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Abstract

This paper presents the design and experimental valida-
tion of a localization method for autonomous driving. 
The investigated method proposes and compares the 

application of the Extended Kalman Filter (EKF) and 
Unscented Kalman Filter (UKF) to the sensor fusion of 
onboard data streaming from a Global Positioning System 
(GPS) sensor and an Inertial Navigation System (INS). In the 
paper, the design of the hardware layout and the proposed 
software architecture is presented. The method is experimen-
tally validated in real time by using a properly instrumented 
all-wheel-drive electric racing vehicle and a compact Sport 

Utility Vehicle (SUV). The proposed algorithm is deployed on 
a high-performance computing platform with an embedded 
Graphical Processing Unit that is mounted on board the 
considered vehicles. The reported experimental results include 
the outcomes of the localization algorithm at submeter 
accuracy and the estimated vehicle’s states for the retained 
single-track vehicle model that is exploited for further control 
strategies. The experimental results show a substantial equiva-
lence of the application of the two filters. Nevertheless, the 
UKF-based method is characterized by a significantly lower 
estimation variance in the localization task, thus providing 
more robust results.

1.  Introduction

Autonomous vehicles are experiencing an increasing 
interest worldwide during the last years, which has 
constantly motivated huge research efforts to contin-

uously address design challenges related to safety and perfor-
mances of the next generation of automated cars [1, 2]. Many 
Advanced Driving Assistance Systems are already present in 
the majority of vehicles of the recent mass production, thanks 
to recent developments in engineering in the real-time assess-
ment of vehicle dynamics and passengers comfort, as well as 
in the development of robust safety systems [3, 4, 5]. However, 
fully autonomous commercial vehicles are still far from being 
the common means of transport, although they are retained 
to change the whole mobility panorama in the next decades, 
thanks to the contribution of Artificial Intelligence, as stated 
in [6] and [7].

In this framework, localization represents one of the most 
relevant issues for an autonomous vehicle that aims to navigate 
without any human support, thus being a key enabler for the 

development of any technology devoted to self-driving cars 
[8, 9]. Considering the self-driving vehicle as a robotic system, 
the localization problem arises with the vehicle’s motion in 
an unknown environment [10]. This issue is even more critical 
in autonomous driving when the effectiveness of path planning 
or vehicle’s dynamics control algorithms is tested in the 
limited conditions presented by challenging driving scenarios, 
such as racetracks or urban areas. Strictly linked to localiza-
tion, the precise real-time vehicle’s state estimation is another 
crucial topic to be addressed by any autonomous driving 
system because it directly impacts the performance of every 
control algorithm devoted to driverless systems. An accurate 
and robust estimation of the vehicle’s pose (position and orien-
tation) and states is the goal of the method presented in this 
paper, which has been motivated by the need for an accurate 
and robust real-time positioning system to deploy an effective 
local path planner [11, 12].

The investigated method is addressed to a properly 
instrumented all-wheel-drive electric racing vehicle and a 
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commercial compact Sport Utility Vehicle (SUV). In the 
retained vehicles, the choice of a local path planner for auton-
omous driving is given by the unavailability of an a priori 
knowledge of the driving environments [13, 14]. The consid-
ered racing vehicle aims to participate in Formula Student 
Driverless Competition. In this paper, the racing vehicle is 
retained as a development platform for the proposed algo-
rithm that is validated on a commercial compact SUV to 
prove the responsiveness, accuracy, and scalability of the 
proposed algorithms. The problem of finding the best trade-
off between those features is a common design challenge and 
has been tackled with different approaches, as investigated 
by [15, 16, 17, 18]. Nevertheless, all the aforementioned 
research works solve the localization problem together with 
the mapping problem by means of Simultaneous Localization 
and Mapping (SLAM) algorithms, embedding different state 
estimation techniques and hardware setups. In general, 
SLAM algorithms are a well-documented solution in litera-
ture [19] and have proven to be a robust and reliable source 
of state estimation also for racing applications. However, the 
main drawback of the SLAM approach when dealing with 
unknown racetracks or urban maps is the need for a software 
stack that is able to run a global mapping routine during a 
first low-pace lap to achieve a good level of details of the map. 
Then the vehicle can navigate for the remaining laps in a 
known environment in a pure autonomous roaming condi-
tion. This process is poorly applicable to commercial vehicles 
in urban areas. Moreover, it can sacrifice the dynamic perfor-
mance of a racing vehicle during the initial lap, while building 
the environment for a global path planner. Conversely, the 
proposed localization method aims to provide an accurate 
real-time localization to enable a local path planner that 
emulates the behavior of a human driver in ensuring the 
needed short-term and high-end performance, even in the 
case of facing the track for the first time, i.e., the common 
situation encountered by a commercial vehicle in urban areas. 
Therefore, the localization algorithm has a pivotal role in 
assuring the responsiveness of the entire autonomous system 
because it enables the ability of the vehicle to be self-aware 
of its position on the track and its dynamic conditions at any 
time with the highest level of accuracy.

In this research work, the performance of two renowned 
filters for nonlinear models, namely, the Extended Kalman 
Filter (EKF) and the Unscented Kalman Filter (UKF), are 
compared in estimating the position and orientation of the 
retained vehicles. Furthermore, the vehicle’s states are also 
estimated for the real-time assessment of the retained single-
track vehicle model that is exploited for further control strate-
gies. The two investigated filters fuse the measurements taken 
by a Global Positioning System (GPS) sensor and an Inertial 
Navigation System (INS) mounted on board the 
retained vehicles.

