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1. Introduction

Biomedical image processing is an interdisciplinary field [1] that spreads its foundations
throughout a variety of disciplines, including electronic engineering, computer science, physics,
mathematics, physiology, and medicine. Several imaging techniques have been developed [2],
providing many approaches to the study of the body, including X-rays for computed tomography,
ultrasounds, magnetic resonance, radioactive pharmaceuticals used in nuclear medicine (for
positron emission tomography and single-photon emission computed tomography), elastography,
functional near-infrared spectroscopy, endoscopy, photoacoustic imaging, and thermography. Even
bioelectric sensors, when using high-density systems sampling a two dimensional surface (e.g., in
electroencephalography or electromyography [3]), can provide data that can be studied by image
processing methods. Biomedical image processing is finding an increasing number of important
applications, for example, to make image segmentation of an organ to study its internal structure and
to support the diagnosis of a disease or the selection of a treatment [4].

Classification theory is another well developed field of research [5] connected to machine learning,
which is an important branch of artificial intelligence. Different problems have been addressed, from
the supervised identification of a map relating input features to a desired output, to the exploration of
data by unsupervised learning (cluster analysis, data mining) or online training through experience.
The estimation of informative features and their further processing (by feature generation) and selection
(either by filtering or with approaches wrapped to the classifier) are important steps, both to improve
classification performance (avoiding overfitting) and to investigate the information provided by
candidate features to the output of interest. Excellent results have also been recently documented by
deep learning approaches [6], in which optimal features are automatically extracted in deep layers on
the basis of training examples and then used for classification.

When classification methods are associated with image processing, computer-aided diagnosis
(CAD) systems can be developed, e.g., for the identification of diseased tissues [7] or a specific lesion
or malformation [4]. These results indicate interesting future prospects in supporting the diagnosis of
diseases [8].

2. This Special Issue

The present issue consists of six papers on a few topics in the wide range of research fields covered
by biomedical image processing and classification.

In [9], the authors have proposed a CAD system for identification and assessment of glomeruli
from kidney tissue slides. Their approach is based on deep learning, exploiting convolutional neural
network (CNN) architectures tailored for the semantic segmentation task. The obtained results are
promising, as also stated by expert pathologists. Moreover, the proposed system can easily be integrated
into the existing pathologists’ workflow thanks to an XML interface with Aperio ImageScope [10].

With the recent advances of techniques in digitalized scanning, tissue histopathology slides
can be stored in the form of digital images [11]. In recent years, many efforts have been devoted
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to developing automated classification and segmentation techniques with the aim of improving
accuracy and efficiency in digital pathology [12]. In kidney transplantations, pathologists evaluate
the architecture of renal structures to assess the nephron status. An accurate evaluation of vascular
and stromal injury is crucial for determining kidney acceptance, which is currently based on the
pathologists’ histological evaluations on renal biopsies in addition to clinical data. In this context,
automated algorithms may offer crucial support to histopathological image analysis. An example is
given in this Special Issue [13].

Although the performance of a machine learning algorithm depends on the amount of available
data, few studies have explored the minimal amount of data required to train a CNN in medical deep
learning or the possibility of having scarce annotations [14]. An innovative contribution is given in
this Special Issue [15]. The paper explores the minimum number of patients required to train a U-Net
that accurately segments the prostate on T2-weighted MRI images. A U-Net was trained on patient
numbers that ranged from 8 to 320 and its performance was measured. The Dice score significantly
increased from training sizes of 8 to 120 patients and then plateaued with minimal improvement after
160 cases. This study suggests that modest dataset sizes could be sufficient to segment other organs
effectively as well.

The correlation between conjunctival pallor (on physical examinations) and anemia paved the
way for new non-invasive methods for monitoring and identifying the potential risks of this important
pathology. A critical research challenge for this task is represented by designing a reliable automated
segmentation procedure for the eyelid conjunctiva. A graph partitioning segmentation approach is
proposed in [16], exploiting normalized cuts for perceptual grouping, thereby introducing a bias towards
spectrophotometry features of hemoglobin. The segmentation task has been further investigated by
a subsequent work, proposing a deep-learning-based approach involving a deconvolutional neural
network [17]. The overall pipeline for building a reliable estimator is composed of several smaller tasks
having multiple research challenges [18,19]. For instance, starting from the digital image capturing
phase, the process is affected by heterogeneous ambient lighting conditions and intrinsic color balancing
techniques by the device [20].

An efficient framework for enhancing and segmenting brain MRIs to identify a tumor is discussed
in [21]. The hybridized fuzzy clustering and distance regularized level set (DRLS) technique effectively
extracted the region of interest (ROI) in the brain slices. For identifying the ROI, fuzzy clustering was
employed by selecting the number of clusters k, validated using the silhouette metric. In post-processing,
the ROI mining techniques, marker controlled watershed segmentation, seed region growing and
DRLS were adopted to extract the anomalous section from the segmented objects [22,23]. Tumor
volume computation and 3D-modeling of the clinical dataset abnormalities were performed using
the physical spacing metadata available in the header of the DICOM images considered. This can
help physicists locate the tumor and determine other information (e.g., size and shape) during initial
diagnosis, and thereby the process of treating the tumor may be enhanced.

Finally, one paper in this Special Issue has addressed the problem of identifying the volume status
of patients [24]. The method was developed within a long-standing research activity on the automated
investigation of the pulsatility of the inferior vena cava (IVC) from ultrasound measurements. The
clinical approach is based on the subjective choice of a fixed direction along which to investigate IVC
pulsations. However, the vein may have a complicated shape and show respirophasic movements,
which introduce uncertainties into the clinical evaluation. Two automated methods have been
introduced to delineate the IVC edges along sections either transverse or longitudinal to the blood
vessel [25–27]. Preliminary results have shown the importance of using these automated methods
to obtain more repeatable, reliable, and accurate information on IVC pulsatility than when using
subjective clinical methods [28–31]. In this Special Issue, the two views are used to extract features
that, integrated by a classification algorithm, can result in improved performance in diagnosing the
volemic status of patients [24].
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3. Future Perspectives

The research fields of biomedical image processing and classification have reached high levels of
insight. Their integration into CAD systems can greatly contribute to supporting medical doctors to
refine their clinical picture. In the near future, further growth in contributions to this field is expected;
for example, taking advantage of increasing digitalization, deep learning has the potential to provide
efficient solutions to many medical problems.

However, the real challenge is to bring an increasing number of systems into the hands of doctors,
so that they can be applied to patients. This requires leaving the laboratory, engineering the systems,
certifying the products, and identifying the correct target market that can accommodate the new devices
and allow adequate support for these activities. In order to speed up this innovation process, the
collaboration between researchers, institutions, funders, and entrepreneurs is always more important.
The ”do-it-all-yourself” approach only makes sense in a world of scarce external knowledge, but today
knowledge is spread as it has never been before. Thus, in order to improve the wellness of the whole
community [32], a dynamic environment in which new high-impact solutions can be created will be
able to grow only if there is collaboration among organizations.

Funding: This research was carried out as part of the project “Method and apparatus to characterize non-invasive
images containing venous blood vessels”, funded through the PoC Instrument initiative, implemented by LINKS,
with the support of LIFFT, with funds from Campagnia di San Paolo.

Acknowledgments: I would like to thank all authors who contributed to this Special Issue, the reviewers for their
help in refining the papers and the MDPI editorial board and staff for the opportunity to be guest-editor.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Deserno, T.M. Biomedical Image Processing; Springe: New York, NY, USA, 2011.
2. Maier, A.; Steidl, S.; Christlein, V.; Hornegger, J. Medical Imaging Systems: An Introductory Guide, New York;

Springer: Berlin, Germany, 2018; Volume 11111.
3. Merletti, R.; Muceli, S. Tutorial. Surface EMG detection in space and time: Best practices. J. Electromyogr.

