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Machine-Learning Based Microwave Sensing:
A Case Study for the Food Industry

Marco Ricci, Member, IEEE, Bernardita Stitié, Luca Urbinati, Student Member, IEEE, Giuseppe Di Guglielmo,
Member, IEEE, Jorge A. Tobon Vasquez, Member, IEEE, Luca P. Carloni, Fellow, IEEE, Francesca Vipiana,
Senior Member, IEEE, and Mario R. Casu, Senior Member, IEEE

Abstract—Despite the meticulous attention of food industries
to prevent hazards in packaged goods, some contaminants may
still elude the controls. Indeed, standard methods, like X-rays,
metal detectors and near-infrared imaging, cannot detect low-
density materials. Microwave sensing is an alternative method
that, combined with machine learning classifiers, can tackle these
deficiencies. In this paper we present a design methodology
applied to a case study in the food sector. Specifically, we
offer a complete flow from microwave dataset acquisition to
deployment of the classifiers on real-time hardware and we show
the effectiveness of this method in terms of detection accuracy. In
the case study, we apply the machine-learning based microwave
sensing approach to the case of food jars flowing at high speed
on a conveyor belt. First, we collected a dataset from hazelnut-
cocoa spread jars which were uncontaminated or contaminated
with various intrusions, including low-density plastics. Then,
we performed a design space exploration to choose the best
MLPs as binary classifiers, which resulted to be exceptionally
accurate. Finally, we selected the two most light-weight models
for implementation on both an ARM-based CPU and an FPGA
SoC, to cover a wide range of possible latency requirements, from
loose to strict, to detect contaminants in real-time. The proposed
design flow facilitates the design of the FPGA accelerator that
might be required to meet the timing requirements by using a
high-level approach, which might be suited for the microwave
domain experts without specific digital hardware skills.

Index Terms—Microwave Sensing, Microwave Antenna Ar-
rays, Machine Learning, MLP Classifier, Food Safety, High Level
Synthesis, Food Technology, Contactless Diagnostics

I. INTRODUCTION

HE quest for the highest quality in all the production
phases is the key to the success of many industries. The
packaging phase is critical for two reasons. First, it can be
a source of contamination; secondly, detecting the contami-
nants after the packaging phase requires methods that inspect
inside the package without contact, return a classification
(positive/negative) with the highest confidence, and work in
real-time at the speed of fast production lines.
The food industry is a paradigmatic example. Due to the
continuous growth in the number of mechanized processes for
food preparation, the occurrence of physical contamination is

Manuscript received XXX, 2021; accepted XXX. Date of publication XXX;
date of current version XXX.

M. Ricci, L. Urbinati, J. A. Tobon Vasquez, F. Vipiana, and M. R. Casu
are with the Department of Electronics and Telecommunications, Politecnico
di Torino, 10129 Torino, Italy (e-mail: mario.casu@polito.it).

B. Stiti¢ is with the School of Engineering, Pontificia Universidad Catélica
de Chile, Santiago, Chile, 7820436 (e-mail: bastitic@uc.cl).

G. Di Guglielmo and L. P. Carloni are with the Department of Computer
Science, Columbia University, New York, NY 10027 USA.

increasing [1]. The sources can be multiple, from equipment
or packaging failures, to food handlers’ inattention, which
cause contamination from a variety of different materials.
The consequences of not detecting all of these contaminants
range from customer discontent, which can lead to economic
consequences for brands, to severe injuries, like dental issues
or choking, dangerous in particular for children and seniors,
or even to contaminated intrusions that may contain bacteria.

As a matter of fact, the most widespread method to detect
foreign objects in packaged food, X-rays technology [2], is
not perfect, even in its latest dual-energy incarnation [3]; its
weak spot are the contaminants made of low-density materials,
such as polyethylene or polypropylene, which are plastic
materials particularly used for packaging. Furthermore, X-rays
inspection can be harmful for operators due to the ionizing
radiations. Other inspection methods currently used in the
food industry, like metal detectors (MD) or near-infrared (NIR)
imaging, have other limitations: MD can only detect metallic
objects, while NIR have a low penetration depth and a high
absorption in water.

The food industry is interested in the development of novel
approaches to address these deficiencies. Electromagnetic
(EM) sensing represents an interesting option, which uses the
information contained in waves reflected by or transmitted
through a target, to assess the presence of defects. The
method is applicable in different regions of the EM spectrum.
Recently, applications using Terahertz (THz) radiations have
been developed and applied in industries [4]-[6]. However,
the analysis of reflected THz waves can be useful to detect
superficial faults only, due to their intrinsic limited penetration
depth. On the contrary, micro-waves (MW) in the Gigahertz
(GHz) region can penetrate an object up to a few centimeters,
making MW-based devices suitable for monitoring products
contained in non-metallic packages. Most importantly, MW
can detect low-density plastic contaminants.

MW sensing exploits the difference of dielectric properties
of two materials in contact, which is commonly referred to
as dielectric contrast. This difference creates a discontinuity
that scatters an incident wave more or less depending on
the amount of dielectric contrast [7], [8]. By illuminating a
target with low-power microwaves emitted and then captured
by multiple antennas, the analysis of the captured signals can
detect anomalies present in the target.

Fig.1(a) depicts a scenario in which a MW Sensing Equip-
ment for signal generation and acquisition is positioned along
a packaging line. The MW equipment is connected to a
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Fig. 1. (a) Microwave (MW) Sensing-based classification in a production
line; (b) design flow from MW dataset for Machine-Learning (ML) training to
hardware or software implementation of the ML-based MW Sensing classifier.

processing hardware that analyzes the acquired signals and
classifies the packaged food as contaminated (positive, red
cross mark) or not (negative, green check mark), and activates
an actuator to remove the contaminated ones from the line.

