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Abstract. Polynomial chaos expansions (PCE) meta-model has been wildly used and 

investigated in the last decades in sensitivity analysis (SA), which adopts a variety of 

orthogonal polynomials to approximate the system response and calculates sensitivity indices 

directly from the polynomial coefficients. The Sobol’ index is one of prevalent sensitivity 

indices for model with independent inputs and can be easily obtained after constructing 

generalized polynomial chaos (gPC). But for dependent inputs, a typical approach is based on 

the procedure of transforming the dependent inputs into independent inputs according to the 

literature. This paper demonstrates a global sensitivity analysis (GSA) approach for dependent 

inputs, in which Gram-Schmidt orthogonalization (GSO) numerically computes the 

orthonormal polynomials for PCE. The especial procedure for dependent inputs to obtain 

sensitivity indices lies in the linearly independent polynomials basis for GSO must be in an 

intended order. Besides, to alleviate the curse of dimensionality, the sparse polynomial chaos 

(sPC) is built coupling with least angle regression (LAR) and a nested experimental design 

called weighted Leja sequences (wLS). Then cross validation (CV) determines the best 

truncated set for sPC with the suitable size of experimental design in use. In the end, this 

proposed approach is validated on a benchmark function with dependent inputs. The results 

reveal that the proposed approach performs well to calculate sensitivity indices for model with 

dependent inputs. 
 

1  INTRODUCTION 

This paper aims to proposes a global sensitivity analysis (GSA) approach for dependent 

inputs based on sparse polynomial chaos (sPC). To implement this method, a data-driven 

method to computes the orthonormal polynomials for PCE model, a generalization of the 

Sobol’ indices for dependent inputs and an algorithm for construct sPC to alleviate the curse 

of dimensionality are adopted in succession. 

As we know, generalized polynomial chaos (gPC) based on Askey scheme[1] only suits for 
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independent inputs which requires the full knowledge of the distributions of inputs to select 

the proper polynomials. But for dependent inputs, a typical method is mapping dependent 

random inputs to independent ones, such as such as Nataf[2-3] and Rosenblatt[4] transformation. 

Nevertheless, mapping methods can significantly degrade performance since the Jacobian of 

the map must be approximated. Another known method is Gram-Schmidt orthogonalization 

(GSO), which can directly compute orthonormal polynomials for arbitrary inputs from the 

discrete input data. And it was proved that the polynomials for independent variables 

generated by GSO using monic polynomials accord with Askey scheme, which assures the 

accuracy of GSO to some extent.  

When orthonormal polynomials are generated by GSO, the sensitivity indices can be 

calculated by algebraic operations of polynomial coefficients of PCE. However, due to the 

correlation between input variables, Sobol’ indices are not applicable to dependent inputs. 

Kucherenko[5], Caniouhave[6] and  Mara[7-8] proposed three different generalizations of the 

Sobol’ indices. Kucherenko directly decomposed the variance and evaluated sensitivity 

indices with a double loop Monte Carlo estimation. Caniou have adopted a High Dimensional 

Model Representation (HDMR) as structural substitute of the actual model and regarded input 

variables as independent, but for computing sensitivity indices, the interactive and correlative 

effects of inputs had been taken into consideration. Mara defined the full sensitivity indices 

and the uncorrelated sensitivity indices for dependent inputs, and those sensitivity indices 

could be solved by reverse Rosenblatt transformation when conditional probability density 

functions of the inputs are known. Based on Mara’s definition of sensitivity indices for 

dependent inputs, Liu[9] applied GSO to generate orthogonal polynomials in an intended order 

based on observed data of model inputs and outputs, which is also adopted in this paper. 

Usually, the projection[10] and regression[11] methods are two main approaches computing 

expansion coefficients of PCE, both suffering from curse of dimensionality badly. To 

alleviate this symptom, Blatman and Sudret[12] adopted regression method and firstly 

attempted to deal with the efficient sparse representation by a hyperbolic scheme and least 

angle regression (LAR) algorithm. Based on Askey scheme, they successfully applied sPC to 

computing sensitivity indices for independent inputs[13]. Inspired by their pioneering work and 

a nested sampling strategy called weighted Leja sequences (wLS)[14], we combine these two 

techniques and propose an algorithm to construct sPC gradually. The key ideal of this 

algorithm is sampling continuously until stop-sampling conditions about error of PCE 

surrogate are reached, in which cross validation (CV) is adopted to appraise the accuracy of 

PCE surrogates.  

