
that the most pressing challenge for suppliers is related to increase production 
efficiency. 

 

4.3.1 The Italian automotive component industry 

Italy is one of the leading EU countries for the automotive industry, following 
Germany and France in terms of sales volume.  The Italian automotive component 
industry is composed of a large share of SMEs) accounting for 91% (employment 
less than 249 employees), while large enterprises (more than 250 employees) 
accounts for 9% (Barazza & Coccimiglio, 2019). Large enterprises include plants 
of Multi-National Enterprises (MNEs), established in Italy for the European market 
but also for research and innovation due to knowledge and technology transfer with 
Italian universities and research organizations.  

Production choices of Italian automotive suppliers have been dependent for the 
greatest part on FCA, the only OEM with assembly plants in the country, which 
absorbed 37% of suppliers’ sales in 2018 (Barazza & Coccimiglio, 2019). The 
dependence of the industry on FCA determines that its success is largely determined 
by the prosperity and investment decisions of FCA in the country. The industry is 



 

41 
 

undergoing a process of transformation characterized by a large drop in the 
production of vehicles (Gaddi, 2020) (from 1998 to 2018 the number of vehicles 
produced drop by 1.3) mainly due to the saturation of the European market, which 
stood at approximately 1 million in 2018 (Barazza & Coccimiglio, 2019). At the 
same time, there has been increased production of parts and component in the same 
period. In 1998, 40% of employment was devoted to parts and components. By 
2018, this this percentage reached 53% (Gaddi, 2020).  

In terms of innovation, suppliers are more focused on introducing process 
innovations rather than on product innovation (Barazza & Coccimiglio, 2019). This 
is because product innovation is mainly a prerogative of OEMs especially for core 
components (e.g. engine) but also a joint contribution of tier 1 and OEMs for 
peripheral components (e.g. transmission belts). However, if we consider the whole 
supply chain and the compelling need to reduce cost, it is not a surprise the higher 
relative and absolute percentage of suppliers that focus on process innovations.  
Indeed, most tier 2 and tier 3 suppliers do not have a clear product but rather sell 
machining processes or “machining hours”. For them, process innovation is almost 

the only type of innovation. 
The Italian suppliers, especially SMEs, are increasingly competing with central 

and eastern European countries with a lower labor cost (e.g. Poland, Czechia, 
Slovakia, Hungary), characterized by state funding and proximity to the German 
market. To respond to the downsize of domestic vehicle production and the 
allocation of some assembly plants outside Italy in low-cost countries, suppliers 
have started to gradually reduce the dependence on FCA (Barazza & Coccimiglio, 
2019). To do so, they have started to look beyond country borders to be chained to 
foreign supply chains, in particular the German and French ones (Barazza & 
Coccimiglio, 2019; Gaddi, 2020).  

 

4.4 Digitalization trends in the automotive component 
industry 

Digitizing the automotive industry involves mainly three aspects: connected 
traveler, autonomous driving, and digital factory (World-Economic-Forum, 2016). 
Connected traveler includes innovations in infotainment, usage-based insurance, 
and multimodal transportation that are directly addressed to car users. Autonomous 
driving includes advancements in assisted driving and self-driving. Digital factory, 
the focus of this thesis, include digital manufacturing and connected supply chains 
(World-Economic-Forum, 2016). 

As far as digitalization of manufacturing or digital manufacturing (hereafter 
digitalization) is concerned, automotive suppliers are focusing on the process level, 
which is considered more valuable compared to the product level, especially as 
factory layouts and production processes are becoming more complex and the 
output requirements from customers are becoming more complex (Farahani et al., 
2016). Focusing on the process level means finding novel ways to increase quality, 
flexibility, reducing lead times, and eventually reducing product costs. This 
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translates into better access and analysis of production-related data such as 
breakdown, minor stoppages, tool change, changeover, production speed, and 
quality data for troubleshooting and predict performance (Arnold, Kiel, & Voigt, 
2016) as well as engineering and design, inventory and logistics issues through a 
better managed end-to-end process, increased transparency and faster response 
times (World-Economic-Forum, 2016). In this vein, not only production processes 
are optimized but also automotive suppliers look for better customer relationships 
with the final and shared objective of cost reduction (Arnold et al., 2016; World-
Economic-Forum, 2016). 

Automotive suppliers are investing in different functional areas  (Farahani et 
al., 2016). Although several suppliers are active in digitizing the factory, there is a 
gap between the necessity of promoting Industry 4.0 in theory and the practical 
response in implementation (Lin et al., 2018).  

As far as Italy is concerned, recent evidence shows that Italian component 
suppliers are very active in the digitalization of the factory, at least compared to 
other Italian manufacturing industries (MISE, 2017). According to the observatory 
of the Italian component industry, more than 50% of firms have introduced at least 
one digital technologies (Cabigiosu, 2019). The most active are specialized 
suppliers operating in tier 1 and tier 2, followed by systems integrators and 
providers of modules operating mainly in tier 1. This evidence shows that 
companies in the upper position of supply chains are more active than firms in lower 
positions. The same survey shows that more than 1/3 of firms that invest in at least 
one digital technology have used the fiscal incentives of national plant Industry 4.0 
(Cabigiosu, 2019). In a recent qualitative article, Gaddi (2020) showed that Italian 
suppliers are investing more in physical-digital interface technologies and network 
technologies (i.e. software and connectivity technologies) than in automation 
technologies (i.e. robots, additive manufacturing). Specifically, they are making 
significant investments in connected Manufacturing Execution Systems and 
Enterprise Resource Planning looking for data integration (Gaddi, 2020). These 
technologies are being used for the management of all aspects related to (i) planning 
and scheduling of activities; (ii) monitoring and control; (iii) supply chain 
coordination and collaboration (Gaddi, 2020).  
 

4.5 The research method: survey and case studies 

A comprehensive and multi-respondent survey, with three main sections, was 
administered respectively to human resource managers, plant managers, and sale 
managers of Italian automotive supply firms between March 2019 and February 
2020. The unit of analysis for this survey is the plant.  Before the data collection 
phase, the questionnaire was pre-tested to ensure accuracy and clarity.  The research 
team, composed of researchers and professors of the Polytechnic University of 
Turin, sent a draft version of the questionnaire via e-mail to five human resource, 
plant, and sales managers of five different plants, followed by in-depth interviews 
with the same informants. Having collected some valuable feedbacks, some 
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questions were slightly modified to increase the accuracy and clarity of the 
questionnaire. 

Starting from a population of approximately 2200 firms, which is updated 
yearly by the Turin Chambers of Commerce and ANFIA (Barazza & Coccimiglio, 
2019), the research team started collecting data from a sub-sample of firms that 
participate annually in a descriptive survey on the automotive industry, conducted 
by the aforementioned organizations, and who declared their willingness to 
participate in our research (approximately 600 firms). Before sending the 
questionnaire via email, the research team contacted each of the firms by phone to 
ensure their commitment to the research and to establish the number of plants that 
could participate in the research. The target firms were then enlarged to involve 
those included in the database but outside this sub-sample. The sample was 
stratified considering three main characteristics: (i) the size of the firm; (ii) the 
position in the supply chain; (iii) the Italian region. During the data collection, the 
research team ensured that these three variables were representative of the 
population of Italian automotive suppliers (Table 4).  

A total of 102 auto supplier plants participated in the survey. The response rate 
was 16.8% over the sampling frame and 4.5% over the population. The participants 
were mainly SMEs (81%) placed in tier 1 (42.6%) and tier 2 (43.2%). Table 4 
reports the descriptive characteristics of the sample and population based on the 
data included in the reference database (Barazza & Coccimiglio, 2019). 

 

Table 4. Sample and population demographics 
 

 Sample Population 

N (%) N (%) 
     
Size 102 100 2207 100 

SMEs (< 250 employees) 81 81.2 1996 90.4 
Large 19 18.8 211 9.5 

Supply chain position 101 100 2207 100 
Tier1 43 42.6 772 35.0 
Tier2 44 43.5 905 41.0 
Tier3 or below 14 10.9 530 16.0 

Region 102 100 2207 100 
Piedmont 46 45.5 752 34.1 
Lombardy 18 17.8 598 27.1 
Veneto 10 9.9 186 8.4 
Emilia-Romagna 6 5.9 221 10.0 
Campania 5 4.9 84 3.8 
Abruzzo 4 4.0 65 3.0 
Lazio 3 3.0 46 2.1 
Marche 3 3.0 32 1.5 
Other 6 6.0 223 10 
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To provide a further in-depth investigation of the RQ1, this thesis uses some 
case studies that were conducted in the same period of the survey in the Piedmont 
region (north-west of Italy). The selection of case studies was based on (i) different 
degrees of product complexity distinguishing between small and large components, 
(ii) position in the value chain providers of systems and modules (3) size of the firm  
(Table 5). Each semi-structured interview follows a similar protocol. In the first 
section, the interviewees illustrate the companies regarding customers, products, 
and investments. After a brief reporting of the research objectives by interviewers, 
the interviewee was asked to indicate the main digitalization projects, their 
objectives, and the current challenges. The interview was structured as open as 
possible leaving the spontaneous emergence of key themes regarding decision-
making practices and digital technologies adoption. Upon acceptance by 
interviewees, each interview was transcribed.  Each interview was conducted in the 
local language (i.e. Italian). 

Table 5. Case studies 

Case Interviewee Interview 
date 

Plant products Position Size 

Alpha Plant 
Manager 

03/07/2019 Belts and decoupler 
 

Tier 1 
Large 

Beta  CEO 05/07/2019 Metal components for 
braking systems 

Tier 2 SMEs 

Gamma CEO 11/07/2019 Small plastic components 
for car interiors (e.g., 
doors) 

Tier 1 SMEs 

Delta Plant 
Manager 

16/07/2019 Large metal components 
(e.g., chassis) 

Tier 1 Large 

Epsilon Plant 
Manager 

26/07/2019 Keys and locking systems Tier 1 SMEs 

Zeta Plant 
Manager 

08/11/2019 Metal engine components Tier 2 SMEs 

Eta Plant 
Manager 

11/11/2019 Microchip Tier 1 SMEs 

Theta CEO 11/11/2019 Metal and plastic dies and 
components 

Tier 2 SMEs 

Iota CEO 13/11/2019 Thermo-plastic and small 
metal stamped parts 

Tier 2 SMEs 

Kappa CEO 14/11/2019 Metal components Tier 2 SMEs 
Lambda CEO 15/11/2019 Leaf springs Tier 3 SMEs 
Mu Production 

Manager 
22/11/2019 Drivetrain system Tier 1 Large 

Nu CEO, Plant 
Manager 

29/11/2019 Metal Component Tier 2 SMEs 

Xi CEO 22/01/2020 Stamped metal 
components 

Tier 1 Large 
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4.5.1. Measures and statistical techniques 

To measure the adoption of physical-digital interface technologies, the survey 
asked the plant managers to indicate whether they adopted or did not adopt a 
specific technology of this subset. The list of technologies included equipment-
embedded sensors, machine vision, tracking technologies for product components, 
and visualization technologies (e.g. augmented/virtual reality, wearables). To 
obtain a measure of the adoption of physical-digital interface technologies, the 
binary variables were summed to obtain a construct that ranged between 0 and 5. 
To measure the adoption of network technologies, the survey asked whether the 
plants used an integrated corporate business system that integrated and linked 
sensor data and enterprise information systems (e.g. MES, ERP, SCM, CRM). To 
ensure that the network technologies were used effectively, the survey asked the 
extent of integration. A similar operationalization of technology adoption has been 
done in Agostini & Nosella (2019) and Tortorella & Fettermann (2017). 

The dependent variable, that is, cost performance, was measured in terms of 
cost reduction (Blome et al., 2013; Trantopoulos et al., 2017). This variable 
measures whether a plant was able to reduce the unit production cost over the last 
three years by more than 3%.  Although firms acknowledge intermediate outcomes 
like machine uptime, improved product quality, safety, information sharing, and 
inventory management when investing in digitalization, the outcome of efficiency-
driven investments ultimately target production cost reductions making this a 
measure for cost performance also defined in this context as or digital process 
innovation performance (Trantopoulos et al., 2017). While the original scale of the 
variable was a Likert Scale ranging from “1” to “5” where “5” represents a cost 

increase in the last three years, this thesis transforms this variable into a binary 
variable to isolate the firms that increase cost performance from those that either 
increase or keep steady the cost performance levels. Since the dependent variable 
is binary, the appropriate statistical technique is the logistic regression (Hair, 
Black, Babin, Anderson, & Tatham, 2014). Applying an Ordinary Least Squares 
(OLS) regression or other regression techniques would not be appropriate in this 
case, because OLS models assume the distribution of the error term follows a 
normal distribution, which is not the case for binary outcomes. In each logistic 
regression, a set of control variables that could have an impact on cost performance 
was included.  In order to control for common method variance (i.e. variance that 
is attributable to the measurement method rather than to the constructs the measure 
represents), the survey relies on two different informants (i.e. the plant manager 
and the sales manager) who answered two different sets of questions. Moreover, 
the dependent and independent variables were separated into two different sections, 
Thus, the common method variance was minimized by obtaining data from 
different (and independent) sources (Podsakoff, MacKenzie, Lee, & Podsakoff, 
2003).  

Table 6. Performance and digital technologies adoption measures 
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Construct Measure Operationalization 

Cost performance  What has been the average annual percent 
change in your unit costs for this product 
over the last year and the last three years?  

• Decreased < 10% (1)  
• Decreased 3.1 – 10% (2)  
• Little Change (+/- 3%) (3)  
• Increased 3.1 – 9% (4)  
• Increased > 9.1% (5)  

Binary: value 1 if 
respondent answers 
(1) or (2), 0 otherwise  

Physical-digital 
interface 

technologies 

Which of the following technologies do 
you use in this plant today? (0/1)  

• Sensors installed on equipment to 
continuously monitor work 
conditions and process 
parameters  

• Machine vision that allows the 
computer to inspect images used 
in metrology and other activities 
of process quality control  

• Tracking technologies for 
materials (e.g. RFID, bar codes, 
QR codes, etc.) to track location 
and status within the plant for 
logistic purposes (0.73) 

• Tracking technologies for 
products (e.g. RFID, bar codes, 
QR codes, etc.) to track location 
and status outside the plant for 
supply chain purposes (0.63) 

• Human-Machine interface 
technologies (e.g. augmented 
reality, virtual reality, wearables, 
display touch) (0.58) 

Continuous: a sum of 
three binary variables  

Network 
technologies 

How is data on operations (quality, output, 
etc.) gathered in this plant?  (Please check 
all that apply) (0/1)  

• “We use a unified corporate 

business system that integrates 
sensors data with data from 
enterprise information systems 
(e.g. ERP, MES, CRM, PLM)”  

• “Data remains in siloes; it is hard 

to link together data from 
different departments (such as 
HR, operations, sales)” 

(reversed)  

Continuous: a sum of 
two binary variables  

 

4.6 Challenges ahead and current situation 

This chapter concludes with a presentation of the most important challenges 
faced by automotive suppliers in their plants using the survey data (Figure 3). The 
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respondents (plant managers in this case), who were asked to indicate up to three 
challenges, reports that the two most pressing challenges are to continuously 
improve efficiency levels (65% of the plants) and keep quality levels of a product 
under control (53%). This shows how complex is for manufacturing firms to 
increase cost performance. The survey data show that only 15.6% of plants were 
able to reduce product unit costs by at least 3% in the last three years. Apart from 
performance challenges, the other most important challenge reported is “finding 

workers with the skills we need” (43%). Introducing advanced production 
technologies is indicated only by 28% of plants suggesting that the key issue is not 
on the introduction but rather on how to purposefully use such technologies to 
increase efficiency levels. Indeed, the adoption of physical-digital interface 
technologies is widespread as shown in Figure 4. By contrast, the adoption of 
network technologies is lower as shown in Figure 5. 

 

 

Figure 3. Main challenges faced by the Italian automotive suppliers 
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Figure 4. Adoption of physical-digital interface technologies (% of plants) 

 

 

Figure 5. Adoption of network technologies (% of plants) 

Crucially, only 19% of plants see the shift from intuition-driven to data-driven 
as a challenge (Figure 3). There could be two explanations for this: either 
manufacturing firms have already embarked on and arrived at a transformation of 
employee’s mindsets toward data-driven, or the majority of manufacturing plants 
have not yet understood the importance of data-driven decision-making. The 
answer to this question is provided in Figure 6 which points towards the second 
hypothesis. Figure 6 shows a slight majority of plants (57%) stuck to the intuition-
driven decision-making approach.  

 

 

Figure 6. Share of plants by decision-making approach (% of plants) 
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As far as collaboration with system integrators is concerned, a tiny percentage 
of plants (4%) declare the “building mutually beneficial and lasting relationship 

with our suppliers” (Figure 3), suggesting that manufacturing firms are still far from 
perceiving collaboration with system integrators (key suppliers of digital 
technologies) as strategic. This is confirmed by the fact that only 3% of companies 
share data with the system integrators to receive data analytics services despite 
44,3% has collaborated with them. 

Concerning collaboration with customers, Figure 3 shows that only 24% of 
firms report the development of a collaborative relationship with customers as a key 
challenge. This result may suggest that the supplier-customer relationship is to a 
good extent already based on both relational and contractual governance 
mechanisms which are effective for supplier performance. However, another 
explanation of this result points to the fact that companies may have not understood 
properly the challenges and opportunities of adopting digital technologies in supply 
chain governance. In this respect, there is high uncertainty about the behavior about 
customer behavior regarding the sharing of data and information. A key question 
from the survey asked sales managers the level of collaborative problem-solving 
with key customers by asking firms to which extent they agree with the following 
statement: “We feel that our customer often uses the information we provide to 
check up on us rather than to solve problems.”. The distribution of the answers is 
very skewed with no clear patterns. This suggests that plants in the sample have 
very different perceptions of the behavioral uncertainty of their customers when 
data and information regarding product and processes are shared with customers 
which calls for an understanding of the interplay between digital technologies 
adoption and supply chain governance mechanisms (both relational and 
contractual). 

 

 

Figure 7. Uncertainty regarding information sharing 
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Chapter 5 

Making digitalization effective 
through decision-making practices  

5.1 Introduction4 

The Nobel prize Herbert Simon argued that management is essentially 
organizational decision-making (Herbert A Simon, 1960): all organizational actions 
are initiated by decisions, and all decisions are commitment to actions. Therefore, 
a key to understand how data generated by digital technologies create value is to 
study how it drives decision-making (Bokrantz, Skoogh, Berlin, Wuest, et al., 
2020). Two main decision-making approaches can be found in manufacturing 
firms: the intuition-driven decision-making (experiential, unconscious, and 
holistic) and data-driven decision-making (Flores-Garcia et al., 2019) (analytical, 
conscious, and sequential). Some scholars argue that decision-making should be 
largely based on data analysis which could lead to better outcomes (e.g. E 
Brynjolfsson et al., 2011; Provost & Fawcett, 2013). Others suggest a more 
balanced approach where judgment and experience should be considered as well 
(e.g. Shah et al., 2012; Thiess & Müller, 2018). In the management practice, 
confusion arises on which is the optimal decision-making approach when adopting 
digital technologies to achieve efficiency improvements. In this chapter, the two 
approaches are compared, focusing on a particular subset of decision-making 
related to cost performance reduction, .e. those “production decisions” (Bloom et 
al., 2014) taken at an operational level. n this context, decisions are often made in 
response to events that cause state changes of objects (e.g. machines, orders, 
product components, customer requirements). Events can range from short-term 
nature, for example, production line breakdown, missing material, quality issue, to 
medium- to long-term, for example, a change of product requirements and the 
associated modifications to the product design itself. The decision-making process 
involves the analysis of the event that results in actions to provide a countermeasure 
and eventually prevent the occurrence of the same in the future. 

The objective of this chapter is therefore to analyze the different approaches 
toward digitalization and decision-making, how these are linked to cost 
performance, and provide managers with concrete actions to make investments in 
digitalization effective.  

 
4 The contents of this chapter have been taken from a working paper that is going to be 

submitted at the California Management Review with the title “To make Manufacturing “Smart”, 

start with Data-Driven Decision Making”. 