Classification of contaminated packaged foods using MW
Sensing lends itself quite naturally to Machine Learning (ML).
In fact, the abundance of samples to test in production lines
can quite easily lead to the generation of datasets on which
ML classifiers can be trained. For this reason, in this work
we propose an approach called ML-based Microwave Sensing
(MLMWS), which was first presented in [9], of which the
present work is an extension. We developed the flow depicted
in Fig. 1(b), which consists in the following steps:

1) We acquire a dataset of MW measurements obtained in
the same operating conditions of a real production line;

2) using ML development tools, we perform a design
space exploration of ML classifiers aimed at maximizing
a given ML metric (e.g., accuracy, recall, precision)
according to the specific industrial requirements;

3) We automatically convert the ML classifier from the ML
framework internal description to either a synthesizable
hardware specification using hls4ml [10], which tar-
gets an FPGA System-on-Chip (SoC) implementation,
or to a self-contained C++ code to run on a CPU
obtained using TensorFlow (TF) Lite [11].

4) Depending on the real-time requirements and the com-
plexity of the ML classifier, we can run the classifier
on a CPU or an FPGA SoC, which connects to the
MW Sensing equipment and controls the actuator in the
production line as shown in Fig. 1(a).

In this paper we apply the flow to a specific industrial case
study as described in the remainder of the paper. However,
the method can be applied to other industrial scenarios, not
only in the food sector but also in other areas in which the
packaged products present similar characteristics.

The paper is organized as follows. After a review of
the related work in Sec. II, we present the MW system in
Sec. III, which also describes the datasets used for training the
ML classifiers. Sec. IV is where we present the ML design
and the analysis of the performance of the classifiers. The
implementation using hls4ml and TF Lite is described in
Sec. V. After a brief discussion and analysis of perspectives

in Sec. VI, we conclude the paper in Sec. VII.

II. RELATED WORK

The renewed interest in ML in the last years has permeated
many research fields, including food and agriculture [12]. In
this area, ML is most of the times combined with optical
systems (e.g., cameras) to detect the presence of contaminants,
like insects [13], or to assess the quality, for example in fruits
[14]. This last paper has an affinity to our research because it
shows a real-time execution of an ML algorithm at the speed
of a fast conveyor belt carrying fruits, although the input data
is an optical image.

Other relevant examples in the recent literature combine
ML with hyperspectral images (from visible to near infrared)
of food, as discussed in an extensive review [15]. Mass spec-
trometry [16] and Raman spectroscopy [17] are also shown to
be effectively combined with ML to assess the quality of food
against adulteration (in white rice in the cited paper) and to
detect food-born pathogens, respectively.

When it comes to exploiting the EM spectrum in combi-
nation with ML, a noteworthy example is reported in [18],
in which millimeter waves are used for classifying fruits
(damaged vs. healthy apples). Microwaves have been used
instead of millimeter waves to sense the moisture content
in corn in combination with deep neural networks [19]. The
sensitivity of microwaves to the moisture content in food has
also been exploited in [20], in which the authors describe a
hand-held time-domain reflectometer to assess the food quality
by measuring variations in the dielectric properties, which can
be determined by a variation of water concentration. In this
case, however, ML was not used.

MW sensing for food screening using the radar principle
has been proposed in [21], although experiments to prove fea-
sibility and accuracy have not been carried out. An industrial
implementation of radar-based detection of foreign contami-
nants, however, is currently commercialized [22]. The radar
can detect foreign bodies such as wood, plastic, bone, and
fruit stones but is fundamentally different from our approach
as it applies to pipes where liquid food or emulsions can flow
before being packaged.

Note that none of the above mentioned techniques are shown
in the context of packaged foods. A noteworthy exception is
shown in [23], in which MW sensing is used to detect plastic
contaminants in packaged cheese slices. In this case a single
antenna patch is used to illuminate the target and the reflected
signal is shown to be sufficiently modified by the contaminant
to allow for an easy detection. We will show soon that such
an easy condition does not apply to our case study, in which
the acquired signals in the contaminated and uncontaminated
cases do not exhibit immediately visible patterns useful for
a discrimination, hence calling for techniques like ML for a
more automated pattern recognition.

III. MICROWAVE SENSING CASE STUDY

In the next two subsections, we explain in detail how the
MW Sensing Equipment works, how it can be applied to
a specific industrial case, and how the dataset for the ML
training was acquired.
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Fig. 2. Samples set, with contaminants circled in red: (a) empty jar; (b)
soda-lime glass sample sphere, 2 mm diameter; (c) PTFE sample sphere, 2 mm
diameter; (d) fragment of wood, approximately 5 x 5 x 2 mm; (e) small splinter
of glass; (f) small splinter of plastic, part of the jar top.

A. MW Sensing system description

In this case study we conducted our experiments on jars
provided by a food company that produces hazelnut-cocoa
spread. The jars have a diameter of 6.6cm and a height of
7.5 cm. The microwave working frequency is centered around
10GHz, which represents a trade-off between EM waves
penetration depth, given the jar dimensions, and the resolution
needed to detect millimeter-size intrusions. At such frequency,
we measured with a probe the dielectric properties of the food
product contained in the jars, and obtained a relative permit-
tivity of 2.86, and a conductivity of 0.21 S/m. Unfortunately,
we could not obtain directly contaminated samples from the
company, but were given samples of contaminants notoriously
difficult to detect with standard methods and industrial devices,
as well as standard contaminants used for testing purposes. We
were also given instructions on where these contaminants can
be typically located in the jar after the packaging.

Therefore, with these contaminants and the related instruc-
tions we could recreate the set of contaminated and uncontam-
inated samples shown in Fig. 2. To facilitate the positioning
of the contaminants, we replaced the spread with a transparent
oil with the same dielectric characteristics at the frequency of
interest, as confirmed by our measurements. The contaminants
in the jars are small pieces of plastic or glass, of various shapes
and sizes, and wood fragments. According to the instructions,
some of these contaminants have just been dropped in the
jar, others were placed in various positions within the volume
of interest, others were finally left floating at the interface or
placed at the bottom of the jar.

