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SUMMARY 

The study analyzes the influence of double concave friction pendulum (DCFP) isolator properties on the seismic 

performance of isolated multi-span continuous deck bridges. The behaviour of these systems is analyzed by employing 

an eight-degree-of-freedom model accounting for the pier flexibility in addition to the rigid presence of both abutment 

and deck, whereas the DCFP isolator behaviour is described combining two single FP devices in series. The uncertainty 

in the seismic input is taken into account by considering a set of non-frequent natural records with different characteristics. 

The variation of the statistics of the response parameters relevant to the seismic performance of the isolated bridges is 

investigated through the proposal of a nondimensionalization of the motion equations, with respect to the seismic 

intensity, within an extensive parametric study carried out for different isolator and bridge properties. Moreover, two 

cases related to different ratios between the sliding friction coefficients of the two surfaces of the DCFP devices are 

analysed with the aim also to evaluate the corresponding optimal values able to minimize the seismic demand to the pier. 

In this way, all the presented non-dimensional results are useful for the preliminary design or retrofit of multi-span 

continuous deck bridges, isolated with DCFP devices, located in any site and in relation, especially, to the seismic ultimate 

limit states. 
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INTRODUCTION 

Seismic isolation has emerged as one of the most powerful techniques in the ensemble of retrofitting methodologies [1]-

[5] for infrastructures. In general terms, seismic isolation of bridges permits to obtain the uncoupling of the deck from the 

horizontal earthquake’s components, leading to a significant reduction of the deck acceleration and, as a consequence, of 

the forces transmitted to the pier. Several researches (e.g., [1]-[4]) have been carried out in the last decades investigating 

the effectiveness of the isolation devices and carrying out experimental and analytical studies on the seismic response of 

bridges isolated by sliding isolation systems finding out as these kinds of devices are quite effective in the aseismic 

bridges’ design. Contextually, Ghobarah and Ali [5] together with Turkington et al. [6] showed that the presence of lead-

rubber bearings (LRB) shift the natural period of the structure and increases the amount of damping, moreover these 

devices permit to distribute the seismic forces approximately evenly between pier and abutment. Jangid [7] studied the 

seismic response of bridges isolated by LRBs to bidirectional earthquakes outlining that the bidirectional interaction of 

the restoring forces of the LRBs has not negligible effects on the seismic response of the isolated bridges. Closed-form 

expressions for both the optimum yield strength of LRBs and corresponding response of the isolated bridge system are 

proposed by [8]. In [9], the effects of soil-structure interaction on the peak responses of three-span continuous deck bridge 

isolated by the elastomeric bearings have also been evaluated showing their importance in order to not underestimate the 

bearing displacements at abutment locations. The results of [10] confirm that the isolation can have beneficial effects 

even for bridges located in medium soil types. 

Regarding friction pendulum system (FPS) as isolators, the seismic behaviour of seismically isolated bridges was widely 

studied by [11]-[14]. In [14], it is illustrated the seismic response analysis of three‐span continuous deck bridges isolated 

with FP bearings and subjected to harmonic motions and real earthquakes. The seismic response of isolated bridges is 

investigated in [15] confirming the effectiveness of simplified models in relation to the flexibility of the deck and of the 

piers. Regarding the flexibility of the abutment, a comparative study on seat-type abutment bridges is described in [16], 

employing real bridges of variable total lengths, openings at the expansion joints and backfill models, through 3D non-

linear numerical models to investigate the seismic participation of the abutment and the backfill soil able to reduce 

effectively the seismic demand of bridges. Similarly, the interaction of the abutment with the backfill soil is widely 

investigated for integral abutment bridges in [17] as well as the studies by [18]-[19] highlight the importance of 

considering the soil-structure at the end abutments. When FPS bearings are used, the natural period of the isolated 

structure becomes independent of the mass of the superstructure and it just has a dependence on the radius of curvature 

of the sliding surface [20]. Another important feature of this isolation system is mainly related to the energy dissipation 

mechanism thanks to the velocity-dependent friction between the sliding surfaces and the composite material on the slider 

[21]-[25]. Eröz and DesRoches [26]-[27] analyzed the effect of modeling parameters and the influence of the design 

parameters on the response of a three-dimensional multi-span continuous steel girder bridge model seismically isolated 
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by the FPS. In addition, it has been demonstrated in [28]-[29] that the characteristics of a FPS bearing become more 

effective by introducing a second sliding surface obtaining the so called double concave friction pendulum (DCFP) device. 

In particular, Kim and Yun [30] studied the positive effects of a double concave friction pendulum system on a bridge 

response considering different combinations of radii of curvature and of friction coefficients. Multi-stage performance of 

seismically isolated bridge using triple pendulum bearings has been investigated in probabilistic terms for different 

characteristics of the seismic device by [31]. In [32], the optimal properties of the FPS able to minimize the seismic 

response of pier under earthquakes having different frequency contents representative of different soil conditions is 

evaluated. In [33], the performance-based evaluation approach through the assessment of the fragility functions is used 

to investigate the effectiveness and optimum design parameters of isolation (elastomeric and frictional) devices.  

Other studies [34]-[38] have been more oriented to define design approaches for the sliding (FPS and DCFP) isolators by 

means of the seismic reliability-based design (SRBD), in which the main uncertainties such as the seismic input and the 

system properties have been taken into account. In [39]-[41], specific nondimensionalizations of the motion equations for 

systems equipped with dampers or sliding isolators are proposed as a function of the structural and earthquake properties. 

This study analyzes the influence of the double concave friction pendulum isolator properties on the seismic performance 

of isolated multi-span continuous deck bridges in line with [11],[14],[15]. The behaviour of these structural systems, as 

also described in [11],[14],[15], is analyzed by employing an eight-degree-of-freedom (8-dof) model representative of 

the reinforced concrete (RC) pier flexibility, of the DCFP isolators and of the rigid presence of both RC abutment and 

RC deck. Specifically, the DCFP isolator behaviour is described combining two single FPSs in series [28]-[29] and for 

each sliding surface, a widespread model which considers the variation of the friction coefficient with the sliding velocity 

is adopted [23]-[24]. The uncertainty in the seismic input is taken into account by means of a set of non-frequent natural 

records with different characteristics. The variation of the statistics (i.e., median value and variation) of the response 

parameters relevant to the seismic performance of isolated bridges is investigated within the proposal of a specific 

nondimensionalization of the motion equations, as also implemented in [39]-[41] with respect to the seismic intensity. In 

detail, an extensive non-dimensional parametric study is developed for several structural properties of the pier and of the 

DCFP isolators monitoring the responses of the deck, of the pier and of each surface of the DCFP isolators. Moreover, 

two cases related to different ratios between the sliding friction coefficients of the two surfaces of the DCFP devices are 

analysed. The proposed nondimensionalization motion equations with respect to the seismic intensity has led to perform 

the parametric analysis achieving non-dimensional results useful for the preliminary design or retrofit of multi-span 

continuous deck bridges, isolated with DCFP devices, located in any site and in relation, especially, to the seismic ultimate 

limit states [42] for the kind of ground motions selected. Finally, the optimal normalised values of the sliding friction 

coefficients for the DCFP isolators able to minimize the seismic demand to the pier are also presented. 