Kinesiol. 2019, 49, 102363. [CrossRef] [PubMed]
4. Mesin, L.; Mokabberi, F.; Carlino, C.F. Automated Morphological Measurements of Brain Structures and

Identification of Optimal Surgical Intervention for Chiari I Malformation. IEEE J. Biomed. Health Inform. 2020,
24, 3144–3153. [CrossRef] [PubMed]

5. Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Academic Press: Cambridge, MA, USA, 2008.
6. Bevilacqua, V.; Brunetti, A.; Guerriero, A.; Trotta, G.F.; Telegrafo, M.; Moschetta, M. A performance

comparison between shallow and deeper neural networks supervised classification of tomosynthesis breast
lesions images. Cogn. Syst. Res. 2019, 53, 3–19. [CrossRef]

7. Tiwari, A.; Srivastava, S.; Pant, M. Brain tumor segmentation and classification from magnetic resonance
images: Review of selected methods from 2014 to 2019. Pattern Recognit. Lett. 2020, 131, 244–260. [CrossRef]

8. Yanase, J.; Triantaphyllou, E. A systematic survey of computer-aided diagnosis in medicine: Past and present
developments. Expert Syst. Appl. 2019, 138, 112821. [CrossRef]

9. Altini, N.; Cascarano, G.; Brunetti, A.; Marino, F.; Rocchetti, M.; Matino, S.; Venere, U.; Rossini, M.; Pesce, F.;
Gesualdo, L.; et al. Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney
Histological Sections. Electronics 2020, 9, 503. [CrossRef]

10. Altini, N.; Cascarano, G.D.; Brunetti, A.; De Feudis, I.; Buongiorno, D.; Rossini, M.; Pesce, F.; Gesualdo, L.;
Bevilacqua, V. A deep learning instance segmentation approach for global glomerulosclerosis assessment in
donor kidney biopsies. Electronics 2020, 9, 1768. [CrossRef]

11. Chen, H.; Qi, X.; Yu, L.; Dou, Q.; Qin, J.; Heng, P.-A. DCAN: Deep contour-aware networks for object instance
segmentation from histology images. Med. Image Anal. 2017, 36, 135–146. [CrossRef]

12. Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive
tutorial with selected use cases. J. Pathol. Inform. 2016, 7, 29. [CrossRef]

3



Electronics 2021, 10, 66

13. Salvi, M.; Mogetta, A.; Meiburger, K.; Gambella, A.; Molinaro, L.; Barreca, A.; Papotti, M.; Molinari, F.
Karpinski Score under Digital Investigation: A Fully Automated Segmentation Algorithm to Identify
Vascular and Stromal Injury of Donors’ Kidneys. Electronics 2020, 9, 1644. [CrossRef]

14. Tajbakhsh, N.; Jeyaseelan, L.; Li, Q.; Chiang, J.N.; Wu, Z.; Ding, X. Embracing imperfect datasets: A review
of deep learning solutions for medical image segmentation. Med. Image Anal. 2020, 63, 101693. [CrossRef]
[PubMed]

15. Bardis, M.; Houshyar, R.; Chantaduly, C.; Ushinsky, A.; Glavis-Bloom, J.; Shaver, M.; Chow, D.; Uchio, E.;
Chang, P. Deep Learning with Limited Data: Organ Segmentation Performance by U-Net. Electronics 2020, 9,
1199. [CrossRef]

16. Dimauro, G.; Simone, L. Novel Biased Normalized Cuts Approach for the Automatic Segmentation of the
Conjunctiva. Electronics 2020, 9, 997. [CrossRef]

17. Kasiviswanathan, S.; Bai Vijayan, T.; Simone, L.; Dimauro, G. Semantic Segmentation of Conjunctiva Region
for Non-Invasive Anemia Detection Applications. Electronics 2020, 9, 1309. [CrossRef]

18. Dimauro, G.; De Ruvo, S.; Di Terlizzi, F.; Ruggieri, A.; Volpe, V.; Colizzi, L.; Girardi, F. Estimate of Anemia
with New Non-Invasive Systems—A Moment of Reflection. Electronics 2020, 9, 780. [CrossRef]

19. Dimauro, G.; Caivano, D.; Di Pilato, P.; Dipalma, A.; Camporeale, M.G. A Systematic Mapping Study on
Research in Anemia Assessment with Non-Invasive Devices. Appl. Sci. 2020, 10, 4804. [CrossRef]

20. Dimauro, G.; Guarini, A.; Caivano, D.; Girardi, F.; Pasciolla, C.; Iacobazzi, A. Detecting Clinical Signs of
Anaemia from Digital Images of the Palpebral Conjunctiva. IEEE Access 2019, 7, 113488–113498. [CrossRef]

21. Kanniappan, S.; Samiayya, D.; Vincent P M, D.; Srinivasan, K.; Jayakody, D.; Reina, D.; Inoue, A. An Efficient
Hybrid Fuzzy-Clustering Driven 3D-Modeling of Magnetic Resonance Imagery for Enhanced Brain Tumor
Diagnosis. Electronics 2020, 9, 475. [CrossRef]

22. Srinivasan, K.; Gowthaman, T.; Nema, A. Application of structural group sparsity recovery model for brain
MRI. In Proceedings of the SPIE 10806, Tenth International Conference on Digital Image Processing, Shanghai,
China, 11–14 May 2018; p. 108065H.

23. Srinivasan, K.; Ankur, A.; Sharma, A. Super-resolution of Magnetic Resonance Images using deep
Convolutional Neural Networks. In Proceedings of the IEEE International Conference on Consumer
Electronics—Taiwan (ICCE-TW), Taipei, Taiwan, 12–14 June 2017; pp. 41–42.

24. Mesin, L.; Roatta, S.; Pasquero, P.; Porta, M. Automated Volume Status Assessment Using Inferior Vena Cava
Pulsatility. Electronics 2020, 9, 1671. [CrossRef]

25. Mesin, L.; Pasquero, P.; Albani, S.; Porta, M.; Roatta, S. Semi-automated tracking and continuous monitoring
of inferior vena cava diameter in simulated and experimental ultrasound imaging. Ultrasound Med. Biol.
2015, 41, 845–857. [CrossRef]

26. Mesin, L.; Pasquero, P.; Roatta, S. Tracking and Monitoring Pulsatility of a Portion of Inferior Vena Cava
from Ultrasound Imaging in Long Axis. Ultrasound Med. Biol. 2019, 45, 1338–1343. [CrossRef] [PubMed]

27. Mesin, L.; Pasquero, P.; Roatta, S. Multi-directional assessment of Respiratory and Cardiac Pulsatility of
the Inferior Vena Cava from Ultrasound Imaging in Short Axis. Ultrasound Med. Biol. 2020, 46, 3475–3482.
[CrossRef] [PubMed]

28. Mesin, L.; Giovinazzo, T.; D’Alessandro, S.; Roatta, S.; Raviolo, A.; Chiacchiarini, F.; Porta, M.; Pasquero, P.
Improved repeatability of the estimation of pulsatility of inferior vena cava. Ultrasound Med. Biol. 2019, 45,
2830–2843. [CrossRef] [PubMed]

29. Mesin, L.; Albani, S.; Sinagra, G. Non-invasive Estimation of Right Atrial Pressure using the Pulsatility of
Inferior Vena Cava. Ultrasound Med. Biol. 2019, 45, 1331–1337. [CrossRef] [PubMed]

30. Albani, S.; Pinamonti, B.; Giovinazzo, T.; de Scordilli, M.; Fabris, E.; Stolfo, D.; Perkan, A.; Gregorio, C.;
Barbati, G.; Geri, P.; et al. Accuracy of right atrial pressure estimation using a multi-parameter approach
derived from inferior vena cava semi-automated edge-tracking echocardiography: A pilot study in patients
with cardiovascular disorders. Int. J. Cardiovasc. Imaging 2020, 36, 1213–1225. [CrossRef]

31. Folino, A.; Benzo, M.; Pasquero, P.; Laguzzi, A.; Mesin, L. Messere, A.; Porta, M.; Roatta, S. Vena Cava
Responsiveness to Controlled Isovolumetric Respiratory Efforts. J. Ultrasound Med. 2017, 36, 2113–2123.
[CrossRef]

4



Electronics 2021, 10, 66

32. Chesbrough, H.W. Open Innovation. The New Imperative for Creating and Profiting from Technology; Harvard
Business Review Press: Brighton, Boston, MA, USA, 2003.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

5





electronics

Article

Semantic Segmentation Framework for Glomeruli
Detection and Classification in Kidney
Histological Sections

Nicola Altini 1, Giacomo Donato Cascarano 1, Antonio Brunetti 1, Francescomaria Marino 1,

Maria Teresa Rocchetti 2, Silvia Matino 2, Umberto Venere 2, Michele Rossini 2, Francesco Pesce 2,

Loreto Gesualdo 2 and Vitoantonio Bevilacqua 1,*

1 Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari,
70126 Bari, Italy; nicola.altini@poliba.it (N.A.); giacomodonato.cascarano@poliba.it (G.D.C.);
antonio.brunetti@poliba.it (A.B.); francescomaria.marino@poliba.it (F.M.)