We developed an MW sensing system that consists of an
array of six antennas mounted on an arch-shaped support

Fig. 3. Microwave sensing system: a 6-port VNA is connected to six
monopole antennas mounted on a 3D-printed arch under which the packaged
food products can flow uninterruptedly on a conveyor belt.

(built with a 3D printer) to fit along an industrial line without
interrupting the flow of products, and a 6-port Vector Network
Analyzer (VNA) [24] connected to the antennas. The number
of antennas and their locations have been determined through
an accurate numerical analysis of the singular value decompo-
sition of the discretized scattering operator, a method proposed
in [25] and used also for medical applications [26], [27].
The picture in Fig.3 shows the arch of six antennas posi-
tioned in a fully-functional industrial conveyor belt available
in our laboratory, and also shows the VNA connected to
the antennas and the jars moving under the arch. When a
jar is about to pass under the arch, a photocell triggers
the VNA to start the measurement process. This consists
in activating, in turn, one of the six antennas as transmitter
while all the antennas (including the transmitting one) capture
the scattered electromagnetic field. This results in a 6 X 6
scattering matrix .S; ; that covers the entire volume of the food
product under test. Note that compared to our previous work,
in which we used a 2-port VNA and an electro-mechanical
switching matrix to activate multiple antennas [9], here the 6-
port VNA allows us to get rid of the switching matrix and to
acquire the measurements with a much faster conveyor belt,
hence enabling real-time acquisition and processing in a more
realistic industrial scenario. In addition, the measurement is
not performed at a single frequency, like in [9], but in the
bandwidth from 9 to 11 GHz with a 200-MHz step.
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Fig. 4. Reflection parameters of the six antennas used in the microwave
sensing system.
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Fig. 5. Magnitude of four scattering parameters measured across the entire
dataset of contaminated and uncontaminated samples. The band around the
average (thick solid lines) is obtained using the standard deviation.

Despite these improvements, however, the measurement
process still takes a non-negligible amount of time, which
has two consequences. Firstly, there is less time to perform
processing and classification using ML, which makes the
design more challenging. Secondly, since the jar moves while
the measurements are taken, the resulting scattering matrix is
not symmetric as one might expect, due to the fact the .S; ;
is not measured in the exact same condition of S;;. It turns
out that this is actually beneficial, because we obtain more
information by “looking” at the target from additional angles
that would not be available should the target not move.

The six antennas are low-cost printed monopoles, which
have been manually welded to their coaxial feed. This deter-
mines a slightly different behavior of the antenna reflection
coefficients, as shown in the measurements reported in Fig. 4.
Notice that the resonance is not always centered exactly at
10 GHz, which seems to suggest that using information at
different frequencies might be a better choice than just using
single-frequency measurements.

B. Dataset creation

We used the microwave sensing system to create a dataset
of 1240 samples, of which 600 were free from contaminants
and 640 were contaminated with the intrusions described in
Fig.2. We acquired the scattering matrix of each sample in

dynamic conditions, with the conveyor belt moving at a speed
of 15 cm/s. The scattering matrix is a 6 X 6 matrix of complex
values, which the VNA measures as magnitude and phase,
for 11 evenly spaced frequencies from 9 to 11 GHz. For the
ML training, the complex values are better represented as real
and imaginary couples, hence we converted the matrices from
polar to cartesian representation. Moreover, the self-scattering
elements of the matrices, i.e., the six diagonal elements, are not
used. As a result, we retain, for each of the eleven frequencies
available, 60 features per sample, which correspond to the 30
complex numbers of the original matrix that do not lie on the
diagonal. In total, 60 x 11 = 660 features per sample.

The graphs in Fig.5 show the magnitude of four matrix
elements averaged across the entire dataset partitioned in
contaminated and uncontaminated samples as a function of
frequency. In addition to the average values (solid thick lines),
the graphs also show the band around the average obtained
considering the standard deviation of all the measurements in
the dataset at any given frequency. We selected these four scat-
tering parameters out of the thirty available for each sample
for space reasons, but we observed very similar characteristics
in all of them. In particular, we can notice that the family of
curves corresponding to contaminated and empty jars com-
pletely overlap. This is fundamentally different than what is
obtained, for example, in [23], in which the difference between
scattering parameters of contaminated and uncontaminated
products allow for an immediate classification. Therefore, it
is clear that another approach is required, as shown next.

IV. MACHINE LEARNING

In this section, we detail the part of the design flow depicted
in Fig. 1(b) related to ML. In particular, in the following, we
present the design of the Machine Learning (ML) models, their
training, and testing results.

A. ML design

As mentioned earlier, the dataset consists of 1240 samples,
of which 640 are contaminated jars, while the remaining 600
are free from intrusions. In what follows, the contaminated
samples shall be referred to as the Positive class, labeled
as ‘1’, whereas the others will correspond to the Negative
class, labeled as ‘0’. Similarly to the approach followed in [9],
each sample is associated with a NumPy array as required by
Python ML development frameworks. Considering the eleven
frequencies, each array contains sequences of 330 pairs of
real and imaginary parts of each scattering parameter, except
for the self-transmission coefficients, which are not considered
(i.e., the diagonal elements of the scattering matrix).

We also decided to compare this approach to the creation
of the dataset with the approach that we followed in [9],
in which we considered only the features measured at the
nominal frequency at which the antennas were designed to
operate. Therefore, we generated another dataset taking from
the previously described one only the features that correspond
to the specific frequency of 10 GHz, thus obtaining vectors
belonging to a 60-dimensional feature space. By comparing the
performance of ML algorithms trained on these two datasets,
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we hope to gain an insight into whether combining multiple
frequencies can improve the detection capabilities or not.

The ML development environment consists of a Jupyter
Notebook with Python 3.7.8 and the following libraries: Scikiz-
Learn 0.23.2 for splitting and preprocessing the datasets,
Scikit-Optimize 0.8.1 for Bayesian Optimization, TensorFlow
2.1.0 and Keras 2.4.3 for the MLP model definition, training
and predictions.

