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To Roberto, for your intelligence, curiosity and stubbornness.
And to all the bold Women out there, striving and succeeding

for things to change.

“The world will say to you, ‘There are too many problems.’ Do
not be afraid to be part of the solutions. Start by discussing
the issues. We cannot overcome what we ignore. The more we
talk about things, the more we see that the issues are connected
because we are connected. [. . . ] Change-making does not belong
to one group of people; it belongs to all of us.”

– Cleo Wade
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Abstract

Network science is a mathematical theory that aims at disentangling the
complex relationships among the entities in a system. Any system in which
connections are present can be interpreted as a network: a group of friends,
airplane transportation, or river basins. Graphically, the network represen-
tation constitutes nodes (i.e., the entities) and links (i.e., the connections).
Mathematically, a network is described through a matrix. The clarity of its
representation and its versatility have let network science rise in popularity
across many fields, ranging from sociology to epidemiology, from economics
to engineering, from neuroscience to hydrology. For example, network sci-
ence has helped us understand the power of ’super-spreaders during the
Covid-19 pandemic. But what if its own popularity would compromise the
power of such an important tool?

The increasing popularity of network theory also generated several de-
bates about its methodologies and their contexts of applications. Among
the most discussed methodologies figure the ones for measuring centrality.
Centrality is the feature of being relevant in a network. Many conceptualiza-
tions of centrality metrics have been proposed over time. Nevertheless, all
the methodologies depend on the particular aims and applications for which
they have been idealized. For example, the degree and eigenvector centrality
have been introduced to study power and hierarchies in social networks.
However, these metrics do not account for the feature of topological distance
among the nodes, which other measures as the closeness and betweenness
centrality do, instead.

The heterogeneity in the results offered by different measures of centrality
is a recurrent problem in the literature. In fact, centrality is often referred
to as an instrument to rank the entities in the system and, the differences
among the available methodologies unavoidably create differences in the
obtained rankings even within the same application. This is the case, for
example, of the Economic Complexity theory, a network framework for
export data through which explore countries’ performances in innovation.
Another relevant example of the application of network science frames within
the field of sustainable development. The theory has been shown to help
unfold the synergies and trade-offs among its sectors. Nevertheless, such
a tool’s potential has not been fully exploited to rank countries for their
status’ in achieving sustainable development.
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Against this background, in this thesis, we address the need for a common
definition in the field of centrality measures by approaching the problem in
three manners: firstly, in its general mathematical description; secondly, its
application to the area of economic complexity; finally, we introduce a neat
centrality framework within the context of sustainable development aimed
at measuring countries’ status concerning the United Nations’ Agenda 2030.

Therefore, this thesis contributes to multidisciplinary literature in net-
work science, economics, innovation, and sustainable development. We
introduce a statistical perspective that uniquely defines centrality metrics
and compares the information they provide about the network topology.
Within this statistical framework, we also introduce multi-dimensional cen-
trality metrics to account for the network’s many structural features. Thanks
to this multi-dimensional setting on centrality metrics, we reconcile the
most notorious economic complexity metrics, i.e., the Method of Reflections
and the Fitness and Complexity algorithm. Therefore, we present the GEN-
eralized Economic comPlexity – GENEPY – index: a unique, data-driven,
multi-dimensional index of innovation framed within economic complex-
ity. The GENEPY index can track the trajectories of growth of countries
without the need to add exogenous information about countries’ economies
(as, e.g., e Gross Domestic Product). Finally, we introduce the network
representation of the Agenda 2030 of sustainable development and, in partic-
ular, the countries –Sustainable Development Goals system. Thanks to this
representation, we also introduce the use of centrality metrics, especially
the GENEPY ones, to shed new light on countries’ efficacy in sustainable
development.

Hence, our results contribute to defining methodologies to track and
address global performances of innovation and sustainability.
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Contenuto

La teoria delle reti è una branca della matematica che ha come obiettivo
quello di indagare e spiegare le relazioni complesse tra gli enti in un sistema.
Qualsiasi sistema in cui gli enti sono collegati tra di loro può essere rappre-
sentato e interpretato sotto forma di rete: le relazioni in un gruppo di amici,
le rotte che formano il trasporto aereo o l’idrografia di un bacino fluviale.
Dal punto di vista grafico, una rete è descritta da nodi (gli enti), collegati
tramite linee che ne descrivono il tipo di connessione tra di essi. Dal punto
di vista matematico, una rete è descritta per mezzo di una matrice. La
chiarezza della rappresentazione e il suo essere adattabile a diversi contesti
spiegano perchè tale teoria sia divenuta uno strumento matematico sempre
più presente nella letteratura scientifica, con applicazioni che vanno dalle
scienze umane all’epidemiologia, dall’ingegneria alla biologia. Ad esem-
pio, grazie all’utilizzo della teoria delle reti è stato definito il ruolo dei
‘super-contaminatori’ nella diffusione del virus che ha provocato la pandemia
Covid-19.

La crescente popolarità di questa branca della matematica ha generato
però anche diversi dibattiti scientifici per l’utilizzo delle sue metodologie
e dei suoi contesti di applicazione. Tra le più dibattute metodologie in
teoria delle reti vi sono quelle di misura della centralità. La centralità è
la caratteristica che definisce l’importanza di un ente all’interno della rete
e la sua definizione non è univoca, in quanto dipendente dagli scopi per i
quali ciascuna specifica misura di centralità è stata ideata. Per esempio, le
centralità secondo il grado o secondo l’autovettore sono state introdotte in
letteratura per studiare le gerarchie e le scale di potere nei sistemi sociali.
Queste due metriche però non tengono conto della distanza topologica tra i
nodi, di cui invece tengono conto le misure di centralità dette closeness e
betweenness.

L’eterogeneità dei risultati generati da diverse misure di centralità è un
problema ricorrente nella letteratura scientifica. Le misure di centralità
vengono spesso utilizzate per stilare delle classifiche di importanza degli enti
nel sistema, e l’uso di diverse metriche di centralità genera differenze a livello
di risultati anche nella stessa applicazione. Questo è il caso dell’Economia
Complessa, un campo in cui la teoria delle reti è usata per rappresentare i
dati riguardanti il commercio internazionale e ricavare informazioni circa la
capacità di innovazione delle nazioni.
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Un altro esempio rilevante di applicazione di tale teoria è quello dello
sviluppo sostenibile, campo in cui si è rivelata utile per svelare e comprendere
le sinergie e i compromessi tra i vari settori che lo compongono. La teoria
però non è mai stata sfruttata per stilare una classifica dei paesi per il loro
status in sviluppo sostenibile.

Alla luce di tutto ciò, questa tesi ha l’obiettivo di contribuire alla
definizione matematica delle metodologie di centralità in teoria delle reti,
soprattutto per quanto riguarda le sue applicazioni nel campo dell’economia
complessa e dello sviluppo sostenibile, più specificatamente nell’ambito
dell’Agenda 2030 delle Nazioni Unite.

Il primo risultato di tale contributo consiste nell’introduzione di una
prospettiva statistica sulle misure di centralità dei nodi in una rete. Tale
prospettiva consente di confrontare diverse misure a seconda delle infor-
mazioni statistiche che queste forniscono sulla rete. Grazie a questa interpre-
tazione statistica, si introducono indicatori multi-dimensionali di centralità
come soluzione univoca al problema di definizione della centralità. Tale
prospettiva costituisce anche il punto di partenza per l’armonizzazione delle
misure di centralità oggi usate nel campo dell’economia complessa. Infatti,
grazie alla definizione degli indicatori multi-dimensionali viene introdotto
l’indice GENEPY, GENeralized Economic comPlexity index, un indicatore
che unisce le misure di centralità ottenute dal Metodo delle Riflessioni e
dall’algoritmo Fitness and Complexity e che univocamente definisce lo status
di innovazione dei paesi. L’indice GENEPY, misurando l’acquisizione di
capacità tramite le similitudini nelle tipologie di prodotti esportati dalle
nazioni, è in grado di tracciare le traiettorie dei paesi lungo il loro percorso
di crescita economica e di innovazione senza dover ricorrere ad informazioni
esogene riguardanti l’economia delle nazioni (p.es., il prodotto interno lordo).
L’ultimo contributo offerto da questo lavoro di tesi riguarda l’introduzione
delle metriche di centralità nell’ambito dell’Agenda 2030 delle Nazioni Unite.
In questa tesi vieni infatti presentata l’interpretazione dell’Agenda 2030
come un sistema complesso di paesi e degli Obiettivi dello Sviluppo Sosteni-
bile (OSS). Questa interpretazione permette di utilizzare le metriche di
centralità e del GENEPY al fine di studiare l’efficacia dei paesi nel loro
percorso verso la sostenibilità.

Riassumendo, questo lavoro di tesi propone un insieme di metodologie per
tracciare e indirizzare le performance globali di innovazione e sostenibilità.
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1
Introduction

1.1 Real Systems & Network Science

“One of the key insights of the systems approach has been the realization
that the network is a pattern that is common to all life. Wherever we
see life, we see networks.” Within his book “The Hidden Connections: A
Science for Sustainable Living” [1], the physicist Fritjof Capra highlights
how all natural systems, in a broader sense life he writes, self-organize as
networks. In fact, a network is defined when entities in a system connect
each other. Plants and pollinators in ecology [2], humans in sociology [3],
products in trade [4] and pipes in water supply systems [5]: networking
is the key for the evolution and development of systems [6]. The reasons
why entities connect in a system usually answer some defined questions: are
these plants pollinated by these particular bees? are these people friends?
are these products traded by the same country? are these withdrawal points
connected by pipelines? Although the answer to these questions may be
a simple yes or no, the system ensemble may be complex, with increasing
complexity according to increasing number of entities in the system [7].
(Complexity is the feature of systems to be characterized by non-trivial
and non-random interactions among many entities [8]). This is why the
mathematical network representation schematizing these interactions has
found wide acceptance and application to understand the mechanisms of
the system under study, helping in monitoring and managing it [6].

In mathematical terms, a network is defined as a graph, the entities
are called nodes and the connections among them are the links (or edges)
[9]. The modelling of systems as graphs has found wide acceptance and
use in literature, starting with Euler’s notable solution of the problem of
the "Seven Bridges of Königsberg" in the last part of the eighteenth century
[7, 9]. By means of network representation, Euler demonstrated that no
path exists that crosses the seven bridges of the city of Königsberg without
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1.1. Real Systems & Network Science

Figure 1.1: The Seven Bridges of Königsberg. Panel a) details the geography of Königsberb,
where landmarks are labelled with letters and the seven bridges are represented by
rectangles. Panel b) plots the network representation of the problem as proposed
by Euler [7, 9]. Figure credits Boguslawski P. [10].

crossing one bridge twice. In his scheme, Fig 1.1, the nodes are the city’s
landmarks and the bridges the connections among them.

Since Euler’s proof, network science became an important tool to model
real systems in an easy way [6]. In fact, graphs are easily described by
matrices, detailing which nodes are connected and how [9, 11]. The power
of network science stands here: matrices are easier to handle than other
mathematical tools [9]. We owe most of the basic knowledge about net-
works to sociology, where graphs were first introduced to study power and
hierarchies [9, 12, 13], opinions and influences [14, 15]. As of today, network
theory applications range from epidemiology [16–19] to economics [20–23],
from sociology [24] to engineering [25, 26] and neuro-sciences [27, 28]. The
World Wide Web is among the most relevant examples of complex networks
nowadays: thousands of web pages are connected each other by hyperlinks,
directing a possible surfer from the one page to the other [7]. Most recently,
the experience we have lived with the COVID-19 pandemic has clearly
shown the (un)luckiness of being connected: the virus spread thanks to the
transportation networks – airplanes, trains and cruising ships – from China
to more than 100 countries [29–31]. The global transportation network was
the luck of the virus and the bad luck of ours.

Although the theory has more than two centuries of history, network
science presents some controversial methodologies as many more applications
come by. In fact, following the growing number of problems framed within
network science, many methodologies have been introduced in time, each of
which has been tailored to the particular application they refer to. However,
because of their use to define change-making actions, we argue that some
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1. Introduction

order in network science applications and tailored methodologies is essential.
In particular, in this thesis we try to address the debate concerning with the
metrics of network centrality, their theoretical formulations and applications
to the field of economics and sustainable development. Therefore, neatness
in the applications hence represents the fil rouge of this thesis, which we
argue is required to empower the use of network science in addressing, as
we show, global performances of innovation and sustainability.

Some introduction to basic notions of network science is due to the
reader to follow along. Please note that in the common language, the words
graph and network have become interchangeable.

Let G be a graph, with N nodes and E edges. G is mathematically
described by the so-called adjacency matrix A, whose ij-th element is 1
if node i and node j share an edge, zero otherwise. The matrix A has
dimension N × N , since the system has N entities interacting each other.
If the network is undirected, i.e., the connections between the nodes are
mutual, the adjacency matrix is symmetric with Aij = Aji for i Ó= j. This
is the case of a social network: people know each other. An example
of undirected network is given in Fig 1.2, which represents the marriage
relations among the most notables Renaissance families in Florence [13].
The network has 15 nodes connected by 20 edges: marriage is, of course,
mutual so that the connections among the families have no directions (Fig
1.2) and the adjacency matrix is symmetric, as shown in Table 1.1. Instead,
the adjacency matrix is asymmetric if the network is directed: the edges
are directional, with nodes pointing to others and Aij Ó= Aji for i Ó= j. An
example of this network is the World Wide Web: the hyperlinks are not
mutual, so that if Google sends us to visit the webpage of Politecnico di
Torino if searching for it, the landing web page does not link to Google.

Generally, the self-connections of the nodes (loops) are null, such that
the diagonal values of the adjacency matrix, Aii = Ajj , are null. Some
systems, as the protein interaction network of yeast, naturally present self-
loops as characteristic feature [7, 9]. Moreover, some systems may require
the presence of weighted connections to be described, where the strength
(or weight) of the connections among the nodes replaces the binary ij-th
element of the adjacency matrix [9].

A different kind of network is obtained if we aim at representing the
interactions between two different sets of nodes, instead. In this case, the
links only exist between the sets, while no connections exist among the
nodes belonging to the same group [9]. These kind of networks are called
bipartite networks and they are described by the so-called incidence matrix
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1.2. The Debate around Centrality Metrics

Figure 1.2: The network of the Florentine Intermarriage Relations [13]. The nodes represent
the families of the Florentine Renaissance, connected by the presence of marriage
contracts among the families. The adjacency matrix of this undirected network is
given in Table 1.1.

B. The matrix is rectangular and has dimensions U × V , being U the
number of nodes in the first set, V in the second one, instead. Also in this
case, the connections may be binary or weighted. A notorious example of a
bipartite network in literature is the one from the "Southern Women Study"
[32], describing the participation of women to social events in the late 30’s
and through which analyse racial segregation. Another example we will be
dealing with in this thesis is the countries – products bipartite network,
describing the export baskets of countries [4, 23, 33].

1.2 The Debate around Centrality Metrics

Within network science, a long-standing challenge is to rank the entities
for their relevance in the system, i.e., for the centrality of the nodes in its
network representation. In fact, centrality is referred to as a tool to quantify
the importance of nodes in a network [9, 11]. To make a more realistic
example concerning with the World Wide Web, centrality is the reason why
when typing “Yesterday” in our web-search engine, among the top results
there is a link to a video by The Beatles: there are so many relevant web

6



1. Introduction

Table 1.1: The adjacency matrix of the Florentine Intermarriage Relations [13]. Entries are
non-zeros if there was a marriage between the families. Family names are reported.

Acciaiuoli Albizzi Barbadori Bischeri Castellani Ginori Guadagni Lamberteschi Medici Pazzi Peruzzi Ridolfi Salvati Strozzi Tornabuoni
Acciaiuoli 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Albizzi 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
Barbadori 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
Bischeri 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0
Castellani 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
Ginori 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Guadagni 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1
Lamberteschi 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Medici 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1
Pazzi 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Peruzzi 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
Ridolfi 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
Salvati 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
Strozzi 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0
Tornabuoni 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0

pages referring to this URL that made it rank top. A first definition of this
property dates back to the 50’s, when it was introduced to study the role
of nodes in communication patterns [12, 34]. During the following years,
progresses in social sciences provided several algorithms to evaluate nodes’
centrality. These methods were typically obtained through case-specific
considerations about the functioning of social networks, mainly based on
reasoning about how information spreads across people in a group [12], and
afterwards they were extended to other networks. Examples include the
degree centrality [35, 36], Katz centrality [37], eigenvector centrality [38],
betweeness [36, 39] and closeness centrality [36], PageRank [40], subgraph
[41] and total communicability [42] centrality. Each metric defines node’s
centrality based on some topological features of the considered node, such
as the number of its connections, the connections of its neighbours, the
number of walks and paths going across the node, etc., thus testifying its
relevance in the network, with possible risks of circular reasoning.

We now introduce three of the most used centrality metrics for undirected
networks: the degree, eigenvector and Katz’s centrality. Let xi be a generic
centrality metrics. The degree centrality for node i is defined as the sum of
all nodes’ connection, i.e.,

xi =
NØ
j

Aij . (1.1)

The degree is usually referred to as ki. The eigenvector centrality is defined
as the weighted average of all nodes’ centrality to which the node i is
connected, namely

xi = α
NØ
j

Aijxj . (1.2)

It can be shown that the constant value α is the largest eigenvalue λ1 of
the adjacency matrix and that, the vector X of the N xi scores computed
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1.2. The Debate around Centrality Metrics

according to Eq. (1.2) are the entries of the corresponding eigenvector [3,
9]. The Katz’s centrality modifies the eigenvector centrality by adding a
constant value in the equation to avoid divergence to zero of isolated (poorly
connected) nodes [9]. This provides:

xi = α
NØ
j

Aijxj + β, (1.3)

where α < 1/λ1 (λ1 is the largest eigenvalue of A) for ensuring convergence
of the algorithm and the coefficient β is usually set to one [9]. Equivalent
measures of the degree and eigenvector centrality exist for directed and
bipartite networks, thus accounting for the directionality of the edges and the
membership of the nodes, respectively. In particular, for directed networks,
we consider i pointing to j, such that the outgoing edges of the node i are
described onto the row i of the matrix A. In this kind of networks, nodes
are hence characterized by two properties, one concerning with the outgoing
centrality of the node, xouti , and the other concerning with the incoming
centrality, xinj . For the degree centrality it holds

kouti =
NØ
j

Aij , kinj =
NØ
i

Aij ; (1.4)

for the eigenvector centrality, instead

xouti = 1√
λ1

NØ
j

Aijx
in
j , xinj = 1√

λ1

NØ
i

Aijx
out
i . (1.5)

In this case, the resulting vectors Xout and Xin are the eigenvectors of the
matrices AAT and ATA associated to the largest eigenvalue λ1, respectively,
with λ1(AAT) = λ1(ATA) [43] (further details on this topic will be given
in Chapter 2). The two eigen-centrality of the nodes are usually referred to
as hub-authority centrality [9]. For bipartite networks the notations "out"
and "in" are simply replaced by the membership to the set, U and V , with
the sum term running over V and U , respectively. Notice that, in linear
algebra, the eigen-system defined in Eqs. (1.5) also defines the Singular
Value Decomposition (SVD) [43]. SVD solves the decomposition of any
asymmetric or rectangular matrix: the singular values σ of any matrix A,
whether this is asymmetric or rectangular, relates with the eigenvalues λ of
the matrices AAT and ATA according to the following relation

σ =
√

λ,

8
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Degree centrality (a) Eigenvecotr centrality (b)

Figure 1.3: Degree vs eigenvector centrality. Scores of the degree and eigenvector centrality
computed for the network of the Florentine Intermarriage Relations [13]. Panel (a)
grades and sizes the network’s nodes according to their degree. Panel (b) grades
and sizes the nodes according to the eigenvector centrality, instead. In both panels,
colors and sizes of the nodes are proportional to the scores assigned by each metrics,
and the ranking is computed according to decreasing centrality values, so that the
most central nodes occupies the first position.

and the corresponding right and left singular vectors are the eigenvectors
associated to the λ values of AAT and ATA, respectively (we refer the
reader to [43] for further details). Therefore, for directed or bipartite
networks to solve the eigen-centrality entails computing the right and left
singular vectors of the adjacency or incidence matrix, respectively.

It is thus evident that different centrality metrics provide different
answers to the question “what does it mean to be central in a network
?” (see, e.g., [44–46] for a literature review on centrality indexes and
definitions). For example, one may assume a node is more central if it has
many connections with other nodes, which leads to the degree centrality
as the natural measure. However, one may argue that nodes are not all
equivalent, and that a weighted version of the degree of the nodes should be
adopted, where the weight is the centrality itself: this leads to the eigenvector
centrality as the adequate metric. The differences in the outcomes of this
two metrics are shown in Fig. 1.3 through the network of the Florentine
Intermarriage Relations [13]. Although both metrics agree on ranking the
Medici family as the most central, clearly there are some mismatching in the
way other families, such as the Guadagni’s and Ridolfi’s ones, are ranked.

As explained, all these measures have a solid intuitive background.

9
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Nevertheless, one is left without the possibility of comparing the reliability
of different measures of centrality, and therefore, of choosing which is the
most effective metric – and resulting node ranking – for the specific problem
at hand. A possible solution lies in the introduction of a statistical tool
to compare the information that each centrality metrics is able to retrieve
about the network.

1.3 Centrality within Economics: The Economic
Complexity Case

As we have described, centrality is a useful tool to gain information
about the nodes in a system, specifically regarding the quantity and quality
of connections. Centrality is key for understanding structural features of
various systems and it has found application also in economics. In particular,
the Economic Complexity (EC) field has introduced new centrality metrics
to deal with the complex system of the international trade of goods, with
the aim of ranking countries and produts. In fact, EC approaches structure
export data in a bipartite network framework of countries and exports and
the methodologies measure nodes’ centrality within the system [47]. Within
this field, the measures of centrality unveil the productive knowledge —
standing for capabilities, finance, technology, human capital and resources
– owned by countries and required to produce goods and for which eco-
nomic growth and innovation is determined [4, 48, 49]. These data-based
approaches mainly serve as an alternative to more traditional economic
growth theories [50–55] which are often blamed for shrinking the intricacy
of countries’ socio-economic dynamics through simplistic assumptions [56,
57].

The easiest measure of economic complexity in this field is given by the
simple degree of countries and products, defined as diversity and ubiquity,
respectively [22, 48, 58]. However, the degree does not account for the
compositions and complexity of the export baskets, i.e., for the set of
capabilities required to produce and so, export, different kind of products.
Although the degree is a necessary information, the currently used EC
methodologies aim at improving this measure [48, 59].

The most common methodologies of economic complexity are the well-
known Method of Reflections (MR) [22] and the Fitness and Complexity
algorithm (FC) [23]. Both these methodologies ground their rationales on
the assumption that only complex countries can export complex products,
since they require a wider set of capabilities, such as human and capital
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resources, to be produced and exported. Instead, less complex products are
ubiquitous and can be found in all countries’ baskets. Therefore, countries’
complexity is assessed by means of the quality (rather than quantity) of
products they export, i.e., of the products complexity, itself determined
by the countries exporting them. In spite of their common root, MR and
FC radically differ in the conceptual approach to the problem and, as a
consequence, in the obtained outcomes. Clearly, these differences pose an
issue of practical use of these methodologies and undermine their ability
in assess economic and innovation potential. Instead, we argue that the
combination of these two metrics would solve this issue, maintaining the
advantages of both methods.

1.4 Centrality within the Agenda 2030: the Sus-
tainable Development Goals Case

The United Nations’ Agenda 2030 of sustainable development is a call for
action to tackle the major challenges the world faces, such as environmental
problems, climate change, economic growth, water, food and financial
security, poverty and inequalities [60–65] (also recently exacerbated by the
Sars-CoV-2 pandemic [66, 67]). In practical terms, the Agenda addresses a
more equal, just and sustainable future by introducing the 17 Sustainable
Development Goals - SDGs [60]. The 17 Goals are constructed upon 5
pillars: people, prosperity, planet, peace and justice, and partnership, and
connections and spillover effects among the Goals are unavoidably present
[68–77].

The ensemble of countries and Goals within the Agenda 2030 is a com-
plex system of its own [78] (i.e., characterized by non-trivial and non-random
interactions among many entities [8]), which require proper mathematical
approaches to be analyzed. In fact, countries exhibit remarkable hetero-
geneity in the challenges they have to face, an issue which is crucial in
global sustainable development [60, 66]. Moreover, the interconnections
among SDGs, also define trade-offs and synergies within different sectors
of development [69], which are enhanced by the strategies each country
implements [79, 80]. These factors unavoidably create different responses at
the country level [64, 65, 81, 82].

Indeed, the presence of interconnections among the Goals, and no less, of
synergies and trade-offs among development sectors, can be unveiled thanks
to the use of complex network theory (see, e.g., Le Blanc [79] and Guerrero
et al. [75]). At the same time, within the development topic, the strategy
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Goals Case

Figure 1.4: The 17 Sustainable Development Goals under the Agenda 2030 [68].

of indexing is often used to rank countries for their performances, thus
making the creation of aggregated scores necessary [83] (notable examples
are the Human Development Index [84] and the Multidimensional Poverty
Index [85]), and the Agenda 2030 makes no exception. To create aggregated
scores of performances entails mathematically valuing the contribution of
each Goal to the overall countries’ output, according to which compute a
final score. In the construction of aggregated indices, many options can be
pursued to weight these contributions [86–88]. A possible strategy would be
to mathematically implement the egalitarian principle of the Agenda (i.e.,
all Goals must be of equal importance), thus entailing assigning the same
weights to all SDGs (see, e.g., the SDG Index by Sachs et al.) [82, 89, 90];
nevertheless, other suitable strategies might exist (see, e.g., the Integrated
Sustainable Development Index by Biggeri et al. [81]).

So far, the complex network analysis of the SDG system and the creation
of aggregated scores have been treated in parallel, without relevant overlaps.
Instead, we argue that the combination of data and network science may help
in disentangling the dynamics of development and in defining data-driven
weights for the creation of more objective and comprehensive aggregated
scores. More precisely, we will show that aggregated scores can be obtained
as the solution of a centrality exercise in the bipartite network representation
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of countries and SDGs within the Agenda.