 

51 
 

The theory of decision-making is both prolific and heterogeneous. Being the 
most used in organizational design literature, this chapter uses the IPV, OS, and 
KBV during the theoretical contextualization approach when iterating between 
results and explanations for such results. The IPV sees organizational members as 
information processors that must deal with task uncertainty and equivocality 
defined respectively as absence and ambiguity of information (Daft & Lengel, 
1986; Galbraith, 1974).  OS provides a different perspective arguing that employees 
are not merely processors of data and information but also interpret information to 
achieve a shared interpretation of the environment by putting their meaning upon 
experience and use the ascribed meaning for subsequent understanding and action 
(Choo, 1996). The KBV raises similar critics to the IPV: organizations also create 
information and knowledge by actively defining both problems and solutions 
(Nonaka, 1994) and by searching and recombining existing and newly acquired, 
tacit and explicit knowledge (Cohen & Levinthal, 1990; Grant, 1996; Savino et al., 
2017). 

Using key concepts from IPV, OS, and KBV this thesis will examine why a 
shift from intuition-driven to data-driven is much needed to tackle the opportunities 
and characteristics of digital technologies and therefore increase organizational 
performance.  

 

 

5.2 Theoretical background and framework development 

5.2.1 Decision-making approaches: intuition-driven vs data-driven 

Two main types of decision-making approaches can be distinguished, arising 
from two different types of information processing systems in human beings (Dane 
& Pratt, 2007): the intuition-driven decision making (experiential, unconscious, and 
holistic) and data-driven decision making (analytical, conscious, and sequential) 
(Flores-Garcia et al., 2019). Intuition-driven decision making refers to affectively 
charged judgments that arise through rapid, non-conscious, and holistic 
associations (Flores-Garcia et al., 2019), and is associated with having a strong 
hunch or feeling of what is going to occur; the experiential approaches of decision-
makers; the difficulty in explicating the reasons for making a choice; and the 
prevalence of tacit knowledge in making decisions. On the other hand, data-driven 
decision-making is associated with having performed an analytical assessment of 
what is going to occur; the analytical approaches of decision-makers; the easiness 
in explaining the reasons for making a choice; and the prevalence of explicit 
knowledge in making decisions. Differently to intuition-driven decision making, 
data-driven decision making involves quantitative assessment, decomposition and 
recombination of data and information that arise through slow, conscious and 
sequential associations (Julmi, 2019) (Table 7).  
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Table 7. Comparison of decision-making approaches 

 Intuition-driven Data-driven 

Speed Fast Slow 
Deliberation Non-conscious Conscious 
Associations Holistic (pattern-based) Sequential (logic-based) 
Information processing 
approaches 

Experiential and 
emotional 

Analytical and rational 

Forms of knowledge Tacit Explicit 
 
Some studies argue that better decisions occur always as long as they rely on 

objective data (E Brynjolfsson et al., 2011; Provost & Fawcett, 2013). Other studies 
set a priority to intuitive decision-making (Dane & Pratt, 2007). Recently, some 
studies argue that there are no better decision-making approaches but that depends 
on the structuredness of the underlying event upon which decisions are made 
(Flores-Garcia et al., 2019; Julmi, 2019). It has been argued that intuition-driven 
decisions are superior in ill-structured events, characterized by high equivocality 
and low analyzability, whereas data-driven decision making has a better fit with 
well-structured events (Flores-Garcia et al., 2019; Julmi, 2019), characterized by 
low equivocality and high analyzability. 
 

 

Figure 8. Decision-making approach vs structuredness of an event 

The more a decision problem or activity requires the use of computational, 
objective rules and procedures as opposed to personal judgment and experience 
(Flores-Garcia et al., 2019), the more it is analyzable. Analyzability can be further 
decomposed into detectability (the extent to which is possible to capture one or 
more 5W+H of an event), measurability (the extent to which such 5W+H can be 
empirically assessed), and interpretability (the extent to which a firm can achieve 
the needed understanding of the event) (Pigni et al., 2016). Detectability and 
measurability are linked with data collection methods, interpretability with data 
processing and analysis. The concept of equivocality – the degree to which there 
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are multiple and conflicting interpretations about an event, and it is associated with 
problems such as a lack of consensus, understanding, and confusion (Flores-Garcia 
et al., 2019; Julmi, 2019) – is rooted in the information-processing view of 
organizations (Daft & Lengel, 1986; Galbraith, 1974). Equivocality is not 
synonymous with uncertainty (Daft & Lengel, 1986): while uncertainty refers to 
the absence of information that can be reduced by increasing the volume of data 
and information (Galbraith, 1974), equivocality refers to the ambiguity of 
information that can be reduced by exchange subjective interpretations and 
opinions, form consensus and enact shared understanding uncertainty (Daft & 
Lengel, 1986). However, current digital technologies (network technologies in 
particular) are increasingly able to handle not only a great volume of data, but also 
a variety and a rapid velocity of processing enabling respectively different 
perspectives and rapid decisions. Apart from exogenous factors, endogenous 
mechanisms to reduce equivocality and increase analyzability are related to the 
adoption of different digital technologies with different digital properties (Pigni et 
al., 2016).  

 

5.2.2 The role of digital technologies in decision-making processes 

Today, the emergence of Industry 4.0 represents a potential transformation in 
the use of data in manufacturing with real-time data captured in digital format from 
their inception (Pigni et al., 2016). The new generation of digital technologies 
shaping Industry 4.0 with the new digital properties - of traceability, virtualization, 
on the one hand, accessibility, and synchronization on the other hand - has assigned 
once again a central role to data in decision-making (Martínez-Caro et al., 2020).  

On the one hand, physical-digital interface technologies can increase 
analyzability. By virtualizing the physical space and tracking all the activities and 
processes, they allow to detect, measure, and interpret the 5W+H of an event. For 
instance, when a disruptive event such as a machine breakdown occurs, sensors and 
machine vision technologies (part of physical-digital interface technologies) 
virtualize and keep track of product and process-related data during the 
manufacturing processes such as workpiece temperature, environmental humidity, 
noise or acoustic emissions, vibrations, speed, forces, etc. (Lenz et al., 2018). These 
technologies allow to detect, measure, and interpret why the breakdown occurs and 
provide suggestions on how to avoid the same in the future. Ill-structured problems 
(e.g., voice recognition, conversational turns, sentiment analysis, and image 
analysis) have now been transformed into well-structured problems with the 
advancements of database and artificial intelligence technologies.  

On the other hand, network technologies can reduce equivocality by making 
accessible and synchronizing data among physical devices and information systems 
and storing all the data and information in one place. Data that are accessible and 
common while also real-time thanks to synchronization work a “single source of 

truth” thereby reducing equivocality of events because workers can have the right 

information to the right place at the right time. For example, when a recurring event 
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such as production scheduling arise, the real-time data coming from the shopfloor 
(e.g. machine availability, work-in-process, set-up times, delivery dates, scraps rate, 
the logic of the product components flow), allow determining the most feasible and 
optimized production sequence (Romero-Silva & Hernández-López, 2019).  

Under these conditions, to exploit the value of digital technologies and increase 
cost performance, a data-driven decision-making approach widely diffused in the 
plant seems to be the most suitable one. This chapter asserts that the adoption of 
physical-digital interface technologies, and their subsequent interconnection 
through network technologies, can respectively increase the analyzability and 
reduce the equivocality of events. With this chapter, such hypothesis are tested, for 
which an increase of cost performance (thanks e.g. to fewer defects, quicker 
decision making, correcting errors, etc.) cannot be achieved by implementing 
digital technologies unless a firm is driven by data analysis in its decision-making 
processes (Figure 9).  

Decision-making is not only about making choice but also interpretation. Under 
conditions where digital technologies generate a large amount and variety of data 
to find efficiently and effectively solutions to problems arising on the shop floor, 
the role of employees becomes the one of sensemaking that is understanding which 
problems should or could be addressed (Verganti et al., 2020). Even with artificial 
intelligence technologies such as machine learning, human beings remain superior 
in formulating problems either solved by humans or digital technologies (von 
Krogh, 2018). In this respect, data-driven decision-making includes the activity of 
sensemaking which occurs collectively and includes the application and 
recombination of domain knowledge with data and information generated by digital 
technologies. Employees should now be equipped with critical thinking capabilities 
that includes the ability to analyze, reason and even question decisions. 

Moreover, digital technologies do not allow to find data and information 
regarding a problem more efficiently increasing information-processing capacity 
while requiring sensemaking activities, but also to search and recombine data, 
information, and knowledge. Specifically, network technologies allow to 
development of novel interpretations and knowledge combinations by enabling to 
search for new and distant information (Lenz et al., 2018). 

 

Figure 9. Research framework (I) 
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5.3 Methodology 

The data analysis involved two stages. In the first (quantitative) stage, a set of 
logistic regressions was performed with cost performance as a dependent variable, 
and the interaction between the two forms of digital technologies and decision-
making approaches. A set of control variables that could have an impact on cost 
reduction was included such as the size of the plant, percentage of employees with 
an academic degree, the ratio of R&D expenditure over sales, the presence of 
variables incentives on salary if a plant is part of a multi-unit firm and the position 
in the supply chain (e.g. Tier1). 

The interaction terms (e.g. physical-digital interface technologies x data-driven 
decision-making) in the logistic regression allow identifying four patterns of 
decision-making approaches and technology adoption. Since the logistic regression 
coefficients provide the coefficient in logarithms of odds (i.e. ratio of the 
probability of success over the probability of failure), by exponentiating it is 
possible to determine the odds ratio and then the probability to reduce cost with the 
simple formula 𝑝𝑟𝑜𝑏𝑐𝑜𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  

𝑜𝑑𝑑𝑠

(1+𝑜𝑑𝑑𝑠)
. These coefficients represent the 

predicted probabilities of occurrence of an event (in this case the achievement of 
cost reduction by the focal firm) (Hair et al., 2014). To check the presence of these 
four patterns as well as the actual percentage of firms that reduce cost under 
different conditions of technology adoption and decision-making approaches, a 
hierarchical cluster analysis was performed using the complete linkage model 
excluding those companies that have not adopted any of the physical-digital 
interface technologies (14% of the sample). Two separate cluster analyses were 
performed forcing respectively data-driven decision and intuition-driven decision-
making equal to 1. In this way, it was assured that there were not mixed clusters in 
which plants may have different decision-making approaches in the same cluster. 
The two dendrograms provide support for two clusters solutions which sum up to 
four clusters (Figure A1 in the Appendix). The tables showing the descriptive 
statistics of cluster analysis are available in the appendix (Table A2). 

The second (qualitative) stage comprised the confirmation of the quantitative 
results of the prior stages through a qualitative approach using semi-structured 
interviews with the CEOs and plant managers. Based on the answers to the 
questionnaire each plant was assigned to a particular cluster. This stage was 
followed by a review of the qualitative data regarding decision-making approaches 
and forms of digital technologies adopted to corroborate the quantitative results. 

 

Table 8. Measures for decision-making approaches 
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Construct Measure Scale 

Intuition-driven 
decision-
making 

How is the data used in this plant? (Please check all 
that apply) (0/1) 

• “We primarily base decisions on intuition or 

experience, rather than on analysis of data” OR 

“We primarily base decisions on a mix of 
intuition and analysis of data, with data playing 
a secondary role” 

Binary 

Data-driven 
decision-
making 

How is the data used in this plant? (Please check all 
that apply) (0/1) 

• “We primarily base decisions on the analysis 
of data” 

Binary 

 

5.4 Results 

Table 9 shows the results of the logistic regression with the three interaction 
terms: physical-digital interface technologies, network technologies, and data-
driven (intuition-driven) decision-making. The results show that positive and 
significant effects on cost performance can be found concerning data-driven 
decision-making even when no technologies are adopted (β=2.015; p<0.1; column 
4) and when the three interaction terms are all present (β=2.713 p<0.05; column 4). 
Notably, when both physical-digital interface and network technologies are adopted 
but no data-driven decision-making is in place the coefficient is negative and 
significant (β=-2.383 p<0.05). 
 

Table 9. Results of the logistic regression (I)  
 

Dependent Variable: Cost 
Performance 

(1) 
Coefficient 
(Std. Err.) 

(2) 
Coefficient 
(Std. Err.) 

(3) 
Coefficient 
(Std. Err.) 

(4) 
Coefficient 
(Std. Err.) 

     
Physical-Digital Interface 
Technologies 

-0.379 -0.0884 -0.885 -0.930 

 (0.426) (0.545) (0.857) (1.058) 
     
Network Technologies 0.240 0.684 -0.755 -1.264 
 (0.438) (0.528) (0.835) (0.992) 
     
Physical-Digital Interface 
Technologies x Network Technologies 

0.429 0.330 -1.470 -2.383* 

 (0.410) (0.462) (0.987) (1.200) 
     
Data-driven Decision-Making   1.207 2.015+ 
   (0.961) (1.108) 
     
Data-driven Decision-Making x 
Physical-Digital Interface 
Technologies 

  0 0 
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   (.) (.) 
     
Data-driven Decision-Making x 
Physical-Digital Interface 
Technologies 

  0.506 0.842 

   (0.957) (1.085) 
     
Data-driven Decision-Making x 
Network Technologies 

  0 0 

   (.) (.) 
     
Data-driven Decision-Making x 
Network Technologies 

  0.995 1.948+ 

   (0.943) (1.170) 
     
Data-driven Decision-Making x 
Physical-Digital Interface 
Technologies x Network Technologies 

  1.899+ 2.713* 

   (1.069) (1.284) 
     
Size  -0.288  -0.288 
  (0.631)  (0.631) 
     
Enterprise Information Systems  -0.00886  -0.00886 
  (0.464)  (0.464) 
     
Multi-Unit Plant  -0.00388  -0.00388 
  (0.480)  (0.480) 
     
R&D Intensity  0.00438  0.00438 
  (0.512)  (0.512) 
     
% of Employees Academic Degrees  0.717  0.717 
  (0.498)  (0.498) 
     
Incentives Productivity  -0.754+  -0.754+ 
  (0.432)  (0.432) 
     
Supply Chain Position  -0.971*  -0.971* 
  (0.443)  (0.443) 
     
Constant -1.445** -1.449** -2.652** -3.464** 
 (0.454) (0.533) (0.847) (1.016) 
Observations 90 88 90 88 
Pseudo R2 0.157 0.220 0.157 0.220 

Note: Coefficients in odds ratio, standard errors in parentheses, + p < 0.1, * p < 0.05, ** p < 0.0 
 

Since in this thesis the focus is on the interplay between technology and 
organizational design the plants that have not adopted any digital technologies have 
been removed from the following cluster analysis. The results of the cluster analysis 
(i.e. dendrogram, summary statistics, and Anova) are provided in the appendix 
(Figure A1 and Table A2). The cluster analysis allows identifying four different 
profiles of firms by linking the two stages of digital technologies adoption (adoption 
of physical-digital interface technologies followed by network technologies) and 
decision-making approaches. For each configuration, the probability of reducing 
costs from the logistic regression was calculated, and also analyzed which of these 
configurations has already a realized impact in the plants of the sample by analyzing 
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the share of plants that had reduced cost in the last three years (Table A2, Figure 
10).  

 
Figure 10. Potential and achieved cost performance by cluster 

5.4.1 Different technology and decision-making approaches 

Basic Digitalizers. The highest number of plants in the sample (48%) exhibit 
an intuitive approach to decision-making while adopting physical-digital interface 
technologies. Despite having a range of historical and real-time data thanks to 
traceability and virtualization property of physical-digital interface technologies, 
firms in this cluster ignore such data and continue to make decisions on intuition. 
In this regard, a plant manager noted: “We have recently bought machines that 
speak but we do not listen”.  

High equivocality and low analyzability of events are managed by experienced 
workers that have deep knowledge and expertise in their field results from years of 
experience. A case in point is a medium-sized firm. In heat treatment processes, 
some experienced workers have come to realize when the workpiece was ready to 
be removed by looking several times in their work-life how the materials react 
based on the color of the workpiece. Being afraid of losing this knowledge once 
these workers will retire, at the time of the interview, they were trying to standardize 
such knowledge by empirically annotating the temperature of the workpiece when 
these workers extract the workpieces from a furnace with a thermocouple. This case 
illustrates a legacy of intuition-driven decision-making approaches in production 
plants, but it also reports a tentative to become more scientific. However, this was 
due to the fear of losing this knowledge once the workers either retire or move to 
another company, which in turn is determined by a lack of apprentices in the job 
market once used to exchange tacit knowledge. In this case, the data-driven 
decision-making approach seems a mean rather than an end. This secondary view 
on the analytical approaches is found in another plant, where the manager notes that 
the implicit knowledge of machine tools and dies developers should remain “high” 

is critical for machine performance, while the analytical component of decision-
making in developing tools and dies is used only in second moments of team 
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aggregation. Another mid-sized plant points out that the machines collect lots of 
data, but they do not have the people able to interpret those data and drive decision-
making. The manager reports a skills gap: the workforce with both data analytics 
skills and domain knowledge in traditional manufacturing domains such as milling, 
molding, etc. However, unlike other firms in the other clusters, these firms are not 
considering an upskilling of the current workforce in data analysis skills but prefer 
waiting (a long time) for industrial policies that will address this need.  

The analysis estimates that the probability to reduce unit product cost reaches 
only 30,1%, while the firms that achieved cost reductions are only 15% in this 
cluster (Figure 10).  

 
Analytical Digitalizers. The plants in this cluster (39%) have adopted 

physical-digital interface technologies and base their decisions on the analysis of 
data. The traceability and virtualization of physical devices (e.g. product 
components, equipment) allow increasing the analyzability of events by including 
the collection and analysis of managerial data, as well as sensory data from 
equipment and product components. However, the loose integration of digitized 
objects and enterprise information systems creates digital “silos”. These plants lack 

the opportunities of data synchronization and accessibility of network technologies 
that would reduce the equivocality of events and therefore need more time to deal 
with specific situations. In these organizations, there is still a relatively high time 
latency between the occurrence of an event and counter-measure decisions since 
information systems are not end-to-end integrated. Nevertheless, having invested 
in the analytical and data-driven approach in decision-making, they are on the right 
path to make the step toward smart manufacturers. When asked about the most 
important challenges facing currently in the plant, a plant manager of a small-sized 
company answers: “to have a digital data report of the factory, to learn how to 
manage data and to use them as drivers of operative decisions. We would like to 
answer questions like: How much does this component cost? How many hours does 
it take to be produced?”. For these plants, KPIs such as the OEE or scrap rate are 

only the starting point to go back that is to understand what, where, and why of 
problems and how to solve them to have cost savings in the future. To become more 
data-driven and analytical, companies in this cluster, even small- and medium-sized 
companies, hired young engineers with strong business acumen and data analysis 
skills or experienced engineers that have worked for several years in large 
enterprises of the automotive sector. Therefore, they also have a deep functional 
knowledge of manufacturing processes and continuous improvement practices. For 
other employees (line or middle line employees), these firms do not wait for the 
external training system to provide workers with both domain knowledge and data 
analysis skills, but initiated proactively a training path to increase analytical skills 
of their workers: “before, the employees did not know how to read a drawing, now 
there is the drawing, the list of steps to follow during the manufacturing process, 
the classification of a defect in which is required to assign the right defect cause”.  

The majority of firms in this cluster report lean management practices as enablers 
of analytical and data-driven approaches to decision-making. One plant manager 
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noted: “The lean approach has taught us how to measure ourselves”. Indeed, lean 

production is essentially a rational and scientific approach to decision-making 
(Spear & Bowen, 1999). When the plant learns how to measure business processes, 
then the most important step is analyzing and interpreting the data to identify 
improvement opportunities. The same plant manager noted that workforce must 
now have more than ever a critical thinking capability - that is the ability to analyze, 
reason, and question decisions - as data could be wrong, and one must understand 
in the immediate if that data is an error or it is a process drift.  

The logistic regression analysis estimates that the probability to reduce unit 
product cost reaches 69.9%, the second-highest value. At the moment, 22% of the 
firms in this cluster already achieved cost reductions (Figure 10).  