Both datasets are partitioned into the classical three
sets, Training, Validation and Test Set, with Scikit-Learn’s
train_test_split. Training and Validation set are also
referred together in the following as the Development Set.
The splitting strategy is derived from [28] and is based on the
following two key aspects:

1) The size of Test and Validation sets should be large
enough to give high confidence on the overall perfor-
mance attainable with the ML system. Therefore, the
first split is between Development and Test sets, which
corresponds to a 75%-25% partition (930-310 samples).
In the second split, the Development Set is further
divided in Training and Validation sets using a 70%-
30% proportion (651-279 samples).

2) The Validation and Test sets should ideally contain an
equal amount of samples belonging to all classes. For
this purpose, stratified sampling, which assigns samples
to data groups in a balanced way, is used when deriving
the partitions. A significant consequence of this tech-
nique is the reduction of the bias of a binary model for
one class over the other.

Encouraged by the promising results that we obtained
with the Multi-Layer Perceptron (MLP) developed in [9], we
decided to continue along this direction and explored various
MLP instances in search of the best binary classifier. To
efficiently cover the hyperparameter search space of an MLP,
we initially adopted the Bayesian Optimization, as we did in
[9], through BayesSearchCV of the library Scikit-Optimize'.

B. Model exploration and training

Initially, we trained the MLP only with the larger dataset
(660-dimensional samples). Influenced by the results of our
previous work, we did the Bayesian design space exploration
in search of relatively complex MLPs with a number of hidden
layers between 2 and 6 and neurons per layer between 128
and 1024 (in power-of-two steps). Other hyperparameters were
kept fixed, like the sigmoid node for the output layer, the
ReLU activation functions for hidden layers, the Binary Cross-
Entropy as the loss function, the Adam optimizer with the
Keras default learning rate of 0.001 as in [9], the batch size
of 256 samples and 500 training epochs.

We realized soon, however, that the Bayesian search re-
turned extremely positive results with excellent accuracy
regardless of the number of hidden layers and in general
regardless of the complexity of the MLP. Without loss of
generality, in this work we assume the complexity propor-
tional to the total number of weights of the MLP, as this

ISee https://github.com/scikit-optimize/scikit-optimize for details on this
library for the optimization of noisy black-box functions.

impacts both computation and memorization aspects of the
final implementation. The Bayesian search, however, aims to
optimize only the metric chosen for checking the quality of
the model on the validation set (e.g., the accuracy), without
any consideration for the complexity. A complex MLP indeed
can have a significant impact in terms of use of hardware
resources (in case the selected platform is an FPGA SoC)
and in terms of performance (both for an FPGA SoC and a
CPU implementation). This is a very important point for this
work, as we aim to meet real-time constraints using dedicated
hardware for executing the ML classification.

In any case, this initial automated search gave us hints about
the potential of low-complexity MLPs in providing an excel-
lent level of accuracy. This result came as a surprise because
we were expecting to need an MLP of comparable complexity
to the one used in [9]. Most likely, the improvement granted by
the microwave sensing tools used in this case and the removal
of the electro-mechanical switching matrix helped “declutter”
the signals from various artifacts and noise, ultimately leading
to the simplification of the ML classifier.

For this reason, guided by the hints provided by the results
of the initial automated search, we started a manual exhaustive
search aimed at MLPs of limited complexity. Thus, for both
datasets, we considered MLPs with only 1 hidden layer and
a number of nodes/neurons equal to 1, 2, 4, 8, 16, 32 or 64.
Therefore, in total, we trained fourteen models. No dropout
was required since the classifiers rarely showed overfitting. In
addition, the optimizer, the learning rate and the batch size
remained as previously indicated for the Bayesian search. We
trained all the models on the 660-dimensional dataset for 500
epochs, while for those trained with the 60-dimensional sam-
ples we used 2000 epochs. Finally, we kept the weights of the
last epoch, because we always observed a converging behavior
in the curves of validation loss, without any oscillation.

It should be emphasized that, before starting the manual
training, we always performed preprocessing. To decide which
technique to use, the ranges of all the features were explored
for each dataset. It was observed that values for a given feature
could differ by up to 5 orders of magnitude. Furthermore,
no atypical values were detected. As a result, scaling was
considered, particularly standardization. Having already shown
promising results in [9], a StandardScaler object was fit
separately for each Training Set of the two datasets.

C. Model selection

We show the fourteen trained models as scattered points
in Fig.6. In detail, Fig.6(a) reports the value of the loss
function on the Validation Set, as obtained from the last and
best training epoch, as a function of the complexity; Fig. 6(b)
shows the corresponding validation accuracy. In the key, N
indicates the number of hidden neurons and is strictly related
to the number of weights (complexity); A (squares) stands for
classifiers trained on the dataset with eleven frequencies; B
(circles) refers to those trained on the 10-GHz dataset.

Notice that while the validation accuracy is very high for
all the classifiers, the variation of the validation loss can be
an indication of a difference in the training outcome: the

2156-3357 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/i)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on July 18,2021 at 08:17:

2 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2021.3097699, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

6 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, MONTH 20ZZ

Validation Loss vs. Number of weights

B 1NA
o 2N,A
O 4N,A
aL u o 8N,A
10 B 16N A
B 32N, A
— (J B 64N A
1] ® 1NB
S @) ® 2N,B
IS =] O 4N,B
S10°F O ® 8N,B
= ® 16N, B
e} @ 32N, B
& ® 64N, B
z ® o * Selected
S, sl ® (©) 5| ]
=10 o) ]
()
10-4 L L L |
102 10° 10* 10°
log ( Number of Weights )
(a)
Validation Accuracy vs. Number of weights
> 1.002
8
3 1 ® ® omeU en © B B
Q
<C
= 0.998
S0 @ O m
8 0.99%
g
0.994 : : : !
102 108 10* 10°
log ( Number of Weights )

