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a b s t r a c t 

The numerical simulation of phenomena such as subsurface fluid flow or rock deformations are based on 

geological models, where volumes are typically defined through stratigraphic surfaces and faults, which constitute 

the geometric constraints, and then discretized into blocks to which relevant petrophysical or stress-strain 

properties are assigned. 

This paper illustrates the process by which it is possible to reconstruct the triangulation of 3D geological 

surfaces assigned as point clouds. These geological surfaces can then be used in codes dedicated to volume 

discretization to generate models of underground rocks. 

The method comprises the following: 

- Characterization of the best fitting plane and identification of the concave hull of the point cloud which is 

projected on it 

- Triangulation of the point cloud on the plane, constrained to the Planar Straight Line Graph constituted by 

the concave hull 

The algorithm, implemented in C ++ , depends exclusively on two parameters (nDig, maxCut) which allow one 

to easily evaluate the optimal refinement level of the hull on a case by case basis. 
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Specifications Table 

Subject Area Earth and Planetary Sciences 

More specific subject area Mesh Generation for Geological Applications 

Method name Geological Surface Reconstruction through the constrained Delaunay triangulation 

of the Planar Straight Line Graph defined by the concave hull segments 

Name and reference of original method A New Concave Hull Algorithm and Concaveness Measure for n-dimensional 

Datasets from [1] and Crossing Algorithm from ptinpoly.cpp published in [2] 

Resource availability Triangle Library: https://www.cs.cmu.edu/ ∼quake/triangle.html 

Eigen Library : https://eigen.tuxfamily.org/index.php?title=Main _ Page 

Method details 

Historically, the process of generating numerical grids for geological applications is constrained 

to stratigraphic and fault surfaces. In fact, they are the main spatial elements that guide the zoning

process of the model as well as its numerical discretization. 

The paper describes a method developed to reconstruct these surfaces, represented in the space

as generic point coordinates. Classes and functions are written in C ++ using the C library Triangle

[3 , 4,10] , which operates on the plane. As an output it can provide a Delaunay triangulation constrained

to a Planar Straight Line Graph , which, in this case, is defined by the concave hull of the point cloud.

The Eigen library [5] , dedicated to linear algebra, was used for linear algebra operations. 

The main steps of the methodology are schematized in Fig. 1 and described in detail in the sections

which follow. 

Best fitting plane projection 

As already mentioned, the surfaces to be elaborated can be classified in stratigraphic and fault

surfaces. If referring to a right-handed Cartesian coordinate system xyz where the z axis is vertically

oriented, the stratigraphic surfaces are mainly orthogonal to the z direction, while faults are typically

sub-vertical but do not have an orientation in space that can be determined a priori . As an example,

the clouds of a stratigraphic surface (green) and of a fault surface (red) are shown in Fig. 2 . 

Therefore, the xy-plane is a potential approximation plane for a stratigraphic surface, whereas, for 

a fault surface, it is necessary to calculate the principal components of the matrix consisting of the

coordinates of the points of the cloud ( X ), determine the plane identified by them and project the

points on it. The detailed procedure is the following: the point coordinates are expressed respect to a

Cartesian reference system with origin in the barycenter of the cloud itself and the corresponding

matrix X ∈ R 

3 × N points is constructed. The eigenvalue matrix (D ∈ R 

3 × 3 ) and the corresponding

eigenvector matrix ( V ∈ R 

3 × 3 ) of X X 

T were calculated using the Eigen library, then the projections

were made on the plane identified by the first two components of the orthonormal basis obtained

from V and corresponding to the two larger eigenvalues in D . The related functions are shown in

Box 1 . Fig. 3 shows, by way of example, a cloud of points in space ( Fig. 3 A), the calculated BFP

( Fig. 3 B) and the projection of the points on it ( Fig. 3 C). 

Hull “digging”

Once the reconstruction problem of the surfaces was brought back to a triangulation on the plane

(BFP), the potential of the Triangle library was exploited, which implements a stable and efficient

Delaunay triangulation algorithm and numerous refinement options. The syntax used for triangulation, 

without the imposition of any constraints, is shown in Box 2 , where the triangleIn and triangleOut

structures are the input and output of the routine, respectively. Both are struct of the triangulateio

type (see Supplementary Material section for details), whose declaration and definition can be found 

in the files triangle.h and triangle.c of the Triangle library. 

However, if not constrained to the boundary nodes, the point cloud triangulation on the convex

hull might lead to a poor quality discretization when projected back in the space. This is the reason

why a series of triangles (red area of Fig. 4 ) can be observed, which are incorrectly defined because

https://www.cs.cmu.edu/~quake/triangle.html
https://eigen.tuxfamily.org/index.php?title=Main_Page
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Fig. 1. Flowchart of the geological surface reconstruction method. 