 
Digital Networkers. The plants in this cluster (7%) have adopted both 

physical-digital interface technologies and network technologies. The traceability 
and virtualization properties along with synchronization and accessibility allow the 
creation of a plant digital twin in which information systems have sensory data and 
employees can access a common pool of data. However, despite the investments in 
digitizing and integrating data workers ignore these data during the decision-
making process by relying on intuition and experience. As far as high equivocality 
and low analyzability events are considered, these firms do not exploit the digital 
infrastructure but tend to use intuition-driven decision-making approaches. In 
plants belonging to this cluster this “low fit” between the decision-making approach 
and type of digital technologies adopted can be a problem and even a source of 
higher equivocality with some workers not knowing what the best approach is to 
solve problems. The digital initiatives and the data-driven approach promoted by 
management and a little number of workers clash with the large base of intuition-
driven culture especially present on the shop floor. A plant manager noted that since 
the network technologies are designed to work already efficiently, the people 
should adapt to the technology and not vice versa. This low fit is reflected in 
performance. Our analysis estimates that the probability to reduce unit product cost 
reaches only 5.7%, the lowest compared to the other clusters. None of the firms in 
this cluster achieved cost reductions  

 
Smart Manufacturers. The lowest number of plants in our sample (6%) 

exhibit a data-driven approach to decision-making while adopting both physical-
digital interface technologies and network technologies. Firms in this cluster reduce 
equivocality of events with the accessibility and synchronization properties of 
network technologies and increase analyzability with the virtualization and 
traceability properties of physical-digital interface technologies. Firms in these 
clusters have a data-driven approach to decision-making just like the Analytical 
Digitalizers, but they are facing a more advanced stage of technology adoption that 
allows them to reduce the equivocality of events. Informants agree that the 
expansion of information flows allows to reduce conflicts among functions and 
work toward cross-domain KPI across departments such as OEE and Lifecycle 
Costs. Having the same data accessible enables agreements and reduction of 



 

61 
 

conflicts across functions. In these companies, data increases objectivism and 
increases common understanding of problems. Consensus on data enables 
consensus on decisions that is the approval by subordinates and other stakeholders 
responsible for the successful implementation of the decision. The synchronization 
property ensures that data and information in enterprise information systems are 
always updated and in real-time therefore reducing equivocal interpretations.  A 
plant manager noted that network technologies have allowed managing centrally all 
the production activities while also detecting what is happening at a micro-level. 
The synchronization allows a rapidity of change over which determine an increase 
of automation and optimization of tasks (e.g. production planning and scheduling, 
design and engineering) by linking machines and enterprise information systems 
together. These organizations can handle faster unforeseen events (e.g. a machine 
breakdown, deviation of product quality, engineering change requests, etc.) and 
make faster and better decisions to provide an appropriate response to events. 

The logistic regression analysis estimates that the probability to reduce unit 
product cost reaches 93.8%, the greatest compared to other clusters. As of today, 
20% of plants in this cluster have realized such potential of unit product cost 
reduction. 

 

5.5 Discussion and Conclusion 

We often hear from the press that data, a key characteristic of the digitalization 
phenomenon, is the new oil. Across all industries, experts, and well-known 
newspapers such as The Economist and Forbes agree that data is an increasingly 
valuable resource (Economist, 2017; Gilbert, 2017). However, data by themselves 
will not solve business problems. This chapter highlights that, alongside digital-
driven generated data through the properties of digital technologies, a decision-
making approach toward data analysis is a required management practice. 

From the quantitative and qualitative analysis of survey and case studies data, 
this chapter demonstrates how making decisions on the analysis of data is one of 
the value-creating organizational practices needed to exploit digital technologies by 
improving cost performance (Martínez-Caro et al., 2020). As far as investment in 
digital technologies is economically feasible, thanks to these incentives, the key 
issue is not on the adoption of digital technologies per se, but how to purposefully 
use such technologies to increase business value by enabling cost reduction, 
productivity gains, or revenue increases (Björkdahl, 2020; Martínez-Caro et al., 
2020). Forward-looking managers should not think economically on how to 
substitute old equipment or exploiting the financial advantages of national plans, 
but on how such technologies once implemented will support value-creating 
organizational practices such as facilitating decision-making, generating new 
knowledge, improving customer services, improve coordination and collaboration 
with suppliers (Martínez-Caro et al., 2020). 

It took almost ten years since the term “Smart Manufacturing” was coined, but 

only now we are seeing the first results of firms that not only digitalized their 
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operations but started also to make decisions based on data and connected their 
digital twins, achieving cost performance at the plant level. Such digital 
transformation paths, however, pose several challenges to managers: formalize a 
data-driven vision, increase a diffuse understanding of operational data, ensure 
clarity of the related data flows, and achieve agility in the organization. 
Technological change takes a long time. On the other hand, embarking on 
organizational and managerial shifts toward a data-driven philosophy can take even 
longer, but the game is worth the candle.  

 
Theoretical contributions. This section contributes to the literature on 

decision-making approaches (Flores-Garcia et al., 2019) and data-driven decision-
making (e.g. E Brynjolfsson et al., 2011; Provost & Fawcett, 2013). The first 
contribution lies in the identification of the value of the data-driven decision-
making approach when adopting a new generation of digital technologies. 
Furthermore, it shows that the heterogeneity in the characteristics of digital 
technologies exhorts a different impact on the conditions (i.e. analyzability and 
equivocality) under which data-driven decision-making is a superior decision-
making approach over intuition-driven decision-making. This chapter contributes 
to both literature streams by describing the properties of a new generation of digital 
technologies discussing why and how (i.e. analyzability and equivocality) these 
technologies requires and enables a data-driven decision-making approach widely 
diffused inside an organization in order to make digitalization effective. 

This chapter also contributes to this literature illustrating the different patterns 
that companies may pursue toward digitalization to become truly “Smart 

Manufacturers”. Combining the types of digital technologies and decision-making 
approaches, this chapter found different combinations of technology and 
organization variables. This chapter also provided the “suggested paths” in terms 

of pursuing organizational change before or parallel to technological change. When 
there is a large misalignment between technology and organization (as for the 
quadrant featuring the adoption of network technologies and an intuition-driven 
decision-making approach) is a higher challenge for managers to bring back the 
organization “on track” with technology and organization fit. 
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Chapter 6 
 

Making digitalization effective 
through supply chain governance 
practices 

6.1 Introduction5 

Research has shown that the governance of inter-organizational relationships 
has a beneficial effect on the performances of supply chains (Dyer, 1996; Roehrich 
et al., 2020). Different mechanisms adopted to develop and manage buyer-supplier 
relationships in the supply chain context have been judged essential for the stability 
of such a relationship and the fulfillment of joint objectives (Z. Cao & Lumineau, 
2015; Y. Liu et al., 2009), especially in terms of product costs. Moreover, the 
exchange of activities between suppliers and customers may favor innovation and 
collaborative actions(Um & Oh, 2020). The governance mechanisms of the buyer-
supplier interaction have been demonstrated to improve cost performances, 
especially when the complexity of the processes of designing, manufacturing, and 
delivering within the dyadic relationship is high (Gimenez, van der Vaart, & van 
Donk, 2012), and when they have a substantial impact on the suppliers’ 

performances (Jean et al., 2020). It is also clearly recognized that both suppliers’ 

investments in specific assets to increase productivity, and a regime of long-term 
relationships based on trust and reputation, prevent an increase in the cost of 
governance (Dyer, 1997). Indeed, cost efficiency is enhanced by the exploitation of 
technological assets, but also thanks to the mechanisms by which the supply chain 
is managed and governed (Büyüközkan & Göçer, 2018) 

Suppliers play an important role in determining the competitiveness of 
customers, as the cost of purchased material represents more than 50% of the 
customer’s sales (Tang, 1999), and many buyers identify key suppliers as they rely 
more and more on their performances (Trautrims et al., 2017). This is particularly 
true in the automotive industry, which represents one of the largest and most 
dynamic manufacturing supply chains, that has to deliver complex industrial 
products subject to high levels of international standards, quality, and efficiency 

 
5 The contents of this chapter have been taken from a submitted paper to the Special Issue of 

the International Journal of Operations and Production Management “Supply Chain Governance in 
the Age of Digital Transformation” with the title “The interplay between Digital Transformation 
and governance mechanisms in supply chains: evidence from the Italian automotive industry” 
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(Liao et al., 2020; Qamar et al., 2018). The performance of suppliers is fundamental 
for the success of the overall supply chain, as carmakers are increasingly allocating 
external spending, assigning responsibilities, and transferring value-adding 
activities to suppliers, especially in product co-development (Trautrims et al., 
2017). 

Considering the trade-offs necessary to manage such performances, the role of 
technology is to offer new solutions that can improve the overall efficiency. The 
on-going digitalization of manufacturing processes is now driving the change of the 
entire automotive value chain, intending to increase efficiency and cost savings, as 
well as enabling business model innovations. Being historically at the cutting edge 
of innovative organizational and production techniques, carmakers are refocusing 
their competences on product innovation dynamics to face the compelling trends of 
global transportation, and, at the same time, they are progressively changing the 
management of inter-organizational relationships, thereby increasing their 
complexity (Sutherland, 2005). They tend to shift from a short-term, adversarial, 
and contractual relationship with the supply base to more long-term, collaborative, 
and trust-based governance to increase the suppliers' efforts to improve cost 
performance (S. Helper & Henderson, 2014).  

Both large and small-medium sized suppliers are evaluating the adoption of 
digital technologies at a process level, and prioritizing practices and capabilities to 
develop the concepts of the so-called “extended enterprise” (Qamar et al., 2018; 
Sutherland, 2005) intending to achieve a higher level of flexibility and autonomy 
to best fulfill the customers’ requirements (Liao et al., 2020). These technologies 
enable manufacturers to design and produce both collaboratively and virtually 
(Brun et al., 2019) and lead to an easier sharing of production data (Büyüközkan & 
Göçer, 2018). Moreover, a key concern of car manufacturers is the necessity of 
having increased visibility of the material, components, and finished products, but 
also of the processes, resources, and capabilities (Farahani et al., 2016). Within this 
background, the existing literature mainly discusses the digitalization of the 
automotive industry from the product innovation viewpoint, due to the introduction 
of data-driven business models and servitisation to fulfill the customers' needs more 
effectively (Kushwaha & Sharma, 2016; Rachinger, Rauter, Müller, Vorraber, & 
Schirgi, 2019). Digital innovation at the process level has been mainly studied in 
terms of process integration, as a result of the higher automation and the use of 
Artificial Intelligence for better demand forecasting (Liao et al., 2020). Moreover, 
there is a paucity of studies that consider the suppliers’ perspective (Jean et al., 
2020), and their involvement in more complex forms of relationships. Such a 
perspective, which includes a large number of small-sized suppliers, is 
fundamental, as automotive OEMs and Tier 1 companies often assign the flexibility 
constraints imposed by current trends in automotive at the expense of their upstream 
suppliers (Qamar et al., 2018). An understanding of the factors that enhance 
supplier’s performance, such as the adoption of digital technologies, could also help 
buyers and Original Equipment Manufacturers (OEMs) to establish appropriate 
governance of the relationship with the supplier that is beneficial for its 
performance (Liao et al., 2020). 
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Three research gaps have emerged and they constitute the focus of this chapter: 
1) supply chain governance studies tend to focus on the customers’ 

perspective, and mainly concern product innovation (e.g Blome et al., 
2013). This chapter focus on the effect of supply chain governance on 
suppliers’ cost performance, as this is a fundamental aspect for supply chain 
efficiency and a much less researched topic  (Jean et al., 2020); 

2) a detailed understanding of digitalization in suppliers and its implications 
on inter-organizational relationships. This aspect has mainly been treated 
concerning enterprise information systems (Jean et al., 2020; Zhang, 2019), 
while recent technological advancements in the context of the digitalization 
of manufacturing processes have not been explored in depth in supply 
chains (Fatorachian & Kazemi, 2020); 

3) in addition to the second point, there is also a need to understand how firms 
use the different types of technologies that are part of digitalization to 
obtain a comparative advantage in the supply chain (Lin et al., 2018), 
especially considering the high level of rivalry in the automotive industry 
(Trautrims et al., 2017). 

Considering the relevance of such questions, this chapter aims to investigate 
whether the technology adoption that characterizes the digitalization phenomenon 
offers new ways of shaping governance mechanisms in the automotive supply 
chain. In particular, this chapter explored the interplay between the ways 
automotive suppliers adopt digital technologies at a process level to ensure better 
visibility and interaction with OEMs and other Tier-x customers and their different 
impact on the effectiveness of supply chain governance mechanisms on the cost 
performances of suppliers. Building on the TCE theory, as well as on the literature 
on supply chain governance and the digitalization of supply chains, results show 
that supply chain actors require investments in digital technologies that are 
idiosyncratic, in terms of software and data sharing/integration, and require the 
development of domain-specific technical knowledge and inter-organizational 
routines. At the same time, they reduce the number of hardware investments and 
information asymmetries and make more complex governance forms available at a 
lower cost. These ensure their production is compliant with more compelling design 
requirements, reduces the cost of controls, increases trust, and establishes new 
forms of relationship with carmakers (or global Tier 1 suppliers). 

  

6.2 Theoretical background 

It is well-known that IT adoption can reduce the costs of communication as it 
improves the quality and speed of information processing and decision-making, as 
well as the monitoring capabilities and performance evaluation schemes (Gurbaxani 
& Whang, 1991). Nowadays, the emergence of new ICT-based technologies, which 
drive digitalization, is varying the frequency of exchange between customers and 
suppliers (Brun et al., 2019). The more complex information flows that are 
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generated are also leading to changes in the mechanisms which regulate and support 
the buyer-supplier relationships (Kamalaldin et al., 2020).  

IT has contributed to synergistic activities, such as product co-development, 
which were previously too expensive to performed jointly, by increasing the degree 
of vertical integration and the scope of firm activities (Gurbaxani & Whang, 1991). 
The objective is to share more design activities and manage product development 
complexity (J. Lee & Berente, 2012) by exploiting the possibility of finding better 
technological solutions for production efficiency, without increasing the costs 
related to governance mechanisms. 

Several studies have demonstrated the positive effects of the adoption of IT on 
supply chain integration, coordination, and collaboration (Chatterjee et al., 2006; 
Jean et al., 2020; Zhang, 2019). Coordination and integration entail the 
synchronization of supply chain processes and requires the exchange of such 
information as inventory levels, manufacturing capacity, production volume, order 
status, and equipment availability (Chatterjee et al., 2006). Collaboration entails the 
exchange of information and knowledge to develop new or enhanced 
products/services (Chatterjee et al., 2006). The impact of digitalization on supply 
chain governance is closely connected to the collaborative sharing of information 
between partners, which is necessary to achieve improved visibility and 
transparency (Fatorachian & Kazemi, 2020). Having all the relevant information 
easily available is becoming pivotal to facilitating the relevant parties in 
collaborating and making timely decisions based on updated information (Farahani 
(Farahani et al., 2016). It is suggested that digital technologies thanks to the sharing 
of product data and traceability can support the development of trust among 
partners (T. D. Hedberg et al., 2019), which in turn increases their eagerness to 
exchange, and can therefore enhance supply chain performance (Um and Oh, 2020). 
By contrast, Jean et al., (2020) have shown that the collaborative exchange of 
information, enhanced by the exploitation of specific information systems, enhance 
the effect of formal contracting on supply chain performance, even though they 
found no evidence for relational governance. Brun et al., (2019) argued that the 
adoption of digital technologies may affect all the stages of the value chain, as it 
reduces transaction costs for both internal and external business operations, and 
efficiency gains allow higher levels of efficiency and competitiveness to be 
achieved. Higher transparency is also ensured by the increased data gathering and 
analytics, which reduce the number of potential defects and accelerate the whole 
process of component design, manufacturing, and delivery (World-Economic-
Forum, 2016). Apart from these studies, there is a paucity of studies that analyze 
the joint impact of digital technologies and governance mechanisms on relationship 
performance measured from the perspective of the suppliers. This chapter aims at 
filling this gap.  

The forms of digital technologies considered in the digitalization of the 
automotive supply chain (i.e. physical-digital interface technologies and network 
technologies), and specifically from the suppliers’ perspective, can have an impact 

on the characteristics of the transactions in the product development and production 
processes. Enhanced virtualization and traceability reduce the level of uncertainty 
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and the related costs, by guaranteeing a wider (and virtualized) availability of the 
dynamics, behavior, modeling, and operational data (Tao et al., 2018), and better 
accessibility to issues on products that are shared through software platforms. 
Physical-digital and network technologies both represent similar, internet-based 
solutions for the communication and exchange of information for suppliers, and 
they hence lower asset specificity investments (Gottge et al., 2020). Finally, costs 
related to the frequency of transactions, in terms of the number of times actors carry 
out specific transactions (Williamson, 1985), are lowered by the automation and 
real-time acquisition and synchronization of data through digital-physical interface 
technologies, which require less human involvement (Gottge et al., 2020). 

However, research has shown that transaction costs are not dependent only on 
asset specificity, uncertainty, and frequency but on the governance mechanisms in 
place between the supplier and the customers (Dyer, 1997). Hence, in the 
hypothesis development, this chapter will focus on the compound impact of the 
above mentioned technological subsets and relational governance mechanisms on 
the supplier’s effort to increase cost performance considering the higher 
transparency and traceability of the information flows between customers and 
suppliers they can provide, especially in shared platforms (Gottge et al., 2020; Helu 
et al., 2017). This chapter investigates under what conditions the forms of digital 
technologies could have a positive and differentiated impact on the efficiency of 
governance mechanisms along the supply chain, and in particular on the cost 
performance of suppliers. Specifically, this chapter analyzes study the interplay 
between the mechanisms of contractual and relational governance and the features 
of 1) virtualization and traceability, enabled by physical-digital interface 
technologies, and 2) synchronization and accessibility, ensured by network 
technologies. The complex supply chain environment requires a contingent 
perspective on the effectiveness of the relationship between buyer and supplier 
(Huang et al., 2020), in terms of both the duration of formal agreements and the 
higher integration opportunities offered by the adoption of network technologies. 
Indeed, buyers can develop and cultivate both strong (and long-term) partnerships 
and consciously lose (with short-term agreements) relationships in the supply 
network, according to the diverse characteristics that have to be addressed in the 
sourcing strategy (Kim, Choi, Yan, & Dooley, 2011; Trautrims et al., 2017). Figure 
11 anticipates the research framework, with the developed hypotheses as in the 
following. 



 

68 
 

 

Figure 11. Research framework (II) 

 

6.3 Hypothesis development 

Carmakers are increasingly demanding sophisticated and specific component 
modules from their suppliers, which has led to profound changes in the OEM-
supplier relationship (Sutherland, 2005). Suppliers are expected to consolidate 
greater R&D capabilities and best practices, and to undertake product development 
activities: carmakers identify and select the most innovative suppliers, especially 
for strategically important supply categories, but also those that can guarantee 
larger volumes (Sutherland, 2005; Trautrims et al., 2017). Once they have identified 
the suppliers that have accomplished competitive sourcing strategies, car 
manufacturers need to engage in appropriate negotiations and to put in place the 
contractual governance mechanisms needed to create binding formal agreements 
that specify the obligations and roles of the partners (Trautrims et al., 2017). 
Agreements also set conditions about the reliability and capability of suppliers to 
fulfill given requirements, such as quality, quantity, delivery dates, and price 
(Johnston, McCutcheon, Stuart, & Kerwood, 2004). On the performance side, 
suppliers are continuously obliged to balance the trade-off between the efficiency 
of operations and innovative capabilities to meet the customer’s requirements (Liao 
et al., 2020). Suppliers, to have the right incentive to invest in physical-digital 
technologies and introduce production improvements, need guarantees that the 
relationship between the two parties will last for some years and that the customer 
will not use the “virtualized objects” as a means of control instead of collaboration 

purposes (e.g. for the refinement of design and models through data capturing by 
choosing another supplier, rather than using them for collaborative problem-
solving) (Anderl, 2015; Chatterjee et al., 2006; Tao et al., 2018). In this case, 
contracts become less effective in providing incentives for suppliers to achieve cost 
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reductions because the monitoring and control policies of contracts (both short-term 
and long-term) can now be substituted by a large amount of data and availability of 
virtual objects, thanks to physical-digital interface technologies.  

On the other hand, suppliers could feel more empowered in terms of autonomy, 
and therefore in terms of the self-determination of their activities in the supply chain 
and their choices to manufacture and deliver products to buyers (Liao et al., 2020). 
The features of virtualization and traceability establish a quasi-integration 
mechanism form (Kim et al., 2011) that prevents opportunistic behavior and thus 
reduces reliance on both short-term and long-term contracts pertaining to the cost 
performance of suppliers. 

The length of the relationship, the complexity of the transaction, and its 
governance create different forms of bilateral dependence, where technologies 
enact alternative mechanisms (with the rationale that more sophisticated and 
integrated technologies are connected to more complex forms of governance). 

Based on the above reasoning, the following hypothesis are proposed: 
HP1. The interaction between contractual governance and the adoption of 

technologies for virtualization and traceability is negatively related to the cost 
performance of suppliers. 