1.5 Outline of the Thesis

The thesis is organized in five chapters and their contents follow.
After a general introduction in Chapter 1, Chapter 2 addresses the

problem concerning with the use of centrality metrics, and the lack of one
commonly accepted way to compare the effectiveness and reliability of dif-
ferent metrics. Here, we propose a new perspective where the definition of
centrality metrics naturally arises from the most basic feature of a network,
its adjacency matrix. In particular, we propose to tackle the centrality prob-
lem as a matrix-estimation exercise in which different centrality measures
emerge as the result of the least squares estimation of the adjacency matrix.
The results include the degree, eigenvector, and hub-authority centrality as
natural solutions of the estimation problem at hand. Within this theoretical
framework, the effectiveness of different metrics in reconstructing the matrix
is evaluated and compared. Tests on a large set of networks show that the
standard centrality metrics perform unsatisfactorily, highlighting intrinsic
limitations for describing the centrality of nodes in complex networks. More
informative multi-component centrality metrics are proposed as the natural
extension of standard metrics.

Chapter 3 develops upon the results shown in Chapter 2 to recon-
cile the contrasting methodologies on economic complexity, namely the
Method of Reflections and Fitness and Complexity algorithm. We recast the
two approaches into a mathematically-sound, multidimensional framework,
which allows us to recover and combine the strengths of both methods,
still maintaining the relevant feature of providing countries’ and products’
rankings. The obtained results shed new light on the potential of economic
complexity to trace and forecast countries’ innovation potential and to in-
terpret the temporal dynamics of economic growth, possibly paving the way
to a micro-foundation of the field, in line with what was already proposed
by Hausmann et al. [4].

Chapter 4 introduces the application of centrality metrics to the topic
of sustainable development, and more precisely, to the Agenda 2030. We
structure the data regarding countries’ performances in the 17 Sustainable
Development Goals as the incidence matrix describing a bipartite system
of countries and Goals. This representation allows one to high-light and
disentangle the intrinsic complexity of this system and to use the centrality
metrics tools to obtain aggregated scores of sustainable development, hence
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introducing bottom-up and data-driven weighting of the Goals. More
importantly, our analysis allows one to take a data-driven picture of the
possible current strategies of policy implementation in countries and unveils
crucial features of their efficiency in sustainable development.

Chapter 5 presents the final remarks and take home messages of this
thesis, highlighting the role of neatness in the methodologies of network
theory for an easy track of global performances of innovation and sustain-
ability. This final discussion also suggests future directions of work and
applications, and limitations of the current studies.

As final contributions to the literature, in Annexes we add comments
about the findings illustrated in Chapters 2 – 4. In Annex A we point out
that, beyond its economic relevance, the international trade of commodities
described in Chapter 3 has also an environmental impact on water resources.
By overlapping the information about trade and the water required for
food processing, we provide further food for thoughts about the trade-offs
between economics and environment, trade-offs that arise also from the
results of Chapter 4 concerning with sustainable development. Instead, in
Annex B and C the complete ranking of countries in economic complexity
(Chapter 3) and sustainable development (Chapter 4), respectively, are
provided.
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2
A Change of Perspective in Network
Centrality

The work described in this chapter has been partially derived from Sciarra
et al., Scientific Reports, 2018 [91].

Centrality measures the importance of the nodes in a network and it
plays a crucial role in several fields, ranging from sociology to engineering,
and from biology to economics. Many centrality metrics are available. How-
ever, as described in Section 1.2, these measures are generally based on ad
hoc assumptions, and there is no commonly accepted way to compare the
effectiveness and reliability of different metrics. Focusing on providing a
clearer answer to the question “what does it mean to be central in a net-
work?”, we propose to tackle the centrality problem as a matrix-estimation
exercise. In this framework, classical centrality measures (degree, eigenvec-
tor, Katz, hub-authority centrality) arise as the solution of a least square
estimation. This allows to compare different centrality measures by evaluat-
ing their performances in terms of their capability to reproduce the network
topology and, most importantly, to extend the notion of centrality to a
multi-component setting. Although dimensions are added to the centrality
metrics, our framework preserves the possibility to rank the nodes according
to a scalar value. Our results, within the context of the still ongoing debate
on the centrality metrics and the associated rankings (in several fields,
see, e.g., [45, 46, 92–94]), provide further proofs that centrality metrics
are highly correlated [95–100] and that they provide similar information
about the importance of the nodes. Within this new framework, the natural
multi-component extension of node centrality emerges as a possible solution
to improve the quality of the estimations and, subsequently, of node ranking.

In this chapter, we first introduce the proposed perspective for undirected,
unweighted networks, also introducing the multidimensional extension of
centrality metrics. We then broad the perspective on directed, weighted and
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bipartite networks. Particularly, our results are exemplified through the
network of the Florentine Intermarriage Relations [13] and the friendship
network of the Zachary’s Karate Club members [101].

2.1 Undirected, Unweighted Networks

2.1.1 General Considerations

Let G be an undirected, unweighted graph, with N nodes and E edges.
G is mathematically described by the symmetric adjacency matrix A, whose
ij-th element is 1 if i and j share an edge, zero otherwise [9]. Let Â be an
estimator of the adjacency matrix. We expect a good estimator has larger
Âij values when i and j are connected (i.e., Aij = 1), and lower values
otherwise (i.e., when Aij = 0). Our key idea is that the estimator of the
generic element Aij should depend on some emerging property xi of the
node i and xj of the node j (with i, j=1:N) representing the topological
importance of each node, i.e. its centrality. In formulas, Âij = f(xi, xj)
where f is an increasing function of both its arguments, since Âij should
increase when the nodes i and j are more “central” in the network. Due
to the symmetry of the matrix A, the arguments of f should also be
exchangeable (i.e., f(xi, xj) = f(xj , xi)). Notice that the estimation process
projects the information from N2 to N as we are estimating a N ×N matrix
using the N values of nodes’ centrality xi. By definition, estimation is non
exact, and Aij Ó= Âij . We suppose here that the error Ôij related to the
estimation is in additive form, namely

Aij = Âij + Ôij = f(xi, xj) + Ôij . (2.1)

Under this perspective, the centrality measures can be obtained on sound
statistical bases, as they arise from the result of a standard estimation
problem. Different constraints about the error structure can be considered.
The most classical approach – least squares estimation – entails minimizing
the sum of the squared errors, i.e., in this case,

SE(x1, x2, ..., xN ) =
NØ
i

NØ
j

Ô2
ij =

Ø
i

Ø
j

(Aij − f(xi, xj))2. (2.2)

The minimization procedure entails taking the derivative of SE with
respect to the considered variable (say, xk), and equaling it to zero. SE can
be partitioned into two components: a first part which is independent of xk
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(SE0), and a second part depending on xk (SEk) i.e.,

SE = SE0 + SEk.

The derivative of SE with respect to the variable xk, being SE0 independent
of xk, corresponds to the derivative of SEk. Notice that SEk only depends
on the k-th row and column of the two matrices A and Â, namely

SEk =
Ø
i Ó=k

1
Aik − f(xi, xk)

22
+
Ø
j Ó=k

1
Akj − f(xk, xj)

22
+
1
Akk − f(xk, xk)

22
,

(2.3)
and the sums over the row and over the column coincide due to the symmetry
of the matrix A. By using Eq. (2.3), the derivative of the function SE with
respect to the variable xk is

∂SE

∂xk
= ∂SEk

∂xk
= 4

Ø
i Ó=k

è
Aik − f(xi, xk)

é ∂f(xi, xk)
∂xk

+ (2.4)

2
è
Akk − f(xk, xk)

é ∂f(xk, xk)
∂xk

= 0.

Let us introduce the bound variable zm which allows one to formalize more
concisely the mathematics behind Eq. (2.4). One has that

∂f(xi, xk)
∂xk

= ∂f(xi, zm)
∂zm

----
zm=xk

if i Ó= k (2.5)

and, if i = k,

∂f(xk, xk)
∂xk

= ∂f(zm, xk)
∂zm

----
zm=xk

+ ∂f(xk, zm)
∂zm

----
zm=xk

(2.6)

= 2∂f(xk, zm)
∂zm

----
zm=xk

.

In Eq. (2.6), the first equality in the second equation can be obtained by
invoking the chain rule of derivation, i.e.,

∂f(x, y(x))
∂x

= ∂f

∂x
+ ∂f

∂y
· ∂y

∂x
,

and setting y = x afterwards; instead, the second equality holds because,
due to the exchangeability of the arguments of the function f , it holds the
following equivalence

∂f(xk, zm)
∂zm

= ∂f(zm, xk)
∂zm

.
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In this way, by using Eq. (2.6), Eq. (2.4) becomes
∂SEk

∂xk
= 4

Ø
i

[Aik − f(xi, xk)] · ∂f(xi, zm)
∂zm

----
zm=xk

, (2.7)

where the index i runs over the range [1, N ]. From Eq. (2.7), xk is obtained
imposing the equivalence of the derivative to zero. An equation equivalent
to Eq. (2.7) is obtained for any centrality value xi, (i = 1, ..., N), which
allows one to estimate the centrality value for all nodes. Notice that the
framework can be extended to consider the error term in Eq. (2.1) in
multiplicative form, and/or to consider a node-wise unbiased constraint
instead of minimizing SE. However, in this work, we only consider the error
term to be defined as in Eq. (2.1).

2.1.2 The Unique Contribution

Within this statistical framework, the answer to the question “what
does it mean to be central in a network ?” is given through the analysis
of the importance of the nodes in the estimation of Aij : a node i is more
central than a node j if the effect of its property xi on the minimization of
SE is larger than that of xj . In a nutshell, if xi is more “useful” than xj
for estimating A. Put it another way, the node i is more important than
the node j if, when removing its property from the estimation of Aij , the
change in SE recorded is higher than the one provoked by the exclusion
of other nodes’ property xj . In order to account for this effect, we borrow
the concept of the unique contribution from the theory of commonality
analysis [102, 103]. The unique contribution is a quantitative measure of
the effect a single variable has in the estimation procedure [104]. We define
the unique contribution of a generic node k as the gain in the coefficient of
determination R2 induced by considering xk in the estimation procedure.
In formulas

UCk = R2
N − R2

N\k =
SEN\k − SEN

TSS
, (2.8)

where
R2 = 1 − SE

TSS
,

with SE as in Eq. (2.2). The subscripts N and N \ k in Eq. (2.8) refer to
the case when all the N xi values are considered in the estimation (subscript
N), or to the case when the k-th property is excluded (subscript N \ k). In
Eq. (2.8), TSS is the variance of the adjacency matrix, i.e.,

TSS =
Ø
i

Ø
j

(Aij − Ā)2,
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with Ā the mean of the matrix A, namely

Ā =
q
i

q
j Aij

N2 = Ktot

N2 .

Ktot is the total degree of the network, i.e., the sum of all nodes’ degrees in
the network. Therefore it holds

TSS =
Ø
i

Ø
j

(Aij − Āij)2

=
Ø
i

Ø
j

A2
ij − 2Ktot

N2

Ø
i

Ø
j

Aij + K2
tot

N2 .

Since the elements of the adjacency matrix are either 1 or 0, A2
ij = Aij .

This yields
TSS = Ktot

1
1 − Ktot

N2

2
. (2.9)

Therefore, if the UC of node k is larger compared with the one obtained
for node j, to exclude xk from the estimation produces a larger drop in our
capacity to estimate the adjacency matrix (i.e., a larger drop in R2). As a
consequence, the larger is UCk, the most relevant (or central) the node is for
reconstructing the adjacency matrix with a limited amount of information
(i.e., the N centrality values). This allows one to perform a ranking of the
network nodes for their capacity to contribute to the network estimation.

As obvious in Eq. (2.9), the term TSS does not change with the exclusion
of xk. Therefore, in order to evaluate the unique contribution Eq. (2.8), it
is hence sufficient to compute the variation

∆SE = SEN\k − SEN

in Eq. (2.8). According to the commonality analysis [104], the unique
contribution should be computed eliminating the k-th node and repeating
the estimation procedure with (N − 1) variables, in order to compute
the determination coefficient R2

N\k. However, this approach would entail
repeating the estimation for (N + 1) times, a potentially cumbersome effort
in large networks. To bypass this difficulty, in this work we set a baseline
scenario in which the k-th node is not formally excluded from the estimation,
but the computation of the UCk is performed setting to zero the centrality
value xk in the estimation procedure and keeping unchanged the other
estimators xi, i Ó= k. This also allows one keeping the results in analytical
form. As will be clear in the following, the assumption xk = 0 corresponds to

19



2.1. Undirected, Unweighted Networks

assume a node with the lowest possible centrality value, since the centrality
values are positive-valued. This assumption does not necessarily entail that
the estimated link between node k and any other of its connection does not
exist.

Under these conditions, we can focus our attention on the k-th row and
column only. For a generic function f(xi, xk), used to estimate Aij under
the condition of Eq. (2.1), ∆SE reads

∆SE =2
Ø
i Ó=k

è1
Aik − f(xi, 0)

22
−
1
Aik − f(xi, xk)

22é
+ (2.10)

1
Akk − f(0, 0)

22
−
1
Akk − f(xk, xk)

22
,

that can be expressed as

∆SE =2
Ø
i Ó=k

è
f(xi, 0)2 − f(xi, xk)2 − 2f(xi, 0)Aik + 2f(xi, xk)Aik

é
+

(2.11)
f(0, 0)2 − f(xk, xk)2 − 2f(0, 0)Akk + 2f(xk, xk)Akk,

or, equivalently,

∆SE =2
Ø
i Ó=k

1
f(xi, 0) − f(xi, xk)

21
f(xi, 0) + f(xi, xk) − 2Aik

2
+ (2.12)

1
f(0, 0) − f(xk, xk)

21
f(0, 0) + f(xk, xk) − 2Akk

2
.

Within this work, we consider networks with no self-loops, hence in all
formulas holds Akk = 0.

Notice that the concept of centrality introduced with the unique contri-
bution in Eq. (2.8) may resemble the definition of the “induced” centrality
measures [105] deriving from graph invariants. However, the two approaches
are different. The induced centrality is obtained from the contribution that
a single node provides into the computation of a given graph invariant. In
this framework instead, any node is ranked according to its contribution to
the estimation of the adjacency matrix of the graph.

2.1.3 Examples of Estimator Functions

Different definitions of the function f in Eq. (2.1) allow one to obtain
different centrality metrics. Table 2.1 summarizes the results concerning
three different estimator functions and so, three centrality metrics, namely
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the degree, eigenvector [38] and Katz centrality [37] metrics. Details follow
on how these variables are obtained by adopting very simple link-estimation
functions.

Please, notice that the formal resemblance between our f(xi, xj) (see
Tab 2.1) and the function used to attribute a probability of link activation
based on the nodes’ fitness [106, 107] is actually just a resemblance. In
fact, the perspective is reversed here: differently from the link activation
framework, which aims at generating a suitable network structure with a
given node property distribution, we are estimating the nodes’ properties
that best represent a given adjacency matrix.

Degree Centrality

Let us start by considering the estimator f1 for undirected networks,

Âij = f1(xi, xk) = a

5
xi + xk − 1

N

6
. (2.13)

The derivative of the function f1 with respect to xk is

∂f1(xi, zm)
∂zm

----
zm=xk

= a,

Applying Eq. (2.7) one obtains

4a
Ø
i

è
Aik − a

1
xi + xk − 1

N

2é
= 0.

Since qi Aik = kk is the degree of the node k, solving the equation for xk
yields xk = kk

aN . Assuming the vector of centralities to have unitary 1-norm
i.e., qi xi = 1, one obtains

a = Ktot

N
, (2.14)

finally yielding

xk = kk
Ktot

. (2.15)

Eq. (2.15) corresponds to rescaling the degree centrality by the total
degree of the network.

Unique contribution
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In order to compute the unique contribution UCk, we need to re-consider
the estimation function f in which xk is set to zero. Considering the function
f in Eq. (2.13), one has

f1(xi, 0) = axi − a

N
,

and
f1(0, 0) = − a

N
.

Using Eq. (2.12), this provides

∆SE =2
Ø
i Ó=k

(−axk)
1
2axi + axk − 2 a

N
− 2Aik

2
+ (−2axk)

1
2axk − 2 a

N

2
= − 2axk

Ø
i

1
2axi + axk − 2 a

N
+ 2Aik

2
+ 2a2x2

k.

Some further algebra provides

∆SE = −2a2x2
kN + 4axkkk + 2a2x2

k.

Substituting the value of xk as in Eq. (2.15) and a = Ktot/N in Eq. (2.14),
one obtains

∆SE = 2(N + 1)k2
k

N2

from which the unique contribution for the degree centrality is obtained,

UCk = 2(N + 1)k2
k

N2TSS
. (2.16)

Since UCk is a monotonic increasing function of kk, ranking for increasing
UCk values provides the same ranking as the classical degree centrality.

Eigenvector Centrality

Consider the estimator for undirected network f2 to be defined as

Âik = f2(xi, xk) = γxixk. (2.17)

The derivative of the function f2 with respect to xk is

∂f2(xi, zm)
∂zm

----
zm=xk

= γxi,
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2. A Change of Perspective in Network Centrality

Applying Eq. (2.7) one obtains

4
Ø
i

1
Aik − γxixk

2
γxi = 0,

that solved for xk provides

xk =
q
i Aikxi

γ
q
i x

2
i

.

We can assume the centrality vector to have unitary 2-norm (i.e.,qi x
2
i = 1).

This yields
xk = 1

γ

Ø
i

Aikxi. (2.18)

Eq. (2.18) carries the same structure of the eigenvector centrality [3,
9], where γ = λ1 is the largest eigenvalue of A. It is worth to notice that
the relation in Eq. (2.2), with the function Eq. (2.17), recalls one of the
relations from which Bonacich demonstrates the eigenvector centrality [38].
However, the contexts of these two demonstrations are different; in fact,
Bonacich used the Principal Factor Method, assuming A to be a special
correlation matrix and x to be its first principal factor associated to the
largest eigenvalue (see [15, 108] for further details).

Unique contribution
In order to compute the unique contribution UCk, we need to re-consider

the estimation function f in which xk is set to zero. Defining f2 as in Eq.
(2.17), it holds

f2(xi, 0) = f2(0, 0) = 0,

from which Eq. (2.11) becomes

∆SE = 2
Ø
i Ó=k

è
− γ2x2

ix
2
k + 2γxixkAik

é
−γ2x4

k + 2γx2
kAkk

= 2
Ø
i

è
− γ2x2

ix
2
k + 2γxixkAik

é
+γ2x4

k − 2γx2
kAkk

Since the 2-norm of the vector is unitary, using Eq. (2.18) it holdsØ
i

Aikxi = γxk,

from which, using the assumption Akk = 0, one obtains

∆SE = 2γ2x2
k + γ2x4

k.
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2.1. Undirected, Unweighted Networks

Therefore, the unique contribution of the node k, according to the definition
in Eq. (2.8), is given by

UCk = γx2
k

TSS

1
γx2

k + 2γ
2

. (2.19)

Since UCk is a monotonic increasing function of xk, ranking for increasing
UCk values provides the same ranking as the classical eigenvector centrality.

Katz Centrality

Consider the estimation function f3 defined for undirected networks (see
Table 1) as

Âik = f3(xi, xk) = γxixk − B, (2.20)

in which we assume the parameter B to be negative. The derivative of the
function f3 with respect to xk, is

∂f3(xi, zm)
∂xk

----
zm=xk

= γxi,

from which, according to Eq. (2.7), the derivative of the function SE is

4
Ø
i

1
Aik − γxixk + B

2
γxi = (2.21)Ø

i

Aikxi − γxk
Ø
i

x2
i + B

Ø
i

xi = 0.

Solved for xk, the minimisation procedure provides

xk =
q
i Aikxi

γ
q
i x

2
i

+ B
q
i xi

γ
q
i x

2
i

. (2.22)

We now introduce the attenuation factor α of the Katz centrality [37] and
define the equivalences

1
γ
q
i x

2
i

= α,
B
q
i xi

γ
q
i x

2
i

= β (2.23)

obtaining
xk = α

Ø
i

Aikxi + β. (2.24)

Eq. (2.24) corresponds to the definition of the Katz centrality measure [37],
in which α is the attenuation factor whose value is α < 1/λ1, being λ1 the
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2. A Change of Perspective in Network Centrality

largest eigenvalue of A and β a constant, whose value is usually set to one
[9]. Due to the constraint imposed by the form of the Katz centrality, the
N xi values are always positive and greater than one; hence no assumptions
can be made on the norms of the vector x = [x1, ..., xN ].

Unique contribution
Again, in order to compute the unique contribution UCk, we need to

re-consider the estimation function f in which xk is set to zero. Using the
function f3 in Eq. (2.20), one has

f3(xi, 0) = f3(0, 0) = −B.

Using the form of ∆SE as given in Eq. (2.12) and substituting the values
of the functions

f3(xi, 0) − f3(xi, xk) = −γxixk, f3(0, 0) − f3(xk, xk) = −γx2
k,

one obtains

∆SE =2
Ø
i Ó=k

(−γxixk)(γxixk − 2B − 2Aik) − γx2
k(γx2

k − 2B − 2Akk)

=2
Ø
i

(−γ2x2
ix

2
k + 2γBxixk + 2γxixkAik) + γ2x4

k − 2γBx2
k,

where the assumption Akk = 0 is used. Using the equivalences in Eq. (2.23),
and the one deriving from Eq. (2.24), it holdsØ

i

Aikxi = xk
α

− β

α
,

from which

∆SE = − 2γ2x2
k

1
αγ

+ 4γBxk
β

αB
+ 4γxk

1xk
α

− β

α

2
+ γ2x4

k − 2Bγx2
k

= 2γ
x2
k

α
+ γ2x4

k − 2Bγx2
k.

The unique contribution of the node k, according to the definition in Eq.
(2.8), is

UCk = γx2
k

TSS

3
γx2

k − 2B + 2
α

4
. (2.25)

Since we have defined B to be a negative value, while γ and α are positive
ones, UCk is a monotonic increasing function of xk and ranking for increasing
UCk values provides the same ranking as the classical Katz centrality.
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2. A Change of Perspective in Network Centrality

Multicomponent Estimator and Centrality for Undirected, Un-
weighted Networks

A natural extension of the one-component estimators (resumed in Table
2.1) is to move toward more informative multi-component metrics of nodes’
centrality. The multi-component centrality considers more facets of the
networks, by describing the role of network’s nodes through more than one
scalar property.

We consider the function f2, Eq. (2.17), as the starting point for our
reasoning. A possible design of the multidimensional estimator is

Âij(s) = f (xi, xj) = γ1xi,1xj,1 + ... + γkxi,txj,t + ... + γsxi,sxj,s (2.26)

=
sØ
t=1

γtxi,txj,t

where xi = [xi,1, ..., xi,s] (and so is defined xj) is an s-dimensional vector
embedding the s properties of the node i (j) that should be considered
for evaluating its importance (for s = 1 the one-component metrics are
recovered). Using Eq. (2.26), the estimation process projects N2 data (i.e.,
the number of entries of the adjacency matrix) to s · N , which is the number
of independent variables used in the estimation.

The reason why we consider f2, Eq. (2.17), for the extension is that
the additive form in which f1, Eq. (2.13), is framed does not allow for
an increment of information, since the contribution carried by different
variables (xi,1, .., xi,s) cancels out if one refers to a single variable, ξi, which
is a linear combination of the different components. In other words, the
components beyond the first one cannot bring any additional information
into the estimation exercise in additive form. Instead, an extension of f3,
Eq. (2.20), would simply imply to add a constant value to Eq. (2.26), with
no added valued information to the estimation.

Steps on how multidimensional centrality metrics are obtained follow.
Let us assume the vector describing xt = [x1,t, ..., xN,t], which describes

the t node’s properties, to have unitary 2-norm, such thatØ
i

x2
i,t = 1.

Let there be an orthogonality condition between any two vectors xt and
xt∗ , such that Ø

i

xi,t · xi,t∗ = 0, ∀ t Ó= t∗. (2.27)
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2.1. Undirected, Unweighted Networks

The steps described for the one-component centrality can be adapted to
the multidimensional setting (see Section 2.1). We compute the multi-
dimensional metrics by considering the contribution to SE of a generic
variable xk,t∗ , i.e., of the t∗ properties of node k. As also defined for the
one-component centrality, Section 2.1, SE is partitioned into a part SE0,
which does not depend on xk,t∗ , and a part SEk,t∗ , which is a function of
xk,t∗ ,

SE = SE0,t + SEk,t∗ . (2.28)

The computation of the centrality values by minimisation of the SEk,t∗
entails computing Eq. (2.7) accounting for each dimension considered, i.e.,
t = 1, ..., s. The derivative of SE has the same form as Eq. (2.7). Using the
bound variable zm (which, in this case, is a vector), the derivative of the
function is

∂f(xi, zm)
∂zk,t∗

-----
zm=xk

= γt∗xi,t∗ .

Therefore, in this case, the minimisation of SEk,t∗ in Eq. (2.7) reads

4
Ø
i

è
Aik −

Ø
t

γtxi,txk,t
é
γt∗xi,t∗ = 0,

that is equivalent toØ
i

Aikxi,t∗ −
Ø
t

γtxk,t
Ø
i

xi,t · xi,t∗ = 0.

Due to the orthonormality condition set in Eq. (2.27), it holdsØ
t

γtxk,t
Ø
i

xi,t · xi,t∗ = γt∗xk,t∗
Ø
i

xi,t∗ · xi,t∗

= γt∗xk,t∗
Ø
i

x2
i,t∗ = γt∗xk,t∗ .

Finally, for any component t, the centrality value reads

xk,t = 1
γt

Ø
i

Aikxi,t, (2.29)

which corresponds to computing the eigenvector xt corresponding to the
eigenvalue γt = λt.