()

Fig. 6. Trained classifiers in the plane of complexity (i.e., number of weights)
versus validation loss in (a) (log scale on both axes) and versus validation
accuracy in (b) (log scale on the x-axis only). N is the number of neurons;
A is for the models trained on the full dataset with eleven frequencies; B is
for those trained on the single-frequency dataset.

classifiers with a lower loss should have learned better than
those with a greater loss and therefore should generalize better
when applied to unseen samples. The results of the training
shows that the validation loss decreases as the complexity of
the model increases, which is often the case in ML up until
the higher complexity leads to overfitting, which we did not
observe in our training experiments. The results also show that,
contrary to our initial hypothesis, the models trained on the
dataset with the 660 features obtained with all the frequencies
(A) do not necessarily perform better than those trained on the
dataset with 60 features measured at 10 GHz (B). As a matter
of fact, interpreting Fig. 6(a) as a Pareto plot, the squares are
dominated by the circles.

Based on these outcomes, we decided to consider only the
models trained with the dataset obtained at 10 GHz as potential
candidates for the implementation. To choose the final model,
we considered the confusion matrix obtained on the Validation
Set. This is defined as

TN FP

FN TP)’
where TN are the True Negatives, TP the True Positives, FN
the False Negatives, and FP the False Positives. An ideal

classifier would have FN = 0, FP = 0, and nonzero values
only on the diagonal of the confusion matrix.

TABLE I
CONFUSION MATRICES OF THE SEVEN B MODELS CALCULATED ON THE
VALIDATION SET.

Confusion Matrix

Model Name  Confusion Matrix Normalized
IN, B (1‘35 123) (0.1(587 09983)
2N, B (1?5 123) (0.1687 099'83)
4N, B (135 124) ((1):8 (1):8)
G
16N, B (135 124) ((1):8 (1):8)
32N, B (135 124) ((1):8 i 8)
64 N, B (135 124) ((1) 8 (1) 8)

Tab. I shows that all the seven models are very good classi-
fiers, even though the models with four or more neurons are
actually ideal classifiers, at least in the validation set. Notice
that the errors of the models with one or two neurons are only
false negatives. For some applications, FP and FN errors are
not interchangeable, as one kind of error can have more serious
consequences than the other. This is exactly the case for this
application, since false negatives mean that some contaminated
jars are undetected, whereas false positives mean that some
uncontaminated jars are discarded. In general, dropping a few
uncontaminated items is considered more acceptable by food
companies, as long as the number is limited and does not
have a sizeable economic impact, than letting even fewer
contaminated items reach the market. For this reason, models
1N, B and 2N, B were abandoned.

Among the other ones, we selected the first two models,
4N, B and 8N, B, which correspond to the points indicated
with a * in Fig. 6. We kept both because the first one is less
complex (249 vs. 497 number of weights), while the second
one has a slightly lower validation loss (1.62e-03 vs. 1.55e-
03), with the same validation accuracy (equal to 1.000), as
shown in Fig. 6. Moreover, we considered that the Validation
Set does not contain enough samples to allows us to select one
of the two with the highest statistical confidence. Therefore, in
the following we present results obtained on the Test Set for
both of these cases. Also, these two models will be compared
in terms of performance and resource utilization in Sec. V.

D. Model testing

The evaluation of the predictive performance of models
4N, B and 8N, B is reported in Tab. II. The confusion matrices
were computed on the Test Set obtained with the splitting of
the dataset previously described, as well as on a New Test
Set. In fact, to further assess the generalization capabilities of
the two selected classifiers, 100 additional positive samples
were acquired with different contaminants than those used in
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TABLE II
CONFUSION MATRICES OF THE SELECTED MODELS CALCULATED ON THE VALIDATION, TEST AND NEW TEST SETS.

Confusion Matrix Confusion Matrix

Confusion Matrix

Confusion Matrix Confusion Matrix

Confusion Matrix

Model Name Val Set Test Set New Test
Val Set Normalized Test Set Normalized New Test Set Normalized
4N.B 135 0 1.0 0.0 148 2 0.987 0.013 148 2 0.987 0.013
? 0 144 0.0 1.0 0 160 0.0 1.0 0 260 0.0 1.0
3SN.B 135 0 1.0 0.0 150 0 1.0 0.0 150 0 1.0 0.0
’ 0 144 0.0 1.0 0 160 0.0 1.0 0 260 0.0 1.0

the former dataset. These additional intrusions are a nylon
sphere (2 mm radius), a new glass fragment (8 mm long side,
2 mm thick) and a new type of plastic (10 mm long side, few
millimeters thick). The features of the New Test Set were
obtained with the same Microwave Sensing Equipment and
were later standardized using the mean and standard deviation
metrics which were also applied to the Test Set.

The confusion matrix obtained on the Validation Set, re-
ported earlier in Tab. 1, is also copied in Tab.II to allow for a
better comparison with the predictions obtained on the two test
sets. We can observe a slight performance degradation in the
Initial Test Set for model 4N, B, with two FP errors, which
corresponds to a test accuracy of 99.35%. Notice that the New
Test Set does not introduce any additional errors. Based on
the previous consideration about the difference between FP
and FN errors for the hazelnut-cocoa spread application, we
conclude that the performance of the 4N, B is acceptable, as
it does not show any FN misprediction. On the other hand,
model 8N, B correctly classifies all test samples.

In summary, we decided to implement the two selected
models for the following reasons:

e Model 4N, B has half the complexity of 8N, B (249 vs.
497 weights) while still able to reach the condition FN
= 0, which is very important for this application.

Model 8N, B, on the other hand, is the best model in
terms of obtained accuracy on the Test and New Test
sets, even if it has a larger complexity.