HP1a. The interaction between short-term contractual governance and the 
adoption of technologies for virtualization and traceability is negatively related to 
the cost performance of suppliers. 

HP1b. The interaction between long-term contractual governance and the 
adoption of technologies for virtualization and traceability is negatively related to 
the cost performance of suppliers. 

 
Having data available on traced and retrieved physical objects determines the 

possibility of controlling and bargaining with the customer. A carmaker or a 
powerful tier 1 supplier can check opportunities with more competitive suppliers in 
the use of production resources at the end of the contract (and at the crucial time of 
switching from one vehicle model to another), especially when these are short-term 
contracts (Aláez-Aller & Longás-García, 2010). Indeed, network technologies offer 
opportunities to simplify control procedures and monitory compliance with 
contracts, and cost savings can be achieved using a continuous exchange of 
information, but at the cost of greater integration of information collected on the 
status of production activities (and deliveries), and data about product quality. 
Customers can leverage these data to monitor but not to improve the cost 
performance of their suppliers (Liao et al., 2020), especially if there is a short-term 
contract. The real-time transparency of product-related information and the 
integration of process-related information promotes superior coordination and 
collaboration (Fatorachian & Kazemi, 2020), while it can also increase 
opportunistic behavior by means of the control of the customer. Carmakers usually 
maintain their contracts with suppliers for the lifetime of a given model (Aláez-
Aller & Longás-García, 2010). Contracts with a longer time horizon than the 
product life cycle can reveal the willingness of organizations to reach the full 
potential of coordination and collaboration with their partners, and then learn more 
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about how they can work together to accomplish supply chain objectives (Huang et 
al., 2020). It also represents a form of commitment that the customers will continue 
the relationship in the long term, thereby avoiding a switch in the supply base. In 
this way, the suppliers feel empowered in terms of demonstrating their internal 
capabilities to develop and deliver products aligned with the quality and design 
requirements of the customers (Liao et al., 2020), also thanks to the enhanced 
synchronization and accessibility. The duration of formal agreements can reveal the 
buyer’s need to maintain its bargaining power, but long-term partnerships are often 
characterized by co-operation, an exchange of information, and mutual trust (Aláez-
Aller & Longás-García, 2010). The higher level of network technologies and the 
related transfer of knowledge can be beneficial for the supplier’s performance, 

provided that the buyer and supplier have interacted long enough (Kotabe, Martin, 
& Domoto, 2003).  

Based on the above reasoning, the following hypothesis are proposed: 
HP2. The interaction between contractual governance and the adoption of 

technologies for synchronization and accessibility is positively related to the cost 
performance of suppliers. 

HP2a. The interaction between short-term contractual governance and the 
adoption of technologies for synchronization and accessibility is negatively related 
to the cost performance of suppliers. 

HP2b. The interaction between long-term contractual governance and the 
adoption of technologies for synchronization and accessibility is positively related 
to the cost performance of suppliers. 

 
Considered that car manufacturers are generally eager to involve suppliers in 

product development, as long as they contribute to the design and innovation 
processes (Huang et al., 2020), trust (and a consequent collaboration) is especially 
important for the sharing of production and process data. Physical-digital interface 
technologies provide real-time information transparency of product-related 
information, such as information about product development testing, the equipment 
parameters used during the manufacturing process, the product manufacturing 
history, and product quality (Tao et al., 2018). In this sense, such technologies can 
be pivotal in different stages of buyer-supplier cooperation. During the product 
development stages, physical-digital technologies allow suppliers to collect and 
share data on product development in real-time, with the aim of tracking materials 
and detecting errors to authenticate products, and this, in turn, has a positive effect 
on the production coordination costs (Farahani et al., 2016; Kallinikos et al., 2013; 
Youngjin Yoo et al., 2012). At the same time, “Digital Product Memories” identify 

the quantitative parameters (i.e. the most relevant “design requirements”) and their 

change in status that must be controlled during the manufacturing activities (Anderl, 
2015; Chatterjee et al., 2006), so that any physical product exactly reflects the 
official product specifications that resulted in the initial awarding of that supply 
contract (Aláez-Aller & Longás-García, 2010). If the product is out of specification, 
real-time information transparency can pinpoint the production problems and 
immediately drive process improvements at the supplier’s site. This type of 
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transparency increases the quality assurance of suppliers’ products and makes it 

easier to introduce relational governance forms, thus creating a new basis for trust-
based supply chain relations and joint problem-solving activities. Mutual trust plays 
a more important role in building supplier empowerment (Liao et al., 2020), and 
enhances its competitive capability (Huang (Huang et al., 2020), even in terms of 
production costs. These conditions minimize the costs associated with the 
governance of the relations and make highly specific investments in knowledge-
intensive activities possible and effective.  

As carmakers are focused more on product architecture innovations and the 
responsibility of product integrity (Schulze et al., 2015), their decision to assign the 
complete development of new components to a supplier can be further legitimated 
through the use of physical-digital interface technologies that provide a high level 
of trust, the expectation of joint problem-solving and incentives for open 
communication. The higher autonomy and control over internal processes enhanced 
by such technologies lead the suppliers to be more likely to behave proactively, to 
improve processes continuously, to take risks, and to seek novel ways to solve 
customers’ problems (Vilko, Rumpu, & Koivuniemi, 2012). 

Based on the above reasoning, the following hypothesis is proposed: 
HP3. The interaction between relational governance and the adoption of 

technologies for virtualization and traceability positively influences the cost 
performance of suppliers. 

 
The synchronization and accessibility features of network technologies put 

more emphasis on intelligence at the process level that enhances the dynamic 
scheduling on the shop floor, and increase coordination of the delivery dates of 
production orders and the inventory levels, as well as the real-time sharing of details 
about the transformation stages (Cui et al., 2020; Porter & Heppelmann, 2015). The 
synchronized interconnection of process entities, based on the seamless sharing of 
massive data and distributed information across stages, provides a range of 
opportunities for dynamic collaborations and for relational governance mechanisms 
that contribute to generating strategic benefits for all the supply chain participants 
(Büyüközkan & Göçer, 2018; Farahani et al., 2016). The key focus of suppliers on 
digitalization are transparency, automatic data sharing, and process integration 
during the ordering, manufacturing, and delivery processes  (Mantravadi, Moller, 
& Christensen, 2018), which allows a quick analysis to be made of their efficiency 
levels and the accomplishment of the quality requirements. 

By reducing data silos and communication barriers between logistics flows, 
products, equipment, and operating systems, network technologies enable different 
departments (e.g. production, sales, R&D, IT) to access heterogeneous (and 
relevant) sources of data and information, be more involved in the innovation of 
production processes and to find the root causes of manufacturability issues (e.g. 
design weakness, material issue, etc.) (Cui et al., 2020; Porter & Heppelmann, 
2015). Indeed, it is frequent to have integrated digital platforms in the automotive 
supply chain to manage the supply chain (Gottge et al., 2020). The synchronization 
and accessibility of these platforms increase the customer’s trust that the suppliers 
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will make the best use of the available resources, which are sometimes owned by 
the customers (i.e. molds), and collaborate for continuous improvement and 
efficiency (Büyüközkan & Göçer, 2018). Wastes and misalignments with design 
requirements can easily be detected and logistic processes can be better-
synchronized thanks to real-time monitoring, with less manual transactions and a 
subsequent positive impact on costs. The supplier feels more autonomous in 
exchanging product- and production-related data appreciating the value of 
collaborating with the customers, and perceives the impact of the better integration 
on both the internal processes and on the value delivered to the customers (Liao et 
al., 2020; Vilko et al., 2012). This relational commitment drives also to an increase 
in specific investments for productivity gains. 

Based on the above reasoning, the following hypothesis is proposed: 
HP4. The interaction between relational governance and the adoption of 

technologies for synchronization and accessibility is positively associated with the 
cost performance of suppliers 

 
 

6.4 Measures and validity 

This chapter adopts measures that are consistent with previous research. For 
relational governance, this research draws on the work of Zaheer and Venkatraman 
(2019), followed by that of Blome et al., (2013), who distinguished between the 
structural and process dimensions of relational governance. Thus, relational 
governance was measured as a second-order construct, as did Yang et al., (2012). 
Following Blome et al., (2013), quasi-integration was measured by asking the 
supplier to rate their involvement in product development, with the customer 
considered as more important to account for the largest share of the supplier’s total 

turnover. This first-order construct included the following variables: increased 
responsibilities in new product development, participation in value analysis/value 
engineering, and advanced simulations of the product. In this chapter, the relational 
norms mainly pertain to flexibility and solidarity (Yang et al., 2012). Flexibility 
was measured by asking the suppliers to rate their expectations of customer 
acceptance and the encouragement of improvement suggestions from suppliers that 
would reduce production costs but require the customer to modify its design and 
production activities. Solidarity was measured by asking the suppliers to express 
their expectations of whether a customer would provide support to the supplier in 
the case of a competitor offering a product at a lower price, but at the same quality, 
and whether the customer would allow the supplier to capture part of the savings 
resulting from cost-targeted suggestions. Trust was measured by asking the 
suppliers to express their fairness, cooperative atmosphere and benevolent behavior 
with their main customers.  

Contractual governance was measured with a single item scale. The question 
asked whether the supplier had a formal contract with its most important customer 
that specified the duties and responsibilities of the supplier with respect to the 
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quality, cost, quantity, and delivery of the components. In the case of a positive 
answer, the sales managers were also asked to indicate the contract length in years. 
This was used to measure the contract duration. Based on this, short-term and long-
term contractual governance were distinguished each plant was assigned to each 
sub-group. Specifically, the new variables have “0” if no contract was in place, “1” 

to contracts of less than or equal to 5 years, and “2” to longer contracts than 5 years). 

The cut-off point to assign firms to short- or long-term governance was five years 
because this is considered the average period of the lifecycle of a car model (Tang, 
1999). A four-year cut-off point was also considered (Taylor & Wiggins, 1997) and 
the results illustrated hereafter were consistent. Contracts that extended beyond this 
period signal a long-term commitment of the customer to continue the relationship 
with the supplier after the life cycle of a given model. 

A set of control variables that could have an impact on cost performance was 
included. In line with supply chain governance studies (e.g Z. Cao & Lumineau, 
2015), the size of the firm, the length of the relationship, and the distance of the 
supplier from its main customer were included. Moreover, the adoption of 
enterprise information systems, the percentage of employees with academic 
degrees, whether the plant offered salary incentives on productivity improvements, 
the position in the supply chain (e.g. Tier1), and the use of lean practices were also 
included.  Table 10 provides the measurement items and scale of each variable. 

Table 10. Measures and validity 

Construct Measure Operationalization 

Cost performance 
 

(Blome et al., 
2013) 

What has been the average annual percent change 
in your unit costs for this product over the last year 
and the last three years? 

• Decreased < 10% (1) 
• Decreased 3.1 – 10% (2) 
• Little Change (+/- 3%) (3) 
• Increased 3.1 – 9% (4) 
• Increased > 9.1% (5) 

Binary: value 1 if 
respondent answers 
(1) or (2), 0 
otherwise 

Physical-Digital 
Interface 

Technologies 
(Ordinal 𝛼 = 0.91, 
AVE=0.72, 𝜒2(54) 
=74.608, p < 0.01; 
CFI = 0.921.; CD 
=0 .973.; 
RMSEA=0.062) 

 
Scale based on 
Culot et al. (2020) 
and Frank et al. 
(2020) 

 

For each of the following technologies 
indicate which are adopted: (0/1) 

• Sensors installed on equipment to 
continuously monitor work conditions and 
process parameters (0.54) 

• Machine vision that allows the computer 
to inspect images used in metrology and 
other activities of process quality control 
(0.75) 

• Tracking technologies for materials (e.g. 
RFID, bar codes, QR codes, etc.) to track 
location and status within the plant for 
logistic purposes (0.73) 

• Tracking technologies for products (e.g. 
RFID, bar codes, QR codes, etc.) to track 

Continuous: a sum 
of five binary 
variables 
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location and status outside the plant for 
supply chain purposes (0.63) 

• Human-Machine interface technologies 
(e.g. augmented reality, virtual reality, 
wearables, display touch) (0.58) 

Network 
Technologies 

 
Scale based on 
Culot et al. (2020) 

How production data (e.g. quality, time, costs, 
production volume) are collected in this plant? (0/1) 

• “We use a unified corporate business 

system that integrates sensors data with 
data from enterprise information systems 
(e.g. ERP, MES, CRM, PLM)” AND 

“Data remains in siloes; it is hard to link 

together data from different departments 
(such as HR, operations, sales)” (reversed) 

Binary 

Contractual 
Governance 

Please indicate whether you have a formal written 
contract with your customer that specify obligations 
concerning quality, cost, quantity, and delivery 
reliability (0/1) 

Binary: single-item 
scale 

Contract 
Duration 

If you have a written formal contract, please 
indicate how long is this with your main customer 
(in years)? 

Continuous 

Relational 
Governance 

Second order construct (α = 0.73, 𝜒2(54) =74.608, 
p < 0.01; CFI = 0.931.; CD = 0.973; 
RMSEA=0.062) 

 

Quasi-Integration 
Ordinal 𝛼 = 0.73 
AVE = 0.61 

 
Scale based on 
Blome et al. (2013) 

Please indicate which descriptions apply to your 
firm's role in product development for this product. 
(Please check all that apply) (0/1) 

• Your business unit provided the majority 
of engineering hours OR Your business 
unit took entire responsibility (0.46a) 

• Collaborated with the customer to specify 
component interfaces or to design-related 
components of the customer's product 
(0.49) 

• Performed finite element analysis or other 
simulation for this product (0.91) 

• Participated in Value Analysis / Value 
Engineering with the customer (0.71)   

Continuous: a sum 
of four binary 
variables and 
transformation into 
1-5 scale 

Relational Norms 
Ordinal 𝛼 = 0.65 
AVE = 0.51 
 
Scale based on 
Yang et al. (2012) 

Suppose your business unit had an idea that would 
allow you to reduce your costs but would require 
your customer to make a slight modification in its 
procedures. How would your customer react? 
(Please check all that apply) (0/1) 

• Customer eagerly solicits such 
suggestions – FLEXIBILITY (0.57) 

• Customer frequently adopts such 
suggestions – FLEXIBILITY (0.68) 

• Customer would adopt the suggestion but 
would seek to capture some of the savings 
that would allow us to increase our 
profitability – SOLIDARITY (0.58) 

Continuous: a sum 
of four binary 
variables and 
transformation into 
1-5 scale 
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How would your customer react if one of your 
competitors offered a lower price for a product of 
equal quality? 

• Help you match your competitor’s price 

efforts – SOLIDARITY (0.56) 
Trust 
𝛼 = 0.68 
AVE=0.67 
 
Scale based on Liu 
et al. (2009) 

Please select the number which best describes your 
belief that your customer will treat you fairly. 

• 1= Can’t depend on the customer to Treat 
us fairly; 5= Customer always treats us 
fairly (0.62) 

Please indicate the extent to which you disagree or 
agree with the following statements (1= Strongly 
Disagree; 5 = Strongly Agree) 

• Our customer genuinely wants to hear our 
feedback on how they are performing in 
their relationship with us (0.74) 

• We feel that our customer often uses the 
information we provide to check up on us, 
rather than to solve problems (reversed) 
(0.83) 

• There have often been situations of 
significant disagreement with the 
customer (reversed) (0.77) 

Continuous: mean 
of four Likert 
variables (1-5) 

Size number of employees Continuous (log) 
Enterprise 

Information 
Systems 

(Ordinal 𝛼 = 0.850, 
AVE=0.76, 𝜒2(5) 
=20.259, p < 0.001; 
CFI = 0.929.; CD 
=0 .914.; 
RMSEA=0.095) 

Which ERP modules are used in this plant? (0/1) 
(Please check all that apply) 

• Sales 
• Warehouse / Logistic 
• Production 
• Human Resources 
• Accounting 

Continuous: a sum 
of 5 binary variables 

Multi-Unit Plant Value 1 if the plant belongs to a multi-plant firm Binary 
R&D Intensity R&D expenditures to total sales Continuous (1=0%, 

2=1-4%; 3=5-9%; 
4=10-24%; 5=25-
49%; 6=50-75; 
7=75-100%) 

% Employees 
Academic 
Degrees 

% of employees with at least one academic degree Continuous (1=0%, 
2=1-3%; 3=4-5%; 
4=6-9%; 5=10-
15%; 6=>15%) 

Incentives 
Productivity 

Value 1 if the salary contains variables parts related 
to plant productivity 

Binary 

Supply Chain 
Position 

The position in the supply chain (i.e. Tier3 or 
below, Tier2, Tier1) 

Continuous 
(1= Tier3, 2=Tier2, 
3= Tier1) 

Relationship 
Length 

Expected number of years there is a high 
probability of continuing to receive orders from the 
main customer  

Continuous (log) 
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Supplier-
Customer 
Distance 

Distance (in km) of your plant from the main 
customer facility 

Continuous (log) 

Lean practices 
(Ordinal 𝛼 = 0.813, 
AVE=0.79, 𝜒2(9) 
=14.460, p < 0.1; 
CFI = 0.946.; CD 
=0.905.; 
RMSEA=0.079) 

Sum of 0/1 variables related to lean production (i.e. 
formal lean programs that occurs in teams with the 
involvement of production workers, management 
expectations of continuous improvement from 
production workers, autonomous maintenance, 
autonomy in stopping production lines in case of 
defects, suggestions program, value stream 
mapping) 

Continuous: a sum 
of 6 binary variables 

Note: a: Standardized factor loading. AVE = Average Variance Extracted, CFI = Comparative Fit 
Index, CD = Coefficient of Determination, and RMSEA = Root Mean Square Error of 
Approximation, Overall Model Fit: 𝜒2(80) =110.191, p < 0.001; CFI = 0.911.; CD = 0.992.; RMSEA 
= 0.086) 

 
This research adopts the measurement quality criteria proposed by Hair et al., 

(2014) and Forza (2002) to control for the reliability and validity of all the measures 
used in this chapter. The measured validation was conducted in three steps (Table 
10). First, exploratory factor analysis was performed for each multiple-item 
variable to test the convergent validity, which resulted in factor solution as 
theoretically expected. Second, the internal consistency method (i.e. Cronbach’s 

alpha) was used to test for reliability. However, for specific constructs (see Table 
10), the ordinal alpha method was adopted, which is preferable when constructs are 
composed of binary items (Zumbo et al., 2007). As shown in Table III, all the 
constructs have a higher alpha than the minimum suggested accepted threshold of 
0.6 (Nunally (Nunally, 1978). Third, a confirmatory factor analysis was performed 
for each of the constructs to test for convergent and discriminant validity. 
Specifically, convergent validity was tested through an analysis of the significance 
and magnitude of the factor loadings. All the factor loadings were highly significant 
(p<.001) and had acceptable magnitude levels (Hair et al., 2014). Furthermore, the 
Average Variance Extracted (AVE) for each contrast was greater than the reference 
point of 0.50. Discriminant validity was assessed by comparing AVE with the 
squared correlation (Hair et al., 2014). The AVEs of each construct were higher 
than the sum of the squared correlations with other constructs, thus providing 
evidence of the discriminant validity. Finally, we checked the overall model fit 
using the Chi-squared test (i.e., χ^2 per degree of freedom), the comparative fit 

index (CFI), the coefficient of determination (CD), and the root mean square error 
of approximation (RMSEA) (Hair et al., 2014). The obtained results showed a good 
level of fit of the model (Table 10). Table A2 provides the descriptive statistics of 
the main variables. 
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6.5 Results 

Table 12 and Table 13 present the results of the logistic regression. Table 14 
provides a synthesis of the results and the tested hypotheses. 

Table 12. Results of the logistics regressions (IIa) 

Dependent Variable: Cost Performance 
Model (1)  
Coefficient  
(Std. Err.) 

Model (2)  
Coefficient  
(Std. Err.) 

Model (3)  
Coefficient  
(Std. Err.) 

Model (4)  
Coefficient  
(Std. Err.) 