2 Department of Emergency and Organ Transplantation (DETO), Nephrology Unit, University of Bari
Aldo Moro, 70126 Bari, Italy; mariateresa.rocchetti@unifg.it (M.T.R.); silviamatino@gmail.com (S.M.);
u.venere@gmail.com (U.V.); michelerossini@libero.it (M.R.); f.pesce81@gmail.com (F.P.);
loreto.gesualdo@uniba.it (L.G.)

* Correspondence: vitoantonio.bevilacqua@poliba.it

Received: 28 February 2020; Accepted: 17 March 2020; Published: 19 March 2020

Abstract: the evaluation of kidney biopsies performed by expert pathologists is a crucial process
for assessing if a kidney is eligible for transplantation. In this evaluation process, an important step
consists of the quantification of global glomerulosclerosis, which is the ratio between sclerotic
glomeruli and the overall number of glomeruli. Since there is a shortage of organs available
for transplantation, a quick and accurate assessment of global glomerulosclerosis is essential
for retaining the largest number of eligible kidneys. In the present paper, the authors introduce
a Computer-Aided Diagnosis (CAD) system to assess global glomerulosclerosis. The proposed
tool is based on Convolutional Neural Networks (CNNs). In particular, the authors considered
approaches based on Semantic Segmentation networks, such as SegNet and DeepLab v3+. The dataset
has been provided by the Department of Emergency and Organ Transplantations (DETO) of Bari
University Hospital, and it is composed of 26 kidney biopsies coming from 19 donors. The dataset
contains 2344 non-sclerotic glomeruli and 428 sclerotic glomeruli. The proposed model consents
to achieve promising results in the task of automatically detecting and classifying glomeruli, thus
easing the burden of pathologists. We get high performance both at pixel-level, achieving mean
F-score higher than 0.81, and Weighted Intersection over Union (IoU) higher than 0.97 for both
SegNet and Deeplab v3+ approaches, and at object detection level, achieving 0.924 as best F-score
for non-sclerotic glomeruli and 0.730 as best F-score for sclerotic glomeruli.

Keywords: semantic segmentation; convolutional neural networks; kidney biopsy; kidney transplantation;
glomerulus detection; glomerulosclerosis

1. Introduction

The spread of Deep Learning (DL) techniques and frameworks has led to a revolution in
the medical imaging field. The assessment of organ viability, by donor kidney biopsy examination,
is essential prior to transplantation. The traditional evaluation of biopsies was based on the visual
analysis by trained pathologists of biopsy slides using a light microscope which is a time
consuming and highly variable procedure. The high variability between the observers resulted
in poor reproducibility among pathologists, which may cause an inappropriate organ discard.

Electronics 2020, 9, 503; doi:10.3390/electronics9030503 www.mdpi.com/journal/electronics7
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Therefore, the development of new techniques able to objectively and rapidly interpret donor kidney
biopsy to support pathologist’s decision making is strongly fostered. The increasing availability
of whole-slide scanners, which facilitate the digitization of histopathological tissue, led to a new
research field denoted as digital pathology and generated a strong demand for the development of
Computer-Aided Diagnosis (CAD) systems. As stated in the literature, the application of deep learning
techniques for the analysis of Whole-Slide Images (WSIs) has shown significant results and suggest
that the integration of DL framework with CAD systems is a valuable solution.

In the realm of digital pathology, several recent studies have proposed CAD systems
for glomerulus identification and classification in renal biopsies [1–8]. The eligibility for transplantation
of a kidney retrieved from Expanded Criteria Donors (ECD) relies on rush histological examination of
the organ to evaluate suitability for transplant [9]. The Karpinski score is based on the microscopic
examination of four compartments: glomerular, tubular, interstitial and vascular, in order to assess
the degree of chronic injury. For each compartment is assigned a score from 0 to 3 where 0 corresponds
to normal histology and 3 to the highest degree of, respectively, global glomerulosclerosis, tubular
atrophy, interstitial fibrosis and arterial and arteriolar narrowing [9,10]. The evaluation of global
glomerulosclerosis requires detection and classification of all the glomeruli present in a kidney biopsy,
distinguishing between healthy (non-sclerotic) and non-healthy (sclerotic) ones.

The two fundamental components that characterize a non-sclerotic glomerulus are the capillary
tuft with the mesangium and the Bowman’s capsule. The first one is placed inside the glomerulus
while the second one is peripheral and has the function to contain the tuft. The space between these
two components is called Bowman’s space. From a morphological point of view, the non-sclerotic
glomerulus generally has an elliptic form. The capillary tuft has a pomegranate form, caused
by the contemporary presence of blue points (nuclei of cells), white areas (capillary lumens)
and variable amount of regions with similar tonality and different levels of saturation (mesangial
matrix). A non-healthy glomerulus, from the point of view of Karpinski’s score, is a globally sclerotic
glomerulus, namely a glomerulus where capillary lumens are completely obliterated for increase in
extracellular matrix and Bowman’s space is completely filled by collagenous material. Examples of
non-sclerotic and sclerotic glomeruli are depicted in Figure 1.

Figure 1. Glomeruli. Top row: non-sclerotic glomeruli. Bottom row: sclerotic glomeruli.

Ledbetter et al. proposed a Convolutional Neural Network to predict kidney function (evaluated
as the quantity of primary filtrate that passes from the blood through the glomeruli per minute) in
chronic kidney disease patients from whole-slide images of their kidney biopsies [3]. Gallego et al.
proposed a method based on the pretrained AlexNet model [11] to perform glomerulus classification
and detection in kidney tissue segments [2]. Gadermayr et al. focused on the segmentation of
the glomeruli. The authors proposed two different CNN cascades for segmentation applications with
sparse objects. They applied these approaches to the glomerulus segmentation task and compared them
with conventional fully convolutional networks, coming to the conclusion that cascade networks can
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be a powerful tool for segmenting renal glomeruli [4]. Temerinac-Ott et al. compared the performance
between a CNN classifier and a support-vector machines (SVM) classifier which exploits features
extracted by histogram of oriented gradients (HOG) [12] for the task of glomeruli detection in WSIs
with multiple stains, using a sliding window approach. The obtained results showed that the CNN
method outperformed the HOG and SVM classifier [1]. Kawazoe et al. faced the task of glomeruli
detection in multistained human kidney biopsy slides by using a Deep Learning approach based on
Faster R-CNN [6]. Marsh et al. developed a deep learning model that recognizes and classifies sclerotic
and non-sclerotic glomeruli in whole-slide images of frozen donor kidney biopsies. They used
a Fully Convolutional Network (FCN) followed by a blob-detection algorithm [13], based on
Laplacian-of-Gaussian, to post-process the FCN probability maps into object detection predictions [8].
Ginley et al. proposed a CAD to classify renal biopsies of patients with diabetic nephropathy [7], using
a combination of classical image processing and novel machine learning techniques. Hermsen et al.
adopted CNNs, namely an ensemble of five U-Nets, for segmentation of ten tissue classes from WSIs
of periodic acid-Schiff (PAS) stained kidney transplant biopsies [14].

The analysis of the literature suggests that main works focused on the glomerular detection task
only, without considering the further classification into sclerotic and non-sclerotic [1,2,4,6]. Few papers
considered the assessment of global glomerulosclerosis from kidney biopsies [7,8,14].

In our previous works we focused on other kidney biopsies analysis tasks, such as classification
of tubules and vessels [15] and classification of non-sclerotic and sclerotic glomeruli [5]. In this work,
we propose a CAD system to address the segmentation and the classification tasks of glomeruli,
in order to obtain a reliable estimate of Karpinski histological score. The proposed work allowed us
to obtain better results than the literature in the classification task.