As the final step in our ML flow, we exported the two MLPs
in the proper format required by hls4ml [29]: the information
about the architecture in JavaScript Object Notation (JSON)
and the weights in Hierarchical Data Format (H5). Moreover,
the two Keras models are converted to TF Lite models in
order to implement them on an ARM-based CPU. This step
is described in V-B.

V. IMPLEMENTATION

As outlined in Sec. I, after the training and the selection of
the best models, we can target two implementations on two
different platforms aimed at systems with different require-
ments and models with different complexity. For this specific
case study, we verified that both platforms are compatible with
the real-time requirements of the application and the selected
models, as shown in the remainder of this section.

A. FPGA SoC platform flow using hls4ml

In modern embedded systems, heterogeneous computing has
become predominant, with a workload split between nodes

Authorized licensed

2156-3357 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/ﬁ)
use limited to: Politecnico di Torino. Downloaded on July 18,2021 at 08:17:42

working concurrently such as CPU, FPGA, and sometimes
also ASIC [30]. Current FPGA SoCs, in particular, offer
in one small form-factor system the simplicity and ease of
programming of a CPU, termed Processing System (PS) in
Xilinx devices, coupled with the power of spatially parallel
and temporally pipelined processing of an FPGA, which is
the Programmable Logic (PL) in Xilinx terminology.

Traditionally, software or hardware designers adopt the most
appropriate programming language for each heterogeneous
system component. In particular, hardware designers utilize
hardware-description languages such as Verilog or VHDL
for FPGA. In recent years, high-level synthesis (HLS) has
become an alternative for generating hardware modules from
code written in programming languages such as C/C++ or
SystemC [31]. HLS comes with significant benefits: it raises
the level of abstraction and reduces the simulation speed;
it simplifies the validation phases; and finally, it makes the
exploration and evaluation of design alternatives easier.

Although HLS-based approaches are more accessible for
domain experts than the HDL-based ones, the expert still needs
to be aware of a variety of HLS directives (or knobs) and how
they affect cost and performance of the final system. HLS code
written without understanding the inferred hardware often
yields results worse than merely running the corresponding
software implementation on a CPU. Hence, the domain expert
must carefully combine a synthesizable code with directives
to generate efficient hardware [32]. This manual process
significantly impacts the overall system development, and this
situation becomes more acute for complex ML applications
that share a base of standard functionalities, like dense, convo-
lutional, activation, and pooling layers. Domain experts rarely
have the expertise or time to undertake these challenges.

In our context, the domain expert is a hypothetical mi-
crowave engineer with ML skills, who needs to accelerate
a given ML algorithm, like the classifiers here at stake,
on an FPGA SoC platform. To this domain expert, our
workflow offers a method to automatically generate effi-
cient synthesizable C++ code and HLS directives from the
trained Keras/TensorFlow model. This method is based on the
hls4ml framework [29].

This framework first compiles the model to an intermediate
representation (IR); then it maps the IR on state-of-the-
art implementations of ML layers and combines them with
the correct HLS directives to extract parallelism; finally, the
generated code is fed to an HLS tool to generate an RTL IP
for the programmable logic. h1s4ml provides a Python API
that allows the design automation of ML devices by just using
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a high-level knowledge of the final hardware and a minimal
set of hardware design knobs. For example, besides target
clock period and the fixed-point precision, h1s4ml introduces
the concept of reuse factor, as a single configuration knob to
specify the operation parallelism in the layers of neurons.

The parallelization of the inference calculation and, in
particular, the number of multiplications performed in parallel
determines the trade off between latency, throughput and
FPGA resource usage. In hl1s4ml, the reuse factor sets the
number of times a multiplier is used in the computation of
a layer output values. With a reuse factor of one, the layer
computation is fully parallel, i.e. each multiplier is used once
and the Initiation Interval (II) is one, which means that a new
computation can start at each clock cycle. With a reuse factor
of R, 1/R of the computation is done at a time with a factor
of 1/R fewer multipliers and the layer II is 1/R. With this
knob, the designer can quickly explore the design space in
search of the solution that achieves the best trade-off between
performance and utilization of FPGA resources.

Tab. III reports Xilinx Vivado HLS resource estimations for
the two models described in Sec. IV when targeting a Xil-
inx Zyng-7000 SoC (xc7z020-1c1g400c) that combines
Artix-7 programmable logic with a dual-core ARM Cortex-
A9 processor at 650 MHz. The target clock period is 10 ns, the
fixed-point precision is 16 bits for the word size and 6 bits for
the signed integer part (fixed<16, 6>), and the reuse factor
for all of the layers is 16.

TABLE III
HLS RESOURCE ESTIMATIONS.

Model  Period Lat. I BRAM DSP FF LUT
Name (ns) (clk #) (clk #) (%) (%) (%) (%)
4N, B 10 26 16 1 14 5 11
8N, B 10 27 16 1 28 6 21

Fig. 7 shows the integration of the h1s4ml-generated IP on
the target Zynq system. The accelerator sits in the PL part; the
ARM core and DDR3 main memory are in the PS one. Data
is transferred between PS and PL through high performance
(HP) AXI slave ports, while control signals generated by the
PS is transferred through a general purpose (GP) AXI-Lite
master port. For these experiments, we extended the hls4ml-
generated IP with AXI interfaces and local buffer. The AXI
datamovers read the features and return the inference results
in DDR3 memory. The AXI-Lite port is used for the ARM
CPU to program the accelerator configuration and control the
accelerator execution. The accelerator configurations include
physical start addresses of the input features and output
predictions. The PL is driven by single clock domain of 100
MHz generated by the PS.

Tab. IV shows the performance and final resource utiliza-
tion for the whole PL after synthesis and implementation.
Additional BRAMs and LUTRAMs are used to implement
the local buffer associated with the AXI datamovers. As in
the HLS estimates, we can notice that the DSPs are critical
resources and approximately double when we transition from
the 4-neuron model to the 8-neuron model. We also report the

PL

axi_interconnect

PS

zynq_ps

axi_interconnect ml_accelerator

Fig. 7. System setup.

total power for the board measured by a USB power meter.