     
Physical-Digital Interface 
Technologies 

-0.122 0.642 0.192 0.372 

 (0.482) (0.752) (0.604) (1.038) 
     
Network Technologies 0.297 -0.159 0.644 -0.346 
 (0.404) (0.644) (0.519) (0.773) 
     
Contractual Governance -0.0605 -0.178  -0.309 
 (0.935) (0.887)  (1.044) 
     
Relational Governance -0.249  -0.253 -0.201 
 (0.403)  (0.563) (0.609) 
     
Contractual Governance X Physical-
Digital Interface Technologies 

 -0.945 
(0.848)  -0.042 

(1.111) 
     
Contractual Governance X Network 
Technologies 

 0.684  2.189+ 

  (0.815)  (1.210) 
     
Relational Governance X Physical-
Digital Interface Technologies 

  1.998* 2.865* 

   (0.794) (1.127) 
     
Relational Governance X Network 
Technologies  

  0.369 0.165 

   (0.493) (0.483) 
     
Size -0.271 -0.268 0.091 0.645 
 (0.723) (0.733) (0.804) (1.006) 
     
Multi-Unit Plant -0.0348 -0.0825 -0.938 -1.625+ 
 (0.533) (0.530) (0.713) (0.958) 
     
R&D Intensity -0.0781 -0.0905 -0.365 -0.603 
 (0.569) (0.522) (0.639) (0.725) 
     
% Employees Academic Degrees 0.564 0.488 1.193+ 1.869* 
 (0.553) (0.478) (0.703) (0.878) 
     
Incentives Productivity -0.565 -0.557 -0.804+ -1.025+ 
 (0.416) (0.409) (0.486) (0.591) 
     
Supply Chain Position -0.790+ -0.971* -1.511* -2.044* 
 (0.453) (0.448) (0.637) (0.810) 
     
Relationship Length -0.302 -0.250 -0.193 -0.0607 
 (0.365) (0.381) (0.407) (0.466) 
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Supplier-Customer Distance 0.581 0.462 0.850 1.151+ 
 (0.466) (0.426) (0.526) (0.595) 
     
Lean practices 1.107* 1.104* 1.342* 1.223+ 
 (0.533) (0.526) (0.614) (0.692) 
     
Constant -2.234** -2.034** -3.141** -3.670** 
 (0.733) (0.694) (0.720) (1.127) 
Observations 86 88 86 86 
Pseudo R2 0.1998 0.1921 0.3264 0.3787 

Note: Coefficients in Odds ratio, Standard errors in parentheses, + p < 0.1, * p < 0.05, ** p < 0.01 
 
 

Table 13. Results of the logistics regressions (IIb) 

Dependent Variable: Cost Performance 
Model (5)  
Coefficient  
(Std. Err.) 

Model (6)  
Coefficient  
(Std. Err.) 

Model (7)  
Coefficient  
(Std. Err.) 

Model (8)  
Coefficient  
(Std. Err.) 

     
Physical-Digital Interface 
Technologies 

-0.0441 0.979 0.192 1.278 

 (0.477) (0.849) (0.604) (1.406) 
     
Network Technologies 0.340 -0.399 0.644 -0.872 
 (0.417) (0.693) (0.519) (0.862) 
     
Short-Term Contract (<= 5 years) 0.529 0.382  1.210 
 (1.111) (1.134)  (1.481) 
     
Long-Term Contract (>5 years) -0.453 -1.238  -2.793 
 (1.090) (1.275)  (2.082) 
     
Relational Governance -0.117  -0.253 0.312 
 (0.433)  (0.563) (0.771) 
     
Short-Term Contract (<= 5 years) X 
Physical-Digital Interface 
Technologies 

 -1.282  -0.0522 

  (1.098)  (1.645) 
     
Long-Term Contract (>5 years) X 
Physical-Digital Interface 
Technologies 

 -1.162  -1.097 

  (1.167)  (1.598) 
     
Short-Term Contract (<= 5 years) X 
Network Technologies 

 -0.225  1.778 

  (1.067)  (1.446) 
     
Long-Term Contract (>5 years) X 
Network Technologies 

 2.082+  6.264* 

  (1.234)  (2.480) 
     
Relational Governance X Physical-
Digital Interface Technologies  

  1.998* 4.685** 

   (0.794) (1.808) 
     
Relational Governance X Network 
Technologies 

  0.369 -0.738 

   (0.493) (0.676) 
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Size -0.390 -0.743 0.0913 -0.211 
 (0.751) (0.838) (0.804) (1.365) 
     
Enterprise Information Systems -0.815 -0.696 -1.260* -2.902* 
 (0.534) (0.554) (0.631) (1.193) 
     
Multi-Unit Plant 0.0134 0.335 -0.938 -1.869 
 (0.547) (0.609) (0.713) (1.244) 
     
R&D Intensity 0.00500 -0.197 -0.365 -0.713 
 (0.569) (0.586) (0.639) (0.978) 
     
% Employees Academic Degrees 0.649 0.658 1.193+ 2.853* 
 (0.572) (0.523) (0.703) (1.181) 
     
Incentives Productivity -0.611 -0.442 -0.804+ -1.418* 
 (0.425) (0.417) (0.486) (0.716) 
     
Supply Chain Position -0.843+ -1.203* -1.511* -3.175** 
 (0.468) (0.522) (0.637) (1.205) 
     
Relationship Length -0.294 -0.159 -0.193 -0.0608 
 (0.363) (0.422) (0.407) (0.616) 
     
Supplier-Customer Distance 0.495 0.234 0.850 1.114 
 (0.483) (0.481) (0.526) (0.831) 
     
Lean practices 1.193* 1.347* 1.342* 1.801+ 
 (0.560) (0.617) (0.614) (1.101) 
     
Constant -2.243** -2.132** -3.141** -5.087** 
 (0.734) (0.748) (0.720) (1.700) 
Observations 85 87 86 85 
Pseudo R2 0.2089 0.2575 0.3264 0.4873 

Note: Coefficients in Odds ratio, Standard errors in parentheses, + p < 0.1, * p < 0.05, ** p < 0.01 
 

Table 14. Synthesis of results and hypothesis testing 

Hypothesis Interaction Terms 

Expected 
effects on 

Cost 
Performance 

Test Notes 

HP1 
Contractual Governance X 
Physical-Digital Interface 
Technologies 

- Rejected 

The coefficients in 
Model 2 and 4 (Table 
12) are negative but 

not significant 

HP1a 
Short-Term Contract (<= 5 
years) X Physical-Digital 
Interface Technologies 

- Rejected 

The coefficients in 
Model 6 and 8 (Table 
13) are negative but 

not significant 

HP1b 
Long-Term Contract (>5 
years) X Physical-Digital 
Interface Technologies 

- Rejected 

The coefficients in 
Model 6 and 8 (Table 
13) are negative but 

not significant 

HP2 
Contractual Governance X 
Network Technologies 

+ Supported 
The coefficient in 

Model 4 (Table 12) is 
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positive and 
significant 

HP2a 
Short-Term Contract (<= 5 
years) X Network 
Technologies 

- Rejected 

The coefficients in 
Model 6 are negative 
while in Model 8 is 

positive and 8 (Table 
13). Both are not 

significant 

HP2b 
Long-Term Contract (>5 
years) X Network 
Technologies 

+ Supported 

The coefficients in 
Model 6 and Model 8 

are positive and 
significant 

HP3 
Physical-Digital Interface 
Technologies X Relational 
Governance 

+ Supported 

The coefficients in 
Models 3 and 4 Table 
12) and Models 5 and 

6 (Table 13) are 
positive and 
significant 

HP4 
Network Technologies X 
Relational Governance 

+ Rejected 

The coefficients in 
Models 3 and 4 (Table 

13) are positive but 
not significant while 

in models 5 and 6 
(Table 13) are positive 
and negative but not 

significant 
 
The difference between Table 12 and Table 13 is related to contractual 

governance. Contractual governance is presented in Table 12 as a single item scale 
that indicates the presence/absence of formal contracting, whereas this variable is 
substituted in Table 13 by a discrete variable that represents the duration of a 
contract. The same dependent variable (i.e. cost performance) was used in all the 
models and it includes a set of control variables as described above. As for H1, 
which states that the interaction between contractual governance and physical-
digital interface technologies is negatively related to the cost performance, the 
result shows a negative but non-significant coefficient in model 3 (column 2 in 
Table 12) and a positive but not significant coefficient in the model; therefore, H1 
is not supported. Similarly, H1a and H1Bb are not supported 

Regarding H2, which states that network technologies are positively related to 
contractual governance, we found a significant positive impact (models 3 and 4 in 
Table 12); therefore, H2 is supported. H2b, which states the need to have long-term 
contractual governance to increase the cost performance of suppliers is also 
supported. However, both hypotheses are only supported in the last columns, that 
is, model 4 in Table 12 and model 8 in Table 13, which includes relational 
governance and interaction terms, thus suggesting that relational governance is also 
needed. In H3, which states that the adoption of physical-digital interface 
technologies and relational governance are complementary for cost performance, 
the results show a significant positive impact for both models 3 and 4 (Table 12), 
thus supporting H3. For H4, which states that the interaction of network 
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technologies with relational governance is positively associated with cost 
performance, the results do not provide any support as the coefficients are not 
significant (model 4 in Table 12 and model 8 in Table 13). 

Interesting evidence arose from the analysis of the control variables. In this 
case, the results show that the position in the supply chain is negatively related to 
the cost performance, thus indicating that suppliers in the “extreme” position of a 

supply chain (Tier3 and below) have been better at reducing costs than other 
downstream firms. The distance between supplier and customer was found to be 
positively related to the cost performance, and it was revealed that the more distant 
the supplier was from its main customer, the better the results on cost performance 
(this effect may be a particular aspect of the Italian situation). However, since this 
result was only found for Model 4 in Table 12 (which includes all the interaction 
terms), such firms might have leveraged on digital technologies and governance 
mechanisms to mitigate the negative impact of their distance from customers on the 
cost performance. The share of employees with an academic degree was positively 
related to cost performance, thus indicating the importance of human capital in 
these processes. The adoption of lean practices that favor the internal transparency 
of information and procedures also has a positive effect. Interestingly, we found 
that size did not affect the cost performance of suppliers, thus suggesting that even 
SMEs suppliers can improve their cost performance if they can adapt and 
complement digital technologies with governance mechanisms. 

 

6.6 Discussion and conclusions 

This chapter analyzed the impact of the joint impact of digital technologies 
classified into two different subsets and relational and contractual governance 
mechanisms on the cost performance of automotive suppliers. 

Contractual and relational governance mechanisms are considered the most 
effective mechanisms for successful inter-organizational relationships in supply 
chains (Z. Cao & Lumineau, 2015; L. Poppo & Zenger, 2002). They not only affect 
the performance of focal firms but also have a substantial impact on the cost 
performance of suppliers (Jean et al., 2020), especially when the relationship entails 
highly complex designing, manufacturing, and delivering processes (Gimenez et 
al., 2012), as in the automotive industry. On the other hand, the opportunities 
offered by digitalization allow companies to embrace new approaches to manage 
and govern supply chain processes with novel technological and analytical 
methods, thereby creating incentives for significant performance improvements and 
added value (Büyüközkan & Göçer, 2018).  

Overall, the results point out how complex is for automotive suppliers to make 
decisions about digitalization investments in intelligence at the process level (to 
innovate their product development process in compliance with the compelling 
design requirements set by carmakers) and to enhance cost performance. On the 
one hand, to improve cost performance, they have to invest in different and highly 
specific sets of digital technologies and, on the other hand, to manage their interplay 
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with the governance mechanisms. The results reveal that the features of 
synchronization and accessibility, which are ensured by network technologies, and 
contractual governance - in particular in the long-term dimension - are 
complementary, while virtualization and traceability, enabled by physical-digital 
interface technologies, are complementary with relational governance in the 
suppliers’ effort to reduce production costs. 

Physical-digital interface technologies, thanks to their ability to create real-time 
information transparency, encourage the development of trust between parties and 
provide a digital means for collaboration with the customers to pinpoint localized 
production problems or to find improvement opportunities. On the other hand, 
network technologies enable full and real-time transparency of process-related 
information and require long-term contractual governance that signals the 
commitment of suppliers to not exploit such an integration opportunistically, since 
it increases the visibility of customers on supplier’s processes. These results suggest 
that, in the case of seamless integration of process information, it is not enough to 
have relational norms and trust, and that a formal and explicit shared commitment 
is also required. 

Conversely to what was expected, the technologies that enable synchronization 
and accessibility do not appear to be linked to relational governance. This result is 
counter-intuitive, considering the growing literature on how the increased 
connectivity and seamless integration of information enhance further sharing and 
cooperation that would eventually increase the cost performance of suppliers (e.g. 
Fatorachian & Kazemi, 2020). Nevertheless, this can be interpreted as an enhanced 
capability of suppliers to prevent possible forms of opportunistic behavior, due to a 
closer dependency on customers (as an “indirect effect” of integration), as well as 

a way of maintaining selected information asymmetries and of leaving space for 
flexibility in production settings. Although a collaborative relationship allows both 
parties to obtain benefits, a conflicting element is inevitably embedded in the inter-
organizational relationship, especially in the automotive supply chain sector, due to 
the tendency of firms to protect individual competitive advantages, such as cost 
performance (Huang et al., 2020). 

 
Theoretical Contributions. This chapter contributes to the existing literature 

in three main ways. Firstly, this research is focused on the perspective of suppliers, 
which has largely been neglected in favor of the buying organization (e.g. Blome et 
al., 2013), in both the literature on the governance of inter-organizational 
relationships and that on the digitalization of supply chains. The results show that 
suppliers need both long-term contractual and relational governance in place to 
generate positive returns (in terms of cost reduction, which eventually also yields 
benefits for the customer) from investments in digital technologies. Moreover, this 
study is one of the first to analyze the supply chain considering suppliers in the 
second or third tiers, who can play a key role in the successful operation of the 
overall supply chain (Kim et al., 2011). 

Secondly, this chapter contributes to the literature on the interplay between 
supply chain governance and digitalization (e.g. Jean et al., 2020). Prior research 
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has focused on how digitalization, conceptualized in terms of the adoption of 
enterprise information systems, supports relationship performance, measured as 
sales growth, market share, and profitability (Jean et al., 2020). This chapter extends 
this literature by studying the impact on supply chain performance (measured in 
terms of suppliers’ cost performance) pertaining to the interaction between 
technology forms, and the effectiveness of governance mechanisms in managing 
and creating value from the enhanced transparency and traceability in the product 
development process in the context of the digitalization of suppliers. 

Thirdly, this chapter confirms the theoretical assumptions of TCE on 
transaction features, and its applicability as a supply chain efficiency theory 
(Ketokivi & Mahoney, 2020), by showing the importance of the production costs 
that still have to be considered, but specifically in terms of the complexity of inter-
organizational relationships interlinked with investments in general-purpose 
technologies, such as digital-physical interface and network technologies.  

In doing so, the chapter classified digital technologies in two separate forms, 
showing the different effects that they may have on governance mechanisms, thus 
providing evidence on the necessity of more accurate studies on how and under 
what conditions they can create value at a supply chain level.  

 
Practical Contributions. The investigation framework and the results of the 

survey may provide a reference for firms and managers of supply chain processes 
(from operations to sourcing) so they may dedicate their efforts to achieving cost 
reductions while investing in the specific forms of digital technologies. 

The obtained results confirm the ability of automotive suppliers to reduce costs 
in the presence of a long-term commitment, and on the other hand, how contracts 
with shorter time horizons have a different output. In this sense, this research also 
addresses the issue of the investments a manager should make to adapt the internal 
organization and individual skills, to develop data integration (at both an intra- and 
an inter-firm level), and to adopt software that can support a long-term relationship 
with customers. Specifically, physical-digital interface technologies appear to be 
the moderating technology for relational governance, while network technologies 
strengthen the effect of long-term contractual governance. Therefore, to fully 
embrace digitalization, in terms of the combination of technologies, suppliers and 
customers need to put in place both supply chain governance mechanisms. This 
requires greater organizational investments in developing relational norms and 
trust, as well as in drawing up long-term contracts. Doing this will lead to benefits 
for the entire supply chain, as more efficient suppliers mean more profitable and 
competitive customers. 

 
Limitations and future research. This research is not free of limitations. First, 

the sample is limited to the Italian automotive supply chain, and its structure and 
characteristic could influence results. Future research should extend into other 
geographical areas. Researchers could perform cross-country comparisons to 
pinpoint institutional differences and effects of public supporting measures on the 
adoption of digital technologies. Another research limit is in the measure of 



 

85 
 

contractual governance, which has partially been reduced using contract duration. 
However, it may be worthwhile to study other contracting characteristics in the 
context of digitalization, such as contract completeness and the objectives of 
contract clauses (collaboration vs. control) (Z. Cao & Lumineau, 2015). However, 
only a few works (e.g. Liem, Khuong, & Canh, 2020) have considered contract 
duration, and it could represent a key contractual variable that has to be considered 
to reveal the short- or long-term commitment of suppliers and customers to a 
relationship and the product development process. 

Finally, the focus on cost reduction also suffers from some drawbacks, because 
it does not capture the value creation behavior, innovation capabilities, quality 
levels, or responsiveness that are typical outcomes of supply chain collaboration. 
However, cost reduction is a pressing need for each carmaker, given the highly 
competitive pressure, and it has therefore been considered a priority in the adoption 
of digital technologies.  

Further research should also investigate the influence of selected managerial 
practices (e.g. the adoption of lean practices or investments in the training of 
specific digitization capabilities) that underlie the interaction between the adopted 
governance mechanisms, and the transparency and visibility enhanced by the 
combination of physical-digital interface and network technologies, especially in 
the long term. The patterns of creation and distribution of added value along supply 
chain processes and tiers should be investigated through longitudinal and 
qualitative studies. These could also reveal a possible “dark side” of this complex 

interplay between transactions and technologies in the product development 
process. Investments in less specific assets and increased data availability could 
lead to an increased dependence between supplier and customer, or to diminish trust 
in the other party’s behavior in the long term.  
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Chapter 7 

Making digitalization effective 
through governance practices with 
system integrators 

 
 

7.1 Introduction6 

The implementation of digital technologies (i.e. digital process innovation) 
entails a significant degree of uncertainty among the various partners, due to highly 
specialized knowledge that needs to be integrated to achieve the technological 
benefits (Kostis & Ritala, 2020). Reducing such uncertainty is critical for ensuring 
that planned benefits are actually achieved in B2B collaborations. Uncertainty in 
manufacturing-technological B2B relationships has been studied concerning 
behavioral uncertainty and exchange hazards associated with opportunisms and 
bounded rationality (Kostis & Ritala, 2020). However, in contemporary industrial 
relationships involving the exchange of technology and knowledge (Robertson, 
Casali, & Jacobson, 2012), much of the uncertainty is associated with a difference 
in cognitive frames regarding definitions, assumption, and expectations of the 
collective work between the various partners (Weber & Mayer, 2014). This types 
of uncertainty, defined as interpretative uncertainty (Weber & Mayer, 2014), 
derives not from the transaction characteristics (i.e. asset specificity, frequency of 
interactions) as for behavioral uncertainty but different relational characteristics of 
the partners (i.e. the attributes of the parties relative to one another) such as industry 
membership and technology paradigm. In this thesis, an additional source of 
interpretive uncertainty is introduced in the context of industrial relationships: 
technological challenges (D. Sjödin, 2019). Interpretative uncertainty raises 
transaction costs (Weber & Mayer, 2014), due to a wrong understanding of the 
idiosyncratic design requirements by the technological partner and a lack of 
knowledge sharing (Rönnberg Sjödin, Frishammar, & Eriksson, 2016). Therefore, 
manufacturing firms should properly manage their relationship with their industrial 
partners to reduce the interpretative uncertainty to derive benefits from digital 

 
6 Some parts of this chapter have been elaborated from a submitted paper to the International 

Journal of Production Economics with the title “External Knowledge Search, Opportunity 
Recognition and Industry 4.0 Adoption in SMEs”. 
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technologies (Kamalaldin et al., 2020; Kostis & Ritala, 2020). Among governance 
practices, market-based or purely contract-based relationships should be avoided as 
they do not allow to align cognitive frames and reduce interpretative uncertainty 
(Weber & Mayer, 2014). 