SYSTEM DESCRIPTION WITH EQUATIONS OF MOTION 

An 8-degree-of-freedom (8-dof) system is employed to model the equivalent configuration for the isolated multi-span 

continuous deck bridge (e.g., isolated three-span continuous deck bridge) of Fig. 1, analysed also by [11],[14],[15] and 

representative of real bridges similar to those investigated, for example, in [43]-[44]. Specifically, 5 dof are given by the 

lumped masses of the elastic RC pier, 2 dof correspond to the two slider masses of the DCFP isolators, located respectively 

on the elastic RC pier and on the rigid RC abutment, and 1 dof is related to the rigid RC deck mass [11]. The 

abovementioned model is herein adopted with the purpose to consider the rigid presence of the RC abutment and 

investigate its influence on the response of the isolators without analysing the possible positive effects deriving from the 

interaction with the backfill soil, specific for each site, as discussed in [16]-[19]. In fact, considering the only presence of 

the pier equipped with a DCFP device to isolate the mass deck is effective for a single-column bent viaduct as long as the 

bridge is straight and consists of a large number of equal spans, of piers with equal height/stiffness and a deck that can be 

assumed to move as a rigid body [32],[45]. In addition, it is worth underlining that a preliminary analysis has been 

developed to define the appropriate number of lumped masses to consider the effects of the higher modes, due to the pier 

flexibility, on the isolator and system performance [32],[43]-[44] for the structural properties assumed next. This 8-dof 

model is shown in Fig. 1 without any construction details with the aim to illustrate the equivalent discretization useful for 

the parametric analysis, presented in the next sections. Under these assumptions, the equations of motion governing the 

response of the model representing a bridge isolated with DCFP isolators, in terms of relative horizontal displacements 

with respect to the ground (Fig1(a)), subjected to the seismic input  gu t  along the longitudinal direction, apply: 
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 (1a,b,c,d,e) 

where du  denotes the displacement of the superstructure (i.e., deck) relative to the ground, spu  the displacement of the 

slider of the DCFP device on the pier with respect to the ground, sau  the displacement of the slider of the DCFP device 



 

on the abutment with respect to the ground, piu  (i=1,..,4,5) the displacement of pier i-th mass relative to the ground, dm

, spm  and sam  the mass of the deck and of the two DCFP devices, respectively, on the pier and on the abutment, pim  

(i=1,..,4,5) the i-th lumped mass of the pier, pik  and pic  (i=1,..4,5) respectively the stiffness and inherent viscous damping 

constant for each dof of the pier, t  the time instant, the dot represents differentiation over time,  jaF t  and  jpF t  

denote the reactions of the DCFP bearings on the abutment and on the pier, respectively, for the upper (j = 1) and lower 

surface (j = 2). Regarding the reactions of the DCFP bearings, a DCFP device can be modelled as a serial combination 

of two single FPS isolators. Thus, according to [28]-[29], when the inertial force associated with the movement of the 

small slider mass can be neglected, the reaction forces at the lower and upper surface (F2 and F1) become the same and 

can be readily obtained as follows: 
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where u  is the global horizontal displacement of the DCFP isolator, 1u  represents the horizontal displacement of the 

upper surface and 2u  the horizontal displacement of the lower one. The first part of the right hand side of Eq.(2) represents 

the equivalent restoring stiffness ( combk  ) of the combined DCFP bearing from which the restoring natural period Td (or 

circular frequency d) can be obtained as follows: 
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where g  is the gravity constant, R1 and R2 are, respectively, the upper and lower radius of curvature of the DCFP isolator. 

In Eq.(2),   j ju t , (with j=1,2), is the sliding friction coefficient, which depends on the slider slip velocity  ju t  

along one of the two bearing internal surfaces and on its sign,  sgn ju  (for j=1,2) with sgn(∙) denoting the sign function. 

Note that the subscript “1” always refers to the upper surface, whereas the subscript “2” to the lower surface. On the other 

hand, the second part of Eq.(2), under the hypothesis that sliding occurs on the both surfaces and in the same direction, 

represents the equivalent friction coefficient of the DCFP device [28]: 
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Figure 1. 8-dof model of the bridge isolated with DCFP bearings: relative displacements with respect to the 

ground (a) and drifts between the lumped masses (b). 

In the above discussion, it is also assumed that the DCFP bearings used to isolate the rigid deck, and placed, respectively, 

on the pier and on the abutment, have the same characteristics, so it is obvious that the two DCFP devices move 

simultaneously. Moreover, experimental results [22]-[24] suggest that, for each sliding surface, the coefficient of sliding 

friction of teflon-steel interfaces obeys to the following equation: 

     ,max ,max ,min exp 1,2j j j j j ju u for j           (6) 

in which, referring to the surface j, ,maxj  represents the maximum value of friction coefficient attained at large sliding 

velocities and ,minj  the value at zero velocity. To further simplify the following analyses, it is assumed that 

,max ,min3j j   based on a regression of the experimental results, whereas the exponent   equal to 30 [22]-[24].  



 

Note that the stiffness contribution of non-structural elements (i.e., kerbs, parapet walls and wearing coat) is neglected. 

Similarly, the soil-structure interaction and bi-directional or asynchronous effects as well as the vertical component of 

each ground motion are neglected [11],[14],[15].  

PROBLEM FORMULATION AND PROPOSED NON-DIMENSIONALIZATION WITH RESPECT TO THE 

SEISMIC INTENSITY  

In order to analyze the role of each characteristic property controlling the seismic behaviour of the system under 

investigation, the equations of motion are reduced to a non-dimensional form. The nondimensionalization, herein 

proposed for the structural configuration of the bridge isolated with DCFP devices, is inspired by the proposals discussed 

in [40]-[41]. To easily obtain the response of the isolators along each sliding surface, Eq.(1) can be rewritten in terms of 

drifts between the lumped masses of the system (Fig.1(b)), as follows:    

                 

                 

       

 

7 6 5 4 3 2 1 1 1

6 5 4 3 2 1 1 2

8 1 2

5 5 5

( )d d d p d p d p d p d p a p d g

sp sp p sp p sp p sp p sp p p p sp g

sa a a sa g

p p p

m x t m x t m x t m x t m x t m x t m x t F t F t m u t

m x t m x t m x t m x t m x t m x t F t F t m u t

m x t F t F t m u t

m x t m

       

        

   



+ =

               

                 

         

4 5 3 5 2 5 1 5 5 5 5 2 5

4 4 4 3 4 2 4 1 5 5 5 5 4 4 4 4 4

3 3 3 2 3 1 4 4 4 4

p p p p p p p p p p p p p g

p p p p p p p p p p p p p p p p p g

p p p p p p p p p p p

x t m x t m x t m x t c x t k x t F t m u t

m x t m x t m x t m x t c x t k x t c x t k x t m u t

m x t m x t m x t c x t k x t c

      

       

    

=

=

     

             

           

3 3 3 3 3

2 2 2 1 3 3 3 3 2 2 2 2 2

1 1 2 2 2 2 1 1 1 1 1

p p p p g

p p p p p p p p p p p p p g

p p p p p p p p p p p g

x t k x t m u t

m x t m x t c x t k x t c x t k x t m u t

m x t c x t k x t c x t k x t m u t

 

     

    

=

=

=

 (7a,b,c,d,e,f,g,h) 

where, according to Eq.s(2)-(6), the reactions of the DCFP bearings, respectively, apply: 
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introducing the following ratios: 
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where the first three terms are the mass ratios, the third and the fourth terms are the circular frequency of vibration of the 

isolated deck and of the i-th dof of the pier and the last one denotes the damping factor of the i-th dof of the pier. 