Although the application of the EKF and UKF with 
sensor fusion of GPS and INS sensors have been individually 
validated in the recent literature for the assessment of vehicle 
localization and navigation algorithms [20, 21, 22], an effective 
comparison of the two filters and the consequent study of the 
potential application to commercial vehicles is still missing. 
To the best of the authors’ knowledge, such studies are limited 
to indoor autonomous robot applications [23] and 

autonomous underwater vehicles [26]. This paper aims to fill 
this gap in the literature by experimentally testing the 
proposed algorithms on an autonomous racing prototype and 
by validating them on a properly instrumented commercial 
compact SUV. Different driving maneuvers are studied for 
both the considered vehicles.

Furthermore, a proper localization algorithm must guar-
antee a low computational effort for the devoted computa-
tional platform, while assessing the estimation of the vehicle’s 
position and orientation and the estimation of the vehicle 
dynamics states for the local path planner. In this paper, it is 
also shown how to partially decentralize the sensor fusion 
routine at the hardware level using an industrial-grade naviga-
tion sensor, combined with the aforementioned filtering tech-
niques deployed on board for redundancy. The proposed 
decentralized approach is novel at the hardware level, and it 
has been validated experimentally.

Moreover, the choice of exploiting the robot localization 
package capabilities for the main software architecture has 
constrained the kind of filters considered in this paper. The 
package embeds only two different implementations of 
nonlinear state estimators for a three-dimensional motion 
assessment of mobile robots, namely, the EKF and UKF algo-
rithms, for their similar configuration and tuning procedures. 
Both the EKF and UKF belong to the class of Gaussian filtering 
techniques, which guarantee a parametric approach to the 
measurement noise description, limiting the overall compu-
tational burden of the package, which is designed to run on 
low-cost computing platforms. Despite being a general-
purpose software component, it can be adapted to the needs 
of a specific application by properly tuning the process noise 
and the initial estimate covariance matrices, respectively. In 
the considered case, the package has been initialized to privi-
lege computational efficiency over final estimate accuracy, 
finding the best trade-off among the requirements.

Furthermore, Particle Filters and Graph-based methods 
have proven to guarantee a more stable solution to the state 
estimation problem with respect to Gaussian techniques 
because of the lower level of approximation introduced in 
measurement noise. Nevertheless, the computational 
complexity rises with the adoption of nonparametric noise 
descriptions, especially for nonlinear systems, as written in 
[23], [24], and [25]. Thus, considering the requirements of the 
retained vehicles and the adoption of a general-purposed 
software component, only EKF and UKF have been designed 
because of the best trade-off reachable between the computa-
tion effort required and the estimates’ accuracy.

The advantage of this approach is to increase the robust-
ness of the localization pipeline that can be reached with the 
hardware components present on board. Eventually, localiza-
tion robustness can be further refined and improved by adding 
measurements from other sensors if available, such as vision-
based or odometry sensors. However, this procedure can cause 
a reasonable degradation of responsiveness and an increased 
level of complexity, thus being beyond the scope of the paper. 
The performance of the investigated algorithms has been 
evaluated in terms of analysis of the covariance matrices of 
both the filters during the performed experimental tests. 
Moreover, results have been quantified in terms of 
position error.
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In detail, the main contributions of this paper are (1) The 
comparison and performance assessment of EKF and UKF 
for localization purposes and the potential application to 
commercial vehicles. To this end, different driving maneuvers 
are studied for both the considered vehicles; (2) The partial 
decentralization of the sensor fusion routine at hardware level 
using an industrial-grade navigation sensor, which is 
combined with the mentioned filtering techniques. The 
proposed decentralized approach is novel at the hardware 
level, and it has been validated experimentally.

This paper is structured as follows: Section 2 presents the 
experimental vehicle setup and modelling for each of the two 
considered vehicles, as well as the outline of both the hardware 
and software architectures chosen for the localization method. 
Moreover, the design of both the investigated EKF and UKF 
is presented. Then, the experimental validation process is 
discussed in Section 3 using two different datasets acquired 
on board the considered vehicles, representing the different 
driving scenarios. Results include the estimated vehicle’s states 
during the experimental validation, such as the vehicle’s 
position and orientation, roll, pitch, yaw (RPY) angles, 
velocity, and acceleration measurements.

2.  Method
In this section, the modelling approach for both the consid-
ered vehicles is illustrated, along with the hardware setup and 
software architecture. The main parameters of the two 
retained vehicles are also presented first. Then, the design of 
the investigated EKF and UKF for localization purposes and 
vehicle states estimation is discussed.

2.1.  Vehicle Modelling
The proposed localization algorithm is tested and validated 
on two different vehicles: the first one is an all-wheel-drive 
electric racing vehicle used as a prototype in this research and 
the latter is a commercial passenger car (compact SUV class). 
For both the vehicles, the longitudinal and lateral dynamics 
are modelled by means of a single-track linear three degrees-
of-freedom (3-DoF) model that is used for further autonomous 
vehicles control strategies as described in [27]. This simplified 
model is proven to be effective among the different mathe-
matical formulations, which are present in the literature [28, 
29, 30]. The relevant states of the vehicle model are represented 
in Figure 1. The considered formulation features a rigid 
two-axle vehicle model and accounts for the linear motion in 
the xy-plane and the rotation about the z-axis.