The literature on the B2B governance practices between technology partners 
and manufacturers, for the provision of digital technologies and service innovation, 
is focused on the “digital servitization” phenomenon. Current studies are mainly 
qualitative with limited generalizability, which use mainly the perspective of 
technology providers (Ardolino et al., 2018; Coreynen, Matthyssens, & Van 
Bockhaven, 2017), rather than those of customers (or manufacturers), and a minor 
focus on the characteristics of the relationship and its evolution between providers 
and customers despite a few notable exceptions (Kamalaldin et al., 2020; D. Sjödin, 
2019). Recently, it has been shown that as complementary digitalization capabilities 
evolve in the dyadic B2B relationship the governance practices should evolve from 
contractual to relational governance (Kamalaldin et al., 2020). However, it remains 
unclear what triggers the shift to relational governance in B2B inter-organizational 
relationships. Moreover, there is the need to increase the generalizability of the 
findings that relational governance combined with the adoption of digital 
technologies is decisive to increase the cost performance of manufacturers 
(Kamalaldin et al., 2020). This chapter aims at filling these gaps by investigating 
the role of digital technologies in determining the required shift from transactional 
to relational governance to derive benefits from digital technologies. By analyzing 
the characteristics of the two forms of digital technologies (i.e. physical-digital 
interface and network technologies) in terms of complexity, novelty, and 
customization (D. Sjödin, 2019), this chapter analyzes how these technologies 
enable and require different governance practices between technology partners and 
manufacturers to derive benefits for the manufacturers. Thus, the research question 
of this chapter is the following: 

 
 What governance practices (transactional vs relational) between technology 

providers and manufacturing firms reduce the interpretative uncertainty arising 
from different forms of digital technologies to derive benefits that increase the cost 
performance of manufacturers? 

 
This chapter analyses two relational governance practices in B2B relationships: 

co-creation and continuous relationship. Co-creation allows the technological 
partner to know the specific needs and define better idiosyncratic design 
requirements, with immediate benefit for a manufacturing firm in terms of clarity 
of its data flows. Long-term collaborations allow the development of trust, which 
is relevant considering that as technological implementation unfolds the partners 
can provide data sharing-based consulting services (Susan Helper et al., 2019). 
Among various technological partners this thesis focus on system integrators as 
they represent valuable partners for manufacturing firms as they can represent a 
single point of contact and therefore develop deep collaborations with them 
(Barbosa, Salerno, & Pereira, 2019; Lorenz et al., 2020). This chapter uses concepts 
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both from the TCE theory and the KBV. The former argue that whenever there is 
an exchange transaction cost arise and parties should govern the relationship such 
that such transaction costs are minimized. KBV adopts a different perspective 
concerning the purpose of collaborations. KBV argues that keeping transaction 
costs low as much as possible with governance mechanisms is useless unless 
companies can exchange and integrate technology and knowledge during the 
transaction. 

7.2. Theoretical Background 

7.2.1 Open digital process innovation with system integrators  

 
Recently, innovation scholars found that manufacturing firms tend to use 

knowledge from different external sources to innovate (Laursen and Salter, 2006), 
but that when focusing on process innovation they are selective and collaborate 
deeply with one or few external knowledge sources (search depth) because that it 
facilitates the exchange of tacit knowledge and its recombination with technological 
knowledge (Lorenz et al., 2020; Terjesen & Patel, 2017; Trantopoulos et al., 2017). 
Search depth is preferred over search breadth (i.e. developing collaborations with 
multiple partners) because introducing digital process innovations is a complex and 
uncertain endeavor (Gehrke, Bonse, & Henke, 2016), due to the unique properties 
of digital technologies (Henfridsson & Bygstad, 2013; Youngjin Yoo et al., 2012), 
which require recombination of tacit and explicit knowledge, complex problem 
solving, learning by trial and error and systemic changes into several components 
of a production system (D. R. Sjödin et al., 2018; Trantopoulos et al., 2017).  

Studies conducted on Industry 4.0 have found that -among other organizational 
factors- a firm’s openness to actors in the industrial and innovation ecosystem 

explains the adoption of digital technologies (Agostini & Nosella, 2019; Lorenz et 
al., 2020). Indeed, different digital maturity models include open innovation among 
the factors considered important to achieve a higher degree of digitalization (for a 
review see Sameer Mittal, Khan, Romero, & Wuest, 2018). However, apart from 
technology adoption, it remains unclear when collaboration with external 
knowledge sources is decisive to support a focal firm to increase its cost 
performance (Lorentz et al., 2020).   

Among external knowledge sources, system integrators are considered valuable 
partners by manufacturers for embracing digitalization due to their ability to 
combine and integrate different technologies based on hardware and software 
technological elements and to provide plant data and network connectivity (Kahle 
et al., 2020).  A system integrator is an enterprise responsible for designing, 
integrating and implementing externally supplied products and services into a 
system for an individual customer (Davies, Coole, & Smith, 2017). Concerning 
digitalization, system integrators combine hardware components and automation 
software components while providing associated services such as PLC 
programming, sensors and machine vision installation, human-machine interface 
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set-up, manufacturing execution systems (MES) set-up, and integration with 
equipment and machine-to-machine communication (Barbosa et al., 2019, Kahle et 
al., 2020). From the physical installation of equipment and other assistance, system 
integrators are increasingly delivering network technologies and data analytics 
services to manufacturers such as data storage and cleaning; data profiling, and 
mining tools, which allow manufacturers to create a comprehensive stock of their 
critical data and identify causal-effect chains and potential problems at the root 
cause; visualization tools; and monitoring tools (Helper et al., 2019). Helper et al., 
(2019) showed that Industry 4.0 is leading system integrators to evolve their value 
proposition toward manufacturing companies, by offering one-stop-shopping 
solutions that range from digital technology implementation to data analytics 
solutions and consulting about business process reengineering.  
 

7.2.2 Governance practices in digital technologies implementation  

The literature on inter-organizational B2B relationships (or governance 
practices) in the context of digital technologies implementation is focused on 
“digital servitization”. Being at the intersection of two trends i.e. manufacturing 

servitisation and digital technologies, digital servitization refers to the use of 
digital technologies to deliver services to existing or new customers such as remote 
maintenance, training, consulting, substituting services, where the product is no 
longer sold in a traditional transaction but the firm instead sells machine hours with 
some service level agreements during its operation (Cusumano, Kahl, & Suarez, 
2015; A. G. Frank, Mendes, Ayala, & Ghezzi, 2019). In this wide literature, the 
focus has been mainly on the provider (or technology partner) with a focus on its 
transformation paths and service configurations (Ardolino et al., 2018; Coreynen et 
al., 2017). In this stream of literature, the required change of governance practices 
is touched only partially and with the provider perspective. It is argued that the 
provider has to shift from transactional, product-centric to relational, customer-
centric approaches (Kowalkowski, Gebauer, Kamp, & Parry, 2017). In this respect, 
providers should develop state-of-the-art capabilities in understanding customers’ 

problems and needs related to a product and in developing new services around 
them to ensure the combination of the product-service solution (Goduscheit & 
Faullant, 2018; Kahle et al., 2020; Nylander, Wallberg, & Hansson, 2017). The 
perspective of customers (or manufacturers) and the related characteristics and 
evolution is less studied with a notable exception. In a recent qualitative study, 
Kamalaldin et al., (2020) found that B2B inter-organizational relationships in 
digital servitization should be based on relational governance as complementary 
digitalization capabilities among providers and customers evolve. Indeed, for a 
successful project implementation manufacturing companies need to acquire and 
progressively recombine complementary knowledge such as big data storage, 
extraction, transformation, loading, and analytics provided by system integrators 
with their own business and operational knowledge on the other side.  However, 
apart from complementary capability, it remains unclear what triggers the shift to 
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relational governance practices as manufacturing firms adopt digital technologies. 
Another stream of literature analyzes the B2B inter-organizational relationship 
using the TCE theory and in particular highlighting the interpretative uncertainty as 
a source of high transaction costs (Kostis & Ritala, 2020; Weber & Mayer, 2014). 
Interpretive uncertainty refers to the disagreement on the processes and results of 
collaborative projects due to relational differences among the collaborating actors 
(firm and individuals) characterized by different technological competencies, 
industry membership, and professional seniority (Kostis & Ritala, 2020). Apart 
from relational differences, this chapter introduces technology characteristics as a 
source of interpretative uncertainty concerning complexity, novelty, and 
customization (D. Sjödin, 2019). Complexity refers to the extent to which the 
implementation of technologies requires or affects the interdependence with other 
parts of production systems increasing the number of interactions among various 
types of a subsystem (i.e. equipment, information systems) (D. Sjödin, 2019). 
Novelty refers to the extent to which technologies are known to the firm. If new, 
the firm faces difficulty in understanding how the technologies will behave and 
predict unexpected problems as well as design activities in advance (D. Sjödin, 
2019). Customization refers to the degree to which technologies must be adapted 
to fit the specifics of a particular manufacturing system in use (D. Sjödin, 2019). 
High interpretative uncertainty is associated with high transaction costs which often 
result in confusion about design requirements and inputs between partners and lead 
to considerable delays and even project failure (Kostis & Ritala, 2020).  Reducing 
transaction costs call for hybrid forms of governance practices such as contractual 
and relational governance but also joint venture  (Weber & Mayer, 2014).  

This chapter analyzes two relational governance practices: co-creation and 
continuous collaboration (Athaide & Zhang, 2011; Heide & John, 1990). In this 
thesis, co-creation (or co-design, or co-development), as opposed to unilateral 
approaches to product development (Athaide & Zhang, 2011), refers to the shared 
work and joint problem-solving among actors within a dyadic relationship from the 
design to the realization of the product, service or solution (Athaide & Zhang, 2011; 
Kohtamäki & Rajala, 2016; D. Sjödin, 2019). Continuous or long-term 
collaboration, as opposed to short-term collaborations, refers to the extent to which 
collaboration occurs repeatedly over time across multiple projects (Athaide & 
Zhang, 2011; Gulati, 1995).  

Figure 11 anticipates the research framework, with the developed hypotheses 
as in the following.  
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Figure 12. Research Framework (III) 

 

7.3 Hypothesis Development 

Physical-digital interface technologies. Despite major advancements (e.g. in 
miniaturization, connectivity, standardization of communication), physical-digital 
interface technologies are quite familiar to manufacturing firms since technologies 
like sensors, machine visions, and human-machine interfaces, exist in 
manufacturing for decades for operational and automation needs. These 
technologies, which now have embraced new properties of virtualization and 
traceability thanks to the above-mentioned advancements, are used for monitoring 
and controlling the physical equipment (Agarwal & Brem, 2015). The 
implementation of physical-digital interface technologies is asset-focused (e.g. 
predictive maintenance) and requires connectivity only for the corresponding assets 
(Fetterman, 2019). The fact their implementation does not require systemic changes 
into other parts of the production system means that the complexity of their 
implementation can be considered low. In a similar vein, the level of customization 
adaptation of these technologies is low since the implementation of sensors, 
machine vision cameras or RFID can be installed with a plug-and-play logic. These 
technologies are quite generic and can be adapted to a large variety of applications 
(Kahle et al., 2020; Saarikko, Westergren, & Blomquist, 2017). 

Since these technologies are available off-the-shelf, as general-purpose and 
often generic technologies (Saarikko et al., 2017),  they do not require relational-
based governance practices such as co-creation and continuous collaboration 
practices but they can be based on market-based governance. Indeed, for effective 
implementation of these technologies collaborating actively in the development of 
the technologies or having a prior history of relationships with the system 
integrators may not be particularly useful. 

HP1. The interaction between co-creation and the adoption of physical-digital 
interface technologies is negatively related to the cost performance of 
manufacturers. 
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HP2. The interaction between continuous collaboration and the adoption of 
physical-digital technologies is negatively related to the cost performance of 
manufacturers. 

 
 
Network technologies. Compare to physical-digital interface network 

technologies, network technologies are relatively new to manufacturing firms since 
they require (big) data storage, processing, transformation, and integration skills 
that are almost lacking in all manufacturing firms with some notable exceptions 
such as General Electric (Agarwal & Brem, 2015). Network technologies exhibit 
high levels of complexity in their implementation due to the required combination 
of different technologies based on hardware and software technological elements 
and different degrees of network connectivity (Bosman, Hartman, & Sutherland, 
2019; Culot et al., 2020). Some open-source big data technologies (e.g. Apache 
Hadoop, Spark to cite a few), based on standardization, modularity, and 
interoperability, should partially reduce such complexity, or at least make them 
more accessible (Eclipse Foundation, 2017), is consolidating in the industry. 
However, system integration capabilities are needed to integrate different stacks or 
modules of data architecture. The accessibility and synchronization properties of 
network technologies require that different physical devices (e.g. equipment, 
product components) and information systems must be connected and integrated to 
link data flows thereby increasing the complexity of their implementation. Unlike 
physical-digital interface technologies, network technologies cannot be simply 
bought off-the-shelf and implemented with a plug-and-play logic. Instead, since 
different firms have different information systems and different types of equipment, 
network technologies need to be customized according to the customer production 
system requirements  

To manage the high levels of interpretative uncertainty arising from higher 
levels of complexity, customization, and novelty of network technologies, 
companies should use two relational governance-based practices i.e. co-creation 
and continuous collaboration for the following reasons.  

First, co-creation is required to fill technology capability gaps due to the 
novelty characteristics as well as to ensure the integration of the network 
technologies in the customer’s production system (Goduscheit & Faullant, 2018; 
Kahle et al., 2020). Second, co-creation facilitates the development by system 
integrators of state-of-the-art capabilities in understanding customers’ problems 

and needs related to integrating data flows and provide data analytics (Goduscheit 
& Faullant, 2018; Kamalaldin et al., 2020). In this respect, system integrators 
depend on access to their customers’ knowledge to customize a process solution to 
the customer’s idiosyncratic design requirements (D. Sjödin, 2019). Based on the 
above reasoning, the following hypothesis is proposed: 

HP3. The interaction between co-creation and the adoption of network 
technologies is positively related to the cost performance of manufacturers. 
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Continuous collaboration reduces the interpretative uncertainty for the 
following reasons. First, through continuous collaboration firms can develop a 
shared specialized vocabulary that assumes importance especially when system 
integrators arrive from a distant knowledge domain with respect to manufactures. 
The lack of such a common-knowledge ground between manufacturing firms and 
their vendors of digital solutions has been indicated to be one of the reasons why 
investments in information systems and software in Italy have not resulted in a 
growth of economic value and productivity (Neirotti, Paolucci, & Raguseo, 2011). 
Second, considering that employing network technologies may imply exchanging 
data with system integrators sources, continuous collaboration facilitates the 
development of trust (Athaide & Zhang, 2011; Gulati, 1995), which is a key 
requirement for effective collaboration especially for SMEs (S. Lee, Park, Yoon, & 
Park, 2010). Third, continuous collaborations favor the exchange of tacit 
knowledge that is critical for process innovations (Terjesen & Patel, 2017).  In this 
respect, continuous collaboration facilitates the application of network technologies 
to the design and manufacturing processes, which are based on trial and error and 
incremental learning processes. 

Based on the above reasoning, the following hypothesis is proposed: 
HP4. The interaction between continuous collaboration and the adoption of 

network technologies is positively related to the cost performance of manufacturers. 
 

7.4 Measures 

The measure for the adoption of physical-digital interface technologies, 
network technologies, and cost performance are in section 3.5.1. Co-creation was 
measured with two questions from the plant survey. In the first question, the survey 
asks whether firms collaborated with a system integrator for the integration of 
automation and information systems. Among those that answer “yes”, the survey 

asks what was the degree of involvement of the system integrators in the design and 
implementation of the integration projects with three items. The following item was 
used to measure co-creation: “We define the technical specifications and start the 
design phase, the system integrator completes the detailed project, develops the 
integration, and builds the system”.  

Similarly, for continuous collaboration, the respondents were asked to indicate 
the type of relationship they had with system integrators in a question composed of 
three items. The following item was used to measure continuous “We typically have 
an ongoing relationship with a system integrator”. The appendix reports the two 

questions in their entirety (Table A3). 
 

7.5 Results 

Table 15 presents the results of the logistic regression. As for H1, which states 
that the interaction between co-creation and physical-digital interface technologies 
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is negatively related to the cost performance, the results show a negative and 
significant coefficient in model 1 and model 2 which differ concerning the presence 
of the control variables (column 1 and 2 in Table 15). Therefore. H1 is supported. 
As for H2, which states that the interaction between continuous collaboration and 
physical-digital interface technologies is negatively related to the cost performance, 
the results show a negative but non-significant coefficient in model 3 and model 4 
(columns 3 and 4 in Table 15). Concerning the three ways interaction between 
physical-digital interface technologies, network technologies, and co-creation 
concerning cost performance as the dependent variable, the results show a positive 
and significant coefficient in model 1 and model 2 (columns 1 and 2 in Table 15). 
Thus, H3 is supported. As for H4, the results show a positive and significant 
coefficient in model 3 and model 4 for the three ways interaction between physical-
digital interface technologies, network technologies, and continuous collaboration 
on cost performance (columns 1 and 2 in Table 15). Therefore, H4 is supported by 
the analysis. 
 

Table 15. Results of the logistics regressions (III) 

 (1) 
Coefficient 
(Std. Err.) 

(2) 
Coefficient 
(Std. Err.) 

(3) 
Coefficient 
(Std. Err.) 

(4) 
Coefficient 
(Std. Err.) 

     
Physical-Digital Interface 
Technologies 

-0.701 -0.671 -0.492 -0.359 

 (0.505) (0.591) (0.467) (0.582) 
     
Network Technologies -0.155 -0.0602 -0.237 -0.150 
 (0.361) (0.385) (0.412) (0.440) 
     
Physical-Digital Interface 
Technologies X Network 
Technologies 

0.552 0.555 0.103 -0.116 

 (0.473) (0.519) (0.502) (0.573) 
     
Co-Creation -0.219 -0.180   
 (0.358) (0.429)   
     
Physical-Digital Interface 
Technologies X Co-Creation 

-1.268* -1.288+   

 (0.572) (0.669)   
     
Network Technologies X Co-Creation -0.0308 -0.0189   
 (0.393) (0.410)   
     
Physical-Digital Interface 
Technologies X Network 
Technologies X Co-Creation 

0.944+ 1.034+   

 (0.525) (0.571)   
     
Continuous Collaboration   -0.183 -0.312 
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   (0.432) (0.519) 
     
Physical-Digital Interface 
Technologies X Continuous 
Collaboration 

  -0.503 -0.188 

   (0.594) (0.710) 
     
Network Technologies X Continuous 
Collaboration 

  0.0391 0.124 

   (0.486) (0.530) 
     
Physical-Digital Interface 
Technologies X Network 
Technologies X Continuous 
Collaboration 

  0.953+ 0.924+ 

   (0.547) (0.603) 
     
Size  0.119  0.192 
  (0.591)  (0.607) 
     
Enterprise Information Systems  -0.153  -0.0922 
  (0.437)  (0.431) 
     
Multi-Unit Plant  0.00236  -0.135 
  (0.461)  (0.499) 
     
R&D Intensity  0.130  0.118 
  (0.511)  (0.532) 
     
% Employees Academic Degrees  0.0756  0.460 
  (0.483)  (0.496) 
     
Incentives Productivity  -0.126  -0.232 
  (0.409)  (0.415) 
     
Supply Chain Position  -0.649  -0.848* 
  (0.415)  (0.418) 
     
Constant -1.502** -1.615** -1.642** -1.874** 
 (0.337) (0.389) (0.363) (0.455) 
Observations 90 88 90 88 
Pseudo R2 0.110 0.154 0.0935 0.159 

Note: Coefficients in Odds ratio, Standard errors in parentheses, + p < 0.1, * p < 0.05, ** p < 0.01 
 

7.6 Discussion and Conclusion 

This chapter discusses the interplay between governance practices, arising 
between system integrators and manufacturing firms, and the adoption of different 
forms of digital technology in the manufacturing firms’ effort to derive benefits 

from digital technologies increasing cost performance.  
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The review of the literature found two gaps that this chapter aimed to fill. First, 
studies conducted on the digitalization of the manufacturing firms found that that a 
firm’s openness to actors in the industrial and innovation ecosystem explains the 
adoption of digital technologies (Agostini & Nosella, 2019; Müller, Buliga, & 
Voigt, 2020). However, it remains unclear when the collaboration with external 
knowledge sources increases the cost performance of manufacturing firms (Lorenz 
et al., 2020). Second, studies on B2B inter-organizational relationships regarding 
digital servitization has focused mainly on the provider (or technology partner) with 
a focus on its transformation paths and service configurations (Ardolino et al., 2018; 
Coreynen et al., 2017) and only partially studied the required changes to governance 
(Kamalaldin et al., 2020; Kowalkowski et al., 2017). 

This chapter shows empirically that the governance practices should be 
matched with the technological challenges concerning the technologies being 
implemented to manage the interpretive uncertainty arising from collective work 
(D. Sjödin, 2019; Weber & Mayer, 2014). As far as the implementation of digital 
technologies requires limited levels of customization, complexity, and novelty as 
for physical-digital interface technologies, manufacturing firms can make use of 
market-based governance practices to derive benefits from digital technologies. By 
contrast, when firms implement more complex, novel, and custom technologies as 
for network technologies, they need to develop relational-based governance 
practices with system integrators to achieve effective implementation of the 
technologies and therefore increase cost performance.  