Inspired from [40]-[41], let us introduce the time scale dt  , in which d  is the fundamental circular frequency of 

the isolated system (Eq.(4)) with infinitely rigid superstructure considering the stiffness of the DCFP isolator combk  

(Eq.(3)), and the seismic intensity scale 0a , expressed as 0( ) ( )gu t a   where ( )  is a non-dimensional function of 

time describing the seismic input time-history. In this way, applying the abovementioned scaling transformations to the 

non differential and to the first and second order differential terms of Eq.s(7)-(9), from the parameters 

1 2 3 4 5 6 7 8 9( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )p p p p px t x t x t x t x t x t x t x t x t , the following non-dimensional parameters, respectively, derive 
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   for 

i=6,...,9. Also defining, consequently, the corresponding non-dimensional first and second order differential terms, from 

Eq.(9), the following non-dimensional equations (i.e., normalised with respect to the seismic intensity) can be proposed: 
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It derives that the following non-dimensional parameters controlling the bridge system of Figure 1 are obtained:   
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, ,i sa sp      correspond to the previously defined mass ratios, 
pi  describes the viscous damping inherent related to 

the pier i-th dof. Regarding the control parameters of the pier, indeed, the parameters pi  are related to the fundamental 

vibration pulsation p  (the first vibration mode) as well as the sum of the mass ratios is related to the overall mass ratio 

1,5

/p pi d

i

m m 


     and, finally, all the damping factors 
pi  can be assumed equal to 

p p   . The non-

dimensional or normalized parameters 1 1 2 2, , ,a p a p        measure, respectively, the isolator strengths, provided 

by the friction coefficients of the two surfaces of the two DCFP isolators. Since these parameters depend on the response 

through the velocities, each one is used in its stead as follows:  

1,max,p 2,max,p1,max,a 2,max,a* * * *
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, , ,a p a p

g gg g
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                                                                          (13a,b,c,d) 

It is important to observe that the normalized response of the dynamic system does not depend on the seismic intensity 

level a0. Conversely, the seismic response depends on the function ( )  and also on the isolation circular frequency d  

(or period 2 /d dT    of Eq.(4)). Referring to Fig. 1 and in line with the non-dimensional (or normalized) terms of 

Eq.(11), it also derives that the non-dimensional peak response parameters describing the peak dynamic response of the 

deck, of the pier and of the two sliding surfaces of the two DCFP bearings can be defined, respectively, as follows:  
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Known the structural properties and the seismic intensity level, Eq.s(13a-d) and Eq.s(14a-g) are linear expressions which 

relate the values in non-dimensional (or normalised) form to those in dimensional (or non-normalised) form, respectively, 

for the friction coefficients of the two DCFP devices surfaces and for the relevant response parameters.  

The proposed nondimensionalization of the motion equations with respect to the seismic intensity and specialized for 

bridges isolated with DCFP devices have led to equations (Eq.(11)) with parameters defined in a new time domain and 

independent on the seismic intensity. This means that the following results, in non-dimensional form, can be useful for 

the preliminary design or retrofit of multi-span continuous deck bridges, isolated with DCFP devices, located in any site 

and in relation, especially, to the seismic ultimate limit states if non-frequent ground motions are employed, as specified 

in the next section. 

PARAMETRIC STUDY 

This section presents the non-dimensional results of an extensive parametric study carried out on the bridge system of Fig 

1 to evaluate the seismic performance of bridges isolated with DCFP bearings. The first two subsections describe, 

respectively, the selection of the earthquake events and the response parameters used to monitor the seismic performance; 

the final subsection discusses the parametric study results in non-dimensional form also comparing the outcomes of two 

cases corresponding to different ratios between the sliding friction coefficients of the two surfaces of the DCFP isolators. 

Seismic intensity and ground motions 

The evaluation of the seismic performance of any engineered system should account for the variability of the intensity, 

frequency content and duration of the records at the site. Coherently with the performance-based earthquake engineering 

(PBEE) approach [46]-[47], this study separates the uncertainties related to the seismic input intensity from those on the 

characteristics of the record (i.e., record-to-record variability) by introducing an intensity measure IM that corresponds to 

the scale factor, 0a , introduced in the proposed nondimensionalization (i.e., IM= 0a ) (Eq.(11)). By this way, the 

randomness in the seismic intensity is described by a hazard curve, whereas the ground motion randomness for a fixed 

seismic intensity level is described by selecting a set of ground motions characterized by a different duration and 

frequency content, and by scaling these records to the common 0a  value. In line with the criteria of efficiency, sufficiency 

and hazard computability [48]-[49], in this study, the spectral pseudo-acceleration, AS , at the isolated period of the 

system, 2 /d dT    (Eq.(4)), is assumed as intensity measure. Many studies (e.g., [48]-[49]) showed that AS  is more 

efficient than the peak ground acceleration, and its use permits to reduce the response dispersion for the same number of 

ground motions considered and to obtain more confident response estimates for a given number of records employed. As 

deducible from all the equations, previously presented, the inherent damping factor of the DCFS devices (consequently 

also of the deck) is assumed equal to zero, consistently with [12],[41],[57]. Therefore, the corresponding IM= 0a  is 

hereinafter denoted to as  A dS T . Furthermore, the choice of  A dS T  as IM= 0a  is also justified by the fact that if all 



 

the records are normalized to  A dS T , then the normalized displacement response of a rigid deck with an isolated period 

dT , mounted on a frictionless isolator and on an infinitely stiff pier, is equal to 1 without any influence due to the record-

to-record variability. Thus, this system represents a reference case.  

The record-to-record variability is herein described through a set of 30 non-frequent real ground motion records with 

moment magnitude between 6 and 7.6. More details may be found in [35]-[37]. The selection of the real ground motions 

has not been carried out in line with the conditional spectra criteria, very useful for reliability analysis as widely 

commented in [50]-[55]. Since the aim of the present study is to propose a nondimensionalization of the motion equations 

with respect to the seismic intensity in order to provide useful recommendations for isolated bridges in any site and in 

relation, especially, to the seismic ultimate limit states (i.e., “life safety” and “collapse prevention”) [42], a set of non-

frequent strong motions has been adopted [35]-[37]. These strong motions have been selected to reproduce quite well 

both the record-to-record variability (i.e., 30 records) and event-to-event variability (i.e., 19 different earthquake events) 

[35]-[37], also in line with [56]. 

