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ABSTRACT Optical networking is fast evolving towards the applications of the Software-defined
Networking (SDN) paradigm down to the (Wavelength-division Multiplexing) WDM transport layer for
cost-effective and flexible infrastructure management. Optical SDN requires each network element’s soft-
ware abstraction to enable full control by the centralized network controller. Nowadays, modern network
elements, especially photonic switching systems, are developed by exploiting the fast-emerging technology
of Photonic Integrated Circuit (PIC) that consists of complex fabrics of elementary units that can be driven
individually using a large set of elementary controls. In this work, we focus on modeling the elementary
control states of the topological structures behind PIC N×N switches under a fully blind approach based
on Machine Learning (ML) techniques. The ML agent’s training and testing datasets are obtained synthet-
ically by software simulation of the photonic switch structure. The proposed technique’s scalability and
accuracy are validated by considering different dimensions N and applying it to two different switching
topologies: the Honey-Comb Rearrangeable Optical Switch and the Beneš network. Excellent results in
terms of prediction of the control states are achieved for both of the considered topologies.

INDEX TERMS Machine learning, optical switches, photonic integrated circuits, silicon photonics,
microring resonators.

I. INTRODUCTION

THE EVER-INCREASING demand for global Internet
traffic and evolving concepts of connectivity demand

for flexible and dynamic networking at every layer. To
obtain the required degree of flexibility, network elements
and functions must be virtualized within the network oper-
ating system, implementing the SDN paradigm. With the
introduction of coherent optical technologies for wavelength-
division multiplexed optical transport and re-configurable
optical switches for transparent wavelength routing, in opti-
cal networking, the SDN paradigm extends down to the
physical layer [1], [2]. To pursue such an objective, opti-
cal network elements and transmission functions must be

abstracted for quality-of-transmission (QoT) impairments
and for controlling to enable full management by the opti-
cal control plane within the optical network controller [3],
[4] as pictorially described in Fig. 1. This work focuses on
the abstraction of control states of optical switches based
on PICs with a structure-agnostic approach based on ML
techniques.
Nowadays, smart optical network elements are progres-

sively exploiting PICs to perform complex functions at the
photonic level. In particular, in fiber-optics communications
and data centers, large-scale photonic switches together with
wavelength selective switches have a ubiquitous role, with
primary merits due to their wide-band capabilities together
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with low latency and low power consumption. Typically
photonic switches are based on the principle that electrical
control signals can maneuver the flow of light: using this
mechanism, optical signals can be routed to different paths.
Before the development of PIC solutions, different switching
technologies have been proposed, such as three-dimensional
Micro-Electro-Mechanical Systems (MEMS) [5] and beam-
steering technique [6]. They both give stable optical switch-
ing and a reasonable degree of scalability, but the obligation
for precise calibration and installation of discrete components
makes them much more costly and bulkier. This increases the
trend of using PICs-based components, especially photonic
switches, which demands a generic softwareized control
model for photonic switches’ control states to enable full
control by the single centralized controller.
PIC-based solutions mostly rely on elementary cells such

as Mach-Zehnder Interferometers (MZI) [7] or optical Micro
Ring Resonators (MRR) [8]. The generic N × N optical
switch fabric is built by interconnecting multiple stages of
elementary cells following a defined switching topology,
where N input signals at different wavelengths can be routed
to any of the N output ports by varying M control states.
In scaling up the size of N × N switch fabrics, the funda-
mental requirement is to efficiently define the control states
of the internal switches and obtain the requested signals’
permutation at the output of the integrated circuit.
Currently, the research on control/routing states of the