In Figure 1, two different reference frames are considered: 
the inertial reference frame (XY) and the vehicle reference 
frame (xy). The considered DoF are the lateral and longitu-
dinal positions of the vehicle and the yaw angle. A canonical 
state feedback formalism is used for the modelling definition, 
as in [5] and [31]. In the state-space model of Equation 1, the 
lower scripts (·)f and (·)r denote the variable (·) at the front and 
rear wheels, respectively. The state-space model is obtained 
considering a first-order transfer function with time constant 

τ = 0.5 s for the longitudinal dynamics and the Euler equation 
for the lateral and the yaw motion:
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Eq. (1)

where x and y are the positions along the x-axis and y-axis, 
respectively; Vx, Vy are the longitudinal and the lateral vehicle 
velocities, respectively; ψ is the yaw angle; and δ is the front 
wheel steering angle.

The equations of motion for the considered vehicle model 
are developed in the reference frame xy fixed to the Center of 
Mass (CoM) of the vehicle:
 ma mV F F Fx y xf w yf w xr w� � � ��� � �, , ,cos sin  Eq. (2)

 ma mV F F Fy x yf w xf w yr w� � � � ��� � �, , ,cos sin  Eq. (3)

 I a F cos F bFzz yf w xf w yr w��� � �� �� � �, , ,sin  Eq. (4)

Fyf, w and Fyr, w are the lateral tires forces applied to front 
and rear wheels, respectively.

The relation between the inertial reference frame XY and 
the vehicle-fixed reference frame xy is then described by the 
following equations:
 X x y� �cos sin� �  Eq. (5)

 Y x y� �sin cos� �  Eq. (6)

 � ��  Eq. (7)

 FIGURE 1  Single-track linear 3-DoF vehicle model.
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The lateral tire forces at the front and rear wheels are 
considered perpendicular to the rolling direction of the tire 
and proportional to the lateral slip angle, αf and αr. Considering 
the assumption of small slip angles, the lateral tire forces are 
modelled as

 F Cyf w f f, � 2 � �  Eq. (8)

 F Cyr w r r, � 2 � �  Eq. (9)

where Cαf and Cαr are the tire stiffness and αf and αr are the 
tire slip angles of the front and rear tires, respectively. 
Therefore, the tire slip angles are defined as follows:

 �
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� �atan
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 Eq. (10)
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 Eq. (11)

where a and b are the distance from the CoM and the front 
and rear axles, respectively.

The electric racing vehicle is properly instrumented for 
driving autonomously in the racetrack and features an integral 
carbon fiber chassis with honeycomb panels, double-wishbone 
push-rod suspensions, an on-wheel planetary transmission 
system, and a custom aerodynamic package. The vehicle can 
reach a maximum speed of 120 km/h with longitudinal accel-
eration peaks up to 1.6 g. The main vehicle’s parameters are 
listed in Table 1.

The commercial passenger car (compact SUV class) has 
been used in parallel to the racing vehicle for the experimental 
validation of the proposed localization technique. The main 
parameters of the retained commercial vehicle are listed in 
Table 2. The parameters of the retained compact SUV have 
been identified from a time-frequency analysis in a prior 
research work by the authors [5].

2.2.  Hardware Layout and 
Software Architecture

Local path planning algorithms for assisted and autonomous 
driving require precise and real-time assessment of the main 
vehicle’s states and position. This requirement can be met with 
different hardware layouts. In this research, the retained 
solution exploits an INS. INS are self-contained, non-radi-
ating, dead-reckoning navigation systems that provide 
dynamic information through direct measurements and, if 
integrated with absolute location-sensing mechanisms (such 
as GNSS receivers), can provide accurate information about 
the vehicle’s position at the centimeter level [32].

The retained INS sensor is the SBG Systems Ellipse-N, 
which embeds a 64-bit microprocessor that is able to process 
sensors fusion algorithms in real time. This sensor is small 
sized and features an integrated dual-band antenna GNSS 
receiver. It provides orientation angles and accurate GNSS 
position, thus being most suited for dynamic environments 
and harsh GNSS conditions. Nevertheless, it can also operate 
in lower dynamics applications with a magnetic heading. The 
sensor is fully compatible with the computational platform 
used on board the considered vehicles since it supports both 
serial communication at a high baud rate with a Linux machine 
running Robotic Operating System (ROS) and CAN bus 
communication with any real-time automotive Electronic 
Control Unit. The retained onboard computing platform is an 
NVIDIA Jetson AGX Xavier featuring Linux Ubuntu 18.04 
and ROS Melodic, which has been chosen for its high compu-
tational power. Moreover, the retained INS sensor can also 
reduce the computational effort required by the embedded 
onboard computer because it integrates inertial measurement 
unit (IMU) and GNSS receivers with a 64-bit microprocessor 
capable of real-time signal pre-processing and data fusion. 
Specifically, a first stage of sampling and calibration of the IMU 
via a coning and sculling algorithm is performed at a frequency 
of 1 kHz by the sensor itself. The IMU inputs are then processed 
by an embedded data fusion routine, which integrates global 
navigation satellite system (GNSS) and barometer data by 
means of an embedded EKF with an output frequency of 

TABLE 1 Main parameters of the retained electric racing 
vehicle (driver not included).