Seismic performance in terms of relevant non-dimensional response parameters  

This study considers the following peak response parameters relevant to assess the performance of the isolated bridge 

system of Fig. 1 according to Eq.(14): the peak deck response ,peakdu  that coincides with the peak isolator global response 

on the abutment, the peak isolator global response on the pier ,peakdx , the peak displacement at the top of the pier with 

respect to the ground ,peakpu , the peak isolator response along each surface: 6,peak 7,peakandx x  respectively for the 

lower and upper surface of the DCFP device on the pier; 8,peak 9,peakandx x  respectively for the lower and upper surface 

of the DCFP device on the abutment. These peak response parameters have been expressed in non-dimensional form 

according to Eq.s (11) and (14). By repeatedly solving Eq. (11) for the ground motions records, a set of samples is obtained 

for each output variable used to monitor the seismic performance of the isolated bridge. In this paper, the non-dimensional 

response parameters are assumed to follow a lognormal distribution as widely employed in PBEE [47] and in many studies 

[34]-[38],[57]-[58]. The lognormality assumption permits to estimate, with a limited number of samples, the response at 

different percentiles, useful also to evaluate the seismic risk [59]. A lognormal distribution can be fitted to the generic 

non-dimensional response parameter D (i.e., the extreme values of 
du , 

dx , 
pu , 

ix  of Eq.s (11) and (14)) by 

estimating the sample geometric mean,  GM D , and the sample dispersion,  D , defined, respectively, as follows:  
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where dh denotes the h-th sample value of D, related to the h-th accelerogram and N is the total number of samples (i.e., 

total number of accelerograms in this study): h=1,…,N. The sample geometric mean is an estimator of the median of the 

response and its logarithm coincides with the lognormal sample mean  ln D . For small values, e.g., below 0.3, the 

dispersion  D  is approximately equal to the coefficient of variation of the distribution [59]. Under the lognormality 

assumption, the relation between the geometric mean  GM D , the dispersion  D , and the k-th percentile of the 

generic response parameter D can be expressed as: 

 exp[ ( ) () )( ]kd f kGM D D   (17) 

where ( )f k  is a function assuming the values (50) 0f   and (84) 1f   [60].  

Results of the non-dimensional parametric study  

This section shows the results of the parametric study carried out through the proposed nondimensionalization (Section 

3) to evaluate the influence of the isolation devices and bridge properties on the seismic performance of the structural 

system under the selected ground motions. The parameter 
p p    is assumed equal to 5%, the isolated bridge period 

Td is varied in the range between 2s, 2.5s, 3s, 3.5s and 4s, the RC elastic pier period pT  in the range between 0.05s, 0.1s, 

0.15s and 0.2s, typical values in line with [28],[30],[62]-[65]. Assuming that the five pier lumped masses are equal, 

p    has been considered varying in the range between 0.1, 0.15 and 0.2 [30],[62]-[65]. The two DCFP devices on 

the abutment and on the pier are identical. So, it follows that 
* * *

1 1 1a p        as well as sa sp s       . For 

numerical reasons, the mass ratio s  is set equal to 0.005. The parameter 
*

1  is assumed to vary in the range between 

0 (no friction) and 2 (very high friction). In addition, two cases for the DCFP bearings properties have been assumed 

[28],[30] as listed in Table 1: two different ratios between the sliding friction coefficient of the upper surface with respect 



 

to the one of the lower surface are herein considered for both the abutment’s isolator and pier’s isolator. Therefore, the 

non-dimensional numerical investigations have been carried out on 5700 different systems, defined by varying the main 

structural properties within the two bearing cases, subjected to the 30 different ground motions. 

Table 1. DCFP bearings properties within the non-dimensional parametric analysis [28],[30]. 

 
1 2/R R   1,max 2,max/    

,max ,min/j j   (with 1, 2j  ) 

case 1 2 4 3 

case 2 2 2 3 

 

For each value of the parameters of interest in the parametric study, the differential equations of motion, (i.e., Eq. (11)), 

have been repeatedly solved for the different ground motions considered. The Bogacki-Shampine integration algorithm 

available in Matlab-Simulink [61] has been employed choosing a variable step to improve the solution accuracy. The 

probabilistic properties of the normalized response parameters of interest have been evaluated by estimating the geometric 

mean, GM, and the dispersion, , through Eq.s (15) and (16). Fig.s 2-8 show the GM and  values of the non-dimensional 

peak response parameters considered, obtained for different values of the system properties varying in the range of interest 

and related to the case 1 of Table 1. Only the results for Tp= 0.1s and Tp= 0.2s are reported due to space constraints. 

Fig. 2 plots the results concerning the peak normalized displacement of pier top 
pu  with respect to the ground for the 

case 1. It is noteworthy that for very low 
*

1  values,  
puGM   decreases by increasing 

*

1 , whereas it increases for 

high 
*

1  values. Thus, there exists an optimal value of 
*

1  such that the peak displacement of pier top is minimized. 

This optimal value varies between 0 and 0.5 depending on the values of dT , pT  and  . In addition,  
puGM   

decreases significantly with increasing   and decreasing pT , which controls directly the main mode of the pier (for 

higher 
2
d , smaller will be the displacement of the pier top). dT  has an influence on  

puGM   leading to a general 

decrease for an its increase thanks to the effectiveness of the seismic isolation. The dispersion  
pu   shows a maximum 

value approximately at the same value of 
*

1  that gives the minimum  
puGM  . The response dispersion increases with 

increasing the vibration period pT  and mass ratio  . From low to high values of dT ,  
pu   also increases.  
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Figure 2. Normalized displacement of pier top vs. 
: median value and dispersion for Tp= 0.1s (a and b) and 

Tp= 0.2s (c and d), for different values of  and Td. Case 1.  



 

Within the case 1, Fig.s 3 (a) and (c) show the response statistics of the peak normalized deck displacement 
du , which 

also corresponds to the peak global response of the bearing placed on the abutment. Obviously,  
duGM   decreases 

significantly as 
*

1  increases. In general, the values of  
duGM   slightly increase for increasing values of dT  and 

decreasing values of  , and are not significantly affected by pT . The values of the dispersion  
du  , plotted in Fig.s 

3 (b) and (d), are very low for low 
*

1  values due to the high efficiency of the IM, and attain their maximum for high 

values of 
*

1 . The other system properties have a reduced influence on  
du   compared to the influence of *

1 . 

As for the case 1, Fig.s 4 (a) and (c) show the variation of the peak normalized global response with regard to the bearing 

placed on the pier 
dx . As already observed for  

duGM  , also  
dxGM   tends to show a decrease against increasing 

*

1  values. The dispersion is low in correspondence of low *

1  values due to the high efficiency of the IM, attaining its 

peak for high *

1  values. Note that the influence of both   and pT  is slightly more marked for  
dxGM   with respect 

to  
duGM   leading to lower values due to the flexibility of the pier. 

Fig.s 5 (a) and (c) show the variation with the system properties of the geometric mean of the peak normalized pier bearing 

response along the lower surface (surface 2) 
6

( )xGM  , for Tp = 0.1s and Tp = 0.2s, with regard to the case 1. This sliding 

surface is characterised by lower values of both radius of curvature and sliding friction coefficient (Table 1). 
6

( )xGM   

decreases at first quickly, and then slightly increases for values of *
1  higher than 0.5 and, successively, tends to 

slightly decrease again. It increases for increasing dT . The values of the dispersion  
6x  , plotted in Figs. 5 (b) and 

(d), are very low for low *

1  values due to the high efficiency of the IM, and increase quite monotonically with *

1 . 

The other system properties have again a negligible influence on  
6x   in comparison to the influence of *

1 . 
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Figure 3. Normalized deck displacement vs. 
: median value and dispersion for Tp= 0.1s (a and b) and Tp= 

0.2s (c and d), for different values of  and Td. Case 1.  