Fig. 2. Example of point clouds representing a Stratigraphic Surface (green) approximated with an xy-plane and a Fault Surface 

(red) with the corresponding Best Fitting Plane. 
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hey connect points that should be tagged as boundary nodes. As a consequence, the triangulation of

he fault surfaces in space shows a series of erroneous “folds”. 

Therefore, the need to more accurately identify the polygon that describes the boundary of the BFP

rojection of the point cloud, i.e. the concave hull , became evident. Routines based on the concept

f α- shapes, available in the CGAL library [6 , 7] , were preliminary tested, but unsatisfactory results
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Box 1 

Functions for deriving the BFP e consequent projection. The points are saved in the Eigen::MatrixXd xyz and their projection 

on BFP in xyProj. 

Box 2 

Triangle syntax for triangulation of the 2D point cloud without boundary constraints (see details on Triangle switches in 

Supplementary Material section) . 
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Fig. 3. (A) Point cloud, representative of a fault, in the space. (B) Plane (BFP in gray) corresponding to the two main components 

of the matrix consisting of the coordinates of the points of the cloud. (C) Projection of the point cloud on the BFP. 

Fig. 4. (A) BFP projection of the point cloud and corresponding convex hull (red). (B) Triangulation of the BFP point cloud 

projection with boundary nodes identified by the convex hull . (C) 3D space projection of the triangulation. The red area 

highlights where the triangulation is unsatisfactory due to inadequate identification of the boundary nodes and the polygon 

that encloses the BFP point cloud projection. 

Fig. 5. Sketch of the exploration step of the “digging” algorithm: nodes classified as internal in white, nodes and segments 

belonging to the boundary polygon in red. In a hypothetical iteration, the p 1 p 2 segment is tested. In particular, the p 1 - 

neighborhood is defined by the circumference with radius r and center p 1 and the algorithm searches for internal nodes that 

fall within it. 
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ere obtained due to the different concavities characterizing the point cloud boundary. For this

eason, taking as a reference the “dig criterion” of the convex hull introduced by Park and Oh [1] , we

mplemented a variant of the algorithm that is able to optimize the exploration of both the extension

nd the shape of the neighborhood (for the search of possible boundary points). The algorithm is

ased on the idea of incrementally “digging” the convex hull by iteratively adding a node previously

lassified as internal to the boundary polygon. If the node passes the admissibility test, it is inserted

nto the appropriate position and the existing segment of the polygon is “broken”. Fig. 5 shows the

xploration scheme of the “digging” algorithm. The starting polygon of the algorithm is the convex hull

btained as the output of Triangle and the depth to which the hull is “excavated” is determined by the

arameter indicated with nDig ∈ [0,1]: it defines the width of the neighborhood exploration through

he relation: r = edgeLength ∗ dig. The neighborhood to explore is wider when the dig parameter

pproaches 1. In a hypothetical iteration of the algorithm, the edge p 1 p 2 of the current boundary
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Box 3 

hull::updateHullDig(double dig) - pseudo-code of the function for the construction of the concave hull using the “digging”

strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

polygon is tested. In particular, the p 1 -neighborhood is defined by the circumference with radius r and

center p 1 and the algorithm searches for internal nodes that fall within it. In Fig. 5 , p neigh (yellow) is

selected and it is tested, i.e. it is verified that the trial boundary edges p 1 p neigh and p neigh p 2 do not

intersect any edge of the current boundary polygon and that no internal points fall in the triangle

p 1 p neigh p 2 . If the point p neigh passes the test, then it is tagged as boundary node and the p 1 p 2 edge is

“broken”. The Box 3 reports the pseudo-code instructions of the updateHullDig function and Table 1

summarizes the main variables and type and provides their description. The additional routines which 

are called are reported in Box 7-Box 17 (see the Supplementary Material section ) for completeness. 

Fig. 6 shows an example of evolution of the "digging" algorithm. The initial convex hull (in red) and

four concave hulls of increasing number of nodes (from orange to yellow) are represented. The result

is the green boundary. 

In the development of the method, some distinctions had to be made between fault surfaces and

stratigraphic surfaces due to the intrinsic characteristics of the latter. First, we observed that the

calculation of the BFP was not needed as, generally, a BFP can be approximated by a xy-plane of

a right-handed Cartesian coordinate system with z as the vertical axis. Secondly, the point clouds

that we have to process are typically surfaces deriving from geological modeling and sampled with a

constant step on the plane. It follows that the points, once projected onto the plane, have a regular

distribution and, in particular, they are aligned with the coordinated axes or with the diagonals,

falling within the limit configurations that make the implemented crossing algorithm less accurate 

[8] . Indeed, one of the implemented core function belongs to the family of strategies called point-in-

polygon , whose criticalities are extensively tested in [9] . 
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Table 1 

Description of the main variables defined in the pseudo-code. 