The formal structure of Â in Eq. (2.26) corresponds to the s-order
low-rank approximation of the matrix A [43]. In fact, under a least squares
constraint, and the assumption of orthogonality between the s vectors xt,
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2. A Change of Perspective in Network Centrality

one obtains that γt = λt is the t-th eigenvalue of the adjacency matrix
A and xt = [x1,t, ..., xN,t] is its corresponding eigenvector. In Eq. (2.26),
the eigenvalues γt, and hence their corresponding eigenvectors xt, can be
ordered according to their absolute value, from the greatest to the least
one, and eigenvectors of increasing order bring a monotonically decreasing
amount of information [109]. This solution corresponds to the Singular
Value Decomposition (SVD) for symmetric matrices [43], being Â(s) the
s-order low-rank approximation of the original adjacency matrix A (see
Chapter 1, Section 1.2). The Eckhart-Young-Mirsky theorem [109] proofs
that the total amount of explained variance VE of the s-order low-rank
approximation equals the sum of the squares of the s γt eigenvalues, when
the approximation is truncated at s, namely

VE(s) =
sØ
t=1

γ2
t . (2.30)

Different strategies can be pursued to choose a proper value of s (see, e.g.,
[110] for a review of the criteria). In fact, the choice of the s value entails
finding a good balance between the necessity to accurately describe the
adjacency matrix and the willingness to have a parsimonious representation
of a complex system. Different strategies can be pursued, also borrowing
from the wide literature pertaining with the similar problem of deciding
where to arrest the eigenvalue decomposition or SVD (see, e.g., [110] for
a review). For example, one may choose the s value corresponding to the
first gap in the eigenspectrum of the adjacency matrix (see, e.g., [111]).
Alternatively, one may stop the expansion in Eq. (2.26) when the explained
variance reaches a predefined amount of the total variance of A. This
would entail that the remaining amount of variance is attributed to noise.
For a given number of components s, at each component t∗ added to the
estimation, the total amount of explained variance increases by γ2

t∗ . Hence
it holds

VE(t∗) − VE(t∗ − 1) = γ2
t∗ (2.31)

The total amount of unexplained variance VU is

VU(t∗) =
Ø
i

Ø
j

1
Aij − Âij(t∗)

22
= TSS − VE(t∗) (2.32)

= TSS −
t∗Ø
t=1

γ2
t∗ ,

with TSS as in Eq. (2.9).
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2.1. Undirected, Unweighted Networks

The ordering of the eigenvalues, however, requires some additional
considerations. In fact, Eq. (2.30) ensures that the explained variance with
s components is maximised by taking the first s eigenvalues, ordered in
absolute values from the largest to the smallest. However, a consistency
issue emerges when considering networks with no self loops. For these
networks, the elements on the diagonal of A are zero. The estimated matrix
has instead its diagonal elements different from zero, namely

Âii(s) =
sØ
t=1

γtx
2
i,t. (2.33)

This entails that, in order to provide a good description of the system, the
eigenvalues should be ordered according to the total amount of explained
variance they bring off-diagonal. In fact, Eq. (2.30) can be partitioned in
two terms, the one pertaining with the diagonal D and the other with the
off-diagonal OD terms, i.e.,

VE(s) = VE(s)D + VE(s)OD. (2.34)

We are therefore interested in ordering the eigenvalues so that the value
VE(t∗)OD is maximised at each new added component t∗. This allows one
to provide a more accurate representation of the system without the need
of adding eigenvectors that erroneously approximate the diagonal values.

Consider the term VE(t∗)D. Using Eq. (2.32) and Eq. (2.33), this term
reads

VE(t∗)D = TSS −
Ø
i

1
Aii − Âii(t∗)

22
= TSS −

Ø
i

1
Âii(t∗)

22
(2.35)

= TSS −
Ø
i

1 t∗Ø
t=1

γtx
2
i,t

22

= TSS −
Ø
i

1t∗−1Ø
t=1

γtx
2
i,t + γt∗x2

i,t∗

22

= TSS −
Ø
i

1t∗−1Ø
t=1

γtx
2
i,t

22
− γ2

t∗
Ø
i

x2
i,t∗ −

Ø
i

2γt∗x2
i,t∗

1t∗−1Ø
t=1

γtx
2
i,t

2
.

Eq. (2.35) entails that at each new component t = t∗ added to the estimation,
the increment in the total amount of explained variance on the diagonal
∆VE(t∗)D = VE(t∗)D − VE(t∗ − 1)D equals

∆VE(t∗)D = −γ2
t∗
Ø
i

x4
i,t∗ − 2

Ø
i

γt∗x2
i,t∗

t∗−1Ø
t=1

γtx
2
i,t. (2.36)
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Considering that the total amount of explained variance by the t∗ component
is γ2

t∗ (see Eq. (2.31)), from Eq. (2.34) and Eq. (2.36), one obtains

∆VE(t∗)OD = γ2
t∗

1
1 +

Ø
i

x4
i,t∗

2
+ 2

Ø
i

γt∗xi,t∗
t∗−1Ø
t=1

γtx
2
i,t. (2.37)

Aiming at choosing the order in which the eigenvalues, and respective
eigenvectors, should be embedded into the estimation Eq. (2.26), one
should maximise, at each step, the function in Eq. (2.37). For t = 1 – i.e.,
for choosing the first eigenvalue and respective eigenvector – the function
to be maximised is

∆VE(t∗ = 1)OD = γ2
t

1
1 +

Ø
i

x4
i,t

2
.

When t = 2, the second eigenvalue to be embedded into the function Eq.
(2.26) is the one that maximises the function

∆VE(t∗ = 2)OD = γ2
t=1

1
1 +

Ø
i

x4
i,t=1

2
+ 2γt=1γt

Ø
i

x2
i,tx

2
i,t=1.

In this work, aiming at improving the reconstruction of the network
topology, the eigenvectors have been sorted following the just described
procedure and the dimension s has been set to 2.

Unique contribution
In the multi-component setting, the unique contribution of the k-th

node, and hence its centrality value, is found accounting for all components
xt, t = (1, ..., s) for each node k. In this case, to exclude the generic node k
from the estimation procedure corresponds to set to zero all of its properties
xk,t, i.e., xk,t = 0, for t = 1 : s. This yields

f(xi, 0) = f(0, 0) = 0.

Within this multi-component setting, Eq. (2.12) becomes

∆SE = 2
Ø
i Ó=k

1
−

sØ
t=1

γtxi,txk,t
21 sØ

t=1
γtxi,txk,t − 2Aik

2
−

1 sØ
t=1

γtx
2
k,t

21 sØ
t=1

γtx
2
k,t − 2Akk

2
= 2

Ø
i

è
−
1 sØ
t=1

γtxi,txk,t
22

+ 2Aik

sØ
t=1

γtxi,txk,t
é
+
1 sØ
t=1

γtx
2
k,t

22
,
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that is equivalent to

∆SE = −2
sØ
t=1

γ2
t x2

k,t

Ø
i

x2
i,t + 4

sØ
t=1

γxxk,t
Ø
i

Aikxi,t +
1 sØ
t=1

γtx
2
k,t

22

Using the orthonormality condition in Eq. (2.27) and Eq. (2.29), the unique
contribution of node k in the case of the multi-component estimator is given
by

UCk(s) = 1
TSS

A sØ
t=1

γtx
2
k,t

B2

+ 2
sØ
t=1

γ2
t x2

k,t

 . (2.38)

The xk,t values in Eq. (2.38) appear in squared form. As a consequence,
the sign of xk,t does not affect the UCk value.

It is clear that, by considering additional dimensions beyond the first,
the node centrality ranking may significantly change, revealing node features
which were hidden by the one-dimensional assumption. In fact, information
on the structure and clustering of the network is contained in the eigenvectors
beyond the first one (for more information see, e.g., [3, 111, 112]). In the
case s = N , through UC one recovers the same ranking given by the degree
centrality. In fact, in this case the approximated matrix equals the adjacency
matrix, i.e., Â = A and the errors are zero. In contrast, since the k-th
row and column of Â are zero when excluding the k-th node from the
estimation, R2

N\k turns out to be proportional to the squared degree of
node k, k2

k. Therefore, when considered under the perspective of the unique
contribution, the expansion with s = N copies the same information of the
node degree, in terms of the obtained nodes’ ranking. It may be useful to
note that the multi-component estimation of centrality, and the subsequent
ranking given through UC, entail a two-steps shrinkage of information.
Firstly, the estimation projects data from N2 to s · N , and secondly the
ranking projects from s · N to N . Therefore, the multi-component centrality
acts as an additional pier for the bridge from N2 to N , a pier which can be
essential to pose the centrality estimation problem on more solid grounds.
Clearly, both cases s = 1 and s = N correspond to limit situations when
the additional pier is not in between N2 and N , but it is on one of the
two sides; in fact, in these situations one recovers the eigenvector centrality
(s = 1) and the degree centrality (s = N).

2.1.4 Results on Undirected, Unweighted Networks

To recast the centrality metrics into this new framework allows us to
compare their performances, in terms of their ability to approximate the
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Figure 2.1: Estimation results for the undirected network of Florentine Intermarriage Relations,
represented in panel (a). Panels (b) - (d) refer to the topology estimated by the
degree, eigenvector, and Katz centrality, respectively. Panel (e) shows the estimated
network as given by the multi-component estimator with two components (s = 2).
In the figure, correctly estimated links are highlighted in green, while spurious links
are red colored. Nodes’ size in panels (b) - (e) is proportional to the position in
the ranking resulting from the unique contribution, ordering the list from least to
most central node. We plot in Figure 2.1 only the E larger values of Âij , thus
preserving in all the reconstructed networks the number E of edges of the real
network. Exception is made when the E-th larger value of Â is a tie, in which case
more than E edges are plotted. Rankings are available in Table 2.2.
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2.1. Undirected, Unweighted Networks

adjacency matrix. We illustrate our new perspective starting in Figure 2.1
with an analysis of the network of the Florentine Intermarriage Relations
[13], already introduced in Chapter 1. Within our framework, the centrality
measures have a counterpart in a link-estimation function, which allows one
to perform a visual and numerical comparison with the original network. In
Figure 2.1, we plot the original network (panel (a)) , and those resulting
from the use of the one-component centrality measures in (panels (b) - (d)).
The centrality-based estimations are performed using the functions reported
in Table 1.1. For the computation of the network estimation based on the
Katz centrality, function f3, we used α = 0.5/λ1 following the directions
by Benzi et al. [95], being λ1 the principal eigenvalue of A, and β = 1;
the values of γ and B to be used in Eq. (2.20) are straightforward from
Eq. (2.23). The network representation in panel (e) shows the result of the
estimation provided by the multi-component estimation with s = 2. Figure
2.1 highlights the low agreement between the one-dimensional modelled
networks and the real one. Several spurious and lacking links appear in the
reconstructed graphs. The network representation is significantly improved
when using the multi-component estimator (s = 2) in panel (e).

Besides the visual inspection, we compute the adjusted coefficient of
determination R2

a between the original and the estimated matrices, A and
Â, in order to measure the quality of the estimation. R2

a is defined as

R2
a = 1 − (1 − R2) N2

N2 − s · N
= 1 − (1 − R2) N

N − s
. (2.39)

The choice of R2
a as an error metric is consistent with the concept of unique

contribution (see Eq. (2.8)). Moreover, this error measure is applicable
to binary variables as well and the “adjusted” version of R2 allows one to
compare the results obtained from distinct estimators and on differently
sized networks. Notice that, while using R2

a instead of R2 is formally correct,
the term N/(N − s) in Eq. (2.39) rapidly converges to 1 in large networks,
making this correction negligible in some practical applications. For the
Florentine Intermarriage Relations network, the adjusted determination
coefficient for the multi-component estimator is R2

a = 0.30, while for the
other estimators is roughly R2

a = 0.07, confirming the outcomes of the visual
inspection.

The three classical centrality metrics (degree, eigenvector, Katz) produce
different rankings of the Florentine families (see Figures 1.3 and 2.1, Table
2.2). While the Medici is always the top-ranked family, other families
significantly change their position in the rankings (e.g., the ranking of the
Ridolfi family changes from 3 to 8 when different methods are considered,
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2. A Change of Perspective in Network Centrality

Table 2.2: Rankings of the Florentine Renaissance Families in the network of intermarriage
relations. Rankings are the results of the unique contribution of the centrality based
estimation degree, eigenvector, Katz and multi-component one.

Rankings of the Florentine Renaissance Families

Families Degree
centrality

Eigenvector
centrality

Katz
centrality

Multi-component
centrality (s = 2)

Acciaiuoli 13.5 12 12 12
Albizzi 6.5 9 7 8
Barbadori 10.5 10 10 10
Bischeri 6.5 6 6 5
Castellani 6.5 8 9 6
Ginori 13.5 14 14 13
Guadagni 2.5 5 3 9
Lamberteschi 13.5 13 13 14
Medici 1 1 1 1
Pazzi 13.5 15 15 15
Peruzzi 6.5 7 8 3
Ridolfi 6.5 3 4 7
Salvati 10.5 11 11 11
Strozzi 2.5 2 2 2
Tornabuoni 6.5 4 5 4

see Table 2.2). By embracing our new perspective on network centrality it
is possible to compare these rankings claiming that, despite the differences,
from a statistical point of view the three metrics bring the same information
about the topology of the network. The need to extend the centrality
concept toward multiple dimensions manifestly emerges from Figure 2.2.
The figure plots the contours of the unique contribution as a function of the
first two principle eigenvectors, i.e., associated to the two largest eigenvalues
of the adjacency matrix. The second eigenvector distinctly identifies the
group constituted by the families Strozzi-Peruzzi-Castellani-Bischeri, while
highlighting how the Medici family is left alone by these four families. In this
case the information brought by the second eigenvector is clearly relevant
in determining the ranking of the nodes. In fact, the ranking in the case
of Figure 2.2 corresponds to the distance from the axes-origin. If one had
considered only the first eigenvector, the Ridolfi family would have been
ranked in the third position. The additional information carried by the
second eigenvector, combined through the unique contribution, downgrades
the Ridolfi family to the seventh position, instead.
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Figure 2.2: Contour plot of the unique contribution resulting from the application of Eq. (2.38)
with s = 2. The contours range from lower values of unique contribution (in yel-
low) to larger values (in blue). The xi,1 values (corresponding to the components
of the first eigenvector) are on the x-axis, while the values of xi,2 (related to the
components of the eigenvector corresponding to the second eigenvalue, ordered fol-
lowing the method described in Section 2.1.3, are on the y-axis. The open circles
correspond to the xi,1 and xi,2 values for the Florentine Intermarriage Relations
network. Nodes with larger unique contribution are found further away from the
origin.

Another example we here provide to support the need for multi-dimensional
centrality metrics concerns with the Zachary’s Karate Club network [101].
The network has 34 nodes representing the club members that, at the time,
had interactions outside the context of the club (78 edges), as shown in
Figure 2.3, panel (a). The network is a notorious case study in community
detection literature [9]. In fact, the fission the club faced after a discussion
between the instructor and the president was very well predicted by the
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2. A Change of Perspective in Network Centrality

mathematical model in Zachary’s work [101]. In Figure 2.3, the nodes 1 and
34 represent the instructor and the president of the club, respectively. We
apply the multi-component centrality metric to the network, evaluating the
unique contribution of the nodes as in Eq. (2.38), with s = 2. In Figure 2.3,
the panel (b) plots the contours of the unique contribution as a function
of the first two eigenvectors of the adjacency matrix. The figure clearly
shows how the second eigenvector is able to identify the fission into the two
groups, assigning positive or negative values to the nodes according to the
group they belong to. This information is clearly relevant in determining
the ranking of the nodes. In fact, if one compares the ranking obtained
from the eigenvector centrality only (namely, for s = 1), the positions of
the nodes change among the charts. While the instructor – node 1 – and
the president – node 34 – are stably ranked on the very first two positions,
other nodes’ positions significantly change. For instance, if only the first
eigenvector is considered, the node 9 is positioned at the 6-th place in the
ranking, while the information carried by the second eigenvector downgrades
the node to the 9-th position.

The outcomes of the analysis of the network of the Florentine Inter-
marriage Relations and the Karate Club one are fully confirmed by a
more extended analysis on 106 undirected networks, all freely available
at https://sparse.tamu.edu/ [113]. Our analysis includes all of the bi-
nary symmetric matrices available in the database sized N ≤ 1000. Other
networks included in the analysis are (as named as in the database):

• HB/dwt_1005 - size N = 1005;

• HB/dwt_1007 - size N = 1007;

• HB/jagmesh2 - size N = 1009;

• Arenas/email - size N = 1133;

• HB/bcspwr06 - size N = 1454;

• Rajat/rajat02 - size N = 1960;

• Barabasi/NotreDame_yeast - size N = 2114;

• Gleich/minnesota - size N = 2642;

• HB/sstmodel - size N = 3345;

• AG-Monien/airfoil1 - size N = 4253;
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Figure 2.3: (a) Friendship network of the Zachary’s Karate Club members. The two groups
in which the club divided after the fission are highlighted in blue and red. (b)
Contour plot of the unique contribution resulting from the application of Eq. (2.38)
with s = 2. Nodes with larger unique contribution are found further away from the
origin. The contours range from lower values of unique contribution (in yellow) to
larger values (in blue). The xi,1 values (corresponding to the components of the first
eigenvector) are on the x-axis, while the values of xi,2 (related to the components
of the eigenvector corresponding to the second eigenvalue) are on the y-axis. The
open circles correspond to the xi,1 and xi,2 values for the Zachary’s Karate Club
network.

• Newman/power - size N = 4941.

The values of R2
a obtained from the application of the functions in Table

2.1 are reported in Figure 2.4. Two features clearly emerge. Firstly, the
degree, eigenvector and Katz centrality systematically perform poorly when
considered under the perspective of estimating the networks topology. This
is essentially due to the compression of information from N2 to N implied
by the matrix-estimation exercise, undermining the performance of the
estimators. In general, R2

a decreases proportionally to the square root of N ,
following the behaviour of the standard deviation of the centrality-based
estimators. Hence, the largest the size, the more information is lost during
the estimation. The plot shows systematically higher values of R2

a resulting
from the application of the two-components estimator Eq. (2.26). As
expected, considering more node’s properties dramatically improves the
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estimation quality. Qualitatively similar results for directed networks are
reported in the next section.

A second key feature emerging from Figure 2.4 is that the values of R2
a

obtained from different one-component estimators are only slightly different
from one another, and there is no evidence of one centrality measure
outperforming the others. It follows that, despite the different nature of
the metrics (i.e., the degree is a local measure of nodes’ importance, while
the eigenvector and the Katz centrality are global measures [46]), all the
metrics provide very similar and limited information about the topology of
the networks. In this case, using different centrality metrics would not add
new and divers information, resulting with redundancy of the metrics and
therefore providing a further proof of their correlation [96].

(a) (b)

i/N

Figure 2.4: (a) Values of the coefficient of determination R2
a, in semi-log scale obtained through

the centrality-based estimators degree, eigenvector, Katz and multi-component
(MC). Each dot refer to a network in the Sparse Matrix database [113]. Power-
law curves are fitted to the data to facilitate visual comparison. (b) Cumulative
frequency curves for the R2

a obtained by the four estimators.
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2.2 Directed, Unweighted Networks

2.2.1 General Considerations

In directed, unweighted networks, the edges are directed and the elements
Aij of the adjacency matrix A are 1 if the edge points from i to j, and
zero otherwise. The adjacency matrix is generally asymmetric [9] (notice
that we here consider i pointing to j, i.e., the outgoing edges of the node
i are described onto the row i of the matrix A). In this kind of networks,
nodes can be characterised by two properties, the one concerning with the
outgoing centrality of the node, xouti , and the other concerning with the
incoming centrality, xini . Therefore, the estimator Âij should depend on
the outgoing centrality of node i and on the incoming centrality of node j,
namely

Âij = f(xouti , xinj ). (2.40)

In the case of directed networks, the arguments of the function are exchange-
able only on the diagonal, namely

f(xoutk , xink ) = f(xink , xoutk ).

The steps described for undirected networks to obtain the centrality
values and to compute the unique contribution, Section 2.1, can be easily
adapted to directed networks. Similarly to what described for undirected
networks, the value of the sum of squared errors SE (Eq. (3.21)) can be
partitioned into two components, a first part which is independent of x

out/in
k ,

SE0, and a second part depending on x
out/in
k , SEk, i.e.,

SE = SE0 + SEk.

When deriving SE with respect to any bound variable zm = x
out/in
k , the

contribution of the term SE0 is zero and the derivative of SE equals the
derivative of SEk. The term SEk is

SEk =
Ø
i Ó=k

1
Aik−f(xouti , xink )

22
+
Ø
j Ó=k

1
Akj−f(xoutk , xinj )

22
+
1
Akk−f(xoutk , xink )

22
.

(2.41)
Notice that this term only depends on the k-th row and column of the two
matrices A and Â, to which the information of the outgoing and incoming
edges of node k is associated. Separating the row and column contribution,
using the bound variable zm, the derivatives of SEk with respect to the
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variables xoutk and xink are, respectively,

∂SEk

∂xoutk

= 2
Ø
j Ó=k

è
Akj − f(xoutk , xinj )

é
·

∂f(zm, xinj )
∂zm

-----
zm=xout

k

+ (2.42)

2
è
Akk − f(xoutk , xink )

é
· ∂f(zm, xink )

∂zm

-----
zm=xout

k

= 0,

and

∂SEk

∂xink
= 2

Ø
i Ó=k

è
Aik − f(xouti , xink )

é
· ∂f(xouti , zm)

∂zm

-----
zm=xin

k

+ (2.43)

2
è
Akk − f(xoutk , zm)

é
· ∂f(xouti , zm)

∂zm

-----
zm=xin

k

= 0.

In Eq. (2.42) and Eq. (2.43), both the terms i = k and j = k can be
included into the sums. Hence holds

∂SEk

∂xoutk

= 2
Ø
j

è
Akj − f(xoutk , xinj )

é
·

∂f(zm, xinj )
∂zm

-----
zm=xout

k

= 0, (2.44)

and

∂SEk

∂xink
= 2

Ø
i

è
Aik − f(xouti , xink )

é
· ∂f(xouti , zm)

∂zm

-----
zm=xin

k

= 0. (2.45)

These formulas are used to obtain, from different estimator functions, differ-
ent centrality metrics.

2.2.2 The Unique Contribution

Following the same reasoning shown for undirected networks, the unique
contribution is found using Eq. (2.8), hence computing ∆SE = SEN\k−SEN .
In directed networks, nodes are characterised by two properties. Within
this framework, the unique contribution can be computed with respect to
one of the properties, or at the need, with respect to both ones. In the first
case, one finds the out-centrality (or the in-centrality) of the node. In the
second case the overall centrality of the node is obtained.
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If both properties are considered in the computation, we can define ∆SE
as

∆SEtot =
Ø
i Ó=k

è1
Aik − f(xouti , 0)

22
−
1
Aik − f(xouti , xink )

22é
+ (2.46)

Ø
j Ó=k

è1
Akj − f(0, xinj )

22
−
1
Aik − f(xoutk , xinj )

22é
+

1
Akk − f(0, 0)

22
−
1
Akk − f(xoutk , xink )

22
,

in which we consider the exclusion of the properties xoutk and xink to be
equivalent to setting xoutk = xink = 0. Eq. (2.46) can be expressed as

∆SEtot =
Ø
i Ó=k

è
f(xouti , 0)2 − f(xouti , xink )2 − 2f(xouti , 0)Aik + 2f(xouti , xink )Aik

é
+

(2.47)Ø
j Ó=k

è
f(0, xinj )2 − f(xoutk , xinj )2 − 2f(0, xinj )Akj + 2f(xoutk , xinj )Akj

é
+

f(0, 0)2 − f(xoutk , xink )2 − 2f(0, 0)Akk + 2f(xoutk , xink )Akk,

or

∆SEtot =
Ø
i Ó=k

1
f(xouti , 0) − f(xouti , xink )

21
f(xouti , 0) + f(xouti , xink ) − 2Aik

2
+

(2.48)Ø
j Ó=k

1
f(0, xinj ) − f(xoutk , xinj )

21
f(0, xinj ) + f(xoutk , xinj ) − 2Akj

2
+

1
f(0, 0) − f(xoutk , xink )

2
·
1
f(0, 0) − f(xoutk , xink ) − 2Akk

2
The unique contribution is then found deploying the expression in Eq. (2.47)
or Eq. (2.48), and applying the definition in Eq. (2.8).

Instead, to compute the unique contribution with respect to one of the
two properties entails considering, in Eq. (2.47) or Eq. (2.48), only the
terms on the dimension related to the specific property at hand; hence, the
k-th row (sum over j) for the out centrality of the node k and the k-th
column (sum over i) for its in centrality. In formulas

∆SEout =
Ø
j

è
f(0, xinj )2 − f(xoutk , xinj )2 − 2f(0, xinj )Akj + 2f(xoutk , xinj )Akj

é
(2.49)

=
Ø
j

1
f(0, xinj ) − f(xoutk , xinj )

21
f(0, xinj ) + f(xoutk , xinj ) − 2Akj

2
,
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and

∆SEin =
Ø
i

è
f(xouti , 0)2 − f(xouti , xink )2 − 2f(xouti , 0)Aik + 2f(xouti , xink )Aik

é
(2.50)

=
Ø
i

1
f(xouti , 0) − f(xouti , xink )

21
f(xouti , 0) + f(xouti , xink ) − 2Aik

2
.

In the following, we consider networks with no self-loops, hence Akk = 0
in all formulas.

2.2.3 Examples of Estimator Functions

Again, different definitions of the function f in Eq. (2.40) allow one
to obtain different centrality metrics for directed networks. Examples of
the out and in centrality of the nodes that we are able to recover in this
statistical framework are the degree and the hub-authority centrality [114].
Details follow (see Table 2.3 for a resume of the mathematical results).

Degree Centrality

Consider the function f1 to be defined as

Âij = f1(xouti , xink ) = a
è
xouti + xink − 1

N

é
. (2.51)

The derivatives of the function f1 with respect to both properties xoutk and
xink are

∂f1
∂xoutk

= ∂f1
∂xink

= a.

Applying Eq. (2.44) and Eq. (2.45) one obtains

2a
Ø
i

è
Aik − a

1
xouti + xink − 1

N

2é
= 0,

and
2a
Ø
j

è
Akj − a

1
xoutk + xinj − 1

N

2é
= 0,

in which qi Aik = kink is the in-degree of the node k and qj Akj = koutk is
its out-degree. Solving both equations for the properties xoutk and xink yields

xink = kink
aN
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and
xoutk = koutk

aN
.