Fig.s 6 (a) and (c) show the variation with the system properties of the geometric mean of the peak normalized pier bearing 

response along the upper surface (surface 1) 
7

( )xGM  , for Tp = 0.1s and Tp = 0.2s, with regard to the case 1. This sliding 

surface is characterised by higher values of both radius of curvature and sliding friction coefficient (Table 1). 
7

( )xGM   



 

hyperbolically decreases with increasing *
1 . The values of the dispersion  

7x  , plotted in Fig.s 6 (b) and (d), are 

very low for low *

1  values due to the efficiency of the IM, and show high values for *

1  in the range 1 - 1.5. It shows 

an increase against increasing values of dT . Once again, the other system properties such as pT  and   have no a 

significant influence on  
7x   compared to the influence of *

1 . 
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Figure 4. Normalized pier bearing global displacement vs. 
: median value and dispersion for Tp= 0.1s (a and 

b) and Tp= 0.2s (c and d), for different values of  and Td. Case 1.  
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Figure 5. Normalized pier bearing response along the lower surface vs. 
: median value and dispersion for Tp 

= 0.1s (a and b) and Tp = 0.2s (c and d), for different values of  and Td. Case 1.  
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Figure 6. Normalized pier bearing response along the upper surface vs. 
: median value and dispersion for Tp 

= 0.1s (a and b) and Tp = 0.2s (c and d), for different values of  and Td. Case 1.  
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Figure 7. Normalized abutment bearing response along the lower surface vs. 
: median value and dispersion 

for Tp = 0.1s (a and b) and Tp = 0.2s (c and d), for different values of  and Td. Case 1.  

Within the case 1, Fig.s 7 (a) and (c) represent the geometric mean of the peak normalized response referring to the 

abutment bearing displacement along the lower surface (surface 2) 
8

( )xGM  , for Tp = 0.1s and Tp = 0.2s. This sliding 

surface is characterised by lower values of both radius of curvature and sliding friction coefficient (Table 1). These curves 

are in line with the ones referred to the peak response along the lower surface of the pier bearing (Fig.s 5 (a) and (c)). It 



 

is possible to observe slightly lower values for *
1  lower than 0.5, with a less marked influence of both pT  and  . 

Even the values of  
8x   are similar to those related to the lower surface of the pier bearing. 
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Figure 8. Normalized abutment bearing response along the upper surface vs. 
: median value and dispersion 

for Tp = 0.1s (a and b) and Tp = 0.2s (c and d), for different values of  and Td. Case 1.  

Fig.s 8 (a) and (c) show the variation with the system properties of the geometric mean of the peak normalized abutment 

bearing response along the upper surface (surface 1) 
9

( )xGM  , for Tp = 0.1s and Tp = 0.2s, in relation to the case 1. This 

sliding surface is characterised by higher values of both radius of curvature and sliding friction coefficient (Table 1). The 

results are once again strictly comparable with the ones of Fig.s 6 (a) and (c). Fig.s 8 (b) and (d) show the dispersion 

 
9x   assuming very low values for low *

1  values, whereas it rises with rising values of *

1 . These values in Fig. 

8 are slightly lower with respect to the ones in Fig. 6 with a less marked influence of both pT  and  . 

Fig.s 6 and 8 demonstrate a higher influence of the upper surface (surface 1), characterized by higher values of the sliding 

friction coefficient and of the radius of curvature (Table 1), in representing the global response of the DCFP device at 

both the abutment and pier side as shown in Fig.s 3 and 4, especially, for *
1  lower than 0.5. In fact, it is the upper 

surface that plays a crucial role for high intensities to elongate the isolated period and to dissipate more energy.  

The existence of an optimal value of the normalised friction coefficient of the upper surface *

1  for the both DCFP 

devices able to minimize the displacement of pier top (Fig. 2) is the result of counteracting effects that occur for increasing 

values of the friction coefficient as also highlighted in [40]-[41]: i) increase of the isolator strength with increase of the 

effective stiffness [66]-[67] and a consequential reduction of the corresponding effective fundamental vibration period 

[66]-[67]; ii) increase of the effects due to higher vibration modes as well as transfer of forces towards the superstructure; 

iii) increase of energy dissipation (equivalent damping).  

Fig.s 9-12 represent the statistics of the main non-dimensional peak response parameters related to the case 2 of Table 1.  

Fig.s 9 (a) and (c), related to the geometric mean of the peak pier top displacement ( )
puGM   and compared with Fig.s 2 

(a) and (c) for the case 1, show a more marked increase against increasing *

1  values as well as a more marked influence 

of all the structural properties. This is mainly related to a less efficiency of the isolation system as an higher friction 

coefficient at the lower surface (Table 1-case 2) leads to a general increase in eqv  (Eq.(5)) so that the corresponding 

increase in the secant stiffness moves the effective period towards larger pseudo-spectral acceleration values. Similarly 

to the case 1, there exists an optimal value of *

1  such that the peak displacement of pier top is minimized. Fig.s 9 (b) 

and (d), with regard to the dispersion ( )
pu  , demonstrate a similarity with the dispersion values (Fig.s 2 (b) and (d)) of 



 

the case 1, except when large values of *

1  and low values of dT  are coupled together: there is an amplification because 

high friction coefficient values together with low isolation period values lead to an increase of the forces transmitted 

between the deck and the pier in the case 2. 
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Figure 9. Normalized displacement of pier top vs. 
: median value and dispersion for Tp= 0.1s (a and b) and 

Tp= 0.2s (c and d), for different values of  and Td. Case 2.  
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Figure 10. Normalized deck displacement vs. 
: median value and dispersion for Tp= 0.1s (a and b) and Tp= 

0.2s (c and d), for different values of  and Td. Case 2.  
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Figure 11. Normalized pier bearing response along the lower surface vs. 
: median value and dispersion for Tp 

= 0.1s (a and b) and Tp = 0.2s (c and d), for different values of  and Td. Case 2.  
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Figure 12. Normalized pier bearing response along the upper surface vs. 
: median value and dispersion for 

Tp = 0.1s (a and b) and Tp = 0.2s (c and d), for different values of  and Td. Case 2.  

Fig.s 10 (a) and (c) report the geometric mean of the peak global response of the bearing placed on the abutment 

( )
duGM   showing smaller values with respect to the case 1 (Fig.s 3 (a) and (c)), and this is consistent with the higher 

values of the friction coefficient along the lower surface that permit to reduce the maximum displacement of the DCFP 

bearing. With regard to the dispersion values ( )
du  , Fig.s 10 (b) and (d) present values significantly larger than the 

case 1. Furthermore, the results have shown the same trend in terms of the geometric mean for the peak global response 



 

of the bearing on the pier ( )
dxGM  . In fact, ( )

dxGM   presents smaller values with respect to the ones reported for the 

case 1 as well as the dispersion values ( )
dx   present higher values in the case 2.  

Fig.s 11-12 depict, for the pier DCFP isolator, the peak response along the lower and the upper surface, respectively. With 

respect to the case 1, 
6

( )xGM   presents lower values for increasing *

1 ; 
6

( )x   presents higher values. Regarding the 

upper surface, 
7

( )xGM   is very similar to the case 1 with slightly lower values; 
7

( )x   shows smaller values than the 

case 1. Furthermore, referring to the results of the peak response of the abutment bearing along the lower and upper 

surface, respectively: 
8

( )xGM   has a trend similar with the one of the pier isolator 
6

( )xGM   with slightly lower values; 

similarly for the 
8

( )x   with respect to 
6

( )x  . Also 
9

( )xGM   has a trend similar with the one of the pier isolator 

7
( )xGM  ; 

9
( )x   presents slightly lower values with respect to 

7
( )x  . 