2. Materials

The kidney biopsies dataset analyzed in this paper has been provided by the Department of
Emergency and Organ Transplantations (DETO) of the Bari University Hospital. Slides were digitized
using a high-resolution whole-slide scanner with a scanning objective which has a 20× magnification
corresponding to a resolution of 0.50 μm/pixel. All the biopsies provided by DETO clinicians are PAS
stained sections from formalin fixed paraffin embedded tissue. The complete dataset is composed
of 26 kidney biopsies coming from 19 donors. It contains 2344 non-sclerotic glomeruli and 428
sclerotic glomeruli. The dataset has been split into a train-validation (trainval) set and a test set.
The trainval set has been further split into a train set and a validation set; the last one is used for tuning
hyperparameters and for assessing the trend of the loss function and of accuracy during the training
process. A detailed overview of the dataset is reported in Table 1.

Table 1. Dataset info.

Set WSIs Non-Sclerotic Sclerotic Ratio

Trainval set 19 1852 341 5.43 : 1

Test set 7 492 87 5.66 : 1

Dataset 26 2344 428 5.48 : 1

3. Methods

3.1. Semantic Segmentation Framework

Convolutional Neural Networks have had a widespread adoption in all kinds of image analysis
tasks, starting from AlexNet which won ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC 2012) [16] by a huge margin [11], though pioneering work was already done by LeCun much
earlier for handwritten digit recognition [17].
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Semantic segmentation is a task which consists of classifying all the pixels belonging to an input
image. In order to accomplish this task, most CNN semantic segmentation architectures are based
on encoder-decoder networks. The encoder is devoted to the feature extraction process, shrinking
the spatial dimensions while increasing the depth. The decoder has the task to recover the spatial
information from the output of the encoder. Due to the several application in the medical imaging field,
in this work we considered two main approaches based on SegNet and DeepLab v3+ architectures.
The main SegNet applications regard segmentation tasks such as semantic segmentation of prostate
cancer [18], gland segmentation from colon cancer histology images [19] and brain tumor segmentation
from multi-modal magnetic resonance images [20]. DeepLab v3+ has been used for the semantic
segmentation of colorectal polyps [21] and the automatic liver segmentation [22,23].

SegNet is a CNN architecture for semantic segmentation proposed by researchers at University
of Cambridge [24]. As other semantic segmentation architectures, SegNet is composed of an encoder
network and a corresponding decoder network, followed by a final pixel-wise classification layer. One
clever point of SegNet is that it removes the necessity of learning the upsampling process, by storing
indices used in max-pooling step in encoder and applying them when upsampling in the corresponding
layers of the decoder.

DeepLab is an architecture proposed by Chen et al. [25]. One of the interesting novelties proposed
by the authors of DeepLab is the atrous convolution, also known as dilated convolution. The idea has
been commonly used in wavelet transform before being adapted to convolutions for deep learning.
Atrous convolution consents to broaden the field of view of filters to incorporate larger context. It is,
therefore, a valuable tool to tune the field of view, permitting identification of the right balance
between context assimilation (large field of view) and fine localization (small field of view). We
adopted DeepLab v3+ [26] with ResNet-18 [27] as backbone in our tests.

We replaced the last layer of both SegNet and DeepLab v3+ networks with a pixel-wise
classification layer with 3 output classes (background, sclerotic glomeruli and non-sclerotic glomeruli);
we used inverse class frequencies as class weights and pixel-wise cross-entropy as loss function.

3.2. Proposed Workflow

3.2.1. CAD Architecture

A high-level overview of the proposed CAD is depicted in Figure 2. The physicians can visualize
the WSIs using Aperio ImageScope software. In order to perform supervised learning, we need labelled
data. Pathologists can annotate the slides using ImageScope, and export the results in XML files, which
we can use to feed our neural networks. After having trained our models, we can export the output
in XML files, and physicians can see the CAD annotations always in ImageScope, with seamless
integration. To accomplish the task of calculating the Karpinski histological score, we must make a
careful choice for the architecture of the network. All the models have been trained and validated on a
machine with the characteristics reported in Table 2.

Figure 2. CAD architecture. Physicians can visualize and annotate the WSIs using Aperio
ImageScope software. The developed Deep Learning models can interact with ImageScope through an
XML interface.

10



Electronics 2020, 9, 503

Table 2. System Details.

System Details

GPU NVIDIA GTX 1060 with 6 GB of RAM

CPU Intel Core i7-4790 CPU @ 3.60 Ghz

RAM 32 GB

OS Microsoft Windows 10 Home

Tool MATLAB R2019a

3.2.2. Semantic Segmentation Workflow

To obtain an estimate of the Karpinski score, we must detect and classify all the glomeruli
which appear in the WSI. We first use a semantic segmentation CNN to obtain a pixel-level
classification, distinguishing between pixels which belongs to background, sclerotic and non-sclerotic
glomeruli. Then, we must turn these pixel-level classifications into object detections, so that we can
count the number of sclerotic and non-sclerotic glomeruli. The general schema for our semantic
segmentation-based glomerular detector is depicted in Figure 3.

Figure 3. Semantic Segmentation approach architecture. The top part describes how to train the CNN.
The bottom part explains how to use the trained model for performing inference, and the related
morphological and clustering post-processing steps.

The first step in our workflow consists of segmenting the sections present in the WSI. At this
purpose, we used classical Image Processing techniques as thresholding, morphological operators,
connected components labelling, and eventually, clustering. A similar preprocessing step has also
been done by Ledbetter et al. [3]. We refer to the module performing this step as Sections Extractor.
To reduce the very large dimension of WSIs, which can be overwhelming for Deep Learning algorithms,
we undersampled the sections by a factor of 4. The original WSIs have a magnification of 20×,
after undersampling it becomes equivalent to a magnification of 5×. This operation leads to an effective
downsampling of the images from a resolution of about 8000 × 8000 pixels to a resolution of about
2000 × 2000 pixels. Since the section obtained this way was still too large to fit in our GPU, we divided
it in patches. During training, we randomly sampled patches of size 656 × 656, with a mechanism
to avoid to take too many patches only with negatives samples. The random patches sampled during
the training process are then fed to a data augmentation block that performs different augmentations,
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as reported in Table 3. Augmentations are generated on-the-fly for each epoch within random ranges,
so the network always processes slightly different input data, thus reducing the risk of overfitting.
In the inference phase, we take patches of size 656 × 656 pixels, with an overlap between successive
windows of 200 × 200 pixels. Please note that in semantic segmentation is important to have a larger
context for performing inference, when the approach involves a sliding window processing [28]. After
we get the predicted masks for glomeruli at patch-level, we project them to the original WSI, to get
the WSI-level predicted mask. At this point, we apply morphological operators to remove noisy points
and smooth the glomeruli shapes. We then analyze shape descriptors to understand if it is necessary
to perform a clustering operation. In the end, the obtained mask is projected to 20× resolution,
corresponding to oversampling by 4, using nearest-neighbour interpolation. Please note that in this
work, all the resizing operations involving the digital pathology images are obtained using bicubic
interpolation, while all the resizing operations involving the categorical masks are obtained using
nearest-neighbour interpolation.

3.2.3. Morphological Operators and Clustering

Adapting a semantic segmentation network to perform object detection poses some challenges.
The task of semantic segmentation consists of labelling only individual pixels, which mainly captures
textural information. In contrast to architectures explicitly tailored to Object Detection, such as Faster
R-CNN [29] or Mask R-CNN [30], where there are anchor boxes, the network does not look for objects,
it just tries to classify individual pixels. To extend the semantic segmentation model into an instance
segmentation one, we must use different morphological operators and clustering algorithms as
post-processing steps.

Morphological operators are applied only to binary masks obtained as the output of the semantic
segmentation networks. First, we smooth the shapes of objects performing a morphological closing
operation, with a disk of radius 5 pixels as structuring element, and with the morphological flood-fill
operation. Then, we delete small objects and noisy points using opening operator, with a disk of
radius 10 pixels as structuring element, and area opening operator, removing connected regions with
an area below 1000 pixels. Examples are depicted in Figure 4, where binary masks are overlapped
to the biopsy images for visualization purposes. Masks relative to non-sclerotic and sclerotic glomeruli
are green and red colored, respectively. Lastly, we analyze the shape descriptors for each of these
objects to understand if there are touching objects we need to cluster. The sequence of morphological
operators used is depicted in Figure 5.