Assuming the vectors of centralities xout and xin to have unitary 1-norm,
i.e., qi x

out
i = q

i x
in
i = 1, one obtains a = Ktot/N as in Eq. (2.14), finally

yielding the values

xink = kink
Ktot

, (2.52a)

xoutk = koutk

Ktot
. (2.52b)

Eq. (2.52b) – Eq. (2.52a) correspond to scale the out-degree and in-
degree by the total degree of the network.

Unique contribution
Let us start from the computation of the total unique contribution i.e.,

the UC of the node k when its properties out and in are considered together.
From Eq. (2.51), to exclude the properties xoutk and xink from the estimation
procedure provides the following function values

f1(xouti , 0) = axouti − a

N
;

f1(0, xinj ) = axinj − a

N
;

f1(0, 0) = − a

N
.

Using Eq. (2.48), the variation induced in the sum of squared errors SEtot

is

∆SEtot =
Ø
i Ó=k

(−axink )
1
2axouti + axink − 2 a

N
− 2Aik

2
+

Ø
j Ó=k

(−axoutk )
1
2axinj + axoutk − 2 a

N
− 2Akj

2
+ (−axoutk − axink )

1
axoutk + axink − 2 a

N
− 2Akk

2
= − axink

Ø
i

1
−2axouti − axink + 2 a

N
+ 2Aik

2
−

axoutk

Ø
j

1
−2axinj − axoutk + 2 a

N
+ 2Akj

2
+ 2a2xoutk xink ,
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in which the assumption Akk = 0 is used. Substituting the values of xoutk

and xink according to Eqs. (2.52), and considering a = Ktot/N , some algebra
gives

∆SEtot = (kink )2 + (koutk )2

N
+ 2kink koutk

N2 ,

from which the total unique contribution is obtained

UCtot
k = 1

TSS

è(kink )2 + (koutk )2

N
+ 2kink koutk

N2

é
. (2.53)

The unique contribution for separately considering the property out
or in is obtained by applying the definitions in Eq. (2.49) - Eq. (2.50),
respectively. In this case it holds

UCout
k = (koutk )2

NTSS
, (2.54)

UCin
k = (kink )2

NTSS
. (2.55)

Both the formulations in Eq. (2.54) and Eq. (2.55) are monotonic increasing
function of xoutk and xink , respectively. Hence, ranking for increasing UCout

k

and UCin
k values provide the same ranking as the classical in and out degree

centrality.

Hub-Authority Centrality

Consider the estimator for directed network f2 to be defined as follows

Âik = f2(xouti , xink ) = γxouti xink . (2.56)

Clearly,
∂f2

∂xoutk

= γxoutj ,
∂f2
∂xink

= γxini .

By applying the minimisation procedure defined by Eq. (2.44) and Eq.
(2.45), one obtains

∂SE
∂xout

k
= 2qj(γAkjx

in
j − γ2xoutk (xinj )2) = 0,

∂SE
∂xin

k

= 2qi(γAikx
out
i − γ2(xouti )2xink ) = 0.
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that, solved with respect to the properties xoutk and xink , within the assump-
tion of unitary 2-norm of the vectors (i.e., qi(xouti )2 = 1 and qj(xinj )2 = 1)
yields xoutk = 1

γ

q
j Akjx

in
j ,

xink = 1
γ

q
i Aikx

out
i .

(2.57)

In matrix form, γxout = Axin,

γxin = ATxout.

Some algebra provides

γ2xout = AATxout,

γ2xin = ATAxin.

Introducing the matrices C = ATA and D = AAT, one has

γ2xout = Dxout, (2.58a)

γ2xin = Cxin. (2.58b)

Eq. (2.58) states that xout and xin are the dominant eigenvectors of the
matrices D and C, respectively, associated to the principal eigenvalue of
the two matrices, such that γ2 = λ1(C) = λ1(D) = σ2

1(A) [43, 115], being
σ1 the principal singular value of the matrix A (see Chapter 1, Section 1.2).
The formulation in Eq. (2.58) matches the HITS algorithm [114], used
to identify hubs and authorities in networks.

Unique contribution
First, consider the unique contribution to be computed with respect to

both the properties. Using Eq. (2.56), the function f2 takes the zero values
when one or both properties of xk are set to zero; namely,

f2(xouti , 0) = f2(0, xinj ) = f2(0, 0) = 0.

It follows, from Eq. (2.47) that the variation in SEtot induced by excluding
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both properties xoutk and xink is

∆SEtot =
Ø
i Ó=k

è
−(γxouti xink )2 + 2γxouti xink Aik

é
+

Ø
j Ó=k

è
−(γxoutk xinj )2 + 2γxoutk xinj Akj

é
+

è
−(γxoutk xink )2 + 2γxoutk xink Akk

é
=
Ø
i

è
−(γxouti xink )2 + 2γxouti xink Aik

é
+

Ø
j

è
−(γxoutk xinj )2 + 2γxoutk xinj Akj

é
−
è
−(γxoutk xink )2

é
,

in which the assumption Akk = 0 is used. Some algebra provides

∆SEtot = − γ(xink )2Ø
i

(xouti )2 + 2γxink
Ø
i

xouti Aik − γ(xoutk )2Ø
j

(xinj )2+

(2.59)
2γxoutk

Ø
j

Akjx
in
j + (γxoutk xink )2.

Since the 2-norm of the vectors xout and xin is unitary and using Eq. (2.57),
one has

∆SEtot = γ2(xoutk )2 + γ2(xink )2 + (γxoutk xink )2.

The total unique contribution of the node k applying the definition Eq.
(2.8) is

UCtot
k = γ2(xoutk )2 + γ2(xink )2 + (γxoutk xink )2

TSS
. (2.60)

Instead, to define the unique contribution accounting separately for the
properties out or in the partial variations in SE should be computed. Using
Eq. (2.49), for the out-property it holds

∆SEout =
Ø
j

è
−(γxoutk xinj )2 + 2γxoutk xinj Akj

é
,

while, for the in-property, using Eq. (2.50), it holds

∆SEin =
Ø
i

è
−(γxouti xink )2 + 2γxouti xink Aik

é
.

47



2.2. Directed, Unweighted Networks

Going through the same algebra as done for Eq. (2.59) and applying the
definition of unique contribution, one obtains

UCout
k = γ2(xoutk )2

TSS
. (2.61)

and
UCin

k = γ2(xink )2

TSS
. (2.62)

Both the formulations in Eq. (2.61) and Eq. (2.62) are monotonic increasing
function of xoutk and xink , respectively. Hence, ranking for increasing UCout

k

and UCin
k values provide the same ranking as the classical hub-authority

algorithm.

Multicomponent Estimator and Centrality for Directed, Unweighted
Networks

In the case of directed networks, the multi-component estimator is a
function of the s-dimensional vectors xouti and xinj considered for evaluating
node’s importance, namely

Âij = f(xouti , xinj ),

where xouti = [xouti,1 , ..., xouti,s ] and xinj = [xinj,1, ..., xini,s]. Within this framework,
the multidimensional estimator is

Âij(s) = γ1xouti,1 xinj,1 + γ2xouti,2 xinj,2 + ... + γsx
out
i,s xinj,s (2.63)

=
sØ
t=1

γsx
out
i,t xinj,t.

We assume the 2-norm of each vector xoutt = [xout1,t , ..., xoutN,t] and xini,t =
[xin1,t, ..., xinN,t] is unitary i.e., qi(xouti,t )2 = q

i(xini,t)2 = 1. Moreover, we set
an orthogonality condition between any two vectors xout/int and xout/int∗ , i.e.Ø

i

xouti,t · xouti,t∗ = 0, ∀ t Ó= t∗, (2.64)

Ø
i

xini,t · xini,t∗ = 0, ∀ t Ó= t∗. (2.65)

Similarly to Section 2.1, in this multi-component setting the function
SE of the squared errors is expressed as Eq. (2.28). In order to compute the
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2.2. Directed, Unweighted Networks

centrality values, it is necessary to derive the function SEk,t accounting for
the s dimensions embedded in the estimators. We use the bound variable
zm to define the derivatives of the multi-component estimator Eq. (2.63)
with respect to the variables xoutk,t∗ and xink,t∗ at any order t∗; namely,

∂f(xouti , zm)
∂zk,t∗

-----
zm=xin

k

= γt∗xouti,t∗ ,

and
∂f(zm, xinj )

∂zink,t∗

-----
zm=xout

k

= γt∗xinj,t∗ ,

that, introduced in Eq. (2.44) and Eq. (2.45), provide the following
minimisation conditions

2
Ø
i

è
Aik −

Ø
t

γtx
out
i,t xink,t

é
γt∗xouti,t∗ =Ø

i

Aikx
out
i,t∗ −

Ø
t

γtx
in
k,t

Ø
i

xouti,t∗xouti,t = 0

and

2
Ø
j

è
Akj −

Ø
t

γtx
out
k,t xinj,t

é
γt∗xinj,t∗ =

Ø
j

Akjx
in
j,t∗ −

Ø
t

γtx
out
k,t

Ø
j

xinj,t∗xinj,t = 0

Using the conditions of othonormality, Eq. (2.64) - Eq. (2.65), some algebra
provides xoutk,t = 1

γt

q
j Akjx

in
j,t,

xink,t = 1
γt

q
i Aikx

out
i,t .

(2.66)

Eq. (2.66) states that at any order t, the vectors xoutt = [xout1,t , ..., xoutN,t] and
xint = [xin1,t, ..., xinN,t] are the left and right singular vectors associated to the
singular value γt = σt, respectively (see Chapter 1, Section 1.2). Therefore,
the estimation provided in Eq. (2.63) is the s-order low-rank approximation
of the original adjacency matrix Â. In fact, Eq. (2.63) coincides with the
Singular Value Decomposition (SVD) [43, 116], being γt the singular values
and xoutt and xint the related singular vectors, as defined by Eqs. (2.66).

Unique contribution
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2. A Change of Perspective in Network Centrality

In the multi-component setting for directed networks, the unique contri-
bution is found accounting for the s dimensions embedded in the estimator
function f (see Eq. (2.63)). In this case, when excluding the generic node
k from the estimation, all the properties xoutk,t and xink,t, with t = (1, ..., s),
are set to zero. This yields

f(xouti , 0) = f(0, xinj ) = f(0, 0) = 0.

Within this multi-component setting, the unique contribution can be com-
puted with respect to both the properties xoutk,t and xink,t, or with respect to
one of the two.

If both the properties are considered, Eq. (2.48) holds, providing the
value ∆SEtot, namely

∆SEtot =
Ø
i Ó=k

1
−

sØ
t=1

γtx
out
i,t xink,t

21 sØ
t=1

γtx
out
i,t xink,t − 2Aik

2
+

Ø
j Ó=k

1
−

sØ
t=1

γtx
out
k,t xinj,t

21 sØ
t=1

γtx
out
k,t xinj,t − 2Akj

2
+

1
−

sØ
t=1

γtx
out
k,t xink,t

21 sØ
t=1

γtx
out
k,t xink,t − 2Akk

2

that is equivalent to

∆SEtot =
Ø
i

è
−
1 sØ
t=1

γtx
out
i,t xink,t

22
+ 2Aik

sØ
t=1

γtx
out
i,t xink,t

é
+

Ø
j

è
−
1 sØ
t=1

γtx
out
k,t xinj,t

22
− 2Akj

sØ
t=1

γtx
out
k,t xinj,t

é
+
1 sØ
t=1

γtx
out
k,t xink,t

22
.

Some algebra provides

∆SEtot = −
sØ
t=1

γt(xink,t)2Ø
i

(xouti,t )2 + 2
sØ
t=1

γtx
in
k,t

Ø
i

Aikx
out
i,t − (2.67)

sØ
t=1

γt(xoutk,t )2Ø
j

(xinj,t)2 + 2
sØ
t=1

γtx
out
k,t

Ø
j

Akjx
in
j,t

+
1 sØ
t=1

γtx
out
k,t xink,t

22
.
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2.2. Directed, Unweighted Networks

Using the orthonormality conditions, Eq. (2.64) – Eq. (2.65), and the
formulation in Eq. (2.66), the unique contribution in the case of the multi-
component estimator in directed networks is obtained

UC(s)totk = 1
TSS

sØ
t=1

γ2
t

1
(xink,t)2 + (xoutk,t )2

2
+
1 sØ
t=1

γtx
out
k,t xink,t

22
. (2.68)

The unique contribution when accounting separately for the out and in
properties, applying Eq. (2.49) and Eq. (2.50), requires defining

∆SEout =
Ø
j

è
−
1 sØ
t=1

γtx
out
k,t xinj,t

22
− 2Akj

sØ
t=1

γtx
out
k,t xinj,t

é

and
∆SEin =

Ø
i

è
−
1 sØ
t=1

γtx
out
i,t xink,t

22
+ 2Aik

sØ
t=1

γtx
out
i,t xink,t

é
.

Going through some algebra and applying the definition in Eq. (2.8), one
obtains

UC(s)outk = 1
TSS

sØ
t=1

γ2
t (xoutk,t )2, (2.69)

and
UC(s)ink = 1

TSS

sØ
t=1

γ2
t (xink,t)2. (2.70)

2.2.4 Results on Directed, Unweighted Networks

We tested our framework on 36 networks freely available on the Suite
Sparse Matrix Collection [113]. Our analysis includes all of the binary
asymmetric matrices collected in the database, sized N ≤ 2000. Other
networks included in the analysis are (as named as in the database):

• Pajek/Kohonen - size N = 4470;

• Rajat/rajat01 - size N = 6833;

• SNAP/p2p-Gnutella09 - size N = 8114;

• Gleich/wb-cs-stanford - size N = 9914;

• SNAP/p2p-Gnutella04 - size N = 10879.
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2. A Change of Perspective in Network Centrality

i/N

(a) (b)

Figure 2.5: (a) Values of the coefficient of determination R2
a in semi-log scale obtained through

the centrality-based estimators degree, hub-authority and multi-component (MC).
Each dot refer to a directed network in the Sparse Matrix database [113]. Power-
law curves are fitted to the data to facilitate visual comparison. (b) Cumulative
frequency curves for the R2

a obtained by the three estimators.

The results obtained from our tests are shown in Figure 2.5.
The values in Figure 2.5 of the adjusted coefficient of determination,

R2
a, are higher than those shown in Figure 2.4, which were obtained from

the application of our framework to undirected networks. This is mainly
due to the fact that we are using two properties to characterise each node.
As a consequence, the estimators applied in case of directed networks (see
Table 2.3) project the information of the adjacency matrix from N2 to
2N , reducing the information gap. Also for directed networks, the one-
component estimators perform poorly with respect to the two-component
estimator. The hub-authority algorithm, however, has better performances
than the degree, in particular when considering larger networks.
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2.3. Weighted Networks

2.3 Weighted Networks

To extend our approach to weighted networks, one has to replace in
all formulas the adjacency matrix A with the matrix of the weights W,
whose elements are defined as Wij > 0 if there is a flux connecting i to j,
zero otherwise. All the centrality measures in their weighted version are
obtained as the solution of the same matrix estimation exercises we have
detailed for undirected and directed networks.

2.4 Bipartite Networks

As described in Section 1.1, bipartite networks constitutes of two sets
of nodes - U and V - with E edges connecting nodes between the two
ensembles. These networks are described by the incidence matrix [9] B
whose elements Bij define the relationship between the nodes i ∈ U and the
nodes j ∈ V. In this case, a proper estimator B̂ij would be a function of a
property xi of the nodes in the ensamble U and property yj of the nodes in
the ensemble V i.e., B̂ij = f(xi, yj). Therefore, the asymmetry of this kind
of systems is similar to the one concerning with directed metrics: it is hence
sufficient to substitute the adjacency matrix A with the incidence matrix
B and the results presented in Table 2.3 can be straightforward extended
to bipartite networks. Nevertheless, a special focus on bipartite networks
and their centrality metrics follows in Chapter 3, for the economic bipartite
network of trade, and Chapter 4 for the network of sustainable development.

2.5 Concluding Remarks

Aiming at addressing the debate on the use of centrality metrics, we
introduced a different point of view about centrality in which the evaluation
of the importance of nodes is recast as a statistical exercise. Here, centrality
becomes the node-property through which one estimates the adjacency
matrix of the network, breaking new ground in the way we understand
node centrality. While the extensive literature on network reconstruction
(see, e.g., [117] and applications [118]) consider the degree to be suitably
used for estimating the network topology – also in combination with other
statistically-sound methodology as the maximum likelihood or maximum-
entropy inference – our approach provides a framework in which many of
the most commonly used centrality metrics can be deduced within this
theoretical framework, thus paving the way for an unprecedented chance to
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2. A Change of Perspective in Network Centrality

quantitatively compare the performances of different centrality measures. In
particular, we have shown the innovative power of our statistical perspective
on centrality metrics by focusing on the application on monopartite networks
and paying attention to the degree and eigenvector-based centrality measures.
However, we stress that our approach is very general and should not be
restricted to the examples reported above. In fact, this approach can be
extended to other centrality measures, by changing the estimator function
in Eq. (2.1), and/or the error structure – additive or multiplicative – and/or
the matrix whereon the estimation procedure is carried out (either the
adjacency matrix or a transformation of this one). One example of this
extension is the Freeman closeness [36], which is recovered in this framework
by simply substituting the adjacency matrix with the geodesic distance
matrix D [119] – using the function f(xi, xj) = a[xi + xj − 1/N ], since the
measure of node’s closeness corresponds to the degree of the node computed
on the matrix D [119].

The application of the estimators could also explain the ability of the
various algorithms to account for the node-node interactions and so, in the
reconstruction of the network topology. Tests on a large number of networks
show that there are no outperforming one-dimensional, centrality-based
estimators and that all the metrics provide poor information regarding
networks’ topology. Our results, within the context of the still ongoing
debate on the centrality metrics and the associated ranking (in several fields,
see, e.g., [45, 46, 92–94]), provide further proofs that centrality metrics
are highly correlated [95–100] and that they provide similar information
about the importance of the nodes. Within this new framework, the natural
multi-component extension of node centrality emerges as a possible solution
to improve the quality of the estimations and, subsequently, of node ranking.

This work therefore provides a possible quantitative answer to the long-
standing question “what does it mean to be central in a network ?”

As will be better detailed and explained in Chapters 3 and 4, the applica-
tion of this statistical framework and of its multi-component extension also
helps in shed new light on the mathematical nature of the algorithms used
to evaluate node centrality and so, on the nature of the nodes interactions
of a given system especially in bipartite systems.
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3
Reconciling Contrasting Views on Eco-
nomic Complexity

The work described in this chapter has been partially derived from Sciarra
et al., Nature Communications, 2020 [120].

Within economics, the Gross Domestic Product stands as the preferred
indicator for the assessment of the status of a country’s economy. However,
Economic Complexity (EC) methodologies arising within network science
have been stirring the pot in the last decade. In fact, economic complexity
metrics, framed within a centrality exercise, aim at defining the socio-
economic status of countries grounded on the data on their export baskets,
structured as a bipartite network [4, 48]. The methodologies improve the
basic information of the degree of countries and products by exploiting the
information related to the sophistication of the exports and the capabilities
required to produce and export a given good: countries with low productive
knowledge (see Chapter 1, Section 1.3), only produce and export fewer and
less sophisticated products, resulting in lower stages of competition [23,
48]; while more competitive countries exploit their know-how and resources
to diversify their export baskets [23, 48]. By reversing this reasoning, it
is thus expected that the diversification and composition of the export
basket can be used to measure the countries’ and products’ economic
complexity, thus posing the bases for a data-based (bottom-up) ranking of
countries and products. This rationale lies at the base of the commonly
used methodologies to measure the economic complexity of countries and
products, namely the Method of Reflections (MR) [22] and the Fitness and
Complexity algorithm (FC) [23]. In spite of their common root, these two
centrality metrics radically differ in the conceptual approach to the problem
and, as a consequence, in the obtained outcomes, posing an issue of practical
use.

Here, we show that the MR and FC approaches can be reconciled by
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3.1. The MR and FC Metrics of Economic Complexity

recasting them into a mathematically-sound, multidimensional framework,
which allows us to recover and combine the strengths of both methods,
still maintaining the relevant feature of providing countries’ and products’
rankings. This is obtained thanks to the results on centrality metrics we have
described in Chapter 2, in particular the one regarding multi-dimensional
centrality metrics. In this chapter, after a brief description of the MR and
FC methods, we first introduce a general framework in which recast the
economic complexity metrics provided by the two algorithms. Successively,
we provide a unique measure of complexity, called the GENeralized Economic
comPlexitY index, which allows us to recover and combine the strengths of
both MR and FC methods, still maintaining the relevant feature of providing
countries’ and products’ rankings. Finally, we discuss on how the obtained
results shed new light on the potential of economic complexity to trace
and forecast countries’ innovation potential and to interpret the temporal
dynamics of economic growth, possibly paving the way to a micro-foundation
of the field.

3.1 The MR and FC Metrics of Economic Com-
plexity

Economic complexity approaches are grounded on the trade data col-
lected into a bipartite network, defining exporters and products, and detail-
ing whether and how much (in monetary value) a country exports a given
product. The bipartite network is interpreted as the compact representation
of the tripartite network constituted by countries-capabilities-products [22,
23], according to which countries are only able to export products for which
they own the required capabilities (Figure 3.1). These capabilities are
intended as capabilities to innovate and they are intrinsic characteristics of
countries and products; thus, they can only be unveiled by the analysis of
the exports. Most applications [22, 23] take into account only the relevant
exporters in the network, where the relevance is computed according to the
Relative Comparative Advantage (RCA) [121]. The Relative Comparative
Advantage procedure is used to construct the incidence binary matrix M,
setting the threshold of RCA to 1 in line with the economic complexity
framework [22]. RCA weights how much a product p counts within the
export basket of the country c. This fraction is weighted by the ratio of the
total monetary flux globally generated by the same product p, and the total
monetary flux of all products traded worldwide during the reference year.
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3. Reconciling Contrasting Views on Economic Complexity

Figure 3.1: Qualitative representation of the tripartite and bipartite network of trade accord-
ing to EC. The bipartite network connecting countries to products is the compact
representation of the tripartite network connecting countries to their available ca-
pabilities, from which connections to products are determined. According to EC
theory, countries are only able to export the goods for which they have the required
capabilities to produce. Thickness of the links exemplifies the quantification of capa-
bilities, in the tripartite network, and the observable monetary value in the bipartite
network.

In formulas,

RCAcp =
Dcpq
p
Dcpq

c
Dcpq

cp
Dcp

, (3.1)

where Dcp is the return in dollars of a country c through the export of
product p. The input matrix M is given by Mcp = 1 if RCAcp ≥ 1, implying
that the country c is a relevant exporter of the product p, and 0 otherwise
[121] 1.

The MR approach by Hidalgo & Hausmann [22] measures a country’s
economic complexity as the average of the complexities of the products in
its export basket. In a specular manner – from which the name “Reflections”
–, a product’s complexity is obtained as the average of the complexities of
the countries exporting it. The equations defining the two averages are
coupled to obtain the Economic Complexity Index, ECI, and the Product
Complexity Index, PCI. Namely,

1In Annex A, we provide insights about the implications of becoming a relevant exporter
on countries’ water resources. This analysis bridges two facets of the international trade of
food commodities, the economic and environmental ones, both framed within the CWASI
project, ERC-2014-CoG, project 647473, which has supported this Thesis work.
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3.1. The MR and FC Metrics of Economic Complexity

ECIc = 1
kc

q
p McpPCIp,

PCIp = 1
kp

q
c McpECIc.

(3.2)

In Eqs. (3.2), kc = q
p Mcp is the degree of country c (i.e., the number

of products the country exports with RCA, a.k.a. diversity) and kp =q
c Mcp is the degree of product p (i.e., the number of exporters of a given

product, a.k.a. ubiquity). The rationale in Eqs. (3.2) is the result of a
linear algebra exercise [48, 122, 123]. However, as an effect of taking the
averages, the obtained measures turn out to lose information about countries’
diversification and products’ ubiquity [124]. As we have already discussed,
even if the degree is insufficient for a complete assessment of the complexity,
it still remains a necessary and relevant information to understand the
trading competitiveness of countries [48, 59]. Therefore, correlation with kc
is desirable in a limited way.

In contrast to MR, Tacchella et al. [23] counter on the assumption
of a linear relation between the products’ and countries’ complexities. In
their view, the fact that a less competitive country exports a given product
should unavoidably downgrade the product’s complexity, an effect that
the Authors argue could only be obtained through the use of a non-linear
relation. As a consequence, these Authors introduce two metrics, the Fitness
of countries Fc and the Quality of products Qp, where products’ Quality
non-linearly depends on the Fitness of the exporting countries (see Eqs.
(3.3)); in contrast, the Fitness is obtained as the sum of the Qualities of
the exported products. In this approach, contrarily to MR, the countries’
Fitness preserves the information on the diversification of the export baskets
[47, 59]. The measures are computed by iteration as defined in the following
system

æFc(n+1) = q
p McpQ

(n)
p , F

(n+1)
c = åFc

(n+1)1q
c
åFc

(n+1)
2
/C

;

æQp
(n+1) = 1q

c
Mcp

1
F

(n)
c

, Q
(n+1)
p = æQp

(n+1)1q
p
æQp

(n+1)
2
/P

;
(3.3)

where C and P are the number of exporting countries and exported products
in the system, respectively. In Eqs. (3.3), æFc(n+1) and æQp

(n+1) are the
intermediate values of F

(n+1)
c and Q

(n+1)
p obtained at each iteration (n + 1)

[23]. At each step, the intermediate values are normalised by their algebraic
means, in this way providing the final values F

(n+1)
c and Q

(n+1)
p . The
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3. Reconciling Contrasting Views on Economic Complexity

normalisation is required for the stabilisation of the non-linear map in Eqs.
(3.3) [125]. For the assessment of the final values of the metrics, ranking
convergence has been proposed by the Authors as a possible solution [126].
This entails taking as a solution of the algorithm the one that ensures stable
rankings of the values among successive iterations. In this case, a valid
option is given by Lin et al., [127], which propose to stop the algorithm
at the iteration N , when the rankings between step N and step N + ∆N ,
have a Spearman’s correlation coefficient larger than 0.999. Note that, for
the computation of the results in this work we have followed this criteria
assuming ∆N = 10.