Parameter Symbol Value Unit
Wheelbase b 1525 mm

Overall length l 2654 mm

Track width t 1400 mm

Maximum height h 1225 mm

Ground clearance hg 60 mm

Tire outer diameter d 13 inch

Mass m 185 kg

Moment of inertia about 
the z-axis

Izz 95.81 N · m2

Distance from CoM to 
front/rear axle

[lf; lr] [839; 686] mm

Front/rear cornering 
stiffness

[Cαf, Cαr] [44222; 44222] N/rad

Vehicle top speed vmax 120 km/h ©
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TABLE 2 Main parameters of the retained commercial vehicle 
(driver not included).

Parameter Symbol Value Unit
Wheelbase b 2570 mm

Overall length l 4236 mm

Track width t 1805 mm

Maximum height h 1697 mm

Ground clearance hg 170 mm

Tire outer diameter d 28.1 inch

Mass m 1270 kg

Moment of inertia about the 
z-axis

Izz 1550 N · m2

Distance from CoM to front/
rear axle

[lf; lr] [1020; 1550] mm

Front/rear cornering 
stiffness

[Cαf, Cαr] [65765; 
49517]

N/rad

Vehicle top speed vmax 185 km/h ©
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200 Hz. The embedded EKF can be properly tuned on the 
specific application and performs a first pre-processing stage 
at the sensor level [33]. The hardware layout and the location 
of the hardware in the retained racing vehicle are illustrated 
in Figure 2. The computing platform is connected to a devoted 
rechargeable lithium battery with a proper custom wiring 

system, as well as the INS sensor is connected to a GPS antenna. 
An equivalent layout is used on the commercial vehicle but is 
not reported in the paper for confidentiality issues. The employ-
ment of other sensors has been also evaluated in the design 
phase, such as visual odometry from stereocameras or wheels 
odometers. Nevertheless, the purpose of having a lean hardware 
architecture has motivated the choice to reduce the number of 
the considered sensors.

The main parameters of the retained inertial sensing units 
and GNSS module are reported in Table 3. Table 4 illustrates 
the accuracy performance of the INS complete module.

The proposed localization pipeline is fully developed by 
means of properly designed Python and C++ nodes in ROS. 
The main nodes composing the localization stack are

 • sbg_driver
This first node is an SBG Systems proprietary C++ node, 

which publishes the filtered sensor data at a custom rate that 
is decided for each signal on the basis of the required robust-
ness. The standard output rate for the Ellipse-N sensor is 
200 Hz, which is the one actually used in the proposed 
system. This node publishes proprietary ROS messages, 
which are used as raw data for post-processing by means of 
a dedicated ROS topic called /imu, as represented in Figure 
2. The standard ROS messages include the following 
topics: /imu/data (sensor_msgs/Imu), /imu/velocity, 

 FIGURE 2  Vehicle layout with hardware positions: (a) side 
view; (b) top view; (c) actual vehicle and hardware. (1.a) INS 
sensor; (1.b) GPS antenna; (2) high-performance 
computing platform.
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TABLE 3 Main parameters of the retained inertial sensing units and GNSS module.

Accelerometer Gyroscope Magnetometer GNSS module
Gain stability 1000 ppm 500 ppm <0.5% Features SBAS, RTK, RAW

Nonlinearity 1500 ppm 50 ppm <0.1% FS Signals GPS: L1C/A, L2C

GLONASS: L1OF, L2OF

GALILEO: E1, E5b,

BEIDOU: B1/B2

Bias stability ±5 mg ±0.2°/s ±1 mGauss Update rate 5 Hz

Random walk noise density 57 μg/√Hz 0.15°/√hr 3 mGauss Start time (cold 
and hot start)

<24 s and <2 s

Bias in-run instability 14 μg 7°/h 1.5 mGauss

Vibration rectification error 50 μg/g2 RMS 1°/h/g2 RMS —

Alignment error <0.05° <0.05° <0.1°

Bandwidth 390 Hz 133 Hz 22 Hz©
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TABLE 4 Accuracy performance of the INS complete module.

Parameters Performance
Roll and pitch 0.1° SP

0.05° RTK

0.03° PPK

Heading 0.2° Dual antenna 2 m, 0.2° Single antenna 
with dynamics 0.1° PPK

Velocity 0.03 m/s

Navigation 1.2 m single point

1 m SBAS

1 cm RTK/PPK + 1 ppm

Heave 5 cm or 5%—valid for marine version

Heave period Up to 15 s—automatically adjusts to the wave 
period©
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(geometry_msgs/TwistStamped), /imu/pos_ecef (geometry_
msgs/PointStamped), and /imu/nav_sat_fix (sensor_msgs/
NavSatFix). All the messages refer to the main reference 
frame of the IMU and are reported in the Earth-Centered, 
Earth-Fixed (ECEF) world frame, without any transform 
between frames published directly by the node.

 • odometry_publisher
A custom Python-based ROS node oversees the filling of 

a standard ROS message called /odometry, which is part of 
the navigation messages library /nav_msgs/Odometry. The 
message is composed of two geometry messages: /pose, which 
refers to the position and orientation of the robot in its frame 
with respect to a parent frame, and /twist, which contains the 
information about linear and angular velocities. The resulting 
odometry message is published in a ROS topic called /odometry 
and reports the position, orientation, and speed of the robot 
in the East-North-Up (ENU) frame, which is the standard 
frame in ROS frames conventions.