Figure 4. (Left) Semantic Segmentation output. (Right) After Morphological Operators.
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Figure 5. Morphological operators sequence applied to the output masks from the semantic
segmentation network. The output of the morphological post-processing is used for calculating
shape descriptors to eventually perform clustering.

An important observation is that individual glomeruli have convex shapes, so their area is pretty
similar to their convex area. We perform a K-means clustering based on the difference between
the convex area and the area, as specified in Equation (1).

deltaArea = convexHullArea − area (1)

We decide the number K of clusters according to deltaArea: if deltaArea ≤ 900, K = 1;
if deltaArea > 900 and deltaArea ≤ 5000, K = 2; if deltaArea > 5000, K = 3. The values of
deltaArea and the corresponding K have been empirically determined on the trainval set. Confusion
matrices reported later have been obtained after the clustering with the configuration based on
deltaArea. Examples of glomeruli before clustering are depicted in Figure 6a,c. The corresponding
images after clustering are shown in Figure 6b,d.

(a) (b)

(c) (d)

Figure 6. Examples of K-means clustering for both sclerotic and non-sclerotic glomeruli. The number K
of clusters is determined according to deltaArea defined in (1). (a) Sclerotic glomeruli before clustering.
(b) Sclerotic glomeruli after clustering, with K = 2. (c) Non-sclerotic glomeruli before clustering.
(d) Non-sclerotic glomeruli after clustering, with K = 3.

3.2.4. Data Augmentation

Tellez et al. analyzed the problem of stain color variation in digital pathology very deeply [31].
They proposed different solutions for both stain color augmentation and stain color normalization.
In this work, we exploited techniques proposed by them such as morphological transformations
and Hue-Saturation-Value (HSV) shifts. An interesting morphological transformation is the elastic
deformation; it was originally proposed by Simard et al. [32] for the analysis of visual documents,
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and then has had a widespread application in medical imaging, as also shown by U-Net authors [28].
We used elastic deformation to generate plausible alterations of glomeruli shapes, increasing
the variability of training images and thus reducing the risk of overfitting. An example of elastic
deformation applied to our images is depicted in Figure 7. Examples of HSV shift are depicted
in Figure 8.

Figure 7. Elastic deformation example. Left: original image. Right: after elastic deformation with
σ = 6.29, α = 340.

Figure 8. HSV shift examples. Top Left: original image. Top Center: ΔH = +0.18, ΔS = +0.03. Top
Right: ΔH = +0.06, ΔS = −0.06. Bottom Left: ΔH = −0.04, ΔS = −0.02. Bottom Center: ΔH = −0.11,
ΔS = +0.10. Bottom Right: ΔH = +0.18, ΔS = +0.09.

A summary of the data augmentation techniques used for the training process is reported
in Table 3. The augmentations in group 1 are independently performed, each with a given
probability p. Resize augmentation used here is slightly different from standard resize; in fact, we apply
mirroring padding (instead of zero padding) when we perform a resize which shrinks the image size.
Augmentations, such as mirroring padding, which alter the morphology of the image are also executed
for the mask. From the augmentations reported in group 2, only one is made. Group 3 contains only
one augmentation, which is performed with a given probability. The augmentations are performed in
the order they compare in the table, i.e., before the four in group 1, then one of group 2 and in the end
the one of group 3.
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Table 3. Augmentations.

Data Augmentation

Type Details

Group 1

Rotate θ = 90, p = 0.25
Flip left-right p = 0.25

Flip upside-down p = 0.25
Resize resize ∈ [0.8, 1.2], p = 0.25

Group 2

Gaussian Noise σ ∈ [0, 0.01], p = 0.1
Gaussian Blur σ ∈ [0, 0.1], p = 0.1

Elastic Deformation σ ∈ [2, 5], α ∈ [100, 300], p = 0.2

Group 3

HSV shift ΔS ∈ [−0.1, 0.1], ΔH ∈ [−0.1, 0.1], p = 0.5

3.2.5. Hyperparameters Tuning

We tried different semantic segmentation network architectures. For SegNet and DeepLab v3+
we tuned hyperparameters according to Table 4. Please note that DeepLab v3+ with ResNet-18
backbone is more lightweight than SegNet, and this allowed us to use a larger mini-batch size,
with eight patches per mini-batch. With our GPU, SegNet was trained with only one patch per
mini-batch. More details about hyperparameters can be found in MATLAB documentation [33].

Table 4. Hyperparameters.

Hyperparameter SegNet Deeplab v3+

Optimizer SGDM SGDM
LearnRateSchedule ’piecewise’ ’piecewise’

LearnRateDropPeriod 10 10
LearnRateDropFactor 0.3 0.3

Momentum 0.9 0.9
InitialLearnRate 0.001 0.001
L2Regularization 0.005 0.005

MaxEpochs 30 30
MiniBatchSize 1 8

Shuffle ’every-epoch’ ’every-epoch’
ValidationPatience 10 10

ValidationFrequency 1 per epoch 1 per epoch

4. Experimental Results

We distinguish between the results obtained at pixel-level (semantic segmentation task) and at
object detection level.

In particular, for the semantic segmentation task we group the metrics in Dataset Metrics
and Class Metrics [33].

The group of Dataset Metrics includes semantic segmentation metrics aggregated over the data
set: Global Accuracy, Mean Accuracy (the mean of the accuracies calculated per class), Mean IoU (the mean
of the IoUs calculated per class), Weighted IoU (mean of the IoUs, weighted by the number of pixels in
the class) and Mean F-score (mean of the F-measures calculated per class).

The group of Class Metrics includes semantic segmentation metrics calculated for each class,
namely: Accuracy (2), IoU (3) and Mean F-score (F-measure for each class, averaged over all images).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)
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IoU =
TP

TP + FP + FN
(3)

For the object detection task, confusion matrices are calculated assuming that a true positive
match between predicted mask and ground truth mask has pixel-wise IoU (3) of at least 0.2. Besides
confusion matrices, the metrics used for assessing the results of the object detection task are:

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

F1 Score =
2 · Precision · Recall
Precision + Recall

. (6)

The best results on non-sclerotic glomeruli have been obtained using DeepLab v3+, while
for sclerotic glomeruli the best model was SegNet. An example of the output of our semantic
segmentation framework is depicted in Figure 9.

Figure 9. Top Left: original image. Top Right: ground truth. Bottom Left: SegNet prediction.
Bottom Right: DeepLab v3+ prediction. Sclerotic glomeruli and non-sclerotic ones are white and gray
colored, respectively.

4.1. Pixel-Level Metrics

Pixel-level dataset metrics for both SegNet and DeepLab v3+ are reported in Table 5.
The pixel-level class metrics of SegNet and DeepLab v3+ are reported in Tables 6 and 7, respectively.
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The normalized pixel-level confusion matrix are in Tables 8 and 9. Pixel-level confusion matrices
are normalized per row; B, NS, S stand for Background, Non-sclerotic and sclerotic, respectively.

Table 5. Dataset Metrics.

CNN
Global

Accuracy
Mean

Accuracy
Mean IoU

Weighted
IoU

Mean
F-Score

SegNet 0.98346 0.86385 0.71352 0.97156 0.81784

Deeplab v3+ 0.99179 0.76884 0.72873 0.98434 0.84614

Table 6. Class Metrics SegNet.

Class Accuracy IoU Mean F-Score

Background 0.98636 0.98294 0.99243

Non-sclerotic 0.91925 0.66546 0.83239

sclerotic 0.68594 0.49215 0.69686

Table 7. Class Metrics Deeplab v3+.

Class Accuracy IoU Mean F-Score

Background 0.99690 0.99172 0.96684

Non-sclerotic 0.88199 0.80872 0.93306

Sclerotic 0.42764 0.38574 0.63852

Table 8. Normalized pixel-level Confusion Matrix SegNet.

Prediction

B NS S

Ground Truth

B 98.64% 1.26% 0.10%

NS 8.07% 91.93% 0.00%

S 30.97% 0.44% 68.59%

Table 9. Normalized pixel-level Confusion Matrix Deeplab v3+.