Table 2 

Reconstruction of fault surfaces with the updateHullDig routine. The number of the points in the cloud, the values assigned to 

the dig parameter, the characteristics of the triangulation referred to the initial convex hull and the values relative to the final 

concave hull are given. 

Case # Points Parameter Convex Hull Concave Hull 

dig # Nodes # Triangles # Nodes # Triangles 

Fault 12 1110 0.4 40 2178 216 2002 

H53 1632 0.75 32 3230 436 2826 
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Fig. 6. Example of the evolution of the “digging” algorithm of the convex hull (red). Initially, the boundary polygon consists of 

40 nodes only, iterations at 100, 150, 200 nodes and the final boundary, called concave hull , consisting of 216 nodes (green). 

Fig. 7. Portion of the point cloud relative to a stratigraphic surface projected on the xy-plane. The colormap refers to the quality 

of the triangulation (edge ratio) constrained to the convex hull (nodes in red). The triangles that deviate from the average value 

(~ 1.2) are the triangles that should be removed from the triangulation, as they are external to the polygon (nodes in green) 

that describes the boundary of the cloud. 

Fig. 8. Sketch of the steps for the boundary polygon (in red) refinement algorithm which includes two cycles. The first is the 

initialization cycle of the outlierTriangles (T 1 , T 2, T 3 ) and starterTriangles lists (T 1 T 2 in green) in A. In the second cycle the 

starterTriangles list is updated iteratively by deleting the triangles that were removed from the triangulation and by adding the 

outlierTriangles that have an edge in common with the updated edge polygon (T 3 in B) at the end of the list. 
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Fig. 9. Fault 12 case – (A) Initial convex hull of the point cloud projected on the BFP and (B) corresponding triangulation. (C) 

Concave hull of the point cloud projected on BPF obtianed as the output of the updateHullDig routine with parameter dig = 0.4. 

(D) Final triangulation. 

Fig. 10. Fault 12 case – Comparison between the point cloud triangulation constrained to convex hull (A) and the triangulation 

constrained to the concave hull (B) in the original xyz Cartesian coordinate system. 
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In order to overcome these limitations, we decided to exploit the information deriving from the

reliminary triangulation, i.e. the triangulation delimited by the convex hull , so as to apply a different

digging” strategy. We observed that, since the sampling is regular, the quality of the mesh, measured

s edge ratio (i.e. ratio between the maximum edge length and the minimum edge length of each

riangle of the grid), is roughly constant over the whole domain. Triangles characterized by edge ratio

igher than average are found exclusively close to the boundary polygon where it is known that the
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Fig. 11. Fault H53 case – (A) Initial convex hull of the point cloud projected on the BFP and (B) corresponding triangulation. 

(C) Concave hull of the point cloud projected on BPF obtianed as the outupt of the updateHullDig routine with parameter 

dig = 0.75. (D) Final triangulation. 

Table 3 

Reconstruction of stratigraphic surfaces with the updateHullWipe routine. The number of the cloud points and its sampling 

increment, the values assigned to the maxCut parameter, the characteristics of the triangulation referred to the initial convex 

hull and the values relative to the final concave hull are reported. 

Case # Points Sampling Parameter Convex Hull Concave Hull 

[m] maxCut # Nodes # Triangles # Nodes # Triangles 

Surf Top 34,635 150 × 150 0.5 32 69,236 627 68,641 

Erosional 50 7335 50 × 50 0.5 23 14,645 353 14,315 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

convex hull is not adequate to describe the profile of the point cloud. As an example, Fig. 7 shows a

portion of the triangulation of the point cloud of a stratigraphic surface projected onto the xy-plane,

delimited by the convex hull (nodes in red). The color map describes the trend of the edge ratio.

Triangles that deviate from the average value (approximately equal to 1.2) are just the triangles that

should be excluded from the triangulation because they are external to the polygon that describes the

boundary of the projected cloud (nodes in green). 

Based on such considerations we decided to calculate the mean ( t . mu ) and the standard deviation