 • robot_localization

The last node of the proposed localization pipeline 
exploits the robot_localization package [34], i.e., a standard 
ROS C++ software package. This package is properly adapted 
to the needs of the application in order to run the two different 
Kalman Filter instances improving the quality of the /
odometry topic and publishing the transforms between map, 
odometry, and base frames of the system. The robot_localiza-
tion package embeds both an implementation of an EKF and 
a UKF, which are used to fuse the data coming from the INS 
solution with the raw data of the GNSS.

The software architecture of the proposed localization 
method is represented in Figure 3, illustrating the main 
hardware components, the retained operating system, and the 
software components.. The INS sensor routine embeds the 
internal EKF with the proper prediction and correction tasks, 
retrieving data from the IMU and GPS. The resulting output 
from the sensor is used for implementing the investigated EKF 
and UKF via a robot_localization package in the ROS envi-
ronment. Eventually, all the considered ROS topics and 
messages are listed in Table 5.

 FIGURE 3  Block scheme of the proposed software architecture. Hardware components are defined by a blue box. The 
operating system is indicated by a dashed box. The software components are indicated via gray boxes.
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TABLE 5 Retained ROS topics and ROS message type.

ROS topic ROS message type Message content
/imu/data sensor_msgs/Imu IMU measurements from INS data (orientation and 

acceleration)

/imu/nav_sat_fix sensor_msgs/NavSatFix Raw GPS data from GNSS receiver

/imu/velocity geometry_msgs/TwistStamped Linear and angular twist from INS data

/imu/pos_ecef geometry_msgs/PointStamped ECEF position from INS data

/odometry nav_msgs/Odometry ECEF pose and orientation

/odometry/gps nav_msgs/Odometry GPS pose and orientation

/odometry/filtered nav_msgs/Odometry Final pose and orientation values filtered by EKF/UKF

/accel/filtered geometry_msgs/AccelWithCovarianceStamped Final acceleration values filtered by EKF/UKF ©
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2.3.  Vehicle Localization and 
States Estimation

The vehicle localization and states estimation are the main 
tasks of the proposed method where a pivotal role is played 
by sensor fusion algorithms allowing to solve the problem of 
estimating the states of a stochastic system from noisy 
measurements. As a matter of fact, real sensors observations 
are prone to distortions and fluctuations due to measurement 
noise, linked to the hardware used, and to process noise, 
related to inaccuracies of the retained models. Furthermore, 
single sensors may not cover the whole range of the physical 
properties under study, and usually, sensors work in an unpre-
dictable environment and with limited computational power, 
which raise the uncertainty of the observed states of the 
process [35]. Therefore, sensor fusion is the most common 
way to overcome the addressed problems by combining data 
from multiple sensors to achieve improved accuracies and 
more specific inferences than what could be achieved by the 
usage of a single sensor. Filtering techniques are then used to 
estimate the state of a process directly from raw sensor 
measurements. As a consequence of the system modelling 
presented in Subsection 2.1, a nonlinear approach to the 
filtering problem has been considered in the paper, thus esti-
mating the state of a nonlinear stochastic system.

For a generic discrete-time nonlinear system dealing with 
noisy measurements, the presented framework is represented 
by the following equations:

 x g u xt t t t� � � ��, 1 �  Eq. (12)

 z h xt t t� � � ��  Eq. (13)

where xt is the state to be estimated, ut is the control input, zt 
is the measured output, and εt and δt are respectively the 
process and measurements noises. Moreover, an initial state 
estimate x̂0 0|  and the initial estimation error covariance matrix 
Σ0∣0 are given, and the initial estimate is assumed to be uncor-
related with both εt and δt. Even under the assumption of 
Gaussian noises affecting the system, the filtering problem 
rises with complexity when dealing with nonlinearities 
because nonlinear transformations of Gaussian variables, such 
as g and h in Equations 12 and 13, do not return Gaussian 
variables as a result.

Among the most common state estimators (or filters) 
present in literature, the EKF and the UKF are considered in 
this paper. Both the retained filters are Bayes filters, which are 
also referred to as Gaussian Filters, because they deal with 
Gaussian Random Variables (GRV). Those filters are recursive 
state estimators, which are widely used in literature for their 
generally good performance and ease of implementation [36]. 
The proposed filtering methods are designed for the estima-
tion of 15 states of the vehicle, namely, linear positions (x, y, z), 
Euler angles (φ, θ, ψ), linear speeds (vx, vy, vz), angular rates 
� � �� � �, ,� �, and linear accelerations � � �v v vx y z, ,� �. Nevertheless, 

the retained filters are initialized in the two-dimensional 
mode for the considered linear 3-DoF bicycle model; thus, all 
the linear components along the Z-axis can be neglected. Also 

roll and pitch angles are excluded from the relevant states 
tracked. Therefore, the considered state vector is

 x x y v v v vt x y x y
T

� �� ��� �� � �  Eq. (14)

2.3.1. EKF Design The EKF has been introduced to 
overcome the assumption of linearity in state transition in the 
standard Kalman Filter. Its working principle is based on the 
linearization of the nonlinear functions (g, h) in Equations 
12 and 13 with a GRV, i.e., the state distribution, which is then 
propagated through a first-order linearization of the nonlinear 
system via Taylor expansion, as in Equations 15 and 16. Hence, 
the main assumption that the initial state and measurement 
noises are Gaussian and uncorrelated with each other still 
holds. The formulation of the investigated EKF algorithm is 
presented in Algorithm 1 [37]. The output matrices Gt and 
Ht are given by

 G g u x
g u x

x
t t t t

t t t

t t

:� �� � � � � �
�

�
�

�
,

,
ˆ

ˆ

ˆ|
|

|
1

1

1
 Eq. (15)

 H h x
h x

x
t t t

t t

t t

:� � � � � � �
�

� ˆ
ˆ

ˆ|
|

|
 Eq. (16)

The process noise covariance and measurements noise 
covariance are denoted respectively as Rt and Qt in 
Algorithm 1, while the matrix Qt is assumed constant and 
will estimate its entries from measurements; the process 
noise covariance Rt is used as a tuning variable according to 
the application (e.g., dynamic racing situation or urban envi-
ronment scenario). The output of the EKF algorithm is the 
sequence of state estimates x̂t t|  and of matrices Σt∣t, starting 
from the given x̂0 0|  and Σ0∣0.