photonic switches has been sparsely reported. Unlike the elec-
tronic switches routing algorithms [9], where the performance
of all paths are equal, the optical switches generally have
path-dependent performance [10]. Variations in performance
can be intrinsically due to the topology, or they can orig-
inate by fabrication and design defects, which may affect
the elementary cells’ different switching states and their
cascading effect on the whole device. Deterministic rout-
ing algorithms can efficiently calculate the control state of
the internal switches for any requested output permutation.
The efficiency of these algorithms originates in their topology
dependence, which allows for a faster and more effective eval-
uation of themultistage networks. In contrast, general-purpose
routing algorithms do not provide scalable solutions, as the
computational complexity increases rapidly [11], [12], [13].
This is caused by the exponential growth of the control states
Nst in the network, which depends on the number of switches
M as Nst = 2M . This makes the generation and evaluation
of the entire routing space unfeasible and evaluating the
weighted penalties for all configurations.
In contrast with traditional topology-dependent strategies,

we propose a generic data-driven model based on ML to
predict the control states of any N × N photonic inte-
grated switching system. ML strategies have already been
tested in managing PICs. An algorithm powered by the
artificial neural network is proposed in [14] to calibrate
2 × 2 dual-ring assisted-MZI switches. In [15], the author
reported and experimentally demonstrated a full self-learning
and reconfigurable photonic signal processor based on an

FIGURE 1. Abstraction of the optical switch in a SDN-controlled optical network.

optical neural network chip. The proposed chip performs
various functions by self-learning, such as multi-channel
optical switching, optical multiple-input-multiple-output de-
scrambling, and tunable optical filtering. In [16], it is
proposed to use the Deep Reinforcement Learning (DRL)
technique to reconfigure silicon photonic Flexible Low-
latency Interconnect Optical Network Switch (Flex-LIONS)
according to the traffic characteristics in High-Performance
Computing (HPC) systems. Furthermore, a novel reinforce-
ment ML-based framework called DeepConf is introduced
in [17], for automatically learning and implementing a range
of data center networking techniques. Such a framework sim-
plifies configuring and training of deep learning agents by
using intermediate representation to learn different tasks.
In this work, we present a novel topology-agnostic blind

approach exploiting an ML agent to predict the control states
of the N × N photonic switch with an arbitrary and poten-
tially unknown internal structure. The agent is trained by
a dataset obtained by the component under test used as a
black-box. The training dataset can be either obtained experi-
mentally or synthetically by relying on a component software
simulator.
Preliminary and partial results for this approach are

presented in [18]. In this paper, besides describing in detail
the methodology, we extend the framework towards the
optimization of the ML models in terms of prediction, accu-
racy, and complexity, as well as verifying and analyzing
the error distribution in the predicted control states. The
error analysis aims at assessing the quantitative effects of the
trained ML agent in predicting the proper internal switch-
ing routing, given the PIC topology. Furthermore, the future
evolution of the proposed work will target the inclusion of
transmission penalties in ML agent prediction to evaluate the
impact on the QoT of channels processed by the switching
system.
The remainder of the paper is organized as follows. In

Section II, we describe the specific architecture of the Beneš
and HCROS switches used for the demonstration of the
proposed ML agent. In Section III, we describe the sim-
ulation environment used to generate datasets, presenting
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FIGURE 2. Illustration of Bar and Cross states of a 2 × 2 elementary switching
element (CrossBar switch).

its structure and various statistics. Then, in Section IV, we
describe the structure of the proposed ML agent, showing
how it is trained on the datasets of different controls and
output signals permutations in order to predict the control
states of internal switching elements. In this work, we do not
aim to develop a specific ML model; instead, our focus is to
show the general effectiveness of ML in this scenario. So, we
exploit an extensively tested opensource project, namely the
TensorFlow c© library [19]. Results of our approach are shown
in detail in Section V. We demonstrate that the trained ML
agent enables the correct estimation of the internal switching
elements control states for different N×N sizes and topolo-
gies. We also show that a heuristically enhanced ML agent
can further improve the predictions’ accuracy in the present
scenario. Finally, conclusions are presented in Section VI.