Prediction

B NS S

Ground Truth

B 99.69% 0.28% 0.03%

NS 11.78% 88.20% 0.02%

S 50.57% 6.67% 42.76%

4.2. Object Detection Metrics

In object detection confusion matrices B, NS, S stand for Background, Non-sclerotic and Sclerotic,
respectively.

The object detection confusion matrices for SegNet and DeepLab v3+ are reported in
Tables 10 and 11, respectively. The detection metrics for both the proposed models and a comparison
with the method proposed by Marsh et al. [8] are reported in Table 12. The SegNet-based model
obtained a better F-score for both the glomeruli classes. The DeepLab v3+-based model obtained a
better F-score for non-sclerotic glomeruli and a slightly worse F-score for sclerotic glomeruli.
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Table 10. Object Detection Confusion Matrix SegNet.

Prediction

NS S B

Ground Truth
NS 436 0 56

S 1 58 28

B 86 14 –

Table 11. Object Detection Confusion Matrix Deeplab v3+.

Prediction

NS S B

Ground Truth
NS 449 0 43

S 7 41 39

B 24 1 –

Table 12. Performance Comparison for Detection Metrics.

Author Model Class Recall Precision F-Score

Marsh et al. [8] FCN + blob-detection NS 0.885 0.813 0.848

S 0.698 0.607 0.649

Proposed approach

SegNet NS 0.886 0.834 0.859

S 0.667 0.806 0.730

DeepLab v3+ NS 0.913 0.935 0.924

S 0.471 0.976 0.636

5. Conclusions and Future Work

The proposed approach allowed us to obtain high performance both at pixel and object detection
level. The semantic segmentation achieved mean F-score higher than 0.81 and Weighted IoU higher
than 0.97 for both SegNet and Deeplab v3+ approaches; the glomeruli detection achieved 0.924 as
best F-score for non-sclerotic glomeruli and 0.730 as best F-score for sclerotic glomeruli. We compared
our obtained performance with the state of the art. As stated in the Section 1, there are three main
works that face the problem of glomerular classification. Ginley et al. considered the glomerular
assessment for patients affected by diabetic nephropathy but not for transplantation purposes [7].
Hermsen et al. considered many tissue classes, but the number of sclerotic glomeruli in their datasets
is too small for a comparison with our method [14]. Marsh et al. considered the problem of global
glomerulosclerosis from kidney transplant biopsies with haematoxylin and eosin (HE) stain [8].
The performance comparison between our proposed methods and Marsh et al. work is reported
in Table 12. The obtained results show an improvement over the work of Marsh et al. Thus,
CNNs for Semantic Segmentation are a viable approach for the purpose of glomerular segmentation
and classification, allowing the obtaining of a reliable estimate of the global glomerulosclerosis.
Assessing the suitability of kidney from ECD donors relies in many centers on the histological
examination of kidney biopsies performed at the time of organ retrieval and processed and evaluated
by on-call pathologist that, not necessarily, is an expert trained in renal pathology. The importance of
training in renal pathology when assessing biopsy of such cases has been evaluated in some studies
reporting better correlation with subsequent allograft outcome of histological scores provided by renal
pathologists compared to those provided by general pathologist with potential risk of “overscoring”
and the potential of discarding kidneys that could have been potentially transplanted [34–36].
The results were validated by the renal pathologists which assessed the reliability of the proposed
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workflow; the applied methodology constitutes a milestone in the creation of a CAD system
for the renal transplant assessment. The proposed system could help pathologists in accomplishing
the laborious task of evaluating the eligibility of a kidney for transplantation, providing a rapid
and accurate result. Future work will include the use of Deep Learning models explicitly designed
for the detection task, such as Faster R-CNN and Mask R-CNN.
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Abstract: In kidney transplantations, the evaluation of the vascular structures and stromal areas
is crucial for determining kidney acceptance, which is currently based on the pathologist’s visual
evaluation. In this context, an accurate assessment of the vascular and stromal injury is fundamental
to assessing the nephron status. In the present paper, the authors present a fully automated algorithm,
called RENFAST (Rapid EvaluatioN of Fibrosis And vesselS Thickness), for the segmentation of kidney
blood vessels and fibrosis in histopathological images. The proposed method employs a novel strategy
based on deep learning to accurately segment blood vessels, while interstitial fibrosis is assessed
using an adaptive stain separation method. The RENFAST algorithm is developed and tested on
350 periodic acid–Schiff (PAS) images for blood vessel segmentation and on 300 Massone’s trichrome
(TRIC) stained images for the detection of renal fibrosis. In the TEST set, the algorithm exhibits
excellent segmentation performance in both blood vessels (accuracy: 0.8936) and fibrosis (accuracy:
0.9227) and outperforms all the compared methods. To the best of our knowledge, the RENFAST
algorithm is the first fully automated method capable of detecting both blood vessels and fibrosis in
digital histological images. Being very fast (average computational time 2.91 s), this algorithm paves
the way for automated, quantitative, and real-time kidney graft assessments.

Keywords: kidney transplantation; digital pathology; deep learning; kidney fibrosis; blood vessel
segmentation; convolutional neural networks

1. Introduction

Kidney allograft transplant is experiencing a broad revolution, thanks to an increasing
understanding of the pathologic mechanisms behind rejection and the introduction of new techniques
and procedures for transplants [1]. The primary focus during kidney transplants has always been
the identification, assessment, and treatment of allograft rejection. However, recently, a new issue
has come to light: a shortage of donor organs. To solve this impasse, selection criteria were revised,
leading to the so-called “expanded criteria donor” approach: kidneys that once would have been
excluded because of the donors’ clinical history or those deriving from deceased patients are nowadays
carefully used [2,3].
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In this context, the preimplantation evaluation of donors’ kidneys has become more and more
crucial. The pathologist’s challenge is to recognize early signs of degeneration to “predict” the organs’
functionality and performance. This analysis, usually based on periodic acid–Schiff (PAS) and trichrome
(TRIC) staining, is focused on the glomeruli, tubules, vessels, and cortical parenchyma of the donor
kidney, searching for glomerulosclerosis, tubule atrophy, vascular damage, or interstitial fibrotic
replacement, respectively (Figure 1). The Karpinski score is then applied to grade the injury of the
donor kidney. This score is based on a semiquantitative evaluation of the structures mentioned above.
For each of the four compartments (glomeruli, tubules, blood vessels, and cortical parenchyma),
the pathologist summarizes the evaluation in a four-grade score, ranging from 0 (absence of injury)
to 3 (marked injuries); the total score is expressed out of 12 [4]. Notably, both arteries and arterioles
are considered in vascular damage assessment, characterized by progressive thickening of their wall
and shrinkage of their lumen. At the same time, the cortical parenchyma could be replaced by fibrous
connective tissue [5,6].

Figure 1. Histological features assessed to determine the Karpinski score. (a) Glomerulosclerosis:
examples of a healthy and sclerotic glomerulus are shown in green and red, respectively; (b) Tubular
atrophy: healthy and atrophic tubules are highlighted in green and red, respectively; (c) Vascular
damage: blood vessels are outlined in green; (d) Cortical parenchyma: renal fibrosis is represented by
the turquoise zone.

The preimplantation kidney evaluation is a delicate, crucial activity for pathology laboratories.
It is time-consuming, usually performed with urgency, and has a marked impact on the daily diagnostic
routine. Moreover, the evaluation is operator-dependent, with a significant rate of inter-observer
difference [7]. In this challenging and evolving panorama, the introduction and application of an
automated analysis algorithm would be of compelling importance.