It is not only the mathematics of the two approaches which is different,
but also the obtained outcomes significantly diverge: as shown in Figure
3.2, the countries’ rankings obtained with ECIc and Fc widely scatter.
This poses an issue of practical use of the economic complexity measures,
potentially undermining the very essence of the economic complexity theory.
We argue that the role played by EC measures in economics and policy
making (see, e.g., [128–132]) requires more consistency in the outcomes of
different methods, which we address later in this Chapter.

3.2 A General Framework for Economic Complex-
ity

The introduction of a general framework of EC is necessary to set the
ground upon which to build the reconciling of these two metrics. In a
general framework, economic complexity theories aim at determining two
properties Xc and Yp – describing the complexity of country c and product
p, respectively – by a system of coupled equations

Xc = f(Y1, Y2, ..., Yp, Mcp), p = [1, ..., P ],
Yp = g(X1, X2, ..., Xc, Mcp), c = [1, ..., C],

(3.4)

where f and g are linear functions and C and P are the number of countries
and products considered in the analysis, respectively. To consider f and
g as linear functions allows one to recast the determination of Xc and Yp
as the solutions of an eigen-problem of a suitable (approach dependent)
transformation matrix W, whose elements Wcp are derived from M. In this
case, these properties’ values are obtained from the following coupled linear
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Figure 3.2: Comparison between the rankings provided by the Fitness and ECI values. The
rankings sort countries according to decreasing complexity, as computed by the two
metrics. Results refer to the trade data of year 2017.
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equations: Xc = 1√
λ

q
p WcpYp,

Yp = 1√
λ

q
c WcpXc,

(3.5)

being λ the eigenvalue of the equivalent eigen-problem, such that the
following relations hold

Xc = 1
λ

Ø
p

Ø
c∗

WcpWc∗pXc∗ = 1
λ

Ø
c∗

Ncc∗Xc∗ , (3.6)

and
Yp = 1

λ

Ø
c

Ø
p∗

Wcp∗WcpYp∗ = 1
λ

Ø
p∗

Gpp∗Yp∗ . (3.7)

A by-product of Eqs. (3.6) – (3.7) is that the squared, symmetric matrices

N = WWT (3.8)

and
G = WTW (3.9)

can be interpreted as proximity matrices for nations and products, respec-
tively, where proximity defines similarity. In fact, the set of equations
in Eqs. (3.5) involves the same transformation matrix W. This entails
that: the matrix W can be interpreted as the weighted incidence matrix of
an undirected bipartite network uniquely describing the relations between
countries and products according to the EC rationale. This would no longer
be true if two different matrices were used for the mutual computation of
Xc and Yp. This also entails that we can interpret the symmetric squared
matrices N, for countries, and G, for products, as the mathematical de-
scription of the weighted topology of two distinct, yet related, undirected
networks [9, 116]. For what concerns countries, the network describes the
connections among countries by weighting the similarities between their
export baskets, and so, in their productive knowledge (i.e., Ncc∗ = Nc∗c

describes the similarity in the export baskets between countries c and c∗). In
case of products, the network describes similar requirements of productive
knowledge. We stress that the feature of symmetry for the matrices N
and G is essential to interpret them as proximity matrices, thus defining
bijective functions of connections. Clearly, the grounding hypotheses about
the hidden capabilities of countries – and on how these can be deducted by
looking at the export baskets of countries upon which the EC algorithms
are built – are preserved through these interpretations.
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The eigen-problems in Eqs. (3.6) – (3.7) have multiple solutions, pro-
vided by the eigenvalues λt and the corresponding eigenvectors of the
matrices N and G, respectively [9]. In most situations, the eigenvector
corresponding to the largest eigenvalue λ1 carries the maximum amount of
information [43] and it is thus taken as solution (although we will demon-
strate the potential of combining more eigenvectors). In complex network
jargon, Xc and Yp are (eigen-)centrality metrics in the bipartite network of
countries and products [47, 91] (Chapter 2, Section 2.4).

We now provide two examples of application of this general framework
pertaining with the two aforementioned EC metrics, MR and FC, referring
to these examples by using the superscripts A and B, respectively.

3.2.1 Recast of MR Metrics

The equation for the computation of ECI and PCI can be mapped in
our general framework by using in Eqs. (3.5) the following transformation
matrix

WA
cp = Mcpð

kckp
, (3.10)

in which, again, kc and kp are the degrees of countries and products, respec-
tively, computed from the binary matrix M. By solving the eigenvectors of
the matrices

NA
cc∗ =

Ø
p

McpMc∗p√
kc

√
kc∗kp

, (3.11)

for countries, and
GA
pp∗ =

Ø
c

McpMcp∗

kc
ð

kp
ð

kp∗
, (3.12)

for products, the results of the Method of Reflections are provided using
the formulas I

XA
c = ECIc

√
kc,

Y A
p = PCIp

ð
kp,

(3.13)

being XA
c and Y A

p the eigenvector solutions of the matrices NA, Eq. (3.11),
and GA, Eq. (3.12), respectively. Naturally, for any matrix there exist as
many eigenvector solution as its dimensions, and the first eigenvector is
usually taken for being the most informative [43]. In this case, the first
eigenvectors XA

c,1 and Y A
p,1 carry a trivial information, since they equal the

square roots of the degrees, kc and kp, thus leading to unitary ECIc and
PCIp values, discarded in the original works for being uninformative [22,
48]. For this reason the eigenvectors XA

c,2 and Y A
p,2, corresponding to the
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second largest eigenvalue, are taken by the Authors as the solution of Eqs.
(3.6) – (3.7) [124]. We stress that the matrices NA and GA are symmetric
ones thanks to the presence of the square roots of the degrees kc and
kp, respectively, for which they differ from the corresponding asymmetric
matrices that one would obtain directly from the original MR formulation
[48]. Nevertheless, the mapping {Xc,2, Yp,2} ⇔ {ECIc, PCIp} completely
preserves the information provided by the original methodology.

3.2.2 Recast of FC Metrics

The recast of the FC metrics onto our general framework requires a
non-trivial linearisation of the relation between Quality and Fitness values.

Let us consider the system in Eqs. (3.3). This one can be written in
closed and non-iterative form as

Fc = cF
q
p McpQp,

Qp = cQ
1q

c
Mcp

1
Fc

,
(3.14)

in which we have embedded the normalisation procedure by introducing the
parameters cF and cQ. Eqs. (3.3) can be seen as the simplest numerical
solution of Eqs. (3.14). The values of the coefficients cF and cQ can be
obtained by simple considerations. As a consequence of dividing by their
mean value, see Eqs. (3.3), the values of Fitness and Quality are normalised
so that Ø

c

Fc = C; and
Ø
p

Qp = P,

where C is the number of countries and P of products. Using the definition
of Fc according to Eqs. (3.14), and its normalisation condition, clearly holds

cF = Cq
p Qpkp

.

From the definition of Qp according to Eqs. (3.14), one has

cQ = Qp

Ø
c

Mcp

Fc
,

and by summing on all Qp values holds

cQP =
Ø
c

1
Fc

Ø
p

QpMcp.
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Nevertheless, by recalling that Fc and Qp are related through Eqs. (3.14),
a further condition to be satisfied isØ

p

QpMcp = C/cF ,

and it must hold
cF cQ = C

P
.

Therefore, the value cQ is defined as

cQ =
q
p Qpkp

P
.

Eqs. (3.14) represents a functional relationship between the vectors of
values Fc and Qp and, in particular, the Quality values can be formally
expressed as

Qp = h(F1, F2, ..., Fc), c = [1, ..., C],
where h(F1, F2, ..., Fc) is a non-linear function of the C–Fitness values.
In order to map the FC algorithm onto the linear Xc – Yp framework,
we linearize the function h(Fc) using the Taylor’s series and expanding
the function around the value Fc = kc, which is known to dominate the
information contained in Fc [47]. Moreover, kc is the first result of the map
at iteration n = 1 for the Fitness values 2. In their closed, non linear form,
the Qp values are defined as (see Eqs. (3.14))

Qp = cQ
1q
c
Mcp

Fc

.

Its derivative in a generic point F ∗
c is

dQp

dF ∗
c

= − cQ

(qc
Mcp

Fc
)2

·
1
−Mc∗p

F 2
c∗

2
,

and substituting Fc = kc holds

dQp

dF ∗
c

----
kc

= − cQ

(qc
Mcp

kc
)2

·
1Mc∗p

k2
c∗

2
,

2Since the values Fc are normalised so to have unitary mean, so should the values
of the degree around which to expand the function h(Fc). Therefore, we introduce the
normalised degree of countries k+

c = kc
Ktot

C, in which Ktot =
q

c
kc and C is the number

of countries. Nevertheless, we can omit this normalisation from the linearisation procedure,
since it does not affect the results.
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The complete expression of the Taylor’s expansion of Qp in Fc = kc is

Qp = cQ
Mcp

kc

+
Ø
c

dQ

dFc
· (Fc − kc) = cQ1q

c
Mc∗p

kc∗

22
Ø
c

McpFc
k2
c

.

Therefore, the linear expression to evaluate the Fitness of countries and the
Quality of the products, isFc Ä cF

q
p McpQp,

Qp Ä cQ

(kÍ
p)2
q
c
McpFc

k2
c

,
(3.15)

where kÍ
p = q

c Mcp/kc. Notice that the system in Eqs. (3.15) is an eigen-
problem, thus it can be solved without the use of iterative algorithms. This
avoids the convergence problem which is known to affect the system in Eqs.
(3.3)) [126], due to the hyperbolic nature of the second equation [125].

Taking the linearised equations in Eqs. (3.15) as the starting point, the
mapping of FC metrics within our framework is given by setting in Eqs.
(3.5) the value

WB
cp = Mcp

kckÍ
p

, (3.16)

with kÍ
p = q

c Mcp/kc. By solving the eigenvectors of the matrices

NB
cc∗ =

Ø
p

McpMc∗p

kck∗
c (kÍ

p)2 , (3.17)

for countries, and
GB
pp∗ =

Ø
c

McpMcp∗

k2
ck

Í
pk

Í
p∗

, (3.18)

for products, the results of the Fitness and Complexity algorithm are
obtained using the formulas I

XB
c = Fc/kc,

Y B
p = Qp · kÍ

p,
(3.19)

where we neglected the scaling factors cF and cQ, since their role of stabilising
the numerical values is not anymore required due to linearity, thus reducing
the number of unknowns in the system. The linearised values for Fitness and
Quality are recovered from the eigenvectors of the proximity matrices N and
G associated to the largest eigenvalue λ1, from which holds Xc,1 = Fc/kc and
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3.2. A General Framework for Economic Complexity

Figure 3.3: Correlation coefficients among the non-linearly and the linearly computed values of
Fitness, panel (a), and Quality, panel (b). In green is the Pearson’s correlation coeffi-
cient, while the Spearman’s one is in orange and Kendall’s in blue. The Spearman’s
and Kendall’s coefficients are ranking-based, while the Pearson’s one compares the
values between the two vectors. As the coefficients witness, the linearised algorithm
almost perfectly reproduces the outcomes of the non-linear one.

Yp,1 = Qpk
Í
p, respectively. In Figure 3.3, we plot the correlation coefficients

obtained by comparing the terms XB
c,1 and Fc/kc (or, equivalently, XB

c,1kc
and Fc) for the Fitness values – panel (a) –, and Y B

p,1 and Qpk
Í
p (or Y B

p,1/kÍ
p

and Qp) for the Quality values – panel (b) –. As the Figure shows, this
linearization almost entirely preserves the information of the non-linearly
computed values, also independently of the kind of indicator used to measure
correlation. Slightly smaller values of correlation are computed using the
Spearman’s correlation between the Quality values. A possible explication
may lie in the obscillation of the iteratively computed values, which may
change the ranking of the Quality values due to the choice of the convergence
criteria. Instead, our linear formulation does not suffer from the well-known
convergence problems of the iterative FC algorithm [126] and provides more
regular solutions, lacking the necessity of defining any convergence criteria.

Some more comments about this mapping are necessary. The fact of
having found very similar results between the linear and the non-linear
versions of the FC algorithm (on average, 99.5% Pearson’s correlation,
see Figure 3.3) cannot be systematically generalised to other cases: in
fact, some bipartite systems may require a genuine non-linear approach
to let their nested nature emerge. Nestedness describes the pyramidal
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3. Reconciling Contrasting Views on Economic Complexity

structure of some complex systems, especially the ecological ones as the
plants-pollinators network, in which the neighbours of lower-degree nodes
are the neighbours of higher-degree nodes [133]. Non-linearity has been
shown to be an important feature of the algorithms for packing the entries
of the incidence matrix describing such systems, thus reducing their disorder
(i.e., the so-called nestedness temperature [134]) and letting their nested
nature emerge [127]. As such, the original FC algorithm has shown very good
potential in minimizing the nestedness temperature of ecological networks
[127]. Therefore, we have tested the packing performance of the linearised
form of the FC algorithm, similarly to the comparison showed in [127].
We exemplify the results through the analysis of two pollination networks
provided by The Web of Life project and available at www.web-of-life.es
(network IDs M_PL_062 and M_PL_015). The networks describe the
pollination phenomena among plants and pollinators in two different sites.
As Figure 3.4 shows, the non-linear algorithm outperforms the linearised
form in its capability of maximising the nestedness of the incidence matrices
of the two systems. Instead, there are no significant differences between
the non-linear and the linear algorithm for maximising the data-packing
of the trade matrix, suggesting that there exist bipartite systems where
non-linearity plays a minor role for nestedness evaluation. In the case of
trade, we speculate that this might be related to the differences in the
decision making processes ruling these systems. On the one hand, e.g.,
nested ecological networks self-organise following ecological rules of non-
linear population dynamics [135]. These systems are thus driven by more
rigid, evolutionary decision making processes. On the other hand, the plastic
human decision-making process – which is of course at the base of the trade
network self-organisation – may give rise to less nested network structures:
for a given productive knowledge, trade may follow a simpler sum rule,
i.e., “the more, the better”, as trade enhances growth [136]; thus clarifying
the reason why the diversity of a country is used as a first proxy of the
productive knowledge itself.

3.2.3 Comments on the General Framework

The original ECIc, PCIc, Fc and Qp variables are recovered within
our general framework through simple (but non-trivial) mappings from Xc

and Yp. The use of the variables Xc and Yp allows one to gain neatness in
the mathematics, reflected by the fact that the matrices N and G can be
considered as suitable proximity matrices containing information about the
similarities among countries and products, respectively. As we will discuss
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Figure 3.4: Nestedness maximization performances. Visual comparison among the perfor-
mances of the non-linear FC algorithm (panels (a)) and its linearized form, (panels
(b)) in maximizing nestedness of matrices. The left panels refer to the countries-
products bipartite network during 2017. The central panels refer to the network of
pollination in Carlinville, Illinois, USA (network ID: M_PL_062); on the right the
one referring to the pollination in Daphní, Athens, Greece (network ID: M_PL_015).
Data for the pollination networks are freely available at www.web-of-life.es.

Figure 3.5: Scatter plots comparing the eigenvectors of the proximity matricesNA andNB . The
matrices are computed using the transformation matricesWA

cp = Mcp/
ð

(kckp), Eq.
(3.10), and WB

cp = Mcp/(kck
Í
p), Eq. (3.16), respectively, as the starting point for

the computation of the proximity matrices N, Eqs. (3.11) – (3.17). The left plot (a)
compares the eigenvectors XA

c,1 and XB
c,1 associated to the largest eigenvalues λA

1
and λB

1 of the two proximity matrices, NA and NB . The right plot (b) compares
the eigenvectors corresponding to the second largest eigenvalues λA

2 and λB
2 , namely

XA
c,2 and XB

c,2. The eigenvectors are normalised such that the 2-norm is unitary, i.e.,ðq
c
X2

c,i = 1, with i = [1, 2]. As the correlation coefficients highlight, the eigen-
vectors from the two matrices carry similar information. The correlation coefficients
are of the Pearson’s kind.
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further in this Chapter, this aspect may have important consequences on
the interpretation of the economic significance of these metrics.

Moreover, the matrices WA and WB, Eqs. (3.10) – (3.16), respectively,
differ for the specific scaling factors adopted on the matrix M. It is hard
to recognise an economic (or a mathematical) basis on how the factors
are determined, and this leaves no solid ground for a potential user to
decide which approach, between MR and FC, to follow. Notwithstanding
the differences among WA and WB, the eigenvectors XA

c,1 and XB
c,1, and

also XA
c,2 and XB

c,2, carry similar information, as witnessed by the scatter
plot between the two pairs in Figure 3.5 (this is also partially true for Yp,
see Section 3.3). Therefore, the divergences between Fc and ECIc – and
corresponding outcomes – shown in Figure 3.2 should be mainly attributed
to the fact that eigenvectors of different order are considered in the two
approaches. Hence, the two metrics bring different information; albeit
different, this information is relevant for both metrics, as demonstrated by
numerous practical applications of the two approaches [2, 127–130, 132, 137,
138]. Therefore, an integrated measure would help in uniquely defining the
complexity of countries and products exploiting both information of the
MR and FC algorithms.

3.3 The Generalized Economic Complexity Index

In light of the analytical results shown in Section 3.2, we propose to distil
the information that both methodologies of economic complexity provide
into a GENeralised Economic comPlexitY index, GENEPY (on behalf of
the notorious herb-based distillate typical of the north-western part of Italy).
Through this integrated measure of complexity, we aim at identifying central
nodes in the bipartite network of countries and products, in line with the
general framework presented in Section 3.2.

In order to construct an integrated measure of complexity, one has to
choose which mapping, between the MR and FC one, to take as input of
the general framework. Since the information carried by the eigenvectors
are similar (Figure 3.5), either using WA or WB, Eqs. (3.10) – (3.16),
respectively, to develop the new integrated measure of complexity would
lead to reliable and comparable results. We lean toward the use of WB,
the one related to the FC method, for the following reasons: on the one
hand, the first eigenvector XA

c,1 – from which, using Eqs. (3.13), the unitary
first eigenvector of MR is recovered – equals

√
kc, thus carrying no added

information beyond diversity (and the same holds for products); on the
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other hand, the last update on the MR method, named ECI+ [139], has
been shown to be equivalent to the non-linear FC algorithm [125], thus
implicitly supporting the idea that FC carries more information then MR.
From here on, we will thus use the matrix WB in Eqs. (3.5) and drop the
superscript B in the mathematical notation.

The GENEPY index exploits the neatness of the proposed general
framework on economic complexity and it is computed by employing the
statistical setting introduced in Chapter 2. The interpretation of the matrices
N and G as adjacency matrices of undirected, weighted networks (describing
the proximity among countries and products, respectively) allows us to
consider multi-dimensional metrics as the solution of the centrality problem
at hand, which are able to capture different facets of the network structure.

We detail the procedure for the derivation of the GENEPY index for
countries, which also applies for the computation of the GENEPY index for
products. In fact, it is sufficient to replace in the following the terms Xc,1,
Xc,2 and N with Yp,1, Yp,2 and G, respectively, to obtain the GENEPY
index for products.

Let us consider the network of similarities among countries described by
N. Let ζ be a centrality-dependent estimator function. In the case of the
eigenvector centrality, better estimate results are found when the function
linearly depends on the eigenvectors Xc,1 and Xc,2, corresponding to the
two largest eigenvalues λ1 and λ2 of the matrix N we aim at estimating [38,
43, 91] (see Chapter 2, Section 2.1.3 on multicomponent estimators). In
formulas

ζ(λt, Xc,t, Xc∗,t) =
2Ø
t=1

λtXc,tXc∗,t, (3.20)

where t = [1, 2] and c and c∗ run in the range [1, C], being C the number of
nodes, i.e., countries, in the network. The function ζ minimizes the squared
errors between the matrix elements and the corresponding estimates; namely

SE =
CØ
c

CØ
c∗

1
Ncj − ζ(λt, Xc,t, Xc∗,t)

22
. (3.21)

As shown in Chapter 1, Section 2.1.3 on multicomponent estimators, at a
fixed t∗, each eigenvector Xt∗ solves the minimisation problem

∂SE

∂Xt∗
= 0.

Again, in this muldimensional setting on eigenvector centrality, the
ranking of the network’ nodes (i.e., countries in the newtork described by

72



3. Reconciling Contrasting Views on Economic Complexity

N, products if G is considered, instead) is given by the adoption, from the
commonality analysis, of the concept of the unique contribution of the Xc,t

variables. The unique contribution is defined as the drop in the coefficient
of determination R2 induced by excluding the variables Xc,t (t = [1, 2])
considered in the estimator function ζ, in Eq. (3.20), from the estimation
procedure (see Section 2.1.2). The core concept of the unique contribution
is that, the larger the drop, the larger is the contribution of the c-th values
in the reconstruction of the matrix N and, in this application, the more
central – thus complex – is the c-th node in the network topology under
analysis. Hence, according to this approach, we define the GENeralised
Economic comPlexitY index (GENEPY) for the country c as the unique
contribution of its complexity values Xc,t as

GENEPYc =
1 2Ø
t=1

λtX
2
c,t

22
+ 2

2Ø
t=1

λ2
tX

2
c,t, (3.22)

where Xc,1 and Xc,2 are the eigenvectors corresponding to the first two
largest eigenvalues λ1 and λ2 of the proximity matrixNcc∗ = q

p WcpWc∗p = q
p
McpMc∗p

kckc∗ (kÍ
p)2 , if c Ó= c∗,

Ncc∗ = 0, if c = c∗,
(3.23)

in which the redundant information of the self-proximity is deleted setting
all diagonal elements to an arbitrary constant value (we set this value to
zero).

Notice that, differently from the equation to compute the unique contri-
bution for multi-component centrality, Eq. (2.38), in here we neglect the
constant term TSS without affecting the results.

3.4 Results
We exemplify the use of the GENEPY index by considering the inter-

national trade of goods during the years 1995 – 2017. Import-export data
during this period are extracted from the BACI-CEPII dataset [140], which
classifies goods according to the Harmonised System Codes 1992 (HS-1992)
at the 6-digits level. To allow comparability with previously published
results, we downscale the classification of traded goods to the 4-digits level
(thus aggregating products according to their 4-digits categories). Our
data include all the countries whose export share is worth at least 10−5

of the total flux traded during the year (i.e., the total amount of dollars
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exported worldwide). This filters the noise arising by small export baskets.
The Relative Comparative Advantage procedure is used to construct the
incidence binary matrix M, setting the threshold of RCA to 1 in line with
the economic complexity framework [22] (Section 3.1).

3.4.1 Countries’ GENEPY

In Figure 3.6, we show the GENEPY index for countries and the re-
sults are processed for the 2017 trade. Figure 3.6a displays the position
of countries on the {Xc,1 , Xc,2} plane. Most economies with a high drive
for innovation and technology [141] – such as the UE-28 countries, Switzer-
land (CHE), China (CHN), Japan (JPN), Singapore (SGP) and the United
States of America (USA) – are found far from the origin. This entails the
presence of top-quality products among their exports and, therefore, of
relevant productive knowledge. Less economically-stable economies, such
as those of many African and South-American countries, are located in
the bottom left part of the graph. The GENEPY index also identifies
potentially top-competitive countries, such as Australia (AUS) and Canada
(CAN), struggling to boost their complexity due to remoteness and resources-
dependency, well-known factors for affecting trade and economic growth
[142–144]. The information distilled through the GENEPY index can be
better understood by considering the meaning of its components, i.e., the
two eigenvectors Xc,1 and Xc,2, as contextualised in complex network theory
[9]. In fact, the elements of the first eigenvector represent the eigenvector
centrality of the countries as obtained from the proximity matrix N, in-
terpreting the matrix as the weighted, adjacency matrix of an undirected
network connecting the countries for the similarities in their export baskets.
Instead, the values of Xc,2 cluster countries according to the similarities in
their export baskets. In fact, the strict nexus between Xc,2 and ECIc recalls
the results provided in [145], where the Authors proved that ECI perfectly
solves a spectral clustering algorithm. Interpreting this result within the
network of similarities designed by N, the GENEPY centrality identifies
that set of capabilities (contributing to the productive knowledge) a country
owns and shares with others. In this sense, more central nodes are found
within a cluster of highly competitive countries, while less complex countries
are found moving towards the borders of the graph. This result is confirmed
by the reordering of the matrix N according to the GENEPY values (see
Figure 3.7, Table B.1), showing that countries with higher complexity share
similar sets of capabilities, as their export baskets are similar.

As mentioned, our framework combines the advantages – and information

74



3. Reconciling Contrasting Views on Economic Complexity
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Figure 3.6: The GENEPY index and its components. (a) {Xc,1 , Xc,2} plane and GENEPYc

from the data of 2017 international products’ trade. The x-axis reports the compo-
nents of the first eigenvector Xc,1, whilst the y-axis the components of the second
eigenvector Xc,2. The eigenvectors are normalised such that their 2-norm is unitary,
i.e.,
q

c
X2

c,1 =
q

c
X2

c,2 = 1. Contours range from lower GENEPYc values (green)
to higher ones (blue). (b) Fitness component. Scatter plot of the first component
Xc,1 compared with the values of the Fitness values Fc rescaled by the countries
degree kc (see Section 3.2.2, Eqs. (3.19)). (c) ECI component. Scatter plot of the
second component Xc,2 compared with ECIc values rescaled by the term

√
kc (see

Section 3.2.1, Eqs. (3.13)). The correlation coefficient in the plots (b) and (c) is of
the Pearson’s kind. Figures have been produced with MATLAB 2019b.
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Figure 3.7: The elements Ncc∗ of the similarity matrix N for the 2017 trade. Rows and columns
reordered top-to-bottom, left-to-right, according to decreasing values of GENEPY
complexity. More complex countries are found on the top (left) of the matrix.
Correspondence among ranking positions and countries are defined in Annex B,
Table B.1.
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(a) (b)

Figure 3.8: Scatter plots of the eigenvectors Xc,1 and Fc/kc for different interpretations of the
matrix N. On the left, the eigenvector Xc,1 belongs to the matrix N with diagonal
values set to zero. On the right, Xc,1 is the eigenvector of the matrix N in which
we left the diagonal values as computed, i.e., Ncc =

q
p
McpMc∗p/kckc(kÍ

p)2 (see
Eq. (3.23)). Data refer to year 2017.