A similar implementation of the discussed EKF algorithm 
is on the basis of both the sensor fusion routine performed at 
a sensor level by the retained INS device and the proposed 
EKF-based method. Specifically, the INS sensor pre-processes 
the IMU data and raw GNSS data to lower the computational 
burden on the main state estimation EKF routine running on 
board. While the INS filter runs at 200  Hz and is tuned 
according to the motion profile given by the manufacturer, 
the developed EKF instance running on board has an update 
frequency of 30 Hz and its process noise covariance has been 
heuristically tuned based on the experimentally collected 
data. Nevertheless, high nonlinearities in the filtering process 
could affect the EKF. The introduction of a first-order propa-
gation through the system dynamics has proven to introduce 
large uncertainty in the estimate of parameters, thus leading 

 ALGORITHM 1  Extended Kalman filter.
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to suboptimal performance and eventually to filter’s diver-
gence [37]. This tendency will be  analyzed for the EKF 
deployed on board in the results presented in Section 3.

2.3.2. UKF Design The driving scenario of the consid-
ered vehicles is characterized by strong nonlinearities. 
Moreover, the usage of a local path planner imposes the need 
for the highest accuracy to avoid any possible source of diver-
gence of the measurement in real-time localization and states 
estimation. In this framework, the implementation of a UKF 
is investigated. UKF has proven in the literature to guarantee 
improved performances in terms of accuracy and robustness 
of the estimate with respect to a well-tuned EKF. On the other 
side, UKFs have a level of complexity that is comparable with 
EKFs; thus, the required computational effort is expected to 
be lower than the one required by non-Gaussian Filters, i.e., 
nonparametric filters [23]. Nevertheless, considering the 
computational cost analysis performed in [38] and [39], it can 
be easily concluded that UKF is characterized by a higher 
computational cost with respect to EKF. However, this aspect 
has not limited in the present work the applicability of the 
investigated algorithms. In this paper, a UKF has been devel-
oped to properly address the limitations of the EKF by using 
a deterministic sampling approach. The purpose is to better 
linearize the nonlinear functions (g, h) in Equations 12 and 
13, improving the linearization performed by the EKF and 
the propagation of a GRV through the system dynamics. Since 
the UKF is a Gaussian Filter, the state distribution can still 
be approximated as a GRV, but in the UKF it is represented 
by a set of 2n  +  1  points based on its original mean and 
variance, called σ − points. A robust theoretical background 
can be found in [40]. When σ − points are propagated through 
the nonlinear system by means of the Unscented transforma-
tion, it has been proven that the filter is able to capture the 
state estimate mean and covariance accurately to the third 
order of the Taylor series expansion for any nonlinearity; while 
for reference, the EKF estimate is accurate only to the first 
order [41]. In the proposed approach, the implemented UKF 
formulation is reported in Algorithm 2. The choice of the 
sigma points and the filter weights are reported in the 
following equations, as discussed in [40]. UKF σ-points are 
defined in Equations 17 and 18, while UKF weights are defined 
in Equations 19-21.

 � �� � �0 1� � � �� � � �� �� � � �i

i
n i n� for , ,  Eq. (17)

 � � �i

i n
n i n n� �

�
� � �� �� � � � �� for 1 2, ,  Eq. (18)

 w
n

m
0� � �

�
�
�

 Eq. (19)

 w wc m
0 0 21� � � �� � � �� �� �  Eq. (20)

 w w
n

i nm
i

c
i� � � �� �

�� �
� �1

2
1 2

�
for , ,  Eq. (21)

where the parameters are chosen as fol lows: 
α = 0.001, β = 2, κ = 3 − n, and λ = α2(n + κ) − n. According 

to [40], the choice of β = 2 minimizes the error in the fourth-
order moment of the a posteriori covariance when the state 
distribution is a GRV. As already retained for the EKF, the 
matrix Qt representing the measurements noise covariance is 
assumed to be constant, while the process noise covariance 
Rt is used as a tuning variable. Although the UKF brings in 
principle a heavier computational effort with respect to the 
EKF, a proper tuning of the process noise covariance can 
guarantee a good performance of the filter in terms of poste-
rior estimate covariance while having the same responsiveness 
of the EKF instance, as stated by [23]. The complete UKF 
pipeline runs on the onboard computing platform at a 
frequency of 30 Hz and can deliver an accurate estimate of 
the vehicle localization and states.

3.  Results and Discussion
In this section, the results obtained with the two investigated 
state estimation methods are presented and discussed. The 
testing phase has been carried out in Italy (Piedmont region) 
on both the considered vehicles (namely, the racing prototype 
and the compact SUV) in the same driving scenario, but on 
different paths. The driving environment is represented in 
Figure 4 from an aerial view. The performed maneuvers are 
representative of many common situations during urban 
routes, which are challenging cases for a localization algo-
rithm in autonomous driving.