 
Theoretical contributions. This chapter makes two distinct contributions to 

the literature on open process innovations and B2B inter-organizational 
relationships in digital servitization. Pertaining to open process innovation 
literature, the chapter provides empirical evidence that sourcing technological 
knowledge from external knowledge sources is decisive to increase the 
performance of the recipient firm (e.g. Lorenz et al., 2020; Trantopoulos et al., 
2017). However, it adds that this occurs when firms in the dyadic relationship 
choose appropriate governance practices that match with the technological 
challenges relative to the technologies that are the objects of the exchange (D. 
Sjödin, 2019). Second, this chapter contributes to the B2B inter-organizational 
relationships literature on digital servitization (Kamalaldin et al., 2020) by showing 
that apart from complementary digitalization capabilities, the forms of digital 
technologies and related challenges - in terms of complexity, customization, and 
novelty -  plays a key role in determining the relational governance mechanism by 
reducing interpretative uncertainty arising from collective industrial work. 
 

Practical contributions. Managers of manufacturing firms are encouraged to 
assess the technological challenges of digital technologies before their 
implementation and then to choose the appropriate governance mechanism. As 
manufacturing firms progress toward digitalization, they will rely more on data 
extraction, transformation, and loading skills that are deeply intertwined with the 
business processes. As a result, managers are encouraged to establish long-term 
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collaborations and to engage their business translators and data stewards to work 
with system integrators to provide them with clear design requirements.  

 
Limitations and future research. This study presents two types of limitations. 

The first limitation pertains to the measure of the governance practices variables 
which are represented by single-item scales. Future research should develop or 
integrate measures from research on relational governance and transaction cost 
economics. Second, this chapter did not test the effectiveness of contractual 
governance during the implementation of digital technologies (Kamalaldin et al., 
2020). It could be the case the properly defined contract clauses can increase the 
willingness of manufacturing firms to increase data sharing toward system 
integrators determining a safeguard for opportunistic behaviors. 

 



 

98 
 

Chapter 8 

Making digitalization effective: the 
impact of country and institutional 
setting 

8.1 Introduction7 

The extent to which digitalization happens is a result of different elements 
including the types of management practices and digital technologies adopted (the 
scope of this thesis so far), the industry environment (Mithas, Tafti, & Mitchell, 
2013), and country-level policies (MacDougall, 2014). This chapter focus on the 
last element. The legal and infrastructural conditions of a country can exhort a great 
impact on the way digitalization is tackled and therefore its impact on the 
productivity of firms operating under the institutional laws and setting of the 
country (Hanelt et al., 2020). Different countries have introduced different national 
plans to increase the investment of private sectors to retain competitiveness at the 
country level such as the “Manufacturing USA” and the “Industria 4.0” in Italy. 

These plans are focused on increasing public-private partnerships among industry, 
university, and government agencies on cutting-edge technologies and the 
provision of tax incentives to stimulate technological investment. Industry 4.0 can 
be perceived as a policy-driven innovation discourse aimed at institutionalizing a 
Triple Helix model of collaboration between government, academia, and 
enterprises (Reischauer, 2018). However, since the starting point of each country 
in terms of institutions are different (e.g. education system, innovation policies, 
government), the extent to which digitalization is approached by firms is likely to 
be different. Using a unique dataset of automotive firms operating in two advanced 
countries i.e. Italy and the US with a fully comparable survey, this chapter aims to 
report some comparative descriptive statistics on the adoption of management 
practices and digital technologies in these countries and providing some 
explanations and implications of these differences.  

The research question of this chapter is the following: 

 
7 Some parts of this chapter have been elaborated from: (i) a conference paper presented to the 

GERPISA 2020 International Colloquium in June 2020 with the title “Digital Transformation of the 
Italian and US Automotive Supply Chains: Evidence from Survey Data”; (ii) a working paper with 

the title “Organizational Architecture and the Adoption and Use of New Technologies: Evidence 
from Italian and US Survey Data” 
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Are there different national approaches to digitalization in two major 
industrialized nations like Italy and the US that reflect institutional differences? 

 
The analysis included in this chapter is preliminary because it does not directly 

study the institutional variables such as culture, social norms, industrial policies, 
and educational systems, trade unions, etc. This chapter is structured as follows. 
First, the Italian and US automotive industries are briefly reviewed. Second, some 
comparative statistics mirroring the structure of this thesis are provided below. The 
chapter concludes with a discussion of the findings. 

 

8.2 The US and Italy automotive industry 

The US automotive industry. There are several types of players in the US 
auto industry. The automakers (e.g., Ford, Toyota, Volkswagen) design, market, 
and assemble cars. They preside over a supply chain that includes large "first-tier" 
suppliers (suppliers who supply directly to automakers), who are in turn supplied 
by smaller second-tier suppliers, who are supplied by third-tier suppliers, etc. 
Automakers capture 70-80 percent of the market capitalization in the industry 
(Jacobides, MacDuffie, & Tae, 2016), though this figure overstates their share since 
many small suppliers are privately held. About 1.5 million people are employed in 
the US auto parts sector, about four times as many as are employed directly by 
automakers (Susan Helper, Miller, & Muro, 2018). Automakers rely on a common 
set of suppliers, which is beneficial in that suppliers can specialize in narrow areas, 
such as automotive seating. Each automaker benefits from the reduced fixed costs 
and increased access to suppliers’ experience making similar products for other 

customers. On the other hand, lead firms have reduced incentive to invest in 
upgrading the supplier’s capabilities if that supplier may also use those capabilities 

to serve a competitor. In the past, automakers used purchasing strategies selected 
for suppliers with relatively low bargaining power. The US-owned automakers 
(GM, Ford, Chrysler) used short-term contracts with many suppliers per part and 
took complicated functions (e.g. product design and sub-assembly) in-house. In 
contrast, Japanese-owned automakers (Toyota, Honda) and their suppliers have 
emphasized more collaborative relationships. In recent years, US-owned 
automakers have converged a bit toward Japanese practice (Perspectives, 2007). 
However, a legacy of small, weak suppliers remains a legacy that complicates the 
adoption of modern automation and digitalization practices. Helper and Kuan 
(2017) documented this weakness, including failure to adopt proven managerial 
techniques. One-third of auto suppliers have fewer than 500 employees, and fewer 
than half of these small firms have adopted quality circles (in which production 
employees gather regularly to troubleshoot quality concerns), and only two-thirds 
of them self-report that they consistently perform preventative maintenance. A 
quarter of small automotive firms employ no engineers.  
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The Italian automotive industry. Italy is one of the leading EU countries for 
the automotive industry, following Germany and France in terms of sales volume.  
The Italian automotive component industry is composed of a large share of SMEs 
accounting for 91% (employment less than 249 employees), while large enterprises 
(more than 250 employees) accounts for 9% (Barazza & Coccimiglio, 2019).  

There are about 2200 auto suppliers in Italy, with about 162.000 people 
employed in the Italian auto parts production industry, about twice the 96.600 
employed directly by automakers (ANFIA, 2018). Concerning turnover, auto 
suppliers account for about $82 Bn, three times as much as automakers ($27 Bn), 
while value added at factor cost is $13 Bn, almost doubling automakers ($7.5 Bn). 
For Italian auto suppliers, 35-40% of the turnover comes from FCA, followed by 
Volkswagen (about 20%), BMW, RNM, and Daimler (about 5-10% each), and 
some other automakers (15-20%). Due to its predominant role in the Italian market, 
FCA has enough bargaining power to require suppliers to adopt WCM (World Class 
Manufacturing, the FCA label for Lean Production) practices, investing time and 
resources in upgrading it. More detail on the Italian automotive industry including 
digitalization trends can be found in chapter 4. 
 

8.3 The comparative research sample 

The US survey has been undertaken in 2017 and 2018 by Prof. Susan Helper 
of Case Western University, Prof. Robert Seamans, and Raphael Martins of New 
York Stern University. The survey was carried out with the support of major 
industrial automotive associations. The survey response rates were 1-2% for the 
2011 survey resample, and 15-30% for the sample of firms that were part of the 
automakers’ parts suppliers’ associations. The Italian automotive industry survey 
was undertaken in 2018-2019. For details on the Italian automotive survey see 
chapter 4. After the integration of the US and Italian datasets (some questions had 
to be changed to reflect the specificities of each country e.g. in terms of workforce 
structure), a dataset of 90 US plants and 99 Italian plants is used to compare national 
approaches to digitalization. The sample is structured as in Table 16. In the US, a 
firm is considered “SME” when it has less than 500 employees, while in Italy such 

definition pertains to firms with less than 250 employees. According to this 
definition, the sample is composed of 70% (US) and 83% (Italy) SMEs. While if 
we look at firms with less than 250 employees, there is 42% in the US and 83% in 
Italy samples. In line with the population, the average number of employees per 
analyzed plant is 405 for US firms, and 109 for Italian firms. 

  

Table 16. The Italy and US research sample by firm size 

 
Total 

plants 
Number of employees 

<250 251-499 >=500 

US 90 38 25 27 

IT 99 82 8 9 
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8.4 Comparative descriptive statistics 

The first comparative statistics that are reported are related to the main 
challenges faced by Italy and US auto plants (US firms were presented with a choice 
set of seven challenges; Italian firms were presented with a choice set of ten 
challenges). Firms in the two countries are aligned in identifying the three they are 
most worried about, shown in Figure 13: (1) Finding workers with appropriate 
skills, (2) building employee engagement, and (3) implementing advanced 
technology.  

 

Figure 13. Main challenges by country (% of plants) 

As indicated in Figure 13, US plants are approximately twice as likely to report 
that finding workers with skills needed is a challenge. This is also the only item for 
which the means are statistically different tested with an ANOVA. 

Figure 14 reports the level of adoption of physical-digital interface 
technologies. The US shows a statistically significant higher number of firms 
adopting physical-digital interface technologies, except for automated parts 
tracking (Figure 2). These differences are driven by plant size differences across 
the two countries, as US firms are larger than Italian firms, on average. Bigger sizes 
are associated with higher production volumes, which in turn call for a higher share 
of equipment with sensors and machine vision technologies. 
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Figure 14. Adoption of physical-digital interface technologies by country 

Despite more widespread adoption of digital technologies, manual and “siloed” 

data collection is widespread among US plants, while it does exist a small but 
greater share of Italian plants (21%) that are automating and integrating data 
collection through network technologies and perceived less functional silos on data 
(24%) (Figure 15). 

 

Figure 15. Adoption of network technologies (% of plants) by country 

Such a higher inclination towards automating and integrating data collection of 
Italian plants is correlated with higher data-driven decision-making compared to 
the US. The Italian plants are more likely to base their decisions on the analysis of 
data (54%) compared to the US where intuition-driven decision-making is more 
diffused (Figure 16). 
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Figure 16. Data-driven decision-making by country 

In the following, it is reported an analysis made on the type of tasks assigned 
to production workers available in other sections of the plant survey concerning the 
one used in this thesis so far. This would help to understand better the national 
approaches to digitalization. An explorative factor analysis distinguished two 
factors: autonomy in equipment management and involvement in continuous 
improvement. The former factor refers to the autonomy given to production 
workers in managing production equipment including activities such as set-up 
equipment, modify programs on computerized machines, and diagnose equipment 
problems. The latter refers to the empowerment of production workers in 
continuous improvement such as using quality data to recommend improvements 
and make improvements in their methods of operations. Through these two 
dimensions, managers empower production workers to use their contextual 
knowledge of production processes to manage equipment and bring improvement 
ideas. The items composing the measures and the results of factor analysis are 
shown in the appendix (Table A4). The polychoric factor analysis, based on 
polychoric correlations, was used since the measure is composed of items with 
different scales (Zumbo, Gadermann, & Zeisser, 2007). The values have been later 
normalized on a scale ranging from 0 to 1. Figure 17 shows that the US plants give 
more autonomy in equipment management, while Italian firms involve more 
production workers in continuous improvement processes.  
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Figure 17. Tasks assigned to production workers by country 

Concerning collaboration with system integrators, there are not any statistically 
significant differences either regarding the share of plants that collaborated with 
system integrators (Figure 18) or the relational-based governance practices with 
them (Figure 19). 

 

Figure 18. Collaboration with system integrators by country 

 

 

Figure 19. Collaboration practices with system integrators by country 
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Concerning customer relationships, the survey investigated the level of 
collaborative problem-solving involving the exchange of data and information 
amongst companies by asking firms to which extent they agree with the following 
statement: “We feel that our customer often uses the information we provide to 
check up on us rather than to solve problems.”. Results, shown in Figure 20, are 
lightly skewed towards disagreement and neutral opinions. Therefore, negative 
impressions regarding behavioral uncertainty of customer utilization of shared data 
represent a minority of answers, though not so irrelevant getting approximately 
30% in both countries. No significant differences were found in terms of agreement 
and disagreement between the two countries. 

 

Figure 20. Customer use of shared information by country 

 

8.4 Discussion and conclusion 

From the comparative descriptive statistics shown in the previous section, it is 
possible to distinguish some national approaches to digitalization that reflect 
institutional differences. The US plants have invested more in physical-digital 
interface technologies compared to Italian plants due to their bigger size and 
therefore more equipment and production lines.  However, the fact that US plants 
have adopted fewer network technologies and intuition-driven decision-making 
approaches seems to suggest that these technologies are used for automating 
processes rather than for collecting and analyzing data to improve the processes. In 
the US, this trend could be caused by a lack of workers with the skills in both data 
analysis and domain knowledge on production processes (e.g. milling, welder, etc.) 
which could have pushed US companies to prefer a technology-push approach. 

The Italian plants are suffering from structural weaknesses characterized by 
several micro and small and medium-sized enterprises which is a key explanation 
for the lower investment in physical-digital interface technologies.  However, it was 
found that Italian firms seem to be better positioned concerning the US with more 
automated and integrated data collection and less manually input data. The results 
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seem to suggest the higher propensity of Italian firms to make decisions based on 
data probably due to higher availability and quality of data.  

The fact that US firms are more technology-intensive than Italian firms seem 
to explain why US firms empower their production workers with more autonomy 
in equipment management. By contrast, Italian firms rely more on their employees 
to bring continuous improvement initiatives and less on technology-driven 
initiatives. This chapter contributes to the digitalization literature concerning the 
legal and infrastructural conditions of a country (Hanelt et al., 2020), by showing 
that institutional differences of the country have an impact on the way digitalization 
is approached. The institutional forces that drive this difference seem to be caused 
by levels of the skills gap and structural conditions of the country in terms of the 
size of firms.  

This analysis provided in this chapter has two main limitations. First, some of 
the explanation of the correlation between findings are tentative and would require 
further research to be tested. Second, the analysis included in this chapter is 
preliminary because it does not directly study the institutional variables such as 
culture, social norms, industrial policies, educational systems, trade unions, etc. 
Future research could extend this analysis by investigating quantitatively or 
quantitatively the effect of institutional variables on the digitalization approaches 
of firms including to what extent the best practices identified in this thesis are 
replicable to other countries. 
  



 

107 
 

Chapter 9 

Summary, conclusions, and 
implications of the research 

9.1 Discussion of research findings and theoretical 
contributions 

This Ph.D. thesis aims at understanding the complementarity between 
organizational practices and digital technologies on the cost performance of 
manufacturing firms. While digitalization pertains not only to “do things better” 

through process innovations but also to “do new things”, through product and 
service innovations, this thesis focused on the former objective being one of the 
most expected outcomes from the investment in digital technologies (PwC, 2018) 
and the focus of policy-driven innovation discourse such the Italian Industry 4.0 
National Plan. Overall, this thesis found that the existence of different bundle of 
technologies that offers different opportunities which managers should be aware of 
and learn to distinguish them and in particular their digital properties. The impact 
of digital technologies on cost performance is moderated by the implementation of 
a bundle of management practices including a change of decision-making approach 
toward data analysis, change governance approaches toward both relational and 
contractual mechanisms when collaborating with customers and system integrators. 

Rooted in a contingent perspective (Sousa & Voss, 2008), the main argument 
used throughout this thesis is the fact that trying to focus on the adoption of digital 
technologies is useless, even harmful unless managers foster the development of 
new organizational practices including governance practices, decision-making 
approaches, resources, activities, capabilities, and strategies that will allow the 
creation of value from digitalization (Björkdahl, 2020).   

From a high-level perspective, this thesis contributes to the literature that 
analyzes the impact of digital technologies on cost performance (Lorenz et al., 
2020; G. L. Tortorella, Giglio, & van Dun, 2019; Trantopoulos et al., 2017), by 
investigating two organizational practices: decision-making and governance 
practices with customers and system integrators. 

Since this thesis adopt a phenomenon-based research approach (Von Krogh et 
al., 2012), the first background section (section 2) of this thesis focused on 
characterizing the digitalization phenomena. The main outcome of this section was 
the identification and discussion of the properties of two different forms of digital 
technologies: physical-digital interface technologies and network technologies. 
Traceability and virtualization characterize the first technology bundle, while 
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accessibility and synchronization are the properties of the second technology 
bundle. The implications of these digital properties for decision-making and 
governance practices have been later used in the following sections when discussing 
the interplay between organizational practices and digital technologies on firms’ 

efforts to increase cost performance. Integrating operation management (e.g. Culot 
et al., 2020; Alejandro Germán Frank et al., 2019) and organization literature (e.g. 
Kallinikos et al., 2013; Y. Yoo, 2010), the identification of these digital properties 
makes an important contribution to this literature by providing succinct yet 
comprehensive types of digital properties paving the ways to other studies that can 
use these properties as operant resources that enable change to organizational 
practices and entrepreneurial activities (Lusch & Nambisan, 2015; Nambisan et al., 
2019).   

Following the abductive approach of theoretical contextualization in which 
results and theory are investigated simultaneously (Bokrantz, Skoogh, Berlin, 
Wuest, et al., 2020; Ketokivi & Mantere, 2010), the second background section 
(section 3) of this thesis provided a brief discussion of the main theories used in this 
thesis: Contingency Theory, Information-Processing View, the theory of 
Organizational Sensemaking, the Knowledge-Based View and the Transaction Cost 
Economics. In this respect, this thesis answers a recent call to study digitalization 
and digital transformation using different theoretical models and approaches 
concerning the one used in the IT-related organizational literature (Hanelt et al., 
2020). Using theoretical contextualization and a phenomenological research 
approach, this thesis contributes to the wide digitalization literature by proposing 
these relatively new research methods and approaches to investigate organizational 
change (von Krogh, 2018; Von Krogh et al., 2012), while incorporating the specific 
traits of digital technologies (Hanelt et al., 2020). 

The third background section (chapter 4) of this thesis focused on the empirical 
research setting of the research: the automotive industry. In this section, the 
rationales of using the automotive industry as the research, the role of automotive 
suppliers, the digitalization trends of the industry, and the method of research have 
been also discussed. The descriptive findings from 102 questionnaires, fulfilled by 
human resources, plant managers, and sales managers of Italian automotive 
suppliers and a literature review found the automotive industry is pioneering the 
adoption of new digital technology and organizational transformations. However, 
many challenges and uncertainties remain ahead including, besides the achievement 
of operational outcomes such as quality and efficiency, finding and attracting 
workforce with data extraction, transformation, and analysis skills, convincing 
employees to trust data and make data-driven decisions, trust customers in the use 
of exchanged data and information, and advance strategic collaboration with system 
integrators.  

We often hear from the press that data, a key characteristic of the digitalization 
phenomenon, is the new oil. Across all industries, experts, and well-known 
newspapers such as The Economist and Forbes agree that data is an increasingly 
valuable resource (Economist, 2017; Gilbert, 2017). However, data by themselves 
will not solve business problems. This thesis highlights that, alongside digital-
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driven generated data through the properties of digital technologies, companies 
should manage their organizational variables in terms of data-driven decision-
making approach, relational and long-term contractual governance with customers, 
relational governance practices of co-creation and continuous collaboration are 
required and enabled management practices.  