– of the two existing metrics of economic complexity, ECI and Fitness. On
the one hand, the countries’ Fitness values obtained with the iterative FC
method are recovered, with great accuracy, from the product of the first
eigenvector Xc,1 with kc (see Figure 3.6b and Eqs. (3.19)). The very small
deviations from the 1:1 line shown in Figure 3.6b are not induced by the
linearisation procedure. In fact, they disappear when the equation

Ncc∗ =
Ø
p

McpMc∗p

kckc∗(kÍ
p)2

is used also for c = c∗, i.e., when the matrix N is not interpreted as a
proximity matrix, thus leaving the diagonal values as computed (see Eq.
(3.17) and Figure 3.8). However, this would imply inflating the Fc (or
Xc,1) values for countries with large self-interactions, which, in our opinion,
induces an undesired bias in the results. On the other hand, a good proxy of
the ECIc values is obtained by dividing the values of the second eigenvector
Xc,2 by

√
kc, as shown in Figure 3.6c (see Eqs. (3.13)). In this case, the

scatter of the plot is due to the differences in the matrices NA and NB,
Eq. (3.11) and Eq. (3.17), respectively. The same reasoning applies for the
Quality values, as will be further discussed later in this Chapter.

Being the GENEPY framework grounded on both existing indicators of
economic complexity (the FC and MR algorithms), it inherits the intuitions

77



3.4. Results

Figure 3.9: Correlation between Xc,1 and kc. In panel (a), the values of Xc,1 and kc obtained
from the trade data of year 2017 are scattered. In panel (b), the plot shows the
values of the correlation coefficients between the two vectors during time. The
Pearson’s correlation is green colored, the Spearman’s one is in orange, instead.

and rationales upon which these two metrics are built: the capabilities of
countries to export diversely complex goods are hidden within the bipartite
network of countries and exports, under which they combine to maximise
the complexity of the goods. Also, since Xc,1 maintains a very high correla-
tion with kc (see Figure 3.9), our framework preserves the information on
diversification, which is a relevant one to understand how export capabilities
are exploited by countries.

3.4.2 The Knee-Like Shape

The positions of countries in the plane Xc,1 − Xc,2 arrange in a knee-like
shape, as displayed in Fig 3.6a. The presence of this shape, recurrent in
all the years of analysis, shows the existence of a functional relationship
between the two eigenvectors, which reasons of existence are related to
linear algebra and network science. Let us define a functional relationship
f between Xc,1 and Xc,2 such that

Xc,2 = f(Xc,1) + Ôc, (3.24)

where Ôc are the errors. We assume the errors to have null expected value,
i.e., E(Ôc) = 0 and to be orthogonal to Xc,1, s.t.,

q
c Xc,1Ôc = 0. There exist

some constraints related to the existence of the eigenvectors of a symmetric
matrix, which any functional relationship should respect:
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3. Reconciling Contrasting Views on Economic Complexity

1. the eigenvectors corresponding to distinct eigenvalues of a symmetric
squared matrix are, by definition, orthogonal and this entails that the
inner product of the vectors is zero, i.e., qc Xc,1Xc,2 = 0 [43];

2. for the Perron-Frobenius theorem [43], the eigenvector corresponding
to the largest eigenvalue is strictly positive, such that Xc,1 ≥ 0, ∀ c =
[1, . . . , C] (number of countries);

3. we can normalise the eigenvectors such that the 2-norm is unitary, i.e.,q
C X2

c,1 = q
c X2

c,2 = 1;

4. if any element c∗ of the eigenvector corresponding to the first (largest)
eigenvalue λ1 is zero, the same element is null also within the successive
eigenvectors. In fact, the eigen-equation for the matrix N is [43]:

Xc∗,1λ1 =
Ø
c

Ncc∗Xc,1;

and, because of condition (2), it holds that Xc∗,1 = 0 iff q
c Ncc∗ = 0,

i.e., if the matrix has null elements all along the column (or row) c∗.

Interpreting this result through network science lenses, the node to which
the null element of the eigenvector refers is disconnected in the network
[9]. Therefore, in the hypothesis of existence of any functional relationship
between two eigenvectors as in Eq. (3.24), it must hold f(0) = 0. The only
function able to satisfy the requirements above described is a squared one.
We can prove it by exploring two different scenarios of possible functional
relationship for Eq. (3.24).

SCENARIO 1: The simplest form considers f as a linear function, i.e.,

Xc,2 = aXc,1 + Ôc. (3.25)

By imposing the orthogonality condition (1) to Eq. (3.25) one obtains:Ø
C

Xc,1Xc,2 =
Ø
c

Xc,1(aXc,1 + Ôc) = a
Ø
c

X2
c,1 +

Ø
c

Xc,1Ôc = 0.

Since the errors are orthogonal to Xc,1 and the 2-norm of the vector is
unitary for condition (3), the solution is a = 0, which entails no functional
relationship exists between Xc,1 and Xc,2.

SCENARIO 2: In this case, the function is a polynomial of the second
order one, namely

Xc,2 = aXc,1 + bX2
c,1 + Ôc. (3.26)
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Figure 3.10: Possible values of the parameters a and b of the knee-shape function. These param-
eters reproduce the existence of a minimum point in Xc,1 = 0.05 and an upward
belly, as the one showns in Fig. 3.6a.

Again, by applying the orthogonality condition (1), one hasØ
c

Xc,1Xc,2 =
Ø
c

Xc,1(aXc,1 + bX2
c,1 + Ôc)

= a
Ø
c

X2
c,1 + b

Ø
c

X3
c,1 +

Ø
c

Xc,1Ôc = 0,

which leads to
a + b

Ø
c

X3
c,1 = 0. (3.27)

Because of condition (2), the termq
c X3

c,1 is strictly positive and in order to
respect Eq. (3.27), the values of the parameter a and b should have different
signs, thus justifying the existence of the knee-like shape. In particular, the
upward belly of the relation is given for negative values of the parameter a
and positive values of b. In this sense, the minimum point depends on the
parameters. One possible fit of the quadratic equation of the knee-shape in
Fig 3.6a is given in Fig 3.10, created using the values a = −2.5 and b = 21
and simulating the ranges of the eigenvectors as obtained by the GENEPY
framework on 2017 trade.

We can interpret this result through the meaning of the matrix and
its eigenvectors in the context of network theory. In fact, in this case the
eigenvectors of the matrix describe the structural properties of the network
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[146] and are related to the similarity of the network among the countries.
In fact, the shape of the matrix N, Fig 3.7, represents a connected network
in which a stronger connected component can be spotted, constituted by the
top-GENEPY countries, while weaker connections characterize the countries
at the periphery. In this weak connection component, the correlation
between the two eigenvectors is positive [147]. Also, the mutual signs of the
elements of the eigenvectors corresponding to the two largest eigenvalues –
whether these are positive or negative in the second eigenvector – acquires
a meaning [147], thus justifying the presence of three areas (or groups) in
which the points can stand:

• both values Xc,1 and Xc,2 are low; these nodes belong to the weaker
component and they have no important connections with the stronger
connected component;

• both values Xc,1 and Xc,2 are high; these nodes belong to the stronger
and more connected core of the network, thus defining the area of
complexity in which these points (countries) are competitors, also in
the sense of collecting most of the links in terms of similarities;

• low values of Xc,1, high values of Xc,2, or vice-versa: this situation
identifies the presence of some “outliers” of the core and periphery
components. These nodes connect the stronger and the weaker com-
ponents and have a role in bridging the gaps across the network.

These three arrangements of the points along the knee-like shape can evolve
in time, letting the dynamical regimes of growth emerge as we analyse the
aggregated dynamics of countries in time.

3.4.3 The Trajectories of Economic Growth

The ability of the proposed multidimensional index to assess the sophis-
tication of countries’ export-baskets and, simultaneously, define clusters
of economic growth can be exploited to track the path toward prosperity
of countries as driven by economic complexity. In fact, according to the
economic complexity theory, a country’s acquisition of capabilities, employed
in the production – and hence export – of goods [4, 48, 49] is a determining
factor for its economic growth. Any country at a lower stage of growth uses
its increasing capabilities to fill its export basket with higher-quality goods,
possibly similar to those traded by countries at higher stages of growth. This
entails the creation of a wider export basket allowing the country to gain
momentum in the market. Also, in order to boost its economic complexity
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– and growth – such a country may enlarge its offer including products
for which it can be considered the only relevant exporter, hence gaining
advantage [51]. By analysing the aggregated displacements of countries in
time from 1995 to 2017, it is possible to identify three regimes of growth.
In fact, for each country whose continuous data in time are available (154
countries), we defined the main displacement recorded by the country during
the period of analysis. To identify the starting and ending points of such
displacements, we compute the center of mass of Xc,1 and Xc,2 during the
first 3 years of analysis (1995 – 1998) and their center of mass during the
last 3 years (2014 – 2017), respectively. These points are then connected
for each country to identify their displacements. In order to make the
overall dynamics clearer, we defined overlapping classes of countries using
a moving window of 20 countries per each class. Firstly, we ordered the
countries (and respective scores of the eigenvectors in time) for increasing
starting Xc,1 values. Secondly, by defining each class through a window
of 20 countries, we computed the resultant vector of the displacements of
the countries falling in that class. Lastly, we applied the resultant vectors
to the barycenter of the starting points of the single vectors that fall into
the class. In Figure 3.11, we show the aggregated dynamics of countries
along the knee-shape. The colours sort the vectors for their length, as
normalised for the longest vector recorded (light blue identifies the shorter
ones, light purple the longer ones). The light blue vectors on the bottom
left part of the knee identify the Impasse: the dynamics of the countries
in this area are here tangled, as shown by the horizontal displacement of
the vectors, within the borders delimited by low values of Xc,1 and negative
values of Xc,2. Notwithstanding the presence of some uplift movements of
the classes around the minimum point in Xc,1 = 0.05, the countries within
this area may suffer from lack of skills, human and capital investments and
resources, thus resulting in low productive knowledge and, consequently,
reduced diversification and complexity [51]. These countries hence face an
impasse condition, resulting in a saddle point of growth and poor growth
potential. As soon as countries reinforce their knowledge, they experience
higher values of Xc,2 complexity until these values approach to zero: here it
starts the Bounce, where countries boost their diversification and complex-
ity, turning cluster membership by joining the more economically grown
countries club and thus increasing the similarity in the export basket with
them. The bounce is marked by the crossing of the zero value of the y-axis
and this area defines the increment in quantity and quality of the exports.
Longer vectors in violet and light purple highlight the jump. Once the
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Figure 3.11: The time regimes of economic growth according to the two contributions Xc,1
and Xc,2. During time, countries move along the knee-like shape designed by the
arrows.

economies have experienced the boost, they join the Arena of competition,
which enhances growth. It is interesting to observe divergent directions of
the arrows in the highest part of the Arena (high values of Xc,1 and Xc,2).
In fact, in this area countries aim at increasing quantity and sophistication
their exports which contribute to the increase of the Xc,1 values; at the same
time, countries compete to become leaders in the economically-grown group,
hence trying to earn scores in Xc,2. Therefore, the entrance of new countries
in the competitive market is likely to affect other countries’ growth.

The regimes are better understood by connecting the GENEPYc values
of countries in time. This allows one to draw the path along the growth
process, as shown in Figure 3.12, in which we show some economic complexity
growth paths such as the ones of China (CHN), Germany (DEU), Japan
(JPN), Nigeria (NGA) and Philippines (PHL). In Figure 3.12, Nigeria (NGA)
and Venezuela (VEN) are tangled in the Impasse zone, in the bottom-left
part of the graph. The Bounce area shows average uplifting dynamics of
the countries towards highers stages of growth, instead. Countries such
as China (CHN), India (IND) and Singapore (SGP) have clearly boosted
their complexity to higher levels during the last years, joining the rich
countries cluster (Xc,2 > 0) during the period of observation (1995 – 2017).
The Arena includes Japan (JPN), USA, Germany (DEU) and Switzerland
(CHE) as paradigmatic examples. In Figure 3.12, the interactions among
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countries are also evident. The rapid growth of a country, such as the
dynamics shown by China [141, 149], naturally impacts other economies,
whose GENEPYc values change according to the increased complexity
of the competitor. An example is given by the nested trajectories of the
arena-countries, such as Germany, Japan and USA, concurrent with the
raise of China and Singapore. Some steadiness points in the trajectories can
also be explained by the economic history of the countries. For example, the
reduced trade capacity of countries, as a consequence of the 2008 financial
crisis [150], produces a drop in complexity as shown by Germany, Italy and
USA among the others. Instead, the Chinese last downgrading points of
2016 – 2017 may be explained as spillover effects of the 2015 stock market
crash [151] and could also be related to the largely debated hard landing of
the Chinese economy of the last years [152].

Therefore, during their economic growth process, countries tend to move
from lower stages of complexity, delimited within the bottom-left quadrant,
to higher ones, framed into the top-right quadrant. The former stage is
associated with low productive knowledge and, consequently, low diversity
in the exports. Contrarily, the latter is characterised by gain in skills and
capital’s investments, for which competition and growth are determined.

To collapse the information on how countries’ rankings evolve in time
we compute, for each year in the period 1995 – 2017, the world’s centre
of GENEPY by weighting all countries’ geographical barycentres by their
GENEPYc values. This computation has been executed according to the
procedure defined by the McKinsey Global Institute in [148] to compute the
shift during hystory of the Gross Domestic Product (GDP); the outcomes are
shown in Figure 3.13 in yellow. For comparison, in Figure 3.13 we replicate
the same procedure to compute the trajectories of the world’s barycentre
by weighting the countries’ barycentres by their GDP at Purchasing Power
Parity (GDP PPP in blue) – and, alternatively, their population (in purple).
Since the economic complexity metrics are intensive ones (i.e., their values
are “per capita” ones [22, 23, 124, 145]), the shifting in the world’s centre
of GENEPY has been computed by multiplying each country’s GENEPY
index for its population value in time, thus allowing for a fair comparison
with the path followed by the GDP (in absolute value) in time. As the
figure shows, the trajectories of the GDP and GENEPY index, differently
from the population path, move toward East. The world’s centre according
to population, although clearly centred in the middle of Asia (as it would
have been expected due to the high density of population this area has
always recorded [153]), curves toward West as provoked by the increasing
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population in Africa [153]. The differences in the world’s GENEPY, GDP
and population paths confirm that, year by year, the economy is more
centred in the East [148] and that increasing population poorly impacts the
ability of countries to economically grow. The distance between the current
position of the barycenter of GDP and GENEPY may also imply that Asian
countries (China included) still have a strong potential for economic growth,
as also stated in [131]. Also, the trajectory drawn using GDP differs from the
one drawn using the GENEPY index of countries as weights, because of the
ability of the latter to capture both the productive knowledge of countries
and the aforementioned dynamics of growth and competition between the
actors in the trade.

3.4.4 Relation Between GENEPY and EXPY Frameworks

One of the main virtue of this study is the realization that, at least
for what concerns the field of economic complexity, non-linearity is a non-
necessary feature of the algorithms to rank nodes in a bipartite network
(see Section 3.2.2). In fact, in the FC algorithm the Quality of a product
is mainly determined by the least fit country exporting it, a crucial prop-
erty accomplished by the non-linearity of the FC approach. In our linear
framework, this property is maintained through the term kÍ

p = q
c Mcp/kc,

occurring in Wcp = Mcp/kck
Í
p, Eq. (3.16). This term in fact represents the

degree of a product adjusted by how easily it is found within the network.
Its inverse 1/kÍ

p is an anti-centrality score for the product, determining how
limited is its presence within the producers’ baskets and thus suggesting the
need for higher productive knowledge in its production process. Notice that,
by substituting the incidence matrix M with the traded monetary values,
the term kÍ

p also recurs in the so-called EXPY rationale by Hausmann et
al. [4]. Based on a decision-making model of firms’ investment choices, the
Authors in [4] defined an index of economic growth potential of countries,
assessed through the required productive level of the exported products, i.e.,
EXPY. It is easy to verify the similarity of the relation to compute the Xc

values in Eq. (3.6) (with the elements Ncc∗ as given in Eq. (3.17)) with the
expression to compute the productivity of a country according to EXPY [4].
In fact, by recalling the weighted incidence matrix of the export volumes in
dollars, Dcp, and the strengths of countries and products such that

kc =
Ø
p

Dcp, kp =
Ø
c

Dcp, kÍ
p =

Ø
c

Dcp

kc
;
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the productivity level of a product, named PRODY, is given as

PRODYp =
Ø
c

Dcp

kckÍ
p

Rc,

being Rc the GDP per capita of the country c. EXPY, as a function of the
PRODY, is computed as

EXPY =
Ø
p

Dcp

kc
PRODYp =

Ø
p

Dcp

kc

Ø
c∗

Dc∗p

kc∗kÍ
p

Rc (3.28)

=
Ø
c∗

Ø
p

DcpDc∗p

kckc∗kÍ
p

Rc.

Apart from a rescaling factor kÍ
p (see Eq. (3.23)), the formal similarity of

GENEPY with EXPY is striking. Notice that, this similarity is a result
of the application of our framework, and not an “a priori” construction.
Clearly, EXPY has been defined from a different deductive rationale, which
considers the trade as described by the weighted incidence matrix of the
monetary fluxes (thus providing different input information) and embeds
exogenous information such as the GDP per capita.

3.4.5 Robustness of the Metrics

We have tested the robustness of the GENEPY index by changing the
input matrix onto which perform the computation. In fact, when conceiv-
ing the bipartite network of countries and products, the commonly used
binarisation procedure of the RCA matrix, Eq. (3.1), is adopted, aiming at
capturing the network topology. However, a different (but possibly relevant)
application of EC method is the one obtained by using the RCA matrix as
input, thus preserving the information about trading competitiveness. In
Figure 3.14 we show that, also if the RCA matrix is used as input of the
calculation, the GENEPY results remain coherent with respect to changes
in the incidence matrix of the network.

3.4.6 Products’ GENEPY

The same results shown in Fig 3.6 for countries are given for products in
Fig 3.16. In panel (a), we plot the position of products on the {Yp,1 , Yp,2}
plane. The knee-shape of the points in the plane of the two eigenvectors
is recurrent, due to the algebraic reasons detailed in Section 3.4.2. With
respect to the results shown in Fig 3.6a, the points in the plane {Yp,1 , Yp,2}
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(panel (a)) are more compressed, due to the higher number of nodes in
the network described by G, Eq. (3.18), together with the normalisation
condition of the two eigenvectors, such that

ñq
p Y 2

p,i = 1, with (i = 1, 2)
(this year totaled 1232 traded commodities). Panel (b) and (c) show how the
two components of GENEPY correlate with the output of the FC and MR
algorithms. In particular, panel (b) scatters the values of the first eigenvector
Yp,1 with the linearized values of Quality, Qpk

Í
p, using Eq. (3.19). This plot

testifies that, even when the matrix G is interpreted as a proximity matrix,
thus deleting the self-interactions and over-weights of similarities, our linear
recast of the FC metrics still performs well in reproducing the outcomes of
the non-linear equations, Eqs. (3.3), as also shown in Figure 3.15. Instead,
panel (c) scatters the values of the second eigenvectors Yp,2 with the values
PCIp

ð
kp. In this case, the correlation is lower due to the differences

among the matrix WA
cp = Mcp/

ð
kckp, Eq. (3.10), from which we are able

to recover the exact metrics ECI and PCI, and the matrix WB
cp = Mcp/kck

Í
p,

Eq. (3.16), which are here used to compute the GENEPY (hence Yp,1
and Yp,2) values. In Figure 3.17, we aggregate products in categories to
resume, through a boxplot, the results the GENEPY index provides about
products complexity. As the figure shows, differences in the complexity
computed according to the GENEPY index among the categories clearly
emerge: commodities into the Machinery or Electrical categories naturally
require different and more sophisticated knowledge in order to be produced,
while resource-based commodities, such as Animals or Foodproducts do not
need special knowledge requirements in order to be produced or traded. In
addition, the GENEPY values may vary widely in some categories such
as Chemicals, where the natural availability of natural resources and the
requirements for their extraction may define the need for more complex
technologies for making these available for trade.

The variability of products’ complexity shown in the boxplot is respon-
sible for the results on countries’ complexity, due to the combination of
the metrics within the economic complexity framework (see Section 3.2).
At completion of Figure 3.12, Figure 3.18 plots the time series of the com-
plexity of the baskets of three countries, Japan, China and Nigeria, iconic
examples of the regimes of growth described in Section 3.4.3 3. For each
of these three countries, we divided the GENEPY value of each product
by the total complexity of the export basket (i.e., the sum of complexity).

3This work has been conducted by the Master’s Degree student Luciano Saraceno
under the supervision of the candidate Carla Sciarra and the tutors Francesco Laio and
Luca Ridolfi. Further results are available in the thesis work [154].
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Products’ complexity is then aggregated in sectors. As the Figure shows, in
more complex economy such as Japan, more complex products are the ones
belonging to the Machinery or Electrics categories. China has increased
the complexity of its basket in time, investing in products belonging to this
category or to the Metals one. Countries as Japan and China are poorly
characterized by lower complex products, such as the ones in Animals and
Vegetables sectors. These two last sectors are clues in the export baskets of
Nigeria, a less complex country. These spectrum of complexity confirms the
outputs discussed in Section 3.4.3 regarding the acquisition of capabilities
and the investments in time. More developed economies show more stable
trend, while less developed economies are characterized by more irregular
composition of exports and complexity over time.

3.5 Concluding Remarks

We have introduced the GENEPY, a GENeralised Economic comPlex-
itY index, which provides a multidimensional metrics of countries’ (and
products’) complexity. GENEPY arises from the eigenvectors of a symmet-
ric proximity matrix, describing the similarities in the export baskets of
countries. These eigenvectors combine in a multidimensional fashion the
information obtained from MR and FC metrics thanks to a mapping (and
linearisation for FC) of the original metrics to reduce the problem of finding
these metrics to an eigen-centrality problem. GENEPY ranks countries for
their multidimensional complexity, squeezing the eigenvectors through the
adoption of a statistical framework on centrality metrics [91]. Moreover, the
multidimensionality of our approach can be exploited to trace the economic
growth process of countries in time.

A key point is that the proximity matrix N among countries is symmetric;
as a consequence, the left and right eigenvectors coincide and the eigenvector
centrality, whereupon our metrics are grounded, is distinctly defined [9,
43]. In contrast, by adopting the mathematical approaches of MR or FC,
asymmetric matrices are recovered to map countries’ Economic Complexity
(Eqs. (3.2) for the MR case) – or Fitness (Eqs. (3.3) for the FC case) – onto
itself (a mirror argument holds for products). In this case, the eigen-problem
can be formulated by considering either right or left eigenvectors, thus posing
the question of how the problem should be tackled. This is not just a matter
of mathematical formalism: in fact, the eigenvector centrality for directed
networks – whose adjacency matrices are asymmetric – typically considers
the right and left eigenvectors for determining the out and in centralities of
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the nodes, respectively, as caused by directionality of the edges [9]. In the
same vein, the well known PageRank [40] centrality algorithm for directed
networks considers the left eigenvector to assess only the in-centrality of the
nodes. For bipartite networks, the most basic and simple case to rank nodes
would be to set Mcp = Wcp, thus providing two symmetric proximity matrices
MMT in Eq. (3.6) and MTM in Eq. (3.7)[116]. Contrarily, although set
in a bipartite network framework, economic complexity methods as MR
and FC generate artificial asymmetry by rescaling this symmetric matrices
(using the countries’ degree or some of its transforms) without taking care
of preserving the feature of symmetry; thus leaving almost arbitrary choice
to the solution of the eigen-problem. The symmetry of the transition
matrices, also in terms of the adherence to the original symmetric structure
of the problem, represents an added value of our framework. Moreover, the
bilateral information of the proximity matrix can be used to understand
the structure of the export baskets of countries and how these are related
through shared common capabilities (see Figure 3.7).

We have also shown how GENEPY can be used to track the economic
growth of countries during the years as driven by their economic complexity.
Even though economic complexity metrics have already been used to draw
these paths [49, 155–157], our innovative multidimensional approach allows
one to draw these trajectories without the need of embedding the exogenous
information on the GDP per capita that most applications require. As
such, the chance of maintaining the simplicity of a data-driven approach
endows the GENEPY framework with the main founding-reason for which
economic complexity theory was born, i.e., to provide the ground for a
more quantitative, data-driven approach to the assessment of the potential
economic growth of countries as factored by the productive knowledge [158].

A further advantage of the GENEPY index is given by its robustness,
since results do not suffer from the change of the input matrix.

Our approach also brings the advantage of having introduced a linear
version of the FC algorithm, which provides with the same results of the
non-linear method (on average, 99.5% Pearson’s correlation). We stress
that, as we have shown, linearity may only be a characteristics of the
trade, while other systems may require a non-linear approach to be studied.
Nevertheless, the linear form we have found and adopted in this framework
is also recurrent in other economic complexity frameworks, such as the
EXPY one. The term kÍ

p which, in our rationale, addresses the assumption,
in the FC algorithm, that the Quality of a product is mainly determined
by the least fit country exporting it. This term also recurs in the EXPY
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rationale by Hausmann et al. [4]. As we have shown, (see Eq. (3.28)), the
equations to compute Xc in the GENEPY framework are similar to those
defining the EXPY scores of countries [4]. This similarity is a result of the
application of our framework, and not an “a priori” construction: in a sense,
the economic concepts are self-emerging, with some significant variations
with respect to the original EC framework we here reconcile [22, 23]. In our
view, this similarity represents a possible micro-economically sounded bases
for the economic complexity theory, toward which we address future work.