The performance of the investigated algorithms is evalu-
ated on the racing prototype during five consecutive laps, in 
which the vehicle starts at standstill and finishes its route 
again with a null longitudinal speed. The same approach has 
been used in the dataset recorded on the commercial vehicle 
in which the performance of the pipeline is tested on an open 
lap. Both the EKF and the UKF algorithms are properly initial-
ized at the beginning of the acquisition when the INS sensor 
output is already computed in full alignment mode, neglecting 
the motion along the z-axis. This assumption is consistent 

 ALGORITHM 2  Unscented Kalman filter.
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with the adopted vehicle’s dynamics model, i.e., planar motion, 
and is also compatible with the ground flatness of the chosen 
testing environment. The measurements are recorded in the 
messages /odometry/filtered and /accel/filtered listed in Table 
5, which report the complete odometry of the vehicle (orienta-
tion with covariance and pose with covariance) and the set of 
its linear accelerations with covariance, respectively.

Table 6 reports the maximum and mean values of the 
vehicle’s states estimated during the two performed tests. Both 
the proposed filters achieve similar numerical results in the 
main vehicle’s state estimation, with no significant oscillations 
of the values.

The computed localization paths for Dataset 1 (Table 6) 
recorded with the racing prototype are presented in Figure 5. 
The paths represented in Figure 5 show the vehicle’s positions 
on the xy-plane computed by the EKF and the UKF, respec-
tively. Specifically, the localization path computed with UKF 
is less prone to divergence with respect to the EKF one, thanks 
to the improved estimation of the uncertainty in the unscented 
transform. Nevertheless, the proposed filters have comparable 
performance in estimating the vehicle’s position on the track 
having a submeter difference in the xy-coordinate estimation. 
The estimated vehicle states are illustrated in Figure 6 for 

Dataset 1 (Table 6) recorded on the racing prototype. Figure 
6 reports all the relevant states estimated by the two realiza-
tions of the localization pipelines, namely, the linear speeds, 
the linear accelerations, RPY angles, and the yaw rate. The 
motion along the z-axis is neglected in the proposed localiza-
tion pipeline; thus, speed and acceleration along this axis have 
null values, and only the yaw dynamics is analyzed in 
Subfigures 6.c and 6.d. The investigated UKF and EKF can 
compute equivalent values for the analyzed states; thus, Figure 
6 reports data computed by one of the filters only, i.e., UKF.

The performance of the two methods can be evaluated 
by means of analyzing the covariance matrices of both the 
filters, as written in [23] and [42]. Specifically, the analysis has 
been carried out on the computed variances of the filtered 
states: the considered messages (/odometry/filtered and /accel/
filtered defined in Table 5) deliver the complete covariance 
matrix of the pose, twist, and acceleration of the vehicle. 
However, only the position measurements (namely, the x and 
y coordinates) are characterized by a non-null behavior of the 
associated variance. For all the other retained states (speeds, 
accelerations, and RPY angles), both the EKF and UKF have 
consistent performance and are characterized by a low and 
constant variance while assuring the uncorrelation of the 
estimated parameters. This result is obtained, thanks to both 
the accuracy of the measurements delivered by the INS sensor 
and to the de-centralized EKF embedded in the sensor. 
Therefore, the achieved results have been evaluated in terms 
of uncertainty determined by the covariance matrices and 
Horizontal Position Error (HPE). The true values about the 

 FIGURE 4  Aerial views of the driving scenario 
(experimental tests). Intended paths for the retained racing 
prototype (red) and compact SUV. Start of the track (black 
cross), end of the track (black dot). The actual path can vary, as 
it is not perfectly reproducible.
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TABLE 6 Maximum and mean values of the estimated vehicle’s states in the considered datasets.

Estimated vehicle’s states
Dataset 1: Closed laps—prototype Dataset 2: Open lap—compact SUV
Mean Maximum Mean Maximum

State Unit EKF UKF EKF UKF EKF UKF EKF UKF
Yaw angle [deg] 13.61 13.19 179.98 179.87 −17.69 −17.65 179.58 179.96

Longitudinal speed [m/s] 4.13 4.12 11.68 11.68 3.57 3.57 6.33 6.32

Lateral speed [m/s] −0.37 −0.37 0.08 0.08 −0.04 −0.04 0.15 0.18

Yaw rate [°/s] −0.14 −0.14 0.45 0.46 −0.11 −0.11 0.92 0.92

Longitudinal acceleration [m/s2] 0.00 0.00 2.13 2.13 0.00 0.00 1.00 1.00

Lateral acceleration [m/s2] −0.33 −0.33 0.26 0.26 0.48 0.48 0.15 0.15
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 FIGURE 5  Dataset 1: racing prototype—Computed 
localization paths with EKF (blue, solid) and UKF (red, dashed). 
Start of the track (black cross), end of the track (black dot).
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vehicle’s state variables could have been obtained via expensive 
integrated optical sensors. Nevertheless, due to the huge cost 
of those sensors, the performance of the proposed method 
has been evaluated by the comparison of the proposed EKF 
and UKF.

In detail, Figure 7 represents the variance of the estimated 
vehicle’s position for the EKF-based method and the 
UKF-based method in the case of the racing prototype 
(Dataset 1).