TABLE IV
FINAL SYSTEM RESOURCES. FREQUENCY AND POWER ARE 100 MHZ AND
1.8 W, RESPECTIVELY, FOR BOTH MODELS.

Model Lat. BRAM DSP FF LUT LUTRAM
Name (us) (%) (%) (%) (%) (%)
4N,B 2 1 14 11 33 1
8N,B 2 1 28 11 39 1

The latency column shows that the timing performance for
the inference is only 2 us on this hardware platform. This is
clearly negligible compared to the measurement time and the
time to transfer the sixty features from the microwave equip-
ment to the FPGA. Thus, we can conclude that this solution
is perfectly compatible with the real-time requirements of this
and similar applications.

B. CPU flow using TF Lite

To ease the process of converting trained ML models from
a TensorFlow (or Keras) development environment so as to
run them on embedded devices, TensorFlow Lite (TF Lite)
[11] comes into play. TF Lite targets mobile, embedded,
and IoT devices, as opposed to the standard TF used in the
cloud or desktops. TF Lite aims at ML inference on simpler
devices with less computing capabilities, while targeting a low
latency and a small binary size [11]. It consists of two main
components. The first is the inferpreter, which understands
the operations that the ML model needs to perform, such
as convolutions, dense layers, etc., and then it uses at run-
time the proper optimized library for the specific operation,
considering also the target hardware. The second component
is the converter, which elaborates and optimizes the TF models
at compile-time to make them compatible for the interpreter
and, at the same time, to reduce the binary size and to improve
the performance.

In this work we decided to use a more recent TF branch,
called TensorFlow Lite Micro (TF Micro). According to
the developers, TF Micro is an open-source ML inference
framework for running deep-learning models on embedded
systems [33], in particular microcontroller/embedded CPUs.
TF Micro introduces a special, space-efficient format to encode
the model and its parameters to be used in memory-constrained
devices in an optimized way. This is particularly useful for the
numerous microcontroller platforms without native filesystem
support. For these platforms, TF Micro offers the possibility
to load the entire model as a single C array and compile it

2156-3357 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeor_;/i)ublicationsﬁstandards/publications/righjcs/indexhtml for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on July 18,2021 at 08:17:

2 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2021.3097699, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

RICCI et al.: MACHINE-LEARNING BASED MICROWAVE SENSING: A CASE STUDY FOR THE FOOD INDUSTRY 9

into the program that requires the model. We took this path
because it clearly facilitates the inclusion of the model in the
main code that calls the inference routines.

One interesting option offered by TF Lite, is the ability
to convert the model parameters and internal variables from
floating-point in 32 bits (FP32) to 8-bit integers (INT8). This
is typically convenient for platforms with a limited amount of
on-chip SRAMs (normally, in the order of a few kilobytes),
as well as for those simple processors without FP units. TF
Lite performs a post-training quantization procedure aimed at
determining the best way to perform the type conversion that
minimally affects the accuracy. In our case, the complexity
of the selected MLP models was already sufficiently low
so that the conversion was not strictly necessary. Moreover,
we considered as target CPU the dual-core ARM Cortex-9
available on the PS of the Xilinx Zyng-7000 SoC, which
indeed possesses an FP unit. Nonetheless, we decided to
compare the original FP32 model to the quantized INT8 one
in terms of accuracy and latency, so as to evaluate the potential
of this quantization technique.

Two steps are required to run the inference on the ARM
cores of a Zynq SoC. First, we need to cross-compile the
TensorFlow Lite Micro library for the target ARM Cortex-A9
(processor) core (libtensorflow-microlite.a).
Then, we need to create a C++ application in Xilinx
Vivado SDK by leveraging the examples provided with
the codebase. The application instantiates the model
that it has encoded as a char array in a header file
(model.h), passes the input values, runs the model
(tflite::MicroInterpreter: :Invoke()), and
checks for correctness of the predictions. It is important to
remember that we had some lines of code to preprocess
the input samples with standardization. We profiled the
performance of the two selected MLPs, each in the FP32 and
INT8 variants. In terms of accuracy we did not observe any
change from the results presented in Sec. IV, which means
that Tf Lite does a very good job at quantizing from FP32
to INT8. The inference performance results are reported
in Tab. V. The second column reports the type of data
representation, either f1oat32 or full INTS8. The fourth
and fifth columns report the latency results in microseconds
and the On-Chip Memory footprint of the four models in
Bytes. This is the size of the C source file generated by TF
Micro, which in turns comprises the description of the model
architecture and the weights. The frequency of the processor
was always set to 650 MHz.

From Tab. V one can see that all the weights and activations
of the four models are way below the limit of 256kB of
the On-Chip memory of the target processor. This means that
during the inference, all the partial output activations of the
fully connected hidden layer are kept in memory and no DDR
transfers are needed to store them temporarily.

Regarding the latency results, these are more or less 10x
greater than those obtained in the FPGA SoC implementation
described in Sec. V.A. As expected, the latency of the models
with four neurons is less than half the latency with eight
neurons. Somewhat unexpectedly, the latency of the INTS8
versions are greater than the FP32 counterparts. This is due

to the overhead of the quantization and dequantization phases
performed at the input and output of the MLP network as well
as in the internal operations [34].

TABLE V
TF LITE MICRO IMPLEMENTATION RESULTS ON THE ARM CORTEX-A9
PROCESSOR.
Model Type of Freq. Lat. On-Chip Mem.
Name compression (MHz) (us #) (Bytes #)
4N,B float32 650 8 2380
4N,B full INT8 650 19 2240
8N, B float32 650 10 3380
8N, B full INT8 650 22 2504

VI. DISCUSSION AND PERSPECTIVES

In this section, we would like to offer an open discussion
on the outcome of our research, hoping that this would help
other researchers and practitioners in this field and possibly
attract the attention and interest of others. We will divide
the discussion into three parts. The first will be about the
interrelation between microwave sensing and ML, the second
on the hardware and software implementation of the ML
classifiers, and the third on the perspectives and future works.