It is worth highlighting that all these normalized results, shown in Fig.s (2)-(12), can be expressed in dimensional terms 

using Eq.(14) and adopting  A dS T  as 0a  (Section 4.1) according to a specific seismic ultimate limit state for a specific 

site. Moreover, through Eq.(17), both the 50th and 84th percentiles of the dimensional results can be computed. It follows 

that all the presented non-dimensional results are exploitable for the preliminary design or retrofit of multi-span 

continuous deck bridges, isolated with DCFP devices, located in any site and in relation, especially, to the seismic ultimate 

limit states. In fact, the response of the deck (i.e., global response of the isolators), of the pier and for each surface of the 

DCFP devices can be estimated. In addition, the in-plan radius for each surface of the isolator as well as the abutment-

deck joints can be also defined.  

OPTIMAL FRICTION COEFFICIENTS NORMALISED WITH RESPECT TO THE SEISMIC INTENSITY  

Fig.s 13(a-b) illustrate the optimal values of the normalized friction coefficient *
1,optimum  able to minimize the 50th 

and 84th percentiles of the seismic normalized demand to the pier 
pu , for the case 1, with respect to   pT  and dT , in 

the range of *
1  between 0 and 0.5. It is observed that *

1,optimum  referred to the 50th percentile is not so variable 

only for 2dT s . For higher values, *
1,optimum  generally increases with   and pT . When high values of dT  are 

combined with low values of   and high values of pT , *
1,optimum  is low in order to reduce the isolator effective 

stiffness [66]-[67] and improve the effectiveness of the isolation technique.  
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Figure 13. Optimal values of the normalized friction coefficient 

optimumvs. Td; 50th (a,c) and 84th (b,d) 

percentiles; (a,b): case 1; (c,d): case 2. 



 

Finally, the optimal values generally increase by increasing the percentile level. It is possible to reveal as the optimal 

friction corresponding to the 84th percentile tends to rise by increasing  , pT  and dT . However, for some structural 

properties combination, lower *
1,optimum  are required in order to reduce the isolator effective stiffness [66]-[67] and 

improve the effectiveness of the isolation technique. Fig.s 13(c-d) report the variation of *
1,optimum , with respect to 

the same system properties for the case 2 of Table 1. As for the 50th percentile, *
1,optimum  presents, in comparison with 

the case 1, a stronger regularity with all the three properties, having a monotonic rising, especially for 

3 ; 3.5 ; 4d d dT s T s T s   . A plateau is reached for 3.5dT s  and 4dT s  in correspondence of 0.15pT s  with a 

larger magnitude than the one seen in the case 1. This is due to the accumulated energy before that the surfaces slide due 

to a higher friction coefficient at the lower surface of the DCFP device. As for the 84th percentile, the case 2 outlines 

generally smaller values than the case 1.  

According to Eq.(13) and adopting  A dS T  as 0a  (Section 4.1) in line with a specific seismic ultimate limit state for a 

specific site, the optimal (non-normalised) friction coefficient of the upper surface (surface 1) can be easily calculated as 

 *

1,max,opt 1, /optimum A dS T g    . Thus, it increases linearly with the IM level. Successively, depending on the case of 

Table 1, it is possible to define the (non-normalised) value of the friction coefficient at the lower sliding surface (surface 

2). These values, specific for any combination of the main dynamic properties of an isolated bridge, may be used for a 

preliminary either design or retrofit of a bridge in any site and in relation, especially, to the seismic ultimate limit states. 

If these optimal values are selected, the corresponding values of the relevant seismic response parameters for the deck 

(i.e., global response of the isolators), the pier and for each surface of the DCFP devices derive from the figures illustrated 

in the previous section as already commented. Similarly, the corresponding values of the in-plan radius for each surface 

of the isolator as well as of the abutment-deck joints can be defined.  

It is also worth underlining that the proposed results have been achieved considering only the seismic loads, but during 

the design/verification phase of bridges, other serviceability actions such as thermal movements [68] have to be absolutely 

considered. These factors, in fact, can influence the design/retrofitting costs of piers and of foundations when high values 

of the friction coefficient are necessary under strong earthquake events. For these situations, a global cost-effectiveness 

analysis could be useful to reduce the costs provided that the same safety level is assured. Moreover, the deterioration of 

the sliding surface of the isolator can be taken into account by means of the property modification factors, as discussed 

in [69]. 

CONCLUSIONS 

This paper analyzes the seismic performance of multi-span continuous deck bridges isolated with DCFP devices. 

Proposing a nondimensionalization of the motion equations with respect to the seismic intensity and specific for this 

system, the results of an extensive parametric study encompassing a wide range of isolator and bridge properties have 

been illustrated monitoring various response parameters of interest related to both the isolators and the pier. Specifically, 

the RC pier is considered elastic, whereas the RC deck and RC abutment are assumed rigid. Two cases corresponding to 

different ratios between the sliding friction coefficients of the DCFP device surfaces are investigated. Considering non-

frequent ground motions, the results in terms of geometric mean and dispersion for each peak normalised response 

parameter are summarized as follows. 

- Regarding the pier performance, there exists an optimal value of sliding friction coefficient for each surface of the DCFP 

device able to minimize the pier response. This optimal value depends on the bridge and isolator properties. As for the 

case 2, higher values are achieved since a higher friction coefficient at the lower surface leads to an increase in the 

isolator effective stiffness with a reduction of the isolation effective period and increase of the forces to the pier. 

- Regarding the deck performance, which also corresponds to the peak global response of the bearing placed on the 

abutment, the response decreases significantly as the sliding friction coefficient increases. Slightly lower results are 

achieved for the global response of the bearing placed on the pier. As for the case 2, smaller values are obtained as 

higher friction coefficients along the lower surface permit to reduce the maximum displacement of the DCFP bearing.  

- Regarding the surface 2 of the DCFP device on the pier, the peak normalized response decreases at first quickly, and 

then slightly increases for high values of the sliding friction coefficient. Slightly lower results are achieved for the lower 

surface (surface 2) of the DCFP device on the abutment. Within the case 2, lower response values are achieved. 

- Regarding the surface 1 of the DCFP device on the pier, the peak normalized response hyperbolically decreases with 

increasing the sliding friction coefficient. Slightly lower values are achieved for the normalized response along the 

upper surface for the DCFP device on the abutment. Within the case 2, the results are very similar with the case 1. 

- All the results show a higher influence of the upper surface, having higher values of the sliding friction coefficient and 

of the radius of curvature, in representing the global response of the DCFP devices at both the abutment and pier side. 

In fact, the upper surface is crucial at high intensities to elongate the isolated period and to dissipate more energy. 

Then, optimal normalised friction coefficients aimed at minimizing the different percentiles (i.e., 50th and 84th) of the non-

dimensional peak response of the pier are numerically computed, observing that the optimal value increases with the 

percentile, pier period and mass ratio. This trend is not always respected because for some structural properties 



 

combinations, lower values of the optimal normalised friction coefficient are required to reduce the isolation effective 

stiffness and improve the effectiveness of the isolation. As for the case 2, lower values are generally achieved.  