In conclusion, the main idea of this paper is constructing sPC model generated by GSO, 

LAR and wLS, while CV determines an appropriate size of experimental design and the 

optimal sPC model. After the high-precision surrogates are built, the generalized sensitivity 

indices defined in [7] and can be obtained by algebraic operations of polynomial coefficients. 

The remainder of this paper is organized as follows. Section 2 introduces a generalization of 

the Sobol’ indices for arbitrary inputs. The GSO algorithm to compute orthogonal 

polynomials and its corresponding order for calculating sensitivity indices for dependent 

inputs are summarized in Section 3. Section 4 proposes an adaptive algorithm to obtain 

accurate sparse representation of PCE based on LAR, wLS and CV. Section 5 displays a 

benchmark tests with dependent inputs for our proposed approach. In the end this paper is 

concluded in Section 6. 
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2  SENSITIVITY INDICES 

2.1. Probabilistic formulation of the problem 

Define a probability space ( , , )P with sample space  , σ-algebra and probability 

measure P  . Let :f  be a function with a d-variate random variable 
1 2( , ... )dX X X X= , where 

( )Xf X denotes the joint probability density function of the d-variate random input variables. 

For an input vector 1 2( , ... )mx x x x= , their realizations are denoted by 1 2( , ... )my y y y= . Note m

that represents the number of samples in the random input vector. And remember that the 

capital letter of ,X Y  denotes random variables and the response, while lowercase of ,x y  

indicates input vector and output vector. 

2.2. A generalization of the Sobol’ indices 

The original idea behind the Sobol’ indices is to represent the model as a sum of 

component functions with increasing dimensionality, in which those component functions 

satisfy a few specific properties. For independent variables X and a square-integrable model 
M with finite variance there exists a unique decomposition 

 0 12...
1 1

( ) ( ) ( , ) ... ( )
d

i i ij i j d
i i j d

Y M X M M X M X X M X
=   

= = + + + +    (1) 

The uniqueness of the decomposition is ensured by those two properties: 

 0 ( ) ( )
X

XM M X f X dx


=   (2) 

  
1 1,... 1 1( ,..., ) ( ) 0,  1 , ,...,

s s k
Xk

i i i i X k k s sM X X f X dx i i d k i i


=        (3) 

where X denotes the support of the random variables X while 
kX is the support with respect 

to variables in set k . 

The variance of model M can be deduced from above unique decomposition 

 
 

2

0

1,2,...,

( ) ( ) ( )  = ( )
X

X u

u d

Var Y M X f X dx M D Y




= −   (4) 

where 

 ( ) ( ( ), )u u uD Y Cov M X Y=  (5) 

Other than the unique decomposition of independent inputs, the component functions of 

dependent inputs are not unique and vary from the order of inputs variables. In addition, 

independent inputs hold ( ) ( ( ), ) ( ( ))i i i i iD Y Cov M X Y Var M X= = , while one can divide the ( )iD Y  

into two parts when correlations between inputs exist: 

 ( ) ( ( ), ) ( ( )) ( ( ), ( ))i i i i i i i i iD Y Cov M X Y Var M X Cov M X Y M X= = + −  (6) 

To calculate the sensitivity indices, just divide the equation by model variance ( )Var Y  

 
( ( ), ) ( ( )) ( ( ), ( ))

( ) ( ) ( )

u ci i i i i i i i

i i i

Cov M X Y Var M X Cov M X Y M X
S S S

Var Y Var Y Var Y

−
= = + = +  (7) 

The second term in above equation isn’t equal to zero when some variables are dependent 

with iX . These two summands are known as uncorrelated (or structural) and correlative 

sensitivity indices of iX , represented by ,u c

i iS S . In [7], the sensitivity indices for a given 
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variable iX are defined by the first-order full sensitivity indices iS , total full sensitivity indices 

iST , first-order uncorrelated sensitivity indices u

iS and total uncorrelated sensitivity indices 
u

iST . Just as the , u

i iS S given in above equation, the , u

i iST ST also can be interpreted as 

 
( ( ), ) ( ( )) ( ( ), ( ))

( ) ( ) ( )

u cu u u u u u u u

i i i

i u i u i u

Cov M X Y Var M X Cov M X Y M X
ST ST ST

Var Y Var Y Var Y  

−
= = + = +    (8) 

in the same way. It’s worth mentioning that the uncorrelated sensitivity indices are same as 

Sobol’ indices for independent inputs. 