An equivalent discussion about the results obtained with 
the compact SUV can be carried out. The results obtained 
with the compact SUV in the same driving environment are 

illustrated in Figures 8-10 during a different set of 
handling maneuvers.

Indeed, the filtering process of X and Y coordinates 
suffers from a consistent divergence of their associated 
variance for both the investigated filters since they depend 
mostly on the GNSS acquisitions. Even in presence of a clear 
view of the sky during the entire acquisitions, the GPS signal 
has the lowest acquisition rate among the used sensors; thus, 
it is more prone to divergence. Figure 11 represents the HPE 
for the positioning measurements of the EKF-based method 
in comparison with the UKF-based method, for both the 
considered datasets. HPE has been chosen as a method of 
comparison because it can represent the information 

 FIGURE 6  Dataset 1: racing prototype—(a) Linear speeds: Vx (blue, solid); Vy (red, solid); Vz (orange, dotted). (b) Linear 
accelerations: ax (blue, solid); ay (red, solid); az (green, dotted). (c) RPY angles: roll (green, dashed); pitch (red, dotted); yaw (blue, 
solid). (d) Yaw rate ψ� .
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 FIGURE 7  Dataset 1: racing prototype—Variance of the 
estimated vehicle’s position for the EKF-based method (x: 
solid, blue; y: solid, red) and the UKF-based method (x: 
dashed, green; dotted, orange).
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 FIGURE 8  Dataset 2: compact SUV—Computed localization 
paths with EKF (blue, solid) and UKF (red, dashed). Start of the 
track (black cross), end of the track (black dot).
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associated with the position error on the local map. To this 
end, HPE can be interpreted as the uncertainty on the current 
position on the map expressed in terms of mean estimation 
error on the two coordinates. HPE is defined from the knowl-
edge of the variances σ xx

2  and σ yy
2  associated to the X and Y 

coordinates in the map, as follows:

 HPE xx yy� �� �2 2  Eq. (22)

The UKF-based method is characterized by a better 
performance in containing the growth of the uncertainty, 
delivering a consistent and non-oscillating behavior during 

the entire acquisition. Therefore, the overall localization 
performance on vehicle position on the map is better when 
implementing the UKF-based method with respect to the EKF 
routine running at the sensor level.

The performance analysis on the variance between EKF 
and UKF algorithms has been quantified in terms of 
minimum, mean, and maximum absolute difference values 
between the two algorithms for X and Y positions along the 
travelled paths. In Table 7, also the abovementioned values 
for the HPE have been reported for completeness with refer-
ence to Figure 11.

4.  Conclusion
Research interest toward autonomous vehicles has recently 
motivated design challenges related to the safety and perfor-
mances of the next generation of automated cars. Vehicle 
localization represents one of the most relevant issues for 
autonomous vehicles. In this paper, a localization and states 
estimation method for autonomous driving has been 
presented. The investigated approach proposed and compared 
the application of the EKF and UKF to the sensor fusion of 
onboard data streaming from a GPS sensor and an INS. The 
purpose of having a lean hardware architecture reduced the 
number of considered sensors in the localization pipeline. The 
solution is presented as a reliable alternative to existing 
methods since it can accurately estimate vehicle’s states and 
provide a submeter localization accuracy. The performance 
of the method was evaluated experimentally during handling 

 FIGURE 10  Dataset 2: compact SUV—Variance of the 
estimated vehicle’s position for the EKF-based method (x: 
solid, blue; y: solid, red) and the UKF-based method (x: 
dashed, green; dotted, orange).
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 FIGURE 9  Dataset 2: compact SUV—(a) Linear speeds: Vx (blue, solid); Vy (red, solid); Vz (orange, dotted). (b) Linear 
accelerations: ax (blue, solid); ay (red, solid); az (green, dotted). (c) RPY angles: roll (green, dashed); pitch (red, dotted); yaw (blue, 
solid). (d) Yaw rate ψ� .
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 FIGURE 11  (a) Dataset 1: racing prototype—HPE for EKF (blue) and UKF (red) methods. (b) Dataset 2: compact SUV—HPE for 
EKF (blue) and UKF (red) methods.
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maneuvers in real driving environments, both on a racing 
prototype and on a commercial compact SUV. The perfor-
mance of the algorithm is validated in real time while 
performing common maneuvers during urban driving, 
showing a substantial equivalence of the application of the 
two filters. Nevertheless, better results were achieved with the 
UKF-based method that is characterized by a lower estimation 
variance in the localization task.

After a further extensive on-field validation stage consid-
ering highways, parking, and other driving scenarios, which 
has not been conducted in the present work, the localization 
method described in this paper could provide a reliable pipeline 
for autonomous vehicles in actual industrial applications. 
Eventually, as the problem of providing ground truth for 
position data is widely discussed in the recent literature, it was 
beyond the scope of the present work to design and provide a 
ground truth algorithm for position data, although the paper 
has highlighted the applicability of EKF and UKF filters for 
position and state estimation and compared results between 
the two filters in different driving situations. Thus the achieved 
results have been evaluated in terms of uncertainty determined 
by the covariance matrices and HPE. The true values about 
vehicle’s state variables could have been obtained from accurate 
dynamic measurement technology acceleration applications, 
which usually come from expensive integrated optical sensors. 
However, due to the huge cost of those sensors, the perfor-
mance of the proposed method has been evaluated by the 
comparison of the two investigated techniques.
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