Concerning decision-making approaches, chapter 5 found that the data-driven 
decision-making approach widely diffused is the key value-creating organization to 
make a return on the investment from digital technologies. Compared to the 
intuition-driven decision-making approach that drives fast, non-conscious, holistic, 
and experiential decisions, the data-driven decision-making arises through slow, 
conscious, sequential, and analytical decisions. Hypothesizing that physical-digital 
technologies via traceability and virtualization and network technologies via 
synchronization and accessibility respectively increase the analyzability and reduce 
the equivocality of events (such as machine breakdown or design changes), chapter 
5 found that data-driven decision-making is a required and enabled practice by 
digital technologies to increase the cost performance of manufacturing firms. This 
section contributes to the literature on decision-making approaches (Flores-Garcia 
et al., 2019) and data-driven decision-making literature (e.g. E Brynjolfsson et al., 
2011; Provost & Fawcett, 2013). The contribution lies in the identification of the 
value of a data-driven decision-making approach when adopting a new generation 
of digital technologies. Furthermore, it shows that the heterogeneity in the 
characteristics of digital technologies exhorts a different impact on the conditions 
(i.e. analyzability and equivocality) under which data-driven decision-making is a 
superior decision-making approach over intuition-driven decision-making. 

To make digitalization effective inside the factory, this thesis found that - an 
increasing rate of technology complexity, customization levels, and novelty of the 
two different forms of digital technologies (from physical-digital interface 
technologies to network technologies) – manufacturing firms should rely on 
relational governance practices based on co-creation and continuous collaboration 
with technology partners like system integrators that allow the reduction of 
transaction costs and also the sharing of technological and domain knowledge but 
also of data for the provision of data analytics services. This section made two 
distinct contributions to the literature on open process innovations and B2B inter-
organizational relationships in digital servitization. Pertaining to open process 
innovation literature, this thesis provided empirical evidence that sourcing 
technological knowledge from external knowledge sources increases the 
performance of the recipient firm (e.g. Lorenz et al., 2020; Trantopoulos et al., 
2017) as far as firms in the dyadic relationship choose appropriate governance 
practices that match with the technological challenges relative to the technologies 
that are the objects of the exchange (D. Sjödin, 2019). Second, this thesis 
contributes to the B2B inter-organizational relationships literature on digital 
servitization (Kamalaldin et al., 2020) by showing that apart from complementary 
digitalization capabilities, the forms of digital technologies and related challenges 
- in terms of complexity, customization, and novelty -  plays a key role in 
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determining the relational governance mechanism by reducing interpretative 
uncertainty arising from collective B2B work. 

Concerning governance practices with customers, this thesis found that the 
traceability and virtualization properties of physical-digital interface technologies 
enhance the relational governance based on quasi-integration, relational norms, and 
trust. For instance, the traceability and virtualization of product lifecycle data allow 
suppliers to match that the promise they made in the design phase regards product 
specifications with the delivery, that is what is produced in the manufacturing 
phase. Concerning the implications of network technologies, this thesis provides 
the first evidence of the dark side of digital technologies determined by increased 
accessibility and transparency which increase the behavioral uncertainty of 
customers regarding data and information sharing. The thesis found that only when 
there are safeguarding mechanisms in place such as long-term contracts the network 
technologies have a positive effect on the supply-chain relationship. Taken 
together, the different forms of digital technologies and governance practices 
reduce the transaction costs among the partners and therefore increase incentives 
for suppliers to engage in process innovation activities aimed at reducing 
production costs. This section contributes to the literature on the interplay between 
supply chain governance and digitalization (e.g. Jean et al., 2020). Prior research 
has focused on how digitalization, conceptualized in terms of the adoption of 
enterprise information systems, supports relationship performance, measured as 
sales growth, market share, and profitability (Jean et al., 2020). This chapter extends 
this literature by studying the impact on supply chain performance (measured in 
terms of suppliers’ cost performance) pertaining to the interaction between 
technology forms, and the effectiveness of governance mechanisms in managing 
and creating value from the enhanced transparency and traceability in the product 
development process in the context of the digitalization of suppliers. 

Finally, this thesis found some national approaches to digitalization by 
comparing Italy and the US automotive components industry reflecting institutional 
differences between the two countries. Using a comparable sample, this thesis 
found that Italian auto plants, while adopting less physical-digital interface 
technologies concerning the US due to smaller firms’ size, show a higher diffusion 

of network technologies and a data-driven decision-making approach. Due to the 
higher empowerment of workers in continuous improvement, the Italian approach 
to digitalization seems more a human-centered approach with a focus on data 
analysis and data integration. By contrast, the US approach to digitalization is 
therefore the use of technology due to a critical skill gap. This approach seems 
directed more toward automation than digitalization giving workers autonomy in 
managing equipment. These findings contribute to the digitalization literature 
concerning the legal and infrastructural conditions of a country (Hanelt et al., 2020), 
by showing that institutional differences of a country have an impact on the way 
digitalization is approached. 

Overall, the thesis shows how complex is for automotive suppliers to make 
decisions about investments in intelligence at the process level and to enhance cost 
performance in the digital transformation context. On the one hand, to improve cost 
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performance, they have to invest in different and highly specific sets of digital 
technologies and, on the other hand, to change decision-making approaches, to 
manage their interplay with the governance mechanisms with technological 
partners and customers.  
 

 

9.2 Practical implications for managers: transformation 
paths 

Manufacturing firms live in uncharted waters where new technology trends, 
sustainability requirements, globalization threats, new unforeseen events such as 
COVID-19 increase dramatically the Volatility, Uncertainty, Complexity, and 
Ambiguity of events in terms of demands, customer behavior, technology 
opportunities, etc.  In this respect, the VUCA framework (Schoemaker, Heaton, & 
Teece, 2018) (from Volatility to Vision, Uncertainty to Understanding, Complexity 
to Clarity, Ambiguity to Agility) is used to suggest four main areas of concrete 
actions to undertake such transition as effective as possible. One significant way to 
govern the processes and reduce the impact of VUCA elements and not being 
overwhelmed is to instill the data-driven decision-making as a philosophy inside 
organizations at different levels. An understanding that information technology 
companies and Silicon Valley-based start-ups have already understood very well 
and to which manufacturing firms should benchmark with (Stephan, 2020). 

The following recommendations to managers concern the different digital 
transformation paths that firms can undertake toward a fully digital integrated 
factory (i.e. Smart Manufacturers), once physical-digital interface technologies 
have been implemented (Figure 21). The recommendations start with section 4 on 
decision-making approaches and then develop on the findings of section 5 and 
section 6 on governance practices with customers and system integrators. 
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Figure 21. Suggested digitalization paths 

 

9.2.1 From Volatility to a data-driven Vision (leaving aside 
intuition, not experience) 

Whether just digitalized or already interconnected, the first thing to do is to 
instill a data-driven philosophy throughout the whole organization. If a firm falls 
into the Basic Digitalizers category, it is suggested a preferred path – “first right, 

then up” – in which managers support the diffusion of analytical and data-driven 
mindset in their workers. This does not mean that managers should neglect their 
domain expertise and experience, but that should encourage them in applying 
synergistically both data and domain knowledge, in which however data should 
play a primary role. Some scholars argue that with big data handled by network 
technologies, the scientific method is becoming obsolete (Anderson, 2008), which 
may be true in the context of information technology companies (e.g. Google, 
Amazon, Facebook, Netflix) focused on forecasting the behavior of customers, but 
not in manufacturing. Indeed, there is another culture of data analysis other than 
forecasting: modeling, which is focused on process understanding (i.e. that 
generates scientific knowledge) for troubleshooting, process improvement, and 
optimization, in which both domain knowledge (to formulate the right hypothesis 
and ask relevant questions) and data analysis (to evaluate hypothesis) are needed 
(Ferrer, 2020). By increasing the understanding of processes, modeling can bring 
significant benefits in predictive applications for instance for machine health status.  

A firm, however, could have already digitized and connected (for instance by 
exploiting national investment plants that offer fiscal incentives) before instilling a 
data-driven philosophy and might be experiencing some tensions typical of the 
“Networking Digitalizers” cluster. Managers are encouraged to undertake this “left-
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to-right” path immediately unless they do not want a pilot project stuck in purgatory 
(Behrendt et al., 2018). Doing a step back, not insist on the interconnection, but 
rather focus on the data-driven philosophy is the right management practice (Tudor 
& MacDonald, 2020). In the “unstable” cluster of the Networking Digitalizers, such 
a vision change might be more expensive and harder, so managers should consider 
putting much effort and resources to smooth and accelerate the transition toward a 
data-driven firm. Shifting from an intuition-driven to a data-driven culture is a 
challenge for all modern enterprises (Martínez-Caro et al., 2020). So how to shift 
from an intuition-driven to data-driven culture? From the analysis of the case 
studies, the firms that were initiating this journey, and those already data-driven, 
agree that such a process requires time to change culture and mindset. Here are the 
main recommendations, drawn from the qualitative and quantitative findings, to 
prevent volatility and uncertainty through, respectively, a formalized data-driven 
vision and an increased understanding.  

 
Formalize the data-driven Vision by investing in lean production practices. 

The results of the survey show a high correlation between data-driven approaches 
and lean practices, both in the case of studies and in the quantitative survey. To give 
a number, 72% of companies with formal programs of lean production are also data-
driven, while only 35% of “non-lean” companies base their decisions on data. There 

are two explanations for the high correlation between data-driven decision-making 
and lean production. First, implementing lean means applying the scientific method 
in which workers continuously formulate hypotheses into the design of individual 
work activities, customer-supplier connection, production flow, and continuous 
improvement efforts (Spear & Bowen, 1999).  An emblematic example is a Plan-
Do-Check-Act tool. In the planning phase, workers formulate a hypothesis, 
transform them into improvement actions (do phase), test them in the check phase, 
and if supported, implement fully in the act phase. As Galileo Galilei noticed 
centuries ago, the hypothesis needs evidence and facts (i.e. data in this case) to be 
supported or rejected. Moreover, by formulating a hypothesis, workers are forced 
to think of formulating the right initial questions. Thus, a lean orientation at the firm 
may promote greater responsiveness to insights coming from data even these are 
collected manually from operators. Besides lean, another best practice to develop a 
data-driven vision is to start from management with analyzable and attainable 
objectives linked to operational efficiency, through which the data-driven vision 
will spread to the operators: “It is clear that this shift requires time, but we hope 
that starting from the management this shift will then be embraced by the whole 
firm”.  
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9.2.1 From Uncertainty to Understanding capabilities through 
training, and analyzability with physical-digital interface 
technologies 

Recent research suggests the investment into digital technologies can be 
useless, even harmful unless employees can incorporate data in complex decision-
making processes (Shah et al., 2012). According to the VUCA framework, 
transformational skills are needed by all employees at different organizational 
levels (Millar, Groth, & Mahon, 2018). A data-driven philosophy must therefore be 
instilled at all levels, not only for top managers, industrial engineers, or data 
scientists. Managers cannot rely only on data talents, who are very difficult to find 
and costly to hire, but they should empower all employees to do their analytics work 
(Tudor & MacDonald, 2020). Indeed, data should be made available by investing 
in physical-digital interface technologies to increase the analyzability of events. 
Moreover, to exploit the “small data” collected by front-line workers daily (Lam, 
Sleep, Hennig-Thurau, Sridhar, & Saboo, 2017), they need to be involved as they 
own unique tacit knowledge and experience from the line (Susan Helper & Kuan, 
2017). In this vein, training programs need to be put in place to provide front-line 
workers with basics of statistics, data literacy, analytical skills, and a “second-
guess” attitude towards the outcomes of algorithms, needed to increase their 

understanding of phenomena to avoid automation bias and generate trust towards 
the use of data (Tudor & MacDonald, 2020). Again, lean environments can foster 
such involvement and upskilling of front-line workers’ understanding. 

 

9.2.3 From Complexity to Clarity in the supply-chain relationship 
with physical-digital interface technologies 

 
Investing in physical-digital interface technologies can reduce the complexity 

of the relationship between suppliers and customers thanks to the traceability and 
virtualization properties. These properties increase the clarity and transparency of 
joint activities such as product development because the design activities occur 
within the shared virtualized object and because every activity in the design and 
manufacturing phases gets tracked which allow the partners to know the entire 
history of the product lifecycle (T. D. Hedberg et al., 2019). This will provide an 
improvement in the dyadic relationship in terms of trust in the relationship because 
every activity involved in the relationship gets tracked and virtualized. 
 

9.2.4 From Ambiguity and Equivocality to Agility with network 
technologies 

The “bottom-up” path, that of “connection”, is an iterative stage in which an 

integrated data lake or data warehouse is introduced, and new digitization 
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technologies are implemented by gradually connecting them and their data to such 
integrated IT infrastructure. As the “right-then-up” path is strongly suggested, the 
“up-then-right” path is strongly discouraged, i.e. investing in physical-digital 
interface technologies before changing from an intuition-driven to a data-driven 
mindset. If the firm has just digitized (i.e. Basic Digitalizer) and now wants to build 
a plant-wide digital twin and digital thread, it might be a waste of time and resources 
if a data-driven approach to decision making is not diffused first. Probably, the 
greater transparency could still provide some isolated process improvement 
opportunities (e.g. scrap reduction, reduction failures, and breakdowns) driven by 
technological improvements. However, unless employees incorporate a data-driven 
philosophy in their decision-making processes, the improvement opportunities 
remain isolated and short-term. On the other hand, the effectiveness of data-driven 
approaches will receive a boost thanks to the availability and reliability of big 
amounts of data throughout the plant. Events become less equivocal because data 
is ready for analysis (Pigni et al., 2016). With digitalized and integrated data in 
corporate information systems, where they are standardized and available for cross-
function analyses, employees can perform better and heterogeneous data analysis. 
Cause-effect relationships are grounded in data coming from multiple sources, 
which allow explaining phenomena occurring in the manufacturing plant even 
beyond the expertise of middle managers.  

 
Ensure Agility by collaborating with system integrators. Implementing 

network technologies represents a great technological challenge for manufacturing 
firms in terms of complexity, novelty, and customization as shown in section 6. To 
reduce the interpretative uncertainty, arising from these technological challenges, 
manufacturing firms have to collaborate with technological partners with relational 
governance practices based on co-creation and long-term collaboration. Among 
technological partners, system integrators represent a valuable partner due to their 
ability to provide one-stop-shopping solutions that range from network 
technologies implementation to data analytics solutions and process consulting. Co-
creation allows the supplier to better know the specific needs and define better user 
requirements, with immediate benefit for a manufacturing firm in terms of clarity 
of its data flows. Long-term collaborations allow the development of trust, which 
is very relevant considering that as technological implementation unfolds the 
partners can provide data sharing-based consulting services. When collaborating 
with system integrators to implement network technologies, an agile approach 
focused on frequent interactions and delivery is strongly encouraged because it 
increases the overall user acceptance and supports the gradual reduction of 
interpretative uncertainty along with the development timespan (Gehrke et al., 
2016) 
 

Achieve Agility by fostering cross-functional collaboration. The access to a 
common and integrated pool of data is useless unless the organization has cross-
functional collaboration practices among different departments such as teamwork, 
job rotation, face-to-face meetings, co-location, etc. Different streams of data have 
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no value per se, and different units might not be aware of how and why these data 
should be combined. It is when functional knowledge is combined along with data 
that new improvement process opportunities arise. Cross-functional collaboration 
is an embedded practice of lean production and thus managers are highly 
encouraged to go under this development. 

 
Achieve Agility by developing formal long-term collaborations with 

customers. Given that network technologies enable full and real-time transparency 
of process-related information, managers are encouraged to undertake a formal 
long-term relationship with their customers. These safeguarding mechanisms 
prevent that customers do not exploit such an integration opportunistically, since 
she can increase the visibility of suppliers’ processes. Having relational norms and 

trust may not be sufficient but a formal and explicit shared commitment is also 
required. 

 

9.3 Limitations and future research 

This thesis presents some limitations which are avenues for future research. 
The main limitation of this thesis pertains to the generalizability of finding into 
other countries and industries. While the choice of a single country is a strength 
from a methodological point of view to keep fixed institutional factors and leave 
aside exogenous factors, it is also a weakness in terms of extension of the findings 
from Italy to other countries. Nevertheless, the result of this thesis may be extended 
to other advanced and industrialized countries, but careful considerations should be 
put when extending the findings in developing countries. A similar argument 
pertains to the extension of the research findings to other industries. While for 
similar capital-intensive industries such as the appliance industry result can be 
easily extended, careful considerations should be put for low capital-intensive 
industries in which organizational practices that in this thesis are considered as 
“best practices” may not be considered the same in these industries. 

Concerning the findings of the digital properties, future research can use these 
to investigate the impact of digital technologies on other organizational practices 
and issues such as training, skills, privacy, control, etc. An interesting research area 
concerns the extent to which these digital properties allow new forms of control 
over employees' output that could lead us towards the era of “Surveilled 

Capitalism” (Zuboff, 2015). 
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Appendix 

Tables 
 

Table A1. Commercial examples of network technologies 

Technology 
provider 

Network technology 
name 

Reference 

General Electric Predix ge.com/digital/iiot-platform 
PTC Kepware kepware.com/ 
Reply Brick Reply reply.com/brick-reply  
HighByte HighByte Intelligence Hub highbyte.com  
Inductive 
Automation 

Ignition inductiveautomation.com/ignition  

System Insights Vimana govimana.com/  
Sight Machine Factory Connect sightmachine.com/  

 

Table A2 Cluster Analysis 

 
Digitalizers 

(n = 41) 

Networking 
Digitalizers 

(n = 6) 
ANOVA 

Data-Driven Decision-
Making 

0 
(0) 

0 
(0) F = n.a. 

Physical-Digital Interface 
Technologies 

2.71 
(1.27) 

4.00 
(1.55) F = 5.15* 

Network Technologies 0 
(0) 

1.00 
(0) F = 52.58*** 

Cost Performance 0.15 
(0.36) 

0 
(0) F = 1.01 

Note: Standard deviation in parentheses, + p < 0.1, * p < 0.05, ** p < 0.01 
 

 

 
Analytical 
Digitalizers 

(n = 33) 

Smart 
Manufacturers 

(n = 5) 
ANOVA 

Data-Driven Decision-
Making 

1.00 
(0) 

1.00 
(0) F = n.a. 

Physical-Digital Interface 
Technologies 

3.82 
(1.38) 

3.80 
(1.64) F = 0.01 

Network Technologies 0 1.00 F = 39.34*** 

https://www.ge.com/digital/iiot-platform
https://www.kepware.com/
http://www.reply.com/brick-reply
http://www.highbyte.com/
http://www.inductiveautomation.com/ignition
https://govimana.com/
https://sightmachine.com/
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(0) (0) 
 0.23 

(0.36) 
0.20 
(0) F = 0.02 

Note: Standard deviation in parentheses, + p < 0.1, * p < 0.05, ** p < 0.01 
 

 
Table A3. Measures of co-creation and continuous collaboration with system 

integrators 

Construct Measure Operationalization 

Co-creation 
 

 

Indicate the role mainly played by the system 
integrator with regard to design and implementation 
of our automation and information systems? 

• We define the technical specifications and 
start the design phase, the system 
integrator completes the detailed project, 
develops the integration and builds the 
system (1) 

• We define our needs in principle, the 
system integrator defines the 
requirements, completes the detailed 
design, develops the integration and builds 
the system (2) 

• We use solutions proposed by the system 
integrator with a limited degree of 
customization (3) 

Binary: value 1 if 
respondent answers 
(1), 0 otherwise 

Continuous 
collaboration 

Which of the following statements best identifies 
your relationship with the system integrator? 

• For each project we choose the system 
integrator that we consider most suitable 
(1) 

• There are few system integrators that we 
can refer to and alternatively we turn to 
them (2) 

• We typically have an ongoing relationship 
with a system integrator (3) 

Binary: value 1 if 
respondent answers 
(3), 0 otherwise 

 

 
Table A4. Factor analysis on types of tasks performed by production workers 

Construct Item Factor 1 Factor 2 Ordinal 
Alpha 

Autonomy in 
Equipment 

Management 

Equipment Set-Up  -0.0023 0.7568 

0.7357 
Modify Programs on 
Computerized 
Equipment 

-0.1075 0.5903 
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Diagnose Equipment 
Problems 

0.1412 0.8176 

Continuous 
Improvement 

Inspect Work-In-
Progress 

0.5037 0.1281 

0.6874 

Use Quality Data to 
Recommend 
Improvements  

0.7657 0.0465 

Meet with Customer 
Personnel 

0.5212 -0.2676 

Use a Computer 0.6524 0.1475 
Each year we expect our 
shop workers to make 
substantial improvements 
in their own method of 
operations 

0.4290 0.0110 
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Figure A1. Dendrogram 

 