II. SWITCHING TOPOLOGIES
The switching networks analyzed to validate the proposed
ML-based routing approach belong to a class of multistage
crossover switches akin to the Banyan and Clos networks:
these topologies are composed by several elementary 2 × 2
crossbar switches, arranged in multiple stages with variable
interconnections, to route a generic number N of inputs to
a required output configuration. From a topological point of
view, the most important property for the optical applica-
tion is to route each possible requested output permutation
without internal conflicts.
Based on this property, the networks can be divided into

two main classes: non-blocking and blocking, representing
the ability to route all possible permutations of N inputs
to the N output ports. For the scope of this analysis, only
non-blocking networks have been analyzed, as they provide
a more useful application and more complex topological
characteristics with respect to the blocking networks.

A. THE 2 × 2 CROSSBAR SWITCH
A 2 × 2 CrossBar switch is the basic building block used
for the generation of these networks. Such a device has two
main states: the BAR state, where the inputs are directly
routed to the output ports (

(
λ1
λ2

)
→

(
λ1
λ2

)
), and the CROSS

state, where the signals target ports are inverted (
(

λ1
λ2

)
→(

λ2
λ1

)
), as shown in Fig. 2. These ideal switches can be

implemented through different structures at the circuit level:

FIGURE 3. Topology of switching architectures: (a) Beneš network, (b) HCROS
12 × 12.

add-drop MRR and MZI can be used to design these devices
for both colorless and wavelength-dependent systems.

B. THE N × N BENEŠ NETWORK
A Beneš network is a sub-type of Clos networks with 2×2
basic elements. By definition, the number of inputs is lim-
ited to N = 2k, k ∈ N although it is possible to generalize
its size to any number of inputs through a structure called
Arbitrary Sized Beneš (AS-Beneš) [20]: the properties of
the network are unchanged with respect to the constrained
definition, so the generalization will be called Beneš as
the strict-sense one (Fig. 3a). In the strict-sense definition
of non-blocking network, new links can always be estab-
lished without changing the previously set paths; the Beneš
networks is a rearrangeable non-blocking structure, meaning
that new input-output links can always be established (all
output permutations are possible), but the existing links may
need to be routed through different paths.
In terms of complexity, the Beneš networks can be

analyzed through two main parameters:

• the number of unique output permutations, equal to N!.
• the number of different configurations of the network
that grows exponentially with the number of switches
as 2M , with M = N log2 N − N

2 for strict-sense Beneš,
while for AS-Beneš the formula must be evaluated
recursively [20].

1360 VOLUME 2, 2021



Due to the size mismatch between the number of unique
output and network configurations, this class of topologies
allows alternative routings for the same output permuta-
tions: the number of equivalent routings differs depending
on the requested output permutation, with an average of
2M/N! alternatives for each output. It is worth observing
that deterministic algorithms exist for the Beneš network,
which allows calculating a control configuration driving the
requested output permutation [9], [21]. In this work, however,
we consider the whole switch as a generic black box, regard-
less of the specific internal implementation, to validate the
ML-based approach. To demonstrate the scalability of the
proposed method with respect to the network complexity,
three different instances of Beneš topologies were studied,
with increasing size N = 8, 10 and 15. The corresponding
number of 2 × 2 switching elements in each configuration
is M = 20, 26 and 49, which represent the control vector
size, or the labels of the ML agent.

C. THE HCROS CONFIGURATION
The HCROS is an alternative with respect to the Beneš
network [22]. It maintains similar properties as non-blocking
rearrangeability and number of switches, although showing
a different topology without the horizontal symmetry and
recursive structure, as shown in Fig. 3b. The 6 × 6 structure
has been used to create a 12×12 switch, to achieve a dimen-
sion more suitable for the proposed analysis. The device is
composed of M = 36 basic switching elements, comparable
with the three Beneš switches studied. It offers a neces-
sary benchmark for evaluating the ML-agent performance
for less regular and recursive structures and, in particular, to
demonstrate the capability to handle any switch structure.