90



3. Reconciling Contrasting Views on Economic Complexity

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

X
c,

1

-0
.1

5

-0
.1

0

-0
.0

5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

X

19
95

19
95

19
95

20
17

19
95

20
17

19
95

19
95

20
17

19
95

20
17

20
17

20
17

20
17

20
17

19
95

20
17

19
95

19
95

C
ou

nt
rie

s
BR

A
C

H
N

D
EU

H
KG

IN
D

IT
A

JP
N

N
G

A
PH

L
R

U
S

SG
P

U
SA

VE
N

c,2

Fi
gu

re
3.
12
:
C
ou

nt
ri
es
’
tr
aj
ec
to
ri
es

in
th
e
G
E
N
E
P
Y

pl
an

e.
T
he

va
lu
es

of
th
e
fir
st

ei
ge
nv

ec
to
r
X

c
,1

ar
e
on

th
e
x-
ax

is
,
w
hi
ls
t
on

th
e
y-
ax

is
th
e
va
lu
es

of
th
e
se
co
nd

ei
ge
nv

ec
to
r
X

c
,2

ar
e
fo
un

d.
T
he

ei
ge
nv

ec
to
rs

ar
e
no

rm
al
is
ed

su
ch

th
at

th
ei
r
2-
no

rm
is

un
it
ar
y,

i.e
.,

q c
X

2 c
,1

=
q c

X
2 c
,2

=
1.

W
e
hi
gh

lig
ht

th
e
tr
aj
ec
to
ri
es

of
B
ra
si
l(
B
R
A
),
C
hi
na

(C
H
N
),
G
er
m
an

y
(D

E
U
),
H
on

g
K
on

g
(H

K
G
),
In
di
a

(I
N
D
),

It
al
y
(I
TA

),
Ja

pa
n
(J
P
N
),

N
ig
er
ia

(N
G
A
),

P
hi
lip

pi
ne
s
(P

H
L)

,
R
us
si
a
(R

U
S)
,
Si
ng

ap
or
e
(S
G
P
),

U
ni
te
d
St
at
es

of
A
m
er
ic
a

(U
SA

)
an

d
V
en
ez
ue
la

(V
E
N
),

ag
ai
ns
t
th
e
ba

ck
gr
ou

nd
cr
ea
te
d
by

tr
aj
ec
to
ri
es

of
al
lo

th
er

co
un

tr
ie
s
in

gr
ey
.
Li
ne

w
id
th

re
fle
ct
s
th
e

co
un

tr
ie
s’

sh
ar
e
of

w
or
ld

ex
po

rt
s
in

m
on

et
ar
y
va
lu
e
du

ri
ng

20
17
.
To

im
pr
ov
e
th
e
re
ad

ab
ili
ty

of
th
e
pl
ot
,t

he
pa

th
s
fr
om

on
e
po

in
t

to
an

ot
he
r
w
er
e
fo
rc
ed

to
fo
llo

w
ri
gh

t-
an

gl
ed

m
ov
em

en
ts
.
T
he

fig
ur
e
ha

s
be

en
pr
od

uc
ed

w
it
h
Ta

bl
ea
u
P
ub

lic
20
19
.4
.

91



3.5. Concluding Remarks

1995

2007

2004
2005

2017

2002

2007

2015

2012

2010

2017

2015

2002

2009

2016

1999

1995

2001

2017

2000

1995

1998 1997
2000

© 2019 Mapbox © OpenStreetMap

GENEPY
Population
GDP PPP

Figure 3.13: The world’s economic and demographic barycentre, 1995 - 2017. The trajectories
are computed by weighting the countries’ geographical centres by their GENEPY
index, in yellow, the Gross Domestic Product at Purchasing Power Parity (GDP
PPP), in blue, and the population size, in purple. The GDP trajectory is consistent
with the one shown by the McKinsey Global Institute [148] taking as reference the
path in there shown from 1990 – 2025. Data for the GDP PPP and the population
of countries are provided by the World Bank. The coordinates of countries are pro-
vided by the Portland State University and defined according to the georeference
system WGS 1984. The figure has been produced with Tableau Public 2019.4.
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3. Reconciling Contrasting Views on Economic Complexity

Figure 3.14: Comparison of the GENEPY of countries computed using either binary or RCA
matrix. (a) Scatter plot of the GENEPY index as obtained from the use of the
binary matrix M – on the x-axis – and from the RCA matrix – on the y-axis –
as input for the computation of the GENEPY values. Values refer to year 2017.
In panel (b), time series of the correlation coefficients among the GENEPY values
computed using as input for the algorithm the binary matrix M and the ones
obtained using as input the RCA matrix. The correlation coefficients are of the
Pearson’s kind.
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Figure 3.15: Correlation coefficients among the non-linearly and the linearly computed values of
Fitness, panel (a), and Quality, panel (b), obtained by setting the diagonal values
of the matrix N and G, respectively, to zero. In green is Pearson’s correlation co-
efficient, while Spearman’s one is in orange and Kendall’s in blue. The Spearman’s
and Kendall’s coefficients are ranking-based, while the Pearson’s one compares the
values between the two vectors. As the coefficients witness, the linearised algo-
rithm almost perfectly reproduces the outcomes of the non-linear one even when
the diagonal values are set to zero.
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3.5. Concluding Remarks

Figure 3.17: Boxplots of the GENEPY values for products aggregated into categories. Cate-
gories are defined according to the World Integrated Trade Solutions, WITS, by
the World Bank, available at wits.worldbank.org. In the boxplot the cross is the
mean, the thick bar is the median, the bars define the interquartile range (IQR)
25% - 75%, the shorter bars are the whiskers and the dots are outliers. From above
the upper quartile, a distance of 1.5 times the IQR is measured out and a whisker
is drawn up to the largest observed point from the dataset that falls within this
distance. Similarly, a distance of 1.5 times the IQR is measured out below the
lower quartile and a whisker is drawn up to the lower observed point from the
dataset that falls within this distance. All other observed points are plotted as
outliers.
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3. Reconciling Contrasting Views on Economic Complexity

Figure 3.18: Complexity in the export basket composition of Japan, China and Nigeria com-
puted using the GENEPY index for products during the period 1995 – 2017. Prod-
ucts are aggregated in categories, defined according to the World Integrated Trade
Solutions, WITS, by the World Bank, available at wits.worldbank.org. Each cat-
egory percentually contributes to the total complexity of the country at hand and
evolves in time.
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4
Network-Driven Rankings of Coun-
tries’ Status in SDGs

The work described in this chapter has been partially derived from Sciarra
et al., submitted to Scientific Reports, 2021 [159].

Universality, integration and inclusion: these are the principles and
cornerstones upon which the United Nations (UN) have constructed, in
2015, the Agenda 2030 of sustainable development [60, 61]. The world
is not new to the request of ‘a global agenda for change’. Back in 1987,
the report “Our Common Future” already introduced the key idea of a
common action plan to address economic growth in equilibrium with the
people and environment, thus preserving our world to meet human needs
for today’s and future generations [160]. The beginning of the XXI century
marked a shift in the way countries started being actively engaged in the
implementation of sustainable development, with the establishment of the
Agenda 2015, allowing the joint forces of UN and governments to achieve
significant milestones in poverty and inequalities reduction, as well as in
improved water access [161, 162]. In light of these achievements, and also of
the limitations and gaps of such experience, the Agenda 2030 inherits and
enlarges the views and objectives of the Agenda 2015 [162] introducing the
17 Sustainable Development Goals - SDGs [60]. The 17 Goals are strongly
interconnected [68–77] and all have the same importance in being achieved.
In fact, in line with the Charter of the United Nations, the Agenda and its
principles, the Sustainable Development Goals have no pyramidal structure
and there is no Goal prioritized with respect to the others, thus advocating
for equal efforts in the designing of proper policies to meet these goals (Art.
40 of the Agenda) [60]. Each Goal targets the implementation of policies,
totalling 169 targets across the 17 Goals [75]. Targets also mark the need
for data and measurements of the status of countries with respect to the
achievement of the Goals. Countries ratifying the Agenda are encouraged to
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pursue sustainable development by defining national strategies with a global
vision of their actions [60, 61], thus contributing to the common action plan
necessary to foster change [60, 74, 163, 164] and embracing the cornerstones
of the Agenda.

Since 2015, 5 years have already passed and countries are only left
with 10 years to meet all the targets within the Agenda. To monitor the
progresses of countries is a necessary step [165], a required one to define
responsibilities and identify possible structural limitations and difficulties
toward sustainability [81, 89, 166]. In fact, due to the heterogeneity of
countries and the differences in the challenges they face [60, 66], it could
be well expected that some SDGs are reached first by some countries with
respect to others, a fact that calls for metrics in which this dynamics is
taken into account and unveiled by the analysis of the data. In this chapter,
we propose to tackle the definition of rankings of countries by recasting
the system of countries and SDGs within a network science framework.
Firstly, we define a representation of the Agenda 2030 as a bipartite network
of countries and Sustainable Development Goals, connected via countries’
recorded performances. Secondly, we show that aggregated index of countries’
status with respect to their achievements in the Agenda 2030 can be cast
as a centrality exercise. Within this framework, we demonstrate that the
most used centrality metrics, i.e., the degree and eigenvector centrality, are
highly correlated and so do not take into account neither the synergies and
trade-offs among the Goals, nor the heterogeneity of countries’ challenges
in sustainable development. We propose to tackle the definition of an
aggregated score of countries’ status by adopting the GENEPY centrality
framework, introduced in Chapter 3. Our framework provides novel insights
about countries’ efficiency in sustainable development and possibly addresses
new directions to boost their activities in time for the 2030 deadline.

4.1 Unveiling the Hidden Network of Countries
and Goals

As established by the United Nations [68], progresses in the Sustainable
Development Goals (and so, targets) are estimated using a set of indicators
providing quantitative information about countries performances; each
indicator measures the attainment of certain targets across the 17 SDGs.
Let Icgk be the k-th value of the indicator I within Goal g recorded in
country c. For the sake of comparison across indicators and Goals, most
applications consider the Icgk values to be normalised according to least and
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optimal indicator values, resulting in a percentage of achievement of the
indicator ranging from 0 to 100 [81, 90, 167] (see Section 4.4). Moreover,
per each country c, one single value of achievement P in each Goal g is
obtained as the average of the recorded and available values of the indicator
Icgk within the Goal. Namely,

Pcg = 1
Ncg

NcgØ
k=1

Icgk, (4.1)

where Ncg is the number of indicators in Goal g for country c (see Section
4.4). As introduced, to compute any aggregated score Sc for countries status
entails defining the mathematical weights wg of each Goal’s performance.
In its general formulation, Sc is defined as

Sc ∝
Ø
g

Pcg · wg, (4.2)

in which we consider the presence of any possible scaling factors.
Within this framework, our aim is to cast the computation of aggregated

scores of SDGs through the use of network science, so to exploit and unveil
the complex structure of the Agenda. Let us consider the values Pcg as the
starting point for our reasoning. We consider these values to be structured
as a matrix P with C rows, i.e., the number of countries in the analysis,
and 17 columns, as many as the Goals. Seen through network science lenses,
the matrix P reveals the presence of a bipartite system in which countries
and Goals are connected via recorded performances. In network theory,
the matrix P describing these links is denominated as incidence matrix [9]
(see Chapter 1). We consider the network structure of countries and Goals
emerging from the data taken from the latest SDG Index and Dashboard,
referring to year 2020 [82] (see Section 4.4), as exemplified in Figure 4.1.

The bipartite network representation offers the chance to borrow mathe-
matical tools from network centrality science to define the importance of the
nodes in the system and rank them accordingly [9]. Bipartite networks are
characterized by the existence of two different sets of nodes, as in this case
countries and Goals (Figure 4.1), and one centrality score can be computed
for each set. The simplest measure of centrality, the nodes’ degree, assumes
the importance of the node to be described by the number and strength of
its connections [35]. This provides the value kc = q17

g=1 Pcg for countries
[35], thus implicitly setting wg = 1 for all 17 Goals in the computation of the
score Sc in Eq. (4.2). Notice that, in this countries-SDGs network, the link
between the nodes describes the existence of a connection between a country
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Figure 4.1: The bipartite network of countries and Goals. Qualitative representation
of the bipartite network constituted by countries and Goals. On the left, we list
seven of the countries that can be found by browsing the 2020 Dashboard, as sorted
in alphabetical order [82] (the first and last two countries and the ones found at
first, second and third quarter of the list). On the right, the 17 SDGs are reported.
For each country, we connect the SDGs via the performance values Pcg in each
Goal, according to the 2020 Dashboard data [82]. The values Pcg are intended
to be readable as percentage of achievement of the Goals. We have classed these
values in ranges of 10% of performances and color-coded, in grey scale, accordingly:
the darker the links, the better the performances of the country within the Goals.
Countries’ performances smaller than 50% have been left blank.
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and a Goal but also the magnitude of this connection, represented by the
recorded performance of the country in that SDG (as plot in Figure 4.1).
Therefore, according to the degree, countries having an higher percentage
of achievement across SDGs have better chances of being central, no matter
the Goal. This rationale reflects the egalitarian principle of the Agenda, for
which all SDGs have equal importance in being achieved [60]. In fact, by
recalling that, in light of this principle, the SDG Index by Sachs et al. [90]
is defined as

SDG Index = 1
17

17Ø
g=1

Pcg,

one recognizes that the SDG Index is the degree centrality of countries
(kc = q

g Pcg) scaled by a factor 17.
The degree only measures the local information of nodes’ connections

and so it does not depict the global structure of the network (for further
details see, e.g., [15, 168]). Therefore, although in line with the principle
of equal importance of SDGs, to rank countries with equal Goal weights
entails not accounting for the complex behavior in sustainable development
we aforementioned. Such behavior can be highlighted introducing network-
comprehensive measures of centrality. Thanks to their global outlook on
the network, these kind of metrics explore different dimensions of the SDG
topic (and consequently, countries’ status) and allows one to naturally define
bottom-up weighting approaches.

The need for global centrality metrics to measure the complexity of
the system clearly arises when considering the heterogeneity of countries’
performances across the Goals, as we address in Figure 4.2. The figure plots
countries’ performances as defined by the 2020 SDG Index and Dashboard
[82] (see Section 4.4). In Figure 4.2, countries are ordered according to their
ranking position as defined by their degree (or, equivalently, the SDG Index).
These countries’ performances (which from hereon we define as ‘spectra’)
are relative ones, as they are obtained by subtracting the average perfor-
mance of the countries, kc/17 (i.e., their SDG Index), from the Goal-specific
performance, Pcg. This allows one to compare relative Goal performances
of all countries according to their efforts in sustainable development, thus
identifying areas where countries are investing more/less efforts and dis-
closing differences in their strategies. At glance, the heterogeneity of the
spectra stands out. Countries exhibit very contrasting behaviours among
them and across the Goals, witnessing the fact that the world is not moving
as a unique ensemble toward the achievement of sustainable development.
As mentioned, this is possibly due to the heterogeneity of countries contexts
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and challenges, as well as the differences in national strategies that possibly
enhance such heterogeneity across SDGs. To group countries according to
their degree kc can help understanding these differences. In fact, Figure
4.2 shows the existence of two limit behaviors of the 28 top and the 28
bottom performing countries according to the SDG Index (or degree), i.e.,
of classes 1 and 6, whose spectra are almost completely out of phase. These
dynamics are more evident within Goals of environmental performances and
exploitation, from Goal 12 to 15. As the spectra clearly show, the first 28
best countries in degree (class 1 in light blue) are poorly engaging toward
the achievement of SDG 12 and 13. In particular, Norway is the relative
worst performer in Climate Action, a Goal in which the country performs
almost −60% with respect to its SDG Index. Instead, there are many low-
degree countries (class 6 in violet) whose relative performances in Climate
Action are higher, with Central African Republic (CAF) recording +60% of
performance with respect to its SDG Index. Even if less accentuated, the
spectra of top and bottom degree countries are also out of phase in SDG
17, the one invoking partnership, in which countries nearer to fulfil most of
the Agenda are actually the worst relative performers (e.g., Latvia – LVA).
Other examples of this out of phase behavior of the countries in class 1 and 6
figure in correspondence of Goals 1, 2, 7 and 14 (Zero Poverty, Zero Hunger,
Clean Energy and Life Below Water, respectively). Drops of performances
occur for top-degree countries in Goals 2 and 14, while for bottom-degree
countries in Goals 1 and 7. For example, Singapore attainment of SDG 14 is
−60% with respect to its average performance in sustainable development.
Yemen stands as an exception of such pattern since, in Goal 1, this country
performs 40% better than its average value.

The spectra depict the complexity of the variety of approaches toward
sustainable development, in which the specificity of countries’ characteristics
has its role in determining the attainment of the Goals. Therefore, we argue
that analyses designed to consider and embed this complexity can shed new
light about the state of the art in sustainable development. The introduction
of network theory is a first step toward this direction and allows us to define
novel aggregated scores based on data-driven definition of the weights wg in
Eq (4.2). In particular, the introduction of network-comprehensive measures
centrality may help in exploring different dimensions of the SDGs topic
(and consequently, countries’ status) and allows one to naturally define
bottom-up weighting approaches.
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Figure 4.2: The spectra of countries’ relative performances as obtained by Pcg − (kc/17). Coun-
tries are first ranked and then clustered according to their average performance (i.e.,
the SDG index or, equivalently, their degree). Based on the ranking positions, we
define six classes of performance: light blue (countries in positions 1 − 28), green
(29−56), yellow (57−84), magenta (85−112), pink (113−140) and violet (141−166).
The classes’ average values of relative performances are shown in thicker lines. Top
and bottom relative performers in each Goal are pointed out, and their performance
value is color-coded as their corresponding class.
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4.2 A Data-Driven Weighting of Countries

A first revision of the degree centrality in bipartite networks consists
in weighting the connection of the node proportionally to the centrality
value of the node at the other edge, as we have introduced in Chapter 1.
Therefore, countries connected to more central SDGs obtain a higher scoring
value, and vice versa. According to this rationale, the weights to define the
aggregated score Sc in Eq. (4.2) are wg = vg, where vg is the centrality
value for Goal g. This entails solving the system of coupled equationsI

Sc ∝
q
g Pcgvg,

vg ∝
q
c PcgSc.

(4.3)

Mathematically, the solution of this system is obtained computing the
singular vectors of the matrix P which determine the eigen-centrality vectors
u and v for countries and Goals, respectively [116] (see Chapter 1, Section
1.2). While the degree is a local measure of centrality, the eigenvector is a
global one, as it considers for the computation of the scores all possible links
and strengths in the network [9, 15, 168]. However, as we show in Figure
4.3, the eigenvector centrality brings no further information in terms of
rankings than the one by the degree centrality (99.9% in both Pearson’s and
Spearman’s correlation measures). This lack of added value is due to the
intrinsic correlation that the degree and eigenvector centrality show when
the spectral gap – i.e., the delta between the first and second largest singular
vectors of the incidence matrix – is large [169]. For this particular bipartite
network, the second largest singular value is roughly one fourth of the
principal singular value, implying high correlation between the degree and
eigenvector centrality [170]. Therefore, in the countries-SDGs network, the
use of non-uniform weights as in Eq. (4.3) is almost ineffective in changing
the point of view about the state of the art in sustainable development, and
other rationale about countries inter-plays with Goals must be introduced
to remove the degree-bias that characterizes the eigenvector centrality [170].

The use of the centrality metrics defined within the field of Economic
Complexity (EC) [22, 23, 120] – that we defined in Chapter 3 – can help
in the characterization of more complex inter-plays between countries and
Goals. In fact, the idea upon which EC theory is constructed is that,
in a looping system, if a product is only exported by few countries, this
item is more knowledge-intensive than other items exported by many other
countries. (In EC, the word ‘knowledge’ intends knowledge of production,
resources, human and capital investments, eventually [4].) This determines
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higher EC scores of more knowledge-intensive goods [22, 23, 118, 120].
Clearly, weights are self-emerging from the methodology and its grounding
rationale.

In a similar manner, we can adapt the EC theory and methods to the
network of countries and SDGs, therefore introducing new reasoning about
how countries act in sustainable development. In tailoring the EC framework
to the SDGs one, we assume that, if within a Goal only few countries record
near to optimal performance values, this Goal is more knowledge-intensive
than the others, thus resulting in a higher EC score. Countries recording
such optimal performances are those ones in more favorable conditions to
attain the Goal. In fact, in here, we translate ‘knowledge’ into policy and
intervention designs and implementations; awareness and preparedness to
face the challenges, all well known factors for affecting countries performances
in sustainable development [62, 75, 82, 171–173].

We adopt the GENEPY framework, introduced in Chapter 3, since
it reconciles the contrasting methodologies on economic complexity and
it is also a reliable method for processing non-binary incidence matrices
as the one of the countries-SDGs bipartite system [120]. For the sake
of clarity, in the following, the adaptation of the GENEPY framework
to the context of the Agenda 2030 is defined as SDGs-GENEPY. To the
best of our knowledge, Cho et al. [167] is the only existing example in
literature proposing to adapt EC methodologies and centrality metrics to
score countries performances within the Agenda 2030. However, our work
differs from that one in both methodology (the Method of Reflection from
Hidalgo et al. [22] is used, instead) and data, since that work is limited to
the Asian region. The work by Cho et al. [167] also inherits the conceptual
scheme of combining capabilities for driving innovation (human and capital
resources, investments, policies [120]), which is typical of the economic
complexity. While this conceptual scheme is reasonably suitable for the
productive system, it is not in the field of sustainable development. As
we discuss, this latter area is mainly characterized by countries’ historical
phases and challenges, followed by the ensemble of decisions, planning,
strategies and willingness that nations experience along their path toward
sustainable development [82, 174, 175].

The SDGs-GENEPY rationale defines two centrality properties, Sc for
countries and Yg for SDGs, that can account for the EC rationale and
so embed the interplay between countries and Goals. The properties are
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Figure 4.4: The spectra of countries’ relative performances as obtained by Pcg/kc. Countries
are first ranked and then clustered according to their average performance (i.e., the
SDG index or, equivalently, their degree). Based on the ranking positions, we define
six classes of performance: light blue (countries in positions 1 − 28), green (29 − 56),
yellow (57 − 84), magenta (85 − 112), pink (113 − 140) and violet (141 − 166). Top
and bottom relative performers in each Goal are pointed out.
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defined through the following system (see Chapter 3, Section 3.3)Sc ∝ 1
kc

q
g Pcg

Yg

kÍ
g
,

Yg ∝ 1
kÍ

g

q
c Pcg

Sc
kc

(4.4)

in which kc = q
g Pcg is the degree of the countries, therefore the sum of all

Goals’ performances (i.e., the value of the aggregated score supposing wg = 1
for all SDGs). The term kÍ

g = q
c Pcg/kc, that we define as ‘adjusted Goal’s

degree’, is the degree of Goal g accounting for the relative performances of
countries within it. In fact, relative performances of countries can either be
computed as the subtraction of the average performances, as in Fig 4.2, or
using the ratio Pcg/kc, and the same results hold, see Figure 4.4. Therefore,
to evaluate the aggregated score of countries’ status Sc according to the
SDGs-GENEPY entails assuming wg = Yg/kÍ

g in Eq (4.2). As introduced
in Chapter 3, a closed solution for this system is provided by solving the
coupled singular vectors X and Y associated to the largest singular value
σ1 of the matrix W defined as

Wcg = Pcg
kckÍ

g

.

The matrix W helps in defining the EC rationale and in providing a sym-
metric representation of the bipartite system for which the X and Y are
determined. In fact, the vector of scores Sc according to Eq.(4.4) is the
eigenvector of values Xc,1 associated to the largest eigenvalue of the matrix
N defined as

Ncc∗ = WWÍ =
Ø
g

PcgPc∗g

kckc∗(kÍ
g)2 ; (4.5)

the vector Y for SDGs is the eigenvector of the largest eigenvalue of the
matrix Z defined as

Zgg∗ = WÍW =
Ø
c

PcgPcg∗

k2
ck

Í
gk

Í
g∗

. (4.6)

The analytical solution we here provide regarding the SDGs-GENEPY
metrics slightly differs from the one defined in Chapter 3, Section 3.3.
Thanks to the differences in the bipartite system, to adapt the GENEPY
framework to the Agenda 2030 provides a simpler mathematical rationale. In
fact, if built upon the export data, the GENEPY index is a multidimensional
centrality score for economic complexity in which two eigenvectors of the
matrix N for countries are combined (or G for products, which here has
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its counterpart in Z for SDGs); moreover, in the economic complexity case,
the self-similarities along the diagonal values of the matrices N and G
inflate the values of the eigenvectors X and Y, for countries and products,
respectively. Without any loss of information, we limit our analysis to
the first eigenvectors of the matrices N and Z, for countries and Goals,
respectively. In fact, the eigenvectors associated to smaller eigenvalues
– than the principal one – bring no relevant added information and the
quadratic terms in the formulation of the GENEPY index (Eq. (3.22) in
Chapter 3) can be neglected. In Figure 4.5 we scatter the values Xc,1 of
the first eigenvector of the matrix N, Eq. (4.5), in this chapter proposed as
the solution of the SDGs-GENEPY Sc values in Eqs. (4.4), and the SDGs-
GENEPY index computed according to the quadratic formula in Eq. (3.22)
and adapted to the countries-SDGs system. Moreover, differently from the
economic complexity case, setting the diagonal values of the matrices N and
Z to zero or leaving these as obtained by Eq. (4.5) and Eq. (4.6) does not
affect the eigenvector values Xc,1 because of the high correlation between
the eigenvectors computed in the two different ways (see Figure 4.6).

Notice that, similarly to the eigenvector centrality, the metrics provided
by the SDGs-GENEPY framework are also global ones since they account
for the overall structure of the network [120]. Nevertheless, although the
mathematical structure of Eq. (4.4) is an eigenvector one, the resulting Sc
centrality metrics is no longer degree-dominated due to the division of the
Sc values by the degree kc.

A resume of the different weighting approaches for the Sustainable
Development Goals we show in this work is given in Table 4.1.

Table 4.1: Weighting approaches through different centrality metrics. In the formulas: Sc is
the aggregate score for country c, generally defined according to Eq (4.2); Pcg is the
value of countries’ performances in Goal g; wg is the weighting value defined in Eq
(4.2); vg is the centrality score for SDGs according to the eigenvector centrality; Yg is
the centrality score for SDGs according to the SDGs-GENEPY framework, Eq (4.4)
and kÍ

g =
q

c
Pcg/kc is the adjusted Goals’ degree.