All the presented normalised results are useful for the preliminary design or retrofit of multi-span continuous deck bridges, 

isolated with DCFP devices, located in any site. In addition, they are effective, especially, in relation to the seismic 

ultimate limit states for the ground motions selected within the proposed non-dimensionalization with respect to the 

seismic intensity. In this way, knowing the dynamic properties of the bridge system, it is possible to evaluate, in non-

dimensional form, the optimal properties of the seismic isolation combined with the corresponding seismic displacement 

demand to the different structural components at different percentiles (i.e., 50th and 84th). From these normalized values, 

it is possible to calculate the optimal (non-normalised) sliding friction coefficient for each surface of the seismic device 

and the dimensional bridge response parameters by means of linear relationships using the seismic intensity level in terms 

of SA(Td) according to a specific seismic ultimate limit state for a specific site. 

REFERENCES 

[1] M. C. Constantinou, A. Kartoum, A. M. Reinhorn, P. Bradford , Sliding isolation system for bridges: Experimental 

study, Earthquake Spectra 1992; 8(3): 321-344. 

[2] A. Kartoum, M. C. Constantinou, A. M. Reinhorn, Sliding isolation system for bridges: Analytical study, J. Struct. 

Eng. 1992; 8(3): 345-372. 

[3] P. Tsopelas, M. C. Constantinou, Y. S. Kim, S. Okamota, Experimental study of FPS system in bridge seismic 

isolation, Earthquake Eng. Struct. Dyn. 1996; 25(1): 65-78. 

[4] P. Tsopelas, M. C. Constantinou, S. Okamoto, S. Fujii, D. Ozaki, Experimental study of bridge seismic sliding 

isolation systems, Eng. Struct. 1996; 18(4): 301-310. 

[5] A. Ghobarah, H. M. Ali, Seismic performance of highway bridges, Eng. Struct. 1988; 10(3): 157-166 

[6] D. H. Turkington, A. J. Carr, N. Cooke, P. J. Moss, Seismic design of bridges on lead-rubber bearings, J. Struct. 

Eng. 1989; 115(12): 3000-3016. 

[7] Jangid R. S., Seismic response of isolated bridges, J. Bridge Eng. 2004; 9(2): 156-166. 

[8] Jangid, R. S. (2008). Equivalent linear stochastic seismic response of isolated bridges. Journal of Sound and 

Vibration, 309(3-5), 805-822. 

[9] N.P. Tongaonkar, R.S. Jangid. Seismic response of isolated bridges with soil–structure interaction. Soil Dynamics 

and Earthquake Engineering 23 (2003) 287–302. 

[10] Olmos, B. A., Jara, J. M., & Roesset, J. M. (2011). Effects of isolation on the seismic response of bridges designed 

for two different soil types. Bulletin of Earthquake Engineering, 9(2), 641-656. 

[11] R. S. Jangid, Stochastic Response of Bridges Seismically Isolated by Friction Pendulum System, J. Bridge Eng. 

2008; 13(4): (319). 

[12] R. S. Jangid, Optimum friction pendulum system for near-fault motions. Engin. Structures 2005; 27(3): 349–359. 

[13] Dicleli, M., & Buddaram, S. (2006). Effect of isolator and ground motion characteristics on the performance of 

seismic‐isolated bridges. Earthquake engineering & structural dynamics, 35(2), 233-250. 

[14] Y. P. Wang, L. L. Chung, W. H. Liao, Seismic response analysis of bridges isolated with friction pendulum 

bearings, Earthquake Eng. Struct. Dyn. 1998; 27(10): 1069-1093. 

[15] Kunde, M. C., & Jangid, R. S. (2006). Effects of pier and deck flexibility on the seismic response of isolated 

bridges. Journal of Bridge Engineering, 11(1), 109-121. 

[16] Mitoulis, S. A. (2012). Seismic design of bridges with the participation of seat-type abutments. Engineering 

Structures, 44, 222-233. 

[17] Mitoulis, S. A., Palaiochorinou, A., Georgiadis, I., & Argyroudis, S. (2016). Extending the application of integral 

frame abutment bridges in earthquake‐prone areas by using novel isolators of recycled materials. Earthquake 

Engineering & Structural Dynamics, 45(14), 2283-2301. 

[18] Zhang, J., & Makris, N. (2002). Seismic response analysis of highway overcrossings including soil–structure 

interaction. Earthquake engineering & structural dynamics, 31(11), 1967-1991. 

[19] Zhang, J., & Makris, N. (2002). Kinematic response functions and dynamic stiffnesses of bridge 

embankments. Earthquake engineering & structural dynamics, 31(11), 1933-1966. 

[20] VA. Zayas, SS. Low, SA. Mahin, A simple pendulum technique for achieving seismic isolation. Earthquake 

Spectra 1990; 6:317–33. 

[21] L. Su, G. Ahmadi , IG. Tadjbakhsh, Comparative study of base isolation systems. Journal of Engineering 

Mechanic 1989; 115:1976–92. 

[22] A. Mokha , MC. Constantinou, AM. Reinhorn, Teflon Bearings in Base Isolation. I: Testing. J. Struct. Eng. 1990; 

116(2): 438-454. 



 

[23] M. C. Constantinou, A. Mokha, A. M. Reinhorn, Teflon Bearings in Base Isolation. II: Modeling. J. Struct. Eng. 

1990; 116(2):455-474. 

[24] M. C. Constantinou, AS. Whittaker, Y. Kalpakidis, DM. Fenz, GP. Warn, Performance of Seismic Isolation 

Hardware Under Service and Seismic Loading. Technical Report, 2007.  

[25] J. L. Almazàn, J. C. De la Llera, Physical model for dynamic analysis of structures with FPS isolators. Earthquake 

Engineering and Structural Dynamics 2003; 32:1157–1184. 

[26] Murat Eröz, Reginald DesRoches. Bridge seismic response as a function of the Friction Pendulum System (FPS) 

modeling assumptions. Eng. Str., 2008, 30: 3204–3212. 

[27] Eröz, M., & DesRoches, R. (2013). The influence of design parameters on the response of bridges seismically 

isolated with the friction pendulum system (FPS). Engineering structures, 56, 585-599. 

[28] D. M. Fenz, M. C. Constantinou, Behaviour of the double concave friction pendulum bearing, Earthquake 

Engineering and Structural Dynamics, 2006; 35:1403-1424. 

[29] M. C. Constantinou, Friction pendulum double concave bearings, technical report. University of Buffalo NY, 

October 29, 2004. 

[30] Y. S. Kim, C. B. Yun, Seismic response characteristics of bridges using double concave friction pendulum bearings 

with tri-linear behavior. Engin. Struct. 29, 2007, 3082-3093. 

[31] Masoud Malekzadeh, Touraj Taghikhany. Multi-Stage Performance of Seismically Isolated Bridge Using Triple 

Pendulum Bearings. Advances in Str. Engineering Vol. 15 No. 7, 2012. 

[32] P. Castaldo, M. Ripani, R. Lo Piore, Influence of soil conditions on the optimal sliding friction coefficient for 

isolated bridges, Soil Dynamics and Earthquake Engineering, 2018, 111; 131–148. 

[33] Zhang, J., & Huo, Y. (2009). Evaluating effectiveness and optimum design of isolation devices for highway 

bridges using the fragility function method. Engineering Structures, 31(8), 1648-1660. 

[34] P. Castaldo, B. Palazzo, P. Della Vecchia, Life-cycle cost and seismic reliability analysis of 3D systems equipped 

with FPS for different isolation degrees, Engineering Structures, 2016; 125: 349–363. 