III. SIMULATION & DATASET GENERATION
Datasets are needed for training and verification: they
are obtained through an abstracted implementation of the
previously discussed topologies. Each 2 × 2 switch element
is driven by a control bit, with 0 representing the BAR state
and 1 the CROSS state: each configuration of the network
can be then described by a bit-array of length equal to the
number of switches M. The considered structures are imple-
mented as a cascade of permutation matrices, representing
each switch and crossing stage. In multistage structures like
the Beneš switch and HCROS, the network’s output for a
given control vector can be calculated applying the permuta-
tion matrices for each stage sequentially [9], without having
the explore a more complex and computationally expensive
graph structure.
In non-blocking network switch topologies, the M control

states’ variation typically generates 2M total combination,
whereas N! is the number of distinct permutations of the N
input signals, as shown in Fig. 4. For practical purposes, the
dataset’s size for training should be much smaller than the
full-sized look-up table: if such a table could be evaluated, no
other algorithm would be needed to route the inputs. Here,
the training dataset is assembled from unique random control

TABLE 1. Dataset statistics.

FIGURE 4. Graphical representation of all possible N! output states for a N × N
fabric.

vectors to avoid any possible bias toward certain switch
configurations or preferential paths within the network. The
total train and test dataset for the considered Beneš networks
and HCROS is a subset of the total 2M control combinations,
as reported in Table 1.
After having trained the ML agent, the testing procedure

is the following. For each of the randomly selected permu-
tations of the test dataset’s output channels, a corresponding
sequence of control states is returned by the ML agent. This
sequence is used to calculate the actual outputs permutation
by using the simulator based on the permutation matrices’
product. Comparing the requested output permutation with
the one obtained using the predicted control states sequence,
we can determine the ML agent’s accuracy.

IV. MACHINE LEARNING FRAMEWORK
This section describes the proposed ML agent’s structure and
workflow trained on the generated dataset. We also describe
the orchestration of the trained module specifying features,
labels, and the additional configuration parameters of the
ML engine.
The proposed ML-based technique considers the N × N

photonic switch as a black-box, requiring a sufficiently large
amount of training data to develop a cognitive model with-
out considering the internal architecture. We select a Deep
Neural Network (DNN) [23] as an ML algorithm since it is a
powerful tool that has shown significant results in numerous
frameworks like the one under investigation. Like all other
supervised ML-based learning methods, in order to perform
the training and prediction processes, the proposed model
requires the definition of the features and labels representing
the system inputs and outputs, respectively. The manipulated
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FIGURE 5. Description of the Machine Learning agent.

FIGURE 6. Parallel architecture of a deep neural network with three hidden layers.

features include the various permutations of the input sig-
nals (λ1, λ2, λ3 · · · λn) at the output ports of the switch, and
it exploits its M control states shown in Fig. 5 as labels.
The proposed DNN is developed by using higher-level APIs
of the TensorFlow c© platform [19], which provides various
learning algorithms as well as appropriate functions to refine
the dataset before using it as the model input.
The considered DNN is configured by several parametric

values that have been optimized (such as the training steps,
set to 1000), loaded with the Adaptive Gradient Algorithm
(ADAGRAD) Keras optimizer, with learning rate set to 10−2

and L1 regularization set to 10−3 [24]. Moreover, several
non-linear activation functions such as Relu, tanh, sigmoid
have been tested during the model building. After testing,
Relu has been selected to implement DNN as it outperforms
the others in terms of prediction and computational load [25].
Another important DNN parameter is the number of

hidden-layers. The model has been tuned on several numbers
of hidden-layers and neurons to achieve the best trade-
off between precision and computational time. Although an
increase in the number of layers and neurons improves the
accuracy of the DNN up to a certain extent, a further increase
in these values introduces diminishing returns that cause
over-fitting while simultaneously increasing the computa-
tional time. After this trade-off analysis, we decided upon