Centrality measure Aggregate score Weighting value

Degree Sc =
q
g Pcg wg = 1

Eigenvector Sc ∝
q
g Pcgvg wg = vg

GENEPY Sc ∝
q
g Pcg

Yg

kgÍ wg = Yg

kÍ
g
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Figure 4.5: Scatter plot between the quadratic and non-quadratic SDGs-GENEPY values of
countries in the bipartite countries-SDGs system. On the x-axis, the SDGs-
GENEPY values are computing by solving the system in Eqs. (4.4), and com-
puting the first eigenvector Xc,1 associated to the largest eigenvalue of the matrix
N , Eq. (4.5). On the y-axis, the SDGs-GENEPY values are computed by adapt-
ing the quadratic formula in Eq. (3.22) provided in Chapter 3 to the the bipartite
countries-SDGs system.
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(4.5), to zero.
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4.3 A Picture of Global Responses in Sustainable
Development

The application of the economic complexity theory to the bipartite
network of countries and SDGs provides useful insights about how countries
are currently responding to the call for actions toward a more equitable, just
and sustainable future. We exemplify these results through the application
of the SDGs-GENEPY framework on the data from the 2020 Dashboard by
Sachs et al. [82] (see Section 4.4). Let us start from the results obtained from
the computation of the SDGs-GENEPY values for Goals, and, consequently,
of the weights Yp/kÍ

g. In Figure 4.7 the weighting values Yp/kÍ
g are shown.

The top-weighted Goal is SDG 9 pertaining with innovation, followed
by Zero Hunger and Reduced Inequalities, SDG 2 and 10, respectively.
Climate Action (SDG 13) is the least weighted, preceded by SDG 12 and 4,
pertaining with sustainable consumption and education, respectively. The
wide differences among the weights demonstrate that the SDGs-GENEPY
framework is able to capture the contrasting performances among top ranked
countries, shown in Fig 4.2. In fact, this weighting of Goals reflects the
poor performances by (generally) high performing countries in some SDGs
(e.g., Norway in SDG 9, as will be further detailed). Moreover, these results
provide a further evidence that the SDGs are not equally integrated in
national strategies all around the world. As a consequence, the SDGs-
GENEPY weighting values of less prioritized Goals is lower than that of
more prioritized ones. (For sake of completeness, the Yp values are given in
Figure 4.8.)

Such a weighting approach determines the ranking of countries according
to SDGs-GENEPY score, which differs from the one by the degree centrality.
In Figure 4.9, we map countries’ rankings according to the SDGs-GENEPY
index and the degree value (panels (a) and (b), respectively); panel (c)
resumes the differences between the two by scattering the ranking values,
with countries color-coded according to Regions, as defined in the 2020
Dashboard [82] (see Section 4.4). As the Figure shows, although the two
rankings are mostly aligned (Pearson’s correlation coefficient 0.81), signifi-
cant differences arise. As most remarkable examples, we cite here Singapore
(SGP), which jumps from the lower half of the chart to the top of it, moving
from position 93 in degree to position 4 in the SDGs-GENEPY Sc, and
South Africa (ZAF), moves from 110 in degree to 49 in the SDGs-GENEPY
score. Instead, Chile (CHL) moves from the 28-th position in degree, to the
51-th in the SDGs-GENEPY score and Cuba (CUB), which downgrades
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Figure 4.9: Countries rankings according to the degree and SDGs-GENEPY values. In panel
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the y-axis, the SDGs-GENEPY one. Countries are color-coded according to their
Region as specified in the legend, in accordance with the region division in the 2020
Dashboard [82].
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from the 56-th position in degree to the 126-th in SDGs-GENEPY Sc.
To explain the reasons behind these variations, we refer to Norway

as a relevant example: Norway is among the top absolute performers
within SDG 9 (having largest weighting value Yg/kÍ

g), together with South
Korea and Singapore. Most countries perform poorly within this Goal
– only 50% of the value is above the 40% of Goal achievement –, as also
represented in Figure 4.2. As a consequence, the SDGs-GENEPY framework
assigns a higher weight to countries which are better performers in this
Goal. Also, Norway figures as the best absolute performer in Goal 10,
and reaches good performances in Goal 2, thus explaining the upgrading
of the North-European country from the sixth to the first position in the
SDGs-GENEPY Sc ranking. Another relevant example is represented by
the case of Singapore, a nation that due to its outstanding performances in
more knowledge-intensive SDGs, has reached the third position in SDGs-
GENEPY. In contrast, Norway and Singapore are among the worst relative
performers in SDGs 13 and 12, respectively (see Figure 4.2), but their low
performances in these SDGs are comparatively less relevant within the
SDGs-GENEPY framework, due to the lower weight values assigned to
these two Goals.

4.4 A Note on the Use of the SDG Index and
Dashboards

Notwithstanding the call for efforts toward the standardization in the
data collection by all National Statistical Systems, NSSs, launched by
the Cape Town Global Action Plan in 2017 [176], the data accessible at
the UN Statistics Division (available at https://unstats.un.org/sdgs/
indicators/database/) clearly show that work is still needed to have a
comprehensive, homogeneous, and extensive database covering all countries
and years under the Agenda 2030 and beyond. For this reason, the input data
we are using are taken from the 2020 SDG Index and Dashboard [82], which
represent a commendable step forward in data collection, homogenization
and assessment of countries progresses in sustainable development. The aim
of the Dashboard is to provide yearly rankings of UN countries based on an
aggregated score of all Goals’ performances. The score is intended to be
readable as a percentage of achievement of all the Goals, ranging from 0 to
100; therefore, countries close to 100 are approaching the complete fulfilling
of the Agenda’s Goals according to the indicators used to compute the
score [90]. The score is constructed upon a number of indicators providing
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4.4. A Note on the Use of the SDG Index and Dashboards

quantitative information about countries performances. All listed indicators
are normalized according to an optimum and a minimum value of indicator
performance to ensure comparability and aggregation of measurements (we
refer the reader to [82, 90] for further details). Listed indicators are updated
every year, accounting for advances in monitoring and research. In order
to provide statistical-sound results, we only refer to 2020 data, thus not
inferring any possible missing data back in other years’ Dashboards. The
2020 data-set constitutes of 115 indicators across the Goals, 30 of which
are specifically defined for the members of the Organization for Economic
Co-operation and Development (OECD). The Dashboard only includes
countries covering at least 85% of the indicators, totalling 166 out of 193
UN countries. To have OECD-specific indicators entails that, with respect
to the same Goal g, the term Ncg (from which, in Eq (4.1), the value of
performance Pcg is obtained) differs between OECD and other countries.
The Dashboard also introduces Regional scores, assigning countries to 7
different Regions around the world, namely: Sub-Saharan Africa, Middle
East and North Africa – MENA –, East and South Asia, Eastern Europe
and Central Asia, Latin America and the Caribbean – LAC –, Oceania
and OECD group, which we use to color-code countries in Figure 4.9. In
line with the methodology exemplified with the SDG Index, we replaces
countries’ missing data with the Regional score in that same Goal [90].

Concluding Remarks

The problem of defining aggregated scores in sustainable development
is a recurrent one, also required to track the path toward the achievement
of the Goals within the Agenda 2030 and many strategies can be pursued
for their computation (see, e.g., [81, 82]). Nevertheless, the complexity of
the Agenda 2030 should not be neglected when defining aggregated scores
(the complexity is related to the presence of trade-offs and synergies among
the Sustainable Development Goals and the heterogeneity of countries’
challenges and responses [79, 81]). In light of this complexity, in this work
we have introduced a novel perspective on sustainable development in which
we addressed, within a network science framework, the need for ranking
countries for their status with respect to what set by the Agenda. In
particular, we show that the countries-SDGs system can be structured as a
bipartite network and that, by using the centrality tools, different weighting
approaches naturally emerge for the computation of aggregated scores to
rank countries accordingly.
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4. Network-Driven Rankings of Countries’ Status in SDGs

Thanks to this network representation of the system, we show that the
SDG Index identified by Sachs et al. [82] – which, in line with the Agenda’s
principles, considers equal weights for all Goals – corresponds to measure
the degree of countries. In network science, the degree centrality measures
the local behavior of the node and it does not account for the complex
interconnections of the system. A first step toward the use of global metrics
to account for the structure of the network is the use of the eigenvector
centrality. However, we have demonstrated that in the countries – SDGs
system, the information about the degree of countries recurs even when
evolving to the eigen-centrality. Besides the formal reasoning about the
spectral gap, the strong correlation between the two centrality metrics is
due to the fact that countries’ performances in SDGs are highly correlated,
especially if they have similar degree (see Figure 4.10). This fact highlights
that countries set in similar development conditions [177] tend to emulate
each other performances [178] and explains why, when ranked for their
degree, nearby positioned countries show similar behavioral patterns (see
Fig. 4.2). Nevertheless, the relative spectra shown in Fig. 4.2 also show the
heterogeneity of all countries’ performances around the world also beyond
their average value (or equivalently, the degree). This suggests the need for
more subtle metrics able to unravel the complexity of the system. We address
this change of weighting perspective through the GENeralized Economic
complexity framework (SDGs-GENEPY) [120].

The SDGs-GENEPY approach we propose for the creation of one ag-
gregated score brings two main positive advancements. Firstly, the weights
wg = Yg/kÍ

g are self-emerging from the data, and they account for the
relative performances of countries as measured by term kÍ

g. Secondly, the di-
vision of the SDGs-GENEPY Sc values for kc – intrinsic of the computation
of the index – removes the undesired degree-bias which is known to affect
eigenvector-based centrality measures [170], thus providing useful insights
about the countries’ status in sustainable development. These characteristics
of the SDGs-GENEPY framework can be interpreted in light of further con-
siderations about the Agenda 2030. Countries whose relative performance
value Pcg/kc in Goal g is greater than that in other SDGs, give a higher
contribution to the term kÍ

g. Its inverse 1/kÍ
g possibly diagnoses structural

limitations in achieving the Goal: higher values of 1/kÍ
g are obtained for

those Goals in which only few countries have positive relative performances.
Therefore, we can assume that heavier (in sense of weights) Goals are also
those ones that some countries favor with national strategies, to the detri-
ment of other Goals. This is witnessed by the fact of having found Climate
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Figure 4.10: Pearson’s correlation values of countries’ performances. We consider the
correlation between the rows of the matrix of performances P. The rows of the
matrix, and so countries, are ordered – top to bottom – according to decreasing
value of countries’ degree, kc. This allows one to order countries according to the
similarities in their development conditions. For sake of representation, we summa-
rize correlation through the computation of lagged correlations: each point on the
plot represents the average value of all correlations between countries positioned
at a defined lag step. Therefore, the last point of the plot defines the correlation
between the first and last rows (i.e., countries), for which a negative correlation
value is obtained.

Action and Innovation as, respectively, the lowest and greatest weighted
Goals, whose wg = Yg/kÍ

g values are mainly determined by the relative
performances of high-income and sustainable-outperforming countries, such
as Norway (see Figure 4.2). Evidence of the validity of such analysis can
be found in Norway’s strategies of development, among the most relevant
example in this study. Norway is currently diversifying its industrial sector
by enhancing investments in the Research and Development area, so to face
the reduction in prices of crude oil [179, 180] (see, also, the Climate Action
Tracker, https://climateactiontracker.org/countries/norway/). In
fact, Norway is one of the world-wide leader exporter of crude oil [140], a
fact that puts under the spotlight Norway’s shared responsibility in Climate
Action and the permanent presence of trade-offs between economic and envi-
ronmental issues at the world level [181]. Therefore, in the SDGs-GENEPY
indexing approach, the heterogeneity of countries and contrasting policy
implementations are naturally embedded through the data and brought up
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4. Network-Driven Rankings of Countries’ Status in SDGs

by the algorithm, determining the weights of SDGs. This hierarchy testifies
the shared global responsibility in sustainable development and the intrinsic
compromise among political willingness, opportunities and capacities to
move toward sustainable development [82, 174, 175]. This compromise is
even more evident in countries with more favorable conditions to fulfill the
Agenda, resulting in higher ‘knowledge’ (i.e., policy and intervention designs
and implementations; awareness and preparedness to face the challenges
[62, 75, 82, 171–173]).

In light of these considerations, we can interpret the SDGs-GENEPY
ranking of countries as a picture of shared responsibilities, where it emerges
the possibility for nations to act like role-models and promote the achieve-
ment of global sustainable development. In light of the emulation phenomena
among countries [178], we argue that to identify role-model countries is
rather relevant and in can pave the way to a new strategy for boosting
sustainable development in the next decade. In particular, our ranking can
be used as an ‘ex post’ and complementary tool to the Rapid Integrated
Assessment – RIA – analysis [61] which the United Nations conduct to
monitor the willingness of countries in integrating the Goals within their
national strategies. In this sense, our analysis would effectively provide
insights about the implementation of such plans, also providing a tool for
comparing the efforts across countries. Moreover, such approach can be
suitably adapted to sub-national level by using regional data on sustain-
ability performance, thus revealing crucial features of countries’ regional
efficiency in sustainable development.

In conclusion, the burgeoning literature in the field of SDGs assess-
ments suggests the presence of different ideologies about how to properly
measure the status of countries for their sustainability path. In light of
the complexity of the system defined within the Agenda 2030, we realize
that the understanding of such paths should not be shrunk to a single
indicator analysis. Therefore, to fully understand countries’ paths toward
sustainable development, we suggest the use of different and complementary
mathematical approaches, as, e.g., the computation of both the degree and
SDGs-GENEPY ranking. Such parallel analysis would provide a bird’s-eye
view of the conditions of countries to achieve sustainable development while
providing a list of change-making places and actions that can help meeting
the 2030 deadline.
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5
Final Remarks

The present thesis contributes to interdisciplinary research literature
in complexity science, economics, innovation and sustainable development.
The central theme of this contribution is represented by network science,
which has been recognized to be a powerful mathematical tool to disentangle
the complexity of systems, and its applications range in many fields. Never-
theless, the heterogeneity of some network science applications, especially
the ones concerning with the use of centrality measures, possibly mine the
use of this theory in providing novel insights about the systems under study.

Therefore, as first contribution, we began with addressing the general
problem of identifying central nodes (i.e., important) in a network. In
the first part of this work, in Chapter 2, we recast the question “what
does it mean to be central in a network ?” within a statistical framework.
Within such framework, different centrality measures are used as explaining
variables in an estimation exercise of the adjacency matrix of the network
and their performances are compared according to their ability to provide
better estimates. Under this statistical perspective, the frequently used
one-dimensional centrality metrics for undirected (i.e., degree, eigenvector
and Katz centrality) and directed networks (i.e., degree and hub-authority
centrality), provide the same information and perform poorly in reconstruct-
ing the network. As a solution, we introduced multi-dimensional centrality
metrics to improve the estimation results, also providing with the useful fea-
ture of ranking the nodes in the network thanks to the use of the statistical
concept of unique contribution.

Taking the multi-dimensional metrics of nodes’ centrality as the starting
point, Chapter 3 contributes to the literature in the Economic Complexity
field. This new economic theory faces the shrinking of information that
affects most economic models and indicators (as the Gross Domestic Prod-
ucts) by introducing a data-driven analysis of the innovation and growth
potential of countries at the world level. The theory is network based, as it
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introduces the structuring of the export data as a bipartite system of coun-
tries and traded commodities. In order to analyse the innovation potential
of countries, special centrality metrics have been introduced to deal with
such system. However, also in this field the contrasting theories on how to
measure the importance of the nodes – in this particular case, innovation –
undermine their potential. By exploiting the results on multi-dimensional
metrics of Chapter 2 and the linear algebra upon which these are constructed,
we reconcile the most notorious metrics of Economic Complexity in one
single value, the GENeralized Economic comPlexitY index (GENEPY). We
have shown that the GENEPY is able to track the trajectories of growth of
countries without the need to add exogenous information about countries’
economies. Among the many other advantages of the GENEPY index that
we discussed (its linearity and neatness), the GENEPY formulation paves
the way to the micro-foundation of the economic complexity. In fact, the
GENEPY index has the same structure as the microeconomics-based EXPY
index and this is not an a priori construction. Therefore, the GENEPY
framework can actually shed new light about the microeconomics capabilities
of countries to boost their performances at the macroeconomic level.

The final contribution of this thesis deals with sustainable development
and, in particular, the Agenda 2030. The global call for actions that the
United Nations have introduced in 2015 targets sustainable development of
all countries through the definition of the 17 Sustainable Development Goals.
These Goals promote a more equal, just and sustainable future in which
socio-economic and environmental development are in balance. The system
of countries and Goals within the Agenda 2030 is a complex one, due to the
demonstrated synergies and trade-off among the Goals and, nonetheless,
due to the heterogeneity of countries. While network theory has been used
to unveil the interconnections among the Goals, no substantial literature
has been found that concerns with its use to rank countries according to
their status in sustainable development; although, the strategy of indexing
in the development field is a recurrent one. Therefore, we have introduced
the bipartite network representation of the countries – Goals system that
allowed us to analyse the definition of rankings of countries through cen-
trality metrics. Against the need to embed the network complexity of the
interconnections between countries and Goals, we introduced the use of
the GENEPY framework to this system to shed new light about country’s
efficiency in sustainable development. In fact, we suggest that the adoption
of the economic complexity theory to the field of sustainable development
can possibly identify role-model countries to address change making actions
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5. Final Remarks

and sheds further lights about the trade-offs between environmental and
economic issues.

In a nutshell, in this work we have presented unique and novel network
science approaches to track and address global performances of innovation
and sustainability.

5.1 Limitations, Future Works and Perspectives

The results of this thesis are mainly based on statistical analyses and
data-driven approaches. Each of our contributions presents room for im-
provements and contexts of application.

Firstly, the statistical perspective about network centrality has only been
defined for a subset of centrality metrics, i.e., the degree and eigenvector-
based centrality. While some centrality metrics based on paths measuring, as
the closeness, can be recast in this statistical perspective through specifically-
defined matrix, this might not be true for other metrics. Against many
efforts, an exact solution of this statistical perspective for the PageRank
centrality has not been defined. The PageRank is a peculiar centrality
metrics which provides a random walk interpretation of the network; and its
popularity is increasing. Differently from the other measures set in directed
networks, the Page Rank centrality neglects one of the two properties of the
nodes – namely, the outgoing edges – and it only measures the in-centrality
of the nodes. This asymmetric characteristic of the metrics already biases
the use of the Page Rank as an estimator of the original network, which is
intrinsically characterized by two dimensions as defined by the directions of
the edges. Therefore, we address future work toward matrix manipulation
that can allow one to recover the Page Rank centrality within the proposed
statistical framework. Also, we address exploration of the results concerning
different errors, estimator functions definitions or statistical estimation
method (as using the maximum likelihood, perhaps). Eventually, further
work could be dedicated to considering the Shapley values instead of the
Unique Contribution for valuing the estimation power of the centrality
scores.

Secondly, the GENEPY framework defines centrality metrics for bipar-
tite systems. Although we have proven its efficacy in shedding new light
on the system of sustainable development, the application of the GENEPY
framework cannot be generalized to all bipartite systems due to its mathe-
matical linear nature. In fact, we have discussed the role of non-linearity in
unveiling the nestedness feature of some systems, in particular the ecological
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5.1. Limitations, Future Works and Perspectives

ones, where entities remain trapped in some peculiar states, not having
the possibility to explore all the possible states in finite (or even infinite)
observation time. Instead, in the economic complexity and the sustainable
development field we expect all the countries to be able – sooner or later –
to improve the sophistication of their export baskets and to complete the
fulfillment of the Goals, respectively. The systems that are able to explore
all their possible states in finite times are called ergodic. We speculate that
the GENEPY framework, due to its linear nature, could be applied to more
ergodic systems (i.e., systems where the ergodicity condition is reached on
time scales not to far from the characteristic time scales of the system);
whereas, non-ergodic systems, such as that of plant-pollinators, may require
other algorithms suitable for their intrinsic non-linear nature. Therefore,
we plan to address future work in the understanding of the role of linearity
in these non-ergodic systems. Moreover, as concerns the field of economic
complexity, we address future work toward the micro-foundation of the field
due to the similarities with the EXPY framework and the understanding
of the possible predicting power of the GENEPY index about economic
growth.

Thirdly, the application of network science to the Agenda 2030 is a pow-
erful tool to address efforts toward the fulfillment of the Goals. Nevertheless,
these directions hardly depend on the input data used to run the GENEPY
analysis. For more extensive and comprehensive studies of countries’ effi-
cacy, we address future work toward the collection and homogenization of
countries’ performances within the indicators of sustainable development,
especially those ones in line with the Agenda’s definitions.

In conclusion, this thesis confirms the importance of network science and
data-driven approaches in providing new perspectives about socio-economics
systems, perspectives that should accompany more standard doctrines in
defining change making actions.
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A
The Implications of Becoming a Rel-
evant Exporter for Water Resources

Food demand has an environmental impact on the water resources [182].
In fact, food production, including crops and animal products, requires
water to be processed. This consumption of water resources for production
of goods (or even services) is defined as Water Footprint (WF) [183] and it
shows a global variability of its own (it depends on climate factors, land
characteristics, type of cultivation, irrigation system, among the many
other factors) [184]. For agricultural products, the most water consumption
happens during the process of growing the crop or tree, i.e., from seeding to
harvest. Other steps of the supply chain generally involve a smaller amount
of water [183]. The amount of water which is embedded in a good at the
end of the production stages is defined as Virtual Water Content (VWC)
[184].

By considering VWC, the international trade of agricultural products
also entails trading the water resources of the countries in which production
occurs [185]. Therefore, the impact of trade on national local resources varies
according to the water requirements of the product traded and to the water
availability of the exporting country [182]. Nevertheless, the analyses we
here present about the relationship between market competition dynamics
and water footprint shows that trade choices of countries sometimes produce
the over-exploitation of water resources.

We consider two different crop products, maize and vanilla, which are set
in two different market dynamics [186]. On the one hand, maize is considered
to be a staple product, i.e., it is set in a relatively more competitive market
and its production is ubiquitous. In determining its pricing values, maize
producers also tend to account for its water footprint on the national water
resources [186]. On the other hand, the so-called cash crops, such as vanilla,
are often produced in situations of oligopoly, in which large producing and
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trading countries mainly determine prices without accounting for the water
footprint [186]. In economic complexity terms, maize is less complex than
vanilla, and the latter constitute a niche product.

The law of comparative advantage in economics states that, under free
trade conditions, countries tend to produce more of a good for which they
can economically gain from trade, thus assigning production to export rather
than to local consumption [187]. As stated in Chapter 3, the relevance of this
advantage can be computed through the Revealed Comparative Advantage
method [121], which accounts for the global export of the product and the
share of the countries within the global market.

From the ‘water footprint’ point of view, such advantage may become
a main driver of water-resources depletion, also providing poor gain in
comparative advantage. To provide an example, in Table A.1 we report
the top three worldwide producers of maize (USA, China and Brazil) and
vanilla (Madagascar, Indonesia and China), detailing the volumes of their
production and export, the water footprint of their production and their
RCA values in that product.

As we show in Table A.1, the Revealed Comparative Advantage of
Madagascar in the export of vanilla is relevantly greater than 1. The export
of vanilla from Madagascar is almost two third of the worldwide trade of
vanilla. In terms of water cost, the virtual water export through vanilla is
almost 1 billion cubic meters. Brazil generates a water footprint of 24.8
billion cubic meters on its water resources to gain 13.62 points of RCA in
maize export. Roughly the same water footprint is generated in USA for
the export of maize, however determining a lower RCA score for the country.
However, not all the top three worldwide producers of maize and vanilla
relevantly gain in trade from the over-exploitation of their water resources.
This is particularly true for China, which generates a big water footprint for
the generation of the export of maize and vanilla that provide a very small
Revealed Comparative Advantage, 0.0017 and 0.009, respectively. In terms
of Economic Complexity, these values are clearly meaningless, especially if
compared to the other countries’ RCA values in the same products and to
the standard threshold value of RCA = 1. Nevertheless, such exports are
clearly relevant for the water resources of China. A small export contribution
of 0.13 % of the Chinese vanilla produces a water footprint of 2.7 million
cubic meter.
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A. The Implications of Becoming a Relevant Exporter for Water Resources

Table A.1: For the top three producers of maize and vanilla worldwide, we detail their water
footprint of production and export and the economic gain (detailed as price per
unit, share of export worldwide, volume of dollars gained from the export and the
Revealed Comparative Advantage). The data on the water footprints are taken
from the CWASI database [188]; data on export volumes in dollars are taken and
processed from the CEPII-BACI dataset [140]. Data on prices of production are
taken from Falsetti et al. [186]. All data refer to 2015.

Variables Maize Vanilla
Producers/
Exporter USA CHN BRA MDG IDN CHN

Water footprint of
production
(m3/ton)

479 881 723 339 868 90 783 64 478

Volume of
production
(ton)

34.5 M 26.5 M 8.5 M 292 200 57

Price of production
per unit
(USD/ton)

130 602 227 3 412 1 708 16 912

Export share
(% global amount
of export)

30.6 % 17.5 % 0.03 % 62.2 % 5.19 % 0.13 %

Volume of water
export (m3) 21.3 B 8.4 M 24.8 B 0.96 B 34.1 M 2.7 M

Volume of export
(USD) 9.7 B 7.93 M 5.18 B 290 M 24.2 M 626 K

Revealed
Comparative
Advantage
(relevant exporter
for RCA > 1)

3.42 0.0017 13.62 3 641 4.6 0.009

131





B
The GENEPY Ranking of Countries
in Economic Complexity

Results refer to 2017. Further details are provided in Chapter 3.
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C
The GENEPY Ranking of Countries
in Sustainable Development

Results refer to 2020. Further details are provided in Chapter 4.
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Nomenclature

Abbreviation
EC Economic Complexity
ECI Economic Complexity Index
FC Fitness and Complexity algorithm
GDP Gross Domestic Product
GDP PPP Gross Domestic Product at Power Purchasing Parity
GENEPY GENeralized Economic comPlexitY
HS Harmonized System
MR Method of Reflections
PCI Product Complexity Index
RCA Relative Comparative Advantage
SDG Sustainable Development Goal
SDGs Sustainable Development Goals
SE Sum of squared Errors
SVD Singular Value Decomposition
TSS Total Sum of Squares
UC Unique Contribution
UN United Nations

Recurrent symbols
λ Eigenvalues of a generic matrix
σ Singular values of a generic matrix
k Degree of a node
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