In the last few years, several strategies have been proposed for the segmentation of kidney
blood vessels and for the quantification of fibrotic tissue in biopsy images. Bevilacqua et al. [8]
employed an artificial neural network (ANN) to detect blood vessels in histological kidney images.
Lumen regions were firstly detected by applying fixed thresholding and morphological operators.
Seeded region growing was then implemented to extract the membrane all around the segmented
objects. Finally, a neural network based on Haralick texture features [9] was used to distinguish
between blood vessels and tubular structures. Although well structured, this strategy suffers from
several limitations. First, blood vessels with small or absent lumen cannot be segmented using the
described approach. In addition, stain variability greatly influences the performance of the region
growing, causing imprecise recognition of the blood vessel borders. Finally, the high variability in
the shapes, dimensions, and textural characteristics of tubules seriously affects the classification
provided by the network. Tey et al. [10] proposed an algorithm for the quantification of interstitial
fibrosis (IF) based on color image segmentation and tissue structure identification in biopsy samples
stained with Massone’s trichrome (TRIC). All the renal structures were identified by employing
color space transformations and structural feature extraction from the images. Then, the regions of
fibrotic tissue were identified by removing all the non-fibrotic structures from the biopsy tissue area.
This approach leads to fast identification of renal fibrotic tissue, but it is not free from limitations. First of
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all, there is a loss of information during the color space transformation and, in the presence of high stain
variability, the method is not able to correctly classify all the renal structures. Moreover, being based
on the identification and subsequent removal of non-fibrotic regions from the tissue, an error in the
segmentation of these structures causes inaccurate quantification of interstitial fibrosis. Fu et al. [11]
proposed a convolutional neural network (CNN) for fibrotic tissue segmentation in atrial tissue stained
with Massone’s trichrome. The network, consisting of 11 convolutional layers, was trained on a
three-class problem (background vs. fibrosis vs. myocytes), giving the RGB image as input and the
corresponding manual mask as the target. This approach provides fast detection of fibrotic areas of the
tissue but presents one major limitation: color variability. Stain variations may affect both the training
of the network and the correct segmentation of fibrotic tissue, and every mis-segmentation error leads
to incorrect detection and quantification of interstitial fibrosis.

In this paper, we present a novel method for the detection of blood vessels and for the quantification
of interstitial fibrosis in kidney histological images. To the best of our knowledge, no automated
solution has been proposed so far to cope with the issue of stain variability in PAS and TRIC images.
Our approach employs a preprocessing stage specifically designed to address the problem of color
variability. The proposed algorithm for the segmentation of vascular structures exploits a deep learning
approach combined with the detection of cellular structures to accurately segment blood vessels in
PAS stained images. Interstitial fibrosis is assessed using an adaptive stain separation method to detect
all the fibrotic areas within the histological tissue.

2. Materials and Methods

Here we present an automated method called RENFAST (Rapid EvaluatioN of Fibrosis And
vesselS Thickness). The RENFAST algorithm is a deep-learning-based method for the segmentation of
renal blood vessels and fibrosis. A flowchart of the proposed method is sketched in Figure 2. In the
following sections, a detailed description of the algorithm is provided.

 
Figure 2. Flowchart of the RENFAST (Rapid EvaluatioN of Fibrosis And vesselS Thickness) algorithm
for vessel and fibrosis segmentation. The first row illustrates the pipeline for blood vessel detection,
while the second row shows the workflow of fibrosis segmentation. After PAS (periodic acid–Schiff)
color normalization, blood vessels are detected using a deep learning method (CNN) and ad hoc
post-processing. Kidney fibrosis is segmented through TRIC (Massone’s trichrome) normalization
followed by adaptive stain separation.
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2.1. Database Description

The whole slide images (WSIs) of kidney biopsy specimens of 65 patients (median age 51 years,
range 29–74 years) were used for this work; these were collected at the Division of Pathology,
AOU Città della Salute e della Scienza Hospital, Turin, Italy and then anonymized. The pathology
laboratory managed the biopsied samples of each kidney according to the kidney transplant biopsy’s
internal protocol. The tissue was fixed with Serra fixative and then processed in an urgency regimen
using a microwave processor or LOGOS J processor (Milestone, Bergamo, Italy). Samples were then
paraffin-embedded and serially sectioned (5 μm), mounted onto adhesive slides, and stained with PAS
and TRIC. Finally, all the slides produced were scanned with a Hamamatsu NanoZoomer S210 Digital
slide scanner (Turin, Italy), providing a magnification of ×100 (conversion factor: 0.934 μm/pixel).
For each patient (n = 65), an expert pathologist (A.B.) manually extracted 10 images with dimensions
of 512 × 512 pixels, for a total of 650 images. After consensus, manual annotations of blood vessels
and fibrosis were generated by two operators (A.G. and L.M.). Table 1 shows the overall dataset
composition. The image dataset, along with the annotations, is available at https://data.mendeley.com/
datasets/m2t49zf6xr/1.

Table 1. Dataset used in this work.

Dataset Subset Stain # Patients # Images

Vessels
TRAIN PAS 30 300
TEST PAS 5 50

Fibrosis
TRAIN TRIC 25 250
TEST TRIC 5 50

2.2. Stain Normalization

The proposed algorithm employs a specific preprocessing stage, called stain normalization,
to reduce the color variability of the histological samples. Previous studies have shown that stain
variability significantly affects the performance of automatic algorithms in digital pathology [12,13].
The procedure of stain normalization allows for transforming a source image I into another image
INORM, through the operation INORM = f (I, IREF), where IREF is a reference image and f (·) is the
function that applies the color intensities of IREF to the source image [14]. The reference image is chosen
by the pathologist as the image with the most optimal tissue staining and visual appearance. For each
image of the dataset, the RENFAST algorithm applies the same stain normalization method that we
developed in our previous work [15]. First, the image is converted to the optical density space (OD)
where the relationship between stain concentration and light intensity is linear. The algorithm then
estimates the stain color appearance matrix (W) and the stain density map (H) for both the source and
reference images. In order to apply the normalization, the stain density map of the source image is
adjusted using the following equation:

INORM = WREF· HSOURCE
HREF

(1)

where (·)SOURCE and (·)REF denote the source and reference images, respectively. Finally, the normalized
image is converted back from the OD space to RGB. Figure 3 illustrates the color normalization process
for sample PAS and TRIC images.
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Figure 3. Stain normalization performed by the RENFAST algorithm. (a) PAS normalization;
(b) TRIC normalization.

2.3. Deep Network Architecture

After stain normalization, the first step performed by the RENFAST algorithm is semantic
segmentation using a convolutional neural network (CNN). To perform blood vessel segmentation,
a UNET architecture with ResNet34 backbone [16] is employed using the Keras framework. The overall
network architecture is shown in Figure 4. This network consists of an encoder structure that
downsamples the spatial resolution of the input image through convolutional operations, to obtain a
low-resolution feature mapping. These features are then resampled by a decoding structure to obtain a
pixel-wise prediction of the same size of the input image. The output of the network is a probability map
that assigns to each pixel a probability of belonging to a specific class. The entire network is trained on
a three-class problem, giving the 512 × 512 RGB images as input and the corresponding labeled masks
as the target. In each image of the dataset, pixels are labeled in three classes: (i) background, (ii) blood
vessel, and (iii) blood vessel boundaries. To solve the problem of class imbalance, our network’s loss
function is class-weighted by taking into account how frequently a class occurs in the training set.
This means that the least-represented class will have a greater contribution than a more represented
one during the weight update. The class weight is computed as follows:

fclassX =
N∑

i=1

% pixelclassX

N
x = 1, 2, 3 (2)

classWEIGHT =
median([ fclass1, fclass2, fclass3])

[ fclass1, fclass2, fclass3]
(3)

where N is the total number of images and fclassX is the class frequency of generic class X.
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Figure 4. Architecture of the deep network employed to perform blood vessel detection. A UNET with
ResNet34 backbone was implemented using Keras framework.

The encoding network was pre-trained on ILSVRC 2012 ImageNet [17]. During the training
process, only the decoder weights were updated, while the encoder weights were set to non-trainable.
This strategy allows for exploiting the knowledge acquired from a previous problem (ImageNet) and
using the features learned to solve a new problem (vessel segmentation). This approach is useful both to
speed up the training process and to create a robust model even using fewer data. The training data are
real-time augmented while passing through the network, applying the same random transformations
(rotation, shifting, flipping) both to the input image and to the corresponding encoded mask. Real-time
data augmentation allows us to increase the amount of data available without storing the transformed
data in memory. This strategy makes the model more robust to slight variations and prevents the
network from overfitting.

Our network (Figure 4) was trained on 300 images with a mini-batch size of 32 and categorical
cross-entropy as a loss function. The Adam optimization algorithm was employed with an initial
learning rate of 0.01. The maximum number of epochs was set to 50, with a validation patience of
10 epochs for early stopping of the training process.