A. Microwave sensing and ML interrelation

In terms of classification accuracy and sensitivity, the results
obtained with our approach on the Test Set are surprisingly
good. The new microwave equipment and dataset allow us to
obtain major improvements upon the results of our previous
experiments [9], which were already very positive. This is the
very reason why we decided to further test the generalization
performance of the selected models with the New Test Set,
as discussed in Sec. IV-D. In addition to this experiment
on the New Test Set, we performed two simple additional
experiments, both successful, as sanity checks:

1) We changed the splitting policy by reducing the per-
centage of samples in the Training Set while increasing
progressively the size of the Validation and Test sets.
Then, we trained the previously selected models (4N, B
and 8N, B) from scratch with each new train-val-test
split. We noticed that the classifiers continued to perform
very well on the Test Set until the number of training
samples fell below a threshold of 260 samples. In this
case, the models showed underfitting behavior and were
unable to generalize as before. These results suggest
that our choice of splitting the dataset into 75% for
development and 25% for testing was reasonably correct
and was not the cause of the high accuracy we obtained.

2) We swapped all the nylon samples, which were only
present in the New Test Set (20 samples), with all the
wood samples, which were only included in the initial
dataset (100 samples). Despite the fact that (a) wood has
significantly different electromagnetic properties than
the other materials and (b) we replaced many more wood
samples with much fewer nylon samples, the results
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Fig. 8. Retained variance as a function of the number of principal components
for the multi-frequency dataset.

were similar to those reported in Sec. IV-D. Achieving
good performance metrics after such swapping experi-
ment confirms that the high quality of the results is not
determined by a fortunate selection of the contaminants.

We ascribe these results primarily to the quality of the
new equipment, although supplemental investigation might be
required to confirm this hypothesis. Interestingly, additional
frequencies do not seem to bring about any improvement
compared to a single-frequency dataset. This also came as
a surprise, given that a principal component analysis of the
dataset aimed at determining the number of independent “fre-
quencies” reveales that at least 5 to 6 components are needed
for a retained variance of 90%, as shown in Fig. 8. Note that
in some experiments not reported in this paper and performed
with the equipment used in our original contribution [9], we
observed an accuracy that tended to increase with the number
of frequencies included in the dataset. Even though the fact
that a single frequency is sufficient for a perfect classification
is certainly welcome as it can speed up or simplify the
microwave measurements, still it would be interesting to have
a deeper insight as to why this happens.

B. Hardware and software implementation

Regarding the hardware and software implementation of
the classifiers on the target platforms, we obtained negligible
latency for both the CPU and the FPGA. This might lead
to conclude that an FPGA implementation is unnecessary.
Although this might be true for the particular case study that
we considered, this is not necessarily true in general. For the
previously mentioned case, not reported here, in which more
frequencies led to better accuracy, the best classifiers had
a higher complexity that made the software implementation
inevitably slow. In addition, there are practical industrial cases
where the speed of the conveyor belt is up to ten times
faster than what we considered (for example, in the beverage
industry). All things considered, we believe that having a path
from dataset acquisition to deployment in either an accelerated
hardware implementation on FPGA for those specific cases,

as well as a standard embedded software solution for all the
other cases is definitely an advantage of our methodology.

C. Perspectives and Future Works

Finally, we plan to apply the method and technique de-
scribed in this paper to other food industrial cases, as well as
to other industrial sectors. We believe that any time a typically
homogeneous target is affected by a low-density contaminant,
this would be a perfect case for ML-based microwave sensing.
As an example, some pharmaceutical products (e.g., bottled
liquids) belong to this broad category. The adaptation would
require a system refinement, depending on the dielectric fea-
tures of the product to inspect and the shape and relative
dimensions of its container. The architecture and the oper-
ating frequency must be set to allow a sufficient penetration
depth inside the product, depending on its permittivity and
conductivity. As an example, liquid products, which consist
mainly of water, have totally different properties from the
cream used in this work in terms of signal absorption, which
is much stronger in aqueous media. For this reason, a lower
frequency would be needed to penetrate the liquid. On the
other hand, the dielectric contrast between the liquid product
and a low-density contaminant will be greater, making the
contamination easier to be located compared to the oil-based
products considered in our work. As a matter of fact, the
dielectric contrast between plastic and water is more than 20x
greater than that between cream and plastic.

Apart from the mentioned intrinsic limitations of mi-
crowaves, which cannot penetrate metallic packaging, another
constraint to consider is that the signal scattered by an intru-
sion must be above the noise floor. The signal dynamic of the
sensing system is consequently a further key aspect to consider
when adapting such system to different media.

VII. CONCLUSION

In this paper we presented a case study of a Machine
Learning-based Microwave Sensing approach to the detection
of contaminants in packaged food. We built upon our previous
research presented in [9] and reported results obtained using
an improved microwave sensing system, which allowed us to
acquire and process microwave data in real-time from a real
industrial production line with a moving conveyor belt carrying
food jars. With a dataset of jar samples contaminated with
various intrusions typically found in a production environment
as well as uncontaminated samples, we performed a design
space exploration aimed at selecting the best MLP binary
classifiers trained on the dataset. We managed to obtain both
exceptionally accurate and light-weight models, for which we
present a complete flow from training to final deployment.
Based on the requirements of the application and the charac-
teristics of the model, with our flow we can target the most
appropriate platform for running the ML algorithms in real-
time, including an FPGA SoC when the speed requirements
call for it, or an ARM-based CPU when such requirements
are less strict.

Even though the approach proposed in this paper has
been shown to be effective for a specific case study, we are
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confident that it can be applied to other scenarios with similar
characteristics, both in the food sector and other industrial
sectors, especially when contaminants that escape the standard
methods are to be detected, like low-density plastics.
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