( t . sigma ) of the triangle edge length distribution of the initial discretization. At the same time,

two lists of triangles were populated: the first, named outlierTriangles, contains all the triangles

that have at least one edge of length greater than thresholdLength = t. mu + maxCut ∗ t . sigma ,

where maxCut ∈ R 

+ is a parameter set by the user; the second, named starterTriangles, is a subset

of the previous one and includes the triangles that have one edge in common with the starting

convex hull . Therefore, the second list consists of those triangles that should be potentially excluded

from the triangulation to improve the definition of the hull. Once the two lists are initialized, the

algorithm (whose steps are detailed in Box 4 ) iterates over the elements of the starterTriangles. In

the representation of Fig. 8 A, the list consists of two triangles: T 1 and T 2 . In particular, both edges

s 1 e 1 and s 2 e 2 belong to the current boundary polygon. Thus opposite vertices p i ( i = 1,2) are tested

in order to be tagged as boundary nodes and to be inserted in the concave hull , i.e. the algorithm

verifies that the trial boundary edges s i p i and p i e i do not intersect any edge of the current boundary
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Box 4 

hull::updateHullWipe(triInfo t, double maxCut) – pseudo-code of the function for the construction of the concave hull on the 

plane. The strategy eliminates triangles by evaluating the length of their edges and whether they belong to the boundary 

polygon. 
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Fig. 12. Fault H53 case – Comparison between the point cloud triangulation constrained to the convex hull (A) and the 

triangulation constrained to the concave hull (B) in the original xyz Cartesian coordinate system. 

Fig. 13. SurfTop case – (A) Point cloud in the original xyz Cartesian Coordinate System. (B) Intersection with the xy-plane. (C) 

Projection of the point cloud onto the xy-plane. (D) Detail of the boundary points. 

Box 5 

Triangle syntax for the triangulation of the 2D point cloud constrained to the Planar Straight Line Graph (see details on Triangle 

switches in Supplementary Material section). 
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Fig. 14. SurfTop case – (A) Detail of the starting convex hull of the point cloud projected onto the xy-plane and (B) 

corresponding triangulation (in red triangles that need to be removed). (C) Detail of the concave hull of the point cloud 

projected onto the xy-plane obtianed as the outupt of the updateHullWipe with parameter maxCut = 0.5. (D) Final 

triangulation. 

Box 6 

Function for the transformation to the original reference system from local coordinates on the plane. 
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olygon and that no internal points fall in the triangle s i p i e i . If the admissibility test is passed, T 1 and

 2 are removed and the boundary polygon updated ( Fig. 8 B). Eventually, we go through the triangles

hat have a side in common with the removed triangles exploiting the neighborlist (see Table 1 ). If

hey belong to the outlierTriangles list, they too are added to the starterTriangles list. In the example

n Fig. 8 B, triangle T 3 is added. 

The algorithm continues to update the starterTriangles list until it is empty. The resulting boundary

olygon will then be the final concave hull . 

The methodology involves a second triangulation on the plane where the Planar Straight Line Graph

efined by the identified polygon is imposed as a constraint. 

The corresponding string used to run the Triangle library is given in Box 5 . 

At last, the constrained triangulation is re-projected in the 3D space to obtain the reconstructed

urface ( Box 6 ). 

The resulting triangulated surface inherits the IO structure of the Triangle library, i.e. the

riangulateio C-struct, whose pointlist array is updated with the 3D re-projected coordinates. It is

bserved that during the triangulation process no points are added or deleted thus there is a perfect

orrespondence between the input and output points of the cloud. 
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Fig. 15. Surf Top case – Comparison between the point cloud triangulation constrained to convex hull (A) and the triangulation 

constrained to the concave hull (B) in the original xyz Cartesian coordinate system. 

Fig. 16. Erosional 50 case – (A) Point cloud in the original xyz Cartesian Coordinate System. (B) Intersection with the xy-plane. 

(C) Projection of the point cloud onto the xy-plane. (D) Detail of the boundary points. 

 

 

Method validation 

In order to illustrate the effectiveness of the presented method, the reconstruction processes of 

2 fault surfaces and 2 stratigraphic surfaces are reported below. Table 2 shows the details of the

application of the updateHullDig routine to the cases named Fault 12 ( Fig. 9 , Fig. 10 ) and H53 ( Fig. 11 ,
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Fig. 17. Erosional 50 case – (A) Detail of the starting convex hull of the point cloud projected onto the xy-plane and (B) 

corresponding triangulation (in red triangles that need to be removed). Detail of the concave hull of the point cloud projected 

onto the xy-plane obtianed as the outupt of the updateHullWipe with parameter maxCut = 0.5 (C). Final triangulation (D). 

Fig. 18. Erosional 50 case – Comparison between the point cloud triangulation constrained to convex hull (A) and the 

triangulation constrained to the concave hull (B) in the original xyz Cartesian coordinate system. 
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ig. 12 ). In Table 3 we refer to the cases called Surf Top ( Fig. 13 , Fig. 14 and Fig. 15 ) and Erosional 50

 Fig. 16 , Fig. 17 and Fig. 18 ) where the updateHullWipe routine was applied. 

We observe that in all the presented cases the triangles of the initial triangulation (constrained

o the convex hull ) that generated erroneous “folds” (in red) are correctly removed from the final

riangulation (constrained to the concave hull ). Removed triangles originally connected points that are

lassified as boundary nodes in the final hull. 
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