To preserve the information near the boundaries of the image, the RENFAST algorithm applies a
specific procedure to build the CNN softmax. Briefly, a mirror border is synthesized in each direction
and a sliding window approach is employed to build the probability map. To give the reader the
opportunity to observe the entire procedure, we added a detailed description along with a summary
figure in Appendix A.

2.4. Blood Vessel Detection

Starting from the normalized RGB image (Figure 5a), the RENFAST algorithm applies the deep
network described in the previous section. Figure 5b shows the probability map obtained from the
CNN, in which the red and green areas represent the pixels inside and on the edge of the blood vessels,
respectively. Then, our method detects all the white and nuclear regions within the image. All the
unstained structures are segmented by thresholding the grayscale image of the PAS sample, while cell
nuclei are detected using the object-based thresholding developed in our previous work [15]. Figure 5c
illustrates the segmentation of cellular structures performed by the RENFAST algorithm.
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Figure 5. Steps performed by RENFAST for blood vessel detection. (a) Normalized image; (b) CNN
probability map; (c) Cellular structure detection (yellow: nuclei, cyan: lumen); (d) Initial blood vessel
segmentation; (e) Softmax with high SNR (signal-to-noise ratio); (f) Final blood vessel segmentation.

To obtain initial detection of the vascular structures, the probability maps of the regions inside
and on the border of the blood vessels are added together and thresholded with a fixed value of 0.35.
Then, morphological closing with a disk of 3-pixel radius (equal to 2.80 μm) is carried out to obtain
smoother contours. As can be seen from Figure 5d, this strategy leads to accurate detection of the blood
vessel boundaries but does not allow the separation of touching structures. To overcome this problem,
an additional processing stage is performed to divide clustered blood vessels. The RENFAST algorithm
employs a four-step procedure to increase the contrast between each blood vessel’s boundary and
the background:

1. Inner region mask: thresholding (0.35) and level-set on the probability map of inner regions
(red layer);

2. Boundary mask: thresholding (0.35) and level-set on the probability map of boundary regions
(green layer);

3. New red layer of the softmax: subtraction of the boundary mask from the inner region mask;
4. New green layer of the softmax: skeleton of the boundary mask.

This procedure generates a softmax with a high SNR (signal-to-noise ratio) where the border of
each blood vessel is clearly defined (Figure 5e). Finally, for each connected component of the initial
mask (Figure 5d), a simple check is performed: if by subtracting the green layer of the high-SNR
softmax (Figure 5e), more than one region is generated, these regions are dilated by 1 pixel and added
to the final mask. In this way, the thickness lost during the subtraction is recovered while maintaining
the blood vessels’ separation. Otherwise, if no additional structure is created with the subtraction,
the connected component is inserted directly into the final mask.

The last step of the RENFAST algorithm for vessel segmentation is a structural check on the
segmented objects: All the regions with an area less than 180 μm2 are erased as they are too small to be
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considered blood vessels. In addition, objects must have at least 2.5% and 5% of the area occupied by
lumen and nuclei, respectively. With these structural checks, most of the false positives generated by
the CNN are deleted. The final result provided by the proposed algorithm is shown in Figure 5f.

2.5. Fibrosis Segmentation

The RENFAST algorithm is also able to quantify interstitial fibrosis in TRIC images. After stain
normalization (Section 2.2), our method detects all the uncolored regions to process only TRIC stained
structures. The normalized TRIC image is first converted to grayscale and Weiner filtered. The resulting
image is then thresholded using a value equal to 90% of the image maximum (Figure 6a). Since fibrosis
is characterized by a greenish color, the proposed algorithm applies an adaptive stain separation as
described in [15]. Thanks to the stain separation (Figure 6b), it is possible to divide the regions that
may manifest fibrosis (green channel) from the structural component (red channel). Segmentation
of these two channels is performed using an improved version of the MANA (Multiscale Adaptive
Nuclei Analysis) algorithm [18]. After min-max scaling, custom object-based thresholding is applied to
the green channel (fibrosis) and red channel obtained in the previous step. For each possible threshold
point T ∈ [0, 1], the RENFAST algorithm computes the following energy function:

E(T) = p2
0·var0·log(var0) + p2

1·var1·log(var1) (4)

where p0 is the probability of having intensity values lower than T, p1 is evaluated as 1− p0, while var0

and var1 represent the variances of the probability functions of the two classes p0 and p1. The threshold
T associated with the maximum of the energy function E represents the optimal thresholding point.
The result of green and red channel segmentation is illustrated in Figure 6c. All remaining pixels not
associated with one of the binary masks (white, green, red) are included in the green or red mask based
on where they have the highest intensity in the stain separation channel.

Figure 6. Steps performed by RENFAST for fibrosis segmentation. (a) Normalized image and white
detection (in blue); (b) Stain separation between green and red channels; (c) Segmentation of green and
red channels; (d) Fibrosis and tissue detection for interstitial fibrosis quantification.

Finally, the RENFAST algorithm quantifies the interstitial fibrosis as the ratio between the fibrotic
area (segmented green channel) and the overall tissue area. Tissue detection is performed using an
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RGB high-pass filter [19] where the RGB color of each pixel is treated as a 3D vector. The strength of
the edge is defined as the magnitude of the maximum gradient. The raw tissue mask is generated by
choosing a threshold equal to 5% of the maximum gradient. Morphological opening with a disk of
4-μm radius is then carried out to obtain the tissue contour (Figure 6d).

2.6. Performance Metrics

A comparison between manual and automatic masks was carried out to assess RENFAST’s
performance in the segmentation of kidney blood vessels and fibrosis. Manual annotations of blood
vessels were generated using a custom graphical user interface based on MATLAB. Since fibrosis
segmentation can be a long and demanding task, we designed a semi-automatic pipeline to help the
pathologist during the generation of the manual mask (Appendix B). Several pixel-based metrics,
such as balanced accuracy, precision, recall, and F1SCORE, were evaluated for both blood vessel and
fibrosis segmentation. Balanced accuracy (BalACCURACY) is a common metric used in segmentation
problems to deal with imbalanced datasets (TP vs. TN). BalACCURACY is calculated as the average of
the correct predictions of each class individually. Precision is employed to evaluate the false detection
of ghost shapes; recall quantifies the missed detection of ground truth objects; and finally, the F1SCORE

is defined as the harmonic mean between precision and recall.
Accurate segmentation of blood vessel borders is fundamental for a correct evaluation of vascular

damage. For this reason, we also evaluated the Dice coefficient (DSC) and the Hausdorff distance for all
the true-positive vascular structures. Specifically, we computed the 95th percentile Hausdorff distance
(HD95), which is defined as the maximum distance of a set (manual boundary) to the nearest point in
the other set (automatic boundary). This metric is more robust towards a very small subset of outliers
because it is based on the calculation of the 95th percentile of distances. During fibrosis assessment,
the pathologist computes the ratio between fibrotic tissue and the whole tissue area. For each image,
the absolute error (AE) between manual and automatic estimation was calculated as

AE =

∣∣∣∣∣( f ibrosisAREA

tissueAREA
)

MANUAL
− ( f ibrosisAREA

tissueAREA
)

RENFAST

∣∣∣∣∣ (5)

where (·)MANUAL and (·)RENFAST denote the manual and the automatic annotations, respectively.

3. Results

The automatic results provided by the RENFAST method are compared herein both with manual
annotations and with previously published works. For blood vessel segmentation, we compared our
algorithm with the one proposed by Bevilacqua et al. [8], while we used the methods published by
Tey et al. [10] and Fu et al. [11] as benchmarks for interstitial fibrosis segmentation. As datasets and
manual annotations of these works are not publicly available, all the described methods were applied
to the same dataset used in this paper. The processing was performed on a custom workstation with a
3.5 GHz 10-core CPU with 64 Gb of RAM (Turin, Italy).

3.1. Blood Vessel Detection

Both pixel-based metrics (BalACCURACY, precision, recall, F1SCORE) and object-based metrics
(DSC, HD95) were calculated to assess the performance of the RENFAST algorithm. To demonstrate
the superiority of our strategy, we also evaluated the results obtained using a simple two-class CNN
(background vs. vessel) and a three-class CNN without our post-processing. Tables 2 and 3 summarize
the metrics calculated for blood vessel detection.
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