FIGURE 7. DNN loss function vs. the training steps for Beneš 8 × 8 architecture.

a DNN with three hidden-layers with several cognitive neu-
rons for each hidden layer optimized for each dimension N.
To improve prediction accuracy, we propose to use a parallel
architecture for the DNN as shown in Fig. 6: in practice, we
have an independent DNN for the prediction of each of the
control states. The reason for using the parallel architecture
of DNN is to give better cognition to the DNN engine and
consequently achieve high efficiency in terms of prediction.
Firstly, we performed the ML module training; after that, we
tested the trained model on a separate subset of the dataset:
the conventional rule of 70% and 30% has been chosen to
partition the available dataset. The train set is 70% while
the test set is 30% of the total considered dataset in Table 1.
In order to avoid over-fitting the model, we set the train-
ing steps as the stopping factor and the Mean Square Error
(MSE) as the loss function, given by:

MSE = 1

n

n∑
i=0

(
M∑
m=1

∣∣∣Ctrl Statepi,m − Ctrl Stateci,m

∣∣∣
)2

(1)

where n is the number of test realizations, M is the total
number of switching elements in the specific N×N switching
system, while for each tested case i, Control Statepi,m and
Control Stateci,m are the predicted and correct control states of
the m-th switching element of the considered configuration.
The MSE loss function, with respect to the training steps, is
shown in Fig. 7 for the single considered case of 8×8 Beneš.
Similar behavior is observed for all the other considered
switching architectures. Once the desired accuracy of the
model predictions has been reached; the trained ML agent
can be used to predict control states of the switch.

V. VALIDATION RESULTS
In this section, we describe the results achieved for each con-
sidered Beneš size and HCROS regarding the predictions of
control states. The validation has been carried out consider-
ing a dataset completely independent with respect to the one
used in the training step. The first analysis we conducted is
the prediction accuracy dependence on the training dataset’s
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FIGURE 8. Percentage of correct predictions vs. normalized training dataset size.
The normalization is performed with respect to the total generated dataset dimension
for the considered N × N fabric, see data in Table 1.

FIGURE 9. Percentage of correct predictions vs. hidden layer size for the
considered switching configurations.

FIGURE 10. Single switch training time vs. hidden layer size.

dimension and the size of hidden layers, as shown in Fig. 8
and Fig. 9.
In Fig. 8, the effect of increasing training dataset size is

depicted. The trend shows that the prediction ability of the
ML agent improves by increasing the training dataset size.
It can be observed that a reduction in the dataset dimen-
sion induces a loss of performance. To achieve a good level
of accurate predictions, we must use the whole dataset,

FIGURE 11. Heatmap showing normalized error in prediction of control states using
DNN.

whose size is indeed a small fraction of the total num-
ber of possible combinations of the switching states; see
Table 1.
Similarly, in Fig. 9, the effect of increasing the number

of neurons per hidden layer is shown: the prediction abil-
ity of the ML model improves when increasing the hidden
layer size until the diminishing return trend is encountered,
as explained previously. The minimum number of required
neurons per layer depends on the configuration under anal-
ysis: the values selected for the following analysis are listed
in Table 2.
The effect of increasing the hidden layer size on the

training time is shown in Fig. 10, for an Intel Core i7
6700 3.4GHz CPU workstation equipped with 32GB of
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TABLE 2. Summary of ML prediction results.