[35] P. Castaldo, B. Palazzo, T. Ferrentino T., Seismic reliability-based ductility demand evaluation for inelastic base-

isolated structures with friction pendulum devices, Earthquake Engineering and Structural Dynamics, 2017, 46(8): 

1245-1266, DOI: 10.1002/eqe.2854. 

[36] P. Castaldo, G. Alfano, Seismic reliability-based design of hardening and softening structures isolated by double 

concave sliding devices, Soil Dynamics and Earthquake Engineering, 129: 105930, 2020. 

[37] P. Castaldo, B. Palazzo, G. Alfano, MF. Palumbo, Seismic reliability-based ductility demand for hardening and 

softening structures isolated by friction pendulum bearings, 2018, Struc. Control and Health Monitoring, e2256. 

[38] P. Castaldo, G. Amendola, B. Palazzo, Seismic fragility and reliability of structures isolated by friction pendulum 

devices: Seismic reliability-based design (SRBD), Earth. Engin. and Struct. Dyn., 2017, 46(3); 425–446. 

[39] E. Tubaldi E, L. Ragni, A. Dall'Asta, Probabilistic seismic response assessment of linear systems equipped with 

nonlinear viscous dampers, Earthquake Engineering & Structural Dynamics 2014; DOI: 10.1002/eqe.2461. 

[40] P. Castaldo, E. Tubaldi, Influence of FPS bearing properties on the seismic performance of base-isolated 

structures, Earthquake Engineering & Structural Dynamics, 2015; 44(15): 2817-2836.  

[41] P. Castaldo, E. Tubaldi, Influence of ground motion characteristics on the optimal single concave sliding bearing 

properties for base-isolated structures. Soil Dynamics and Earthquake Engineering, 2018, 104: 346–364.  

[42] NTC18. Norme tecniche per le costruzioni. Gazzetta Ufficiale del 20.02.18, DM 17.01.18, Ministero delle 

Infrastrutture.  

[43] NCEER-94-0002 "NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for 

Bridges: Experimental and Analytical Study of Systems Consisting of Sliding Bearings, Rubber Restoring Force 

Devices and Fluid Dampers," Volumes I and II, by P. Tsopelas, S. Okamoto, M.C. Constantinou, D. Ozaki and S. 

Fujii, 2/4/94, (PB94-181740, A09, MF-A02 and PB94-181757, A12, MF-A03). 

[44] M.C. Constantinou,.; I. Kalpakidis, A. Filiatrault and R.A. Ecker Lay, LRFD-Based Analysis and Design 

Procedures for Bridge Bearings and Seismic IsolatorsMCEER-11-0004 

[45] Priestley MJN, Seible F, Calvi GM. Seismic design and retrofit of bridges. Wiley; 1996. 

[46] RD. Bertero, VV. Bertero, Performance-based seismic engineering: the need for a reliable conceptual 

comprehensive approach. Earthquake Engineering and Structural Dynamics, 2002; 31:627–652. 

[47] H. Aslani, E. Miranda, Probability-based seismic response analysis. Engin. Structures 2005; 27(8): 1151-1163. 

[48] N. Shome, C. A. Cornell, P. Bazzurro, J. E. Carballo, Earthquake, records, and nonlinear responses. Earthquake 

Spectra, 1998, 14(3); 469-500. 

[49] N. Luco, C. A. Cornell, Structure-specific scalar intensity measures for near-sorce and ordinary earthquake ground 

motions. Earthquake Spectra, 2007, 23(2); 357-392. 

https://www.sciencedirect.com/science/journal/02677261/111/supp/C
http://www.sciencedirect.com/science/journal/02677261/104/supp/C


 

[50] Baker, J. W., & Lee, C. (2018). An improved algorithm for selecting ground motions to match a conditional 

spectrum. Journal of Earthquake Engineering, 22(4), 708-723. 

[51] Kitayama, S., & Constantinou, M. C. (2018). Collapse performance of seismically isolated buildings designed by 

the procedures of ASCE/SEI 7. Engineering Structures, 164, 243-258. 

[52] Baker, J. W. (2011). Conditional mean spectrum: Tool for ground-motion selection. Journal of Structural 

Engineering, 137(3), 322-331. 

[53] Lin, T., Haselton, C. B., & Baker, J. W. (2013). Conditional spectrum‐based ground motion selection. Part I: 

hazard consistency for risk‐based assessments. Earthquake engineering & structural dynamics, 42(12), 1847-1865. 

[54] Kitayama, S., & Constantinou, M. C. (2019). Effect of displacement restraint on the collapse performance of 

seismically isolated buildings. Bulletin of Earthquake Engineering, 17(5), 2767-2786. 

[55] Kitayama, S., & Constantinou, M. C. (2019). Probabilistic seismic performance assessment of seismically isolated 

buildings designed by the procedures of ASCE/SEI 7 and other enhanced criteria. Engine. Struct., 179, 566-582. 

[56] ATC-63. Quantification of building seismic performance factors. FEMAP695. Redwood City, CA, 2008. 

[57] K. Ryan, A. Chopra, Estimation of Seismic Demands on Isolators Based on Nonlinear Analysis. Journal of 

Structural Engineering 2004; 130(3): 392–402. 

[58] E. Tubaldi, L. Ragni, A. Dall'Asta, Probabilistic seismic response assessment of linear systems equipped with 

nonlinear viscous dampers, Earthquake Engineering & Structural Dynamics 2014; DOI: 10.1002/eqe.2461. 

[59] C. A. Cornell C, F. Jalayer, R. Hamburger, D. Foutch, Probabilistic Basis for 2000 SAC Federal Emergency 

Management Agency Steel Moment Frame Guidelines. Journal of Structural Engin. 2002; 128(4): 526-533.  

[60] A. H. S. Ang, W. H. Tang, Probability Concepts in Engineering-Emphasis on Applications to Civil and 

Environmental Engineering. John Wiley & Sons, New York, USA, 2007. 

[61] Math Works Inc. MATLAB-High Performance Numeric Computation and Visualization Software. User’s Guide. 

Natick: MA, USA, 1997.  

[62] Yen-Po Wang, Lap-Loi Chung, Wei-Hsin Liao. Seismic response analysis of bridges isolated with friction 

pendulum bearings. Earth.Eng.& Str. Dyn., 1998; 27, 1069-1093. 

[63] M.C. Kunde, R.S. Jangid. Seismic behavior of isolated bridges: A-state-of-the-art review. Electronic Journal of 

Structural Engineering, 3 (2003). 

[64] Evan m. Lapointe. An investigation of the principles and practices of seismic isolation in bridge structures. 

Department of Civil and Environmental Engineering; 2004. 

[65] Michael D. Symans, Steven W. Kelly. Fuzzy logic control of bridge structures using intelligent semi-active seismic 

isolation systems. Earth. Engng. Struct. Dyn., 28, 37-60, (1999). 

[66] KM. Kelly, Earthquake-Resistant Design with Rubber. 2nd ed. Berlin and New York: Springer-Verlag; 1997. 

[67] Building Seismic Safety Council. NEHRP Recommended Provisions: Design Examples FEMA 451 - Washington, 

D.C., August 2006. 

[68] National cooperative highway research program report 276 - Thermal effects in concrete bridge superstructures, 

1985. 

[69] Warn Gordon P. and Andrew S. Whittaker, Property Modification Factors for Seismically Isolated Bridges, 2006, 

11:3(371), 1084-0702. 