Algorithm 1 Heuristic to Correct Single-Ring Errors
Require: Topology Graph G, Control States M, Number of Inputs/outputs

N, Test set T S, ML Predicted set PS
Ensure: Control State Correction
1: error-index = find control state where T S �= PS
2: for all D ∈ error-index do
3: PredictedControl States (ON/OFF) (PCtrl) = PS(D)
4: ActualControl States (ON/OFF) (ACtrl) = T S(D)
5: ActualOutput Signals (Aotp) = T S(D)
6: PredictedOutput Signals (Potp) = Test-Control-States(PCtrl,G,N)
7: CheckOutput Signals (Cotp) = Potp
8: for flip bit = 1 to M Step = 1 do
9: if find Aotp �= Cotp then
10: TransitControl States (ON/OFF) (TCtrl) = Flip-One-Bit(PCtrl)
11: CCtrl = Test-Control-States(TCtrl,G,N)
12: Clear TCtrl
13: else
14: error-index corrected
15: Break
16: end if
17: end for
18: end for

2133MHz RAM. Results reveal that to train each of the
M parallel DNN, i.e., a single control state, the time
increases linearly with the number of neurons per hidden
layer. Consider that even if training may be computationally
demanding, with required times on the order of hours, this
will not affect the ML agent’s operation. Each prediction of
control states can be obtained in real-time because of the
negligible computational effort required once the agent is
trained and it is compatible with the envisioned application
in control-planes of open optical networks.
Finally, the rate of correct prediction for the optimized

ML agents are summarized for the three considered Beneš
sizes (8 × 8, 10 × 10 and 15 × 15) along with the 12 × 12
HCROS in Table 2. In the case of the Beneš network, we
observe an excellent level of accuracy (>96%), although
with reduced effectiveness of prediction when increasing N:
correct predictions reach 100%, 99.72% and 96.25% for N
equal to 8, 10 and 15, respectively. In order to further validate
the proposed approach, similar results were obtained based
on HCROS: also, here, we observe a high level of accuracy
(>97%).
After evaluating the accuracy, we analyzed the distribu-

tion of errors in the predicted states, as shown in Fig. 11.
The amount of errors in the control state prediction of each
switching element when considering the validation dataset
is encoded in color. We observe a non-uniform distribution:
errors are concentrated on a small number of switch ele-
ments of the overall fabric. Based on this observation, we
analyzed the number of wrong switch elements where the

prediction fails. Results in Table 2 show that only a sin-
gle error in one of the switches controls is responsible for
the incorrect routing in wrong prediction instances. This is
common for all the analyzed sizes of Beneš network as well
as for the HCROS. Observing this phenomenon, we derived
a simple heuristic that can further improve the prediction
performance of our ML agent (see Algorithm 1).
The heuristic we propose requires several device properties

such as topological graph (G), M control states, and N num-
ber of inputs/outputs signals. Additionally, Test set (T S) and
ML Predicted set (PS) are also loaded as inputs. The sim-
ple idea is to correct single switch errors by switching the
control state of one element at a time while comparing the
output sequence against the target output signals permuta-
tion. This approach requires only a maximum of M attempts,
and this number is reasonably small, so it can be consid-
ered practical for real-time implementations. Moreover, it is
topologically agnostic like the whole ML framework. For all
four considered cases, the ML assisted by heuristic improves
the accuracy to 100%.

VI. CONCLUSION
Photonic switching systems hold great importance for core
optical transport and disaggregated data center networks
since they provide high bandwidth, better reconfigurabil-
ity, and high computing performance. In addition to these
features, they present a low-cost, small footprint and high
energy efficiency. To improve photonic switching systems’
scalability, efficient routing strategies always stand out as a
key challenge.
In this work, we analyzed a data-driven ML technique

to control and manage photonic switching systems in an
open optical networking context. The proposed scheme
demonstrates a DNN based softwarized system that is both
topological and technological agnostic and can be employed
in real-time. The adopted ML approach can effectively deter-
mine the control states for a generic N×N photonic switch
without requiring any topology knowledge. The presented
ML approach is trained and tested assuming the N × N
photonic switch as black-box: the ML only needs sufficient
training instances without considering the device’s internal
architecture. The technique we propose is also scalable to
larger input sizes N since a high level of accuracy can be
reached with limited size datasets. Moreover, we have shown
that a simple heuristic approach can increase the prediction
accuracy to 100% with a marginal increase of the con-
trol state computational cost for the considered switching
topologies.
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