3  POLYNOMIAL CHAOS EXPANSIONS FOR DEPENDENT INPUTS 

3.1. Gram-Schmidt orthogonalization 

For Gram-Schmidt orthogonalization to compute orthogonal polynomials, first one needs 

to determine a set of linearly independent basis polynomials. To assure GSO generates the 

same orthogonal polynomials with Askey scheme, the set of monic polynomials are adopted 

 
11

( ) ,  0,1... ,  
j

i

d d
j

j i i

ii

X X j N p
 

==

= =   (9) 

in which d is the dimension of random space, p  is the maximal order of monic polynomials 

and j

i  is the multi-index. Then the orthogonal polynomials are numerically constructed 

according to the Gram-Schmidt algorithm: 

 
0

1

0

( ) 1

( ) ( ) ( ),1
j

j j jk k

k

X

X X c X j P
−

=

 =

 = −   
 (10) 

the P denotes the number of basis functions determined by the number of monic polynomials, 

the coefficients
jkc are defined by  

 
2( ), ( ) / ( )jk j k kc X X X=    (11) 

where the  means inner product. 

3.2. Polynomial chaos representation 

While orthogonal polynomials with regard to input random variables X are computed by 

GSO, the model response Y  can be represented by a linear combination of these polynomials, 

which is called PCE meta-model. In practice, the PCE should be truncated into a finite set of 

polynomials when output random variable is a second-order variable which satisfies
2( )E Y  + . This truncation set is defined by a multi-index Nd

o = and the truncated PCE can 

be expressed as 

 ( )Y a X 


=   (12) 

A simple and commonly applied truncation approach is hyperbolic truncation [51] based on

q norm− : 

  
1/

,

1

,  

q
d

d q

p q iq q
i

p   
=

 
 =  =  =  

 
，  (13) 
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0 1q  is a tuning parameter and p  is the maximal total degree of the polynomials. A 

decreasing q leads to a smaller set of polynomials as well as a smaller number of interactive 

polynomials. When 1q = results in a total-degree space where
,1

d p

p p dC + =  = . For any  , 

there exists a corresponding PCE and the choice of   determines the required number of 

samples for given PCE accuracy. 

3.3. Computation of the polynomial chaos coefficients 

This paper adopts regression method for solving a system of linear functions by least-

square minimization. For an input vector 1 2( , ... )mx x x x= , their realizations are denoted by

1 2( , ... )my y y y= ,the expansion coefficients are calculated by minimizing the expectation of 

the least-squares residual:  

 
R 1

1
ˆ arg min ( ( ))

m

i

a i

a y a X
m

 



 = 

= −    (14) 

The coefficients â are the least-square solution to the linear system 

 
1ˆ ( ) ,  ( )T T

ij j ia y x   −= =   (15) 

where is a matrix with m rows and P columns, with m denoting number of samples and P

number of basis function. The ij  corresponds to the value of the -i th point on the -j th basis 

function. 

3.4. Estimators of accuracy for the polynomial chaos approximations 

In terms of PCE meta-model tends to overfit when PCE contains high order polynomials 

for a simple objective function with a limited number of samples, the cross validation (CV) 

[53] has been come up with to estimate the generalization error. Suppose = TB   , the relative 

K-fold CV error is defined as 

 2

[ ] [ ] [ ] 21
( ) /

K

CV k k kk
B a y y −=

= −  (16) 

where 
[ ]kB  represents B contains the corresponding rows in set k ,

[ ]ka −
 denotes the coefficient 

computed without considering set k , while
[ ]ky indicates the vector y without corresponding 

response value of set k , the 
2

y represents the 2-norm of vector y .  

3.5. Calculation of generalized sensitivity indices for dependent inputs 

In this part, the orders of monic polynomials for GSO are introduced to compute full and 

uncorrelated sensitivity indices. As mentioned in [7], suppose the initial input variables are 

ordered as 1 1 2 1( , ,... , , ,..., )i i d iX X X X X X+ − , and their transformation independent variables are 

1 1 2 1( , ,... , , ,..., )i i d iX X X X X X+ − , then the full sensitivity indices ( , )i ii i
S S ST ST= =  and the 

uncorrelated sensitivity indices
1 1

( , )u u

i ii i
S S ST ST

− −
= = are given. It inspires us to design an 

intended order of linearly independent functions for GSO to calculate sensitivity indices. 

3.5.1. Full sensitivity indices 

To compute full sensitivity indices of iX , we place all the linearly independent functions 

javascript:;
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( ), {1,2,..., }j X j N   in equation 9 relating to iX in the front, of which 0j

i  . The order the 

linearly independent function ( )j X can be represented as  

 0 11 1 11 2 3( , , , , ,..., )dS St St St St St St St= −  (17) 

where 0 0 ( ) 1St X= = . The definition of 11St and iSt are as follow: 

 

 

 

11 1 1

1

0

( ),0 , 0

( ) ( ), 0,

j j

j i

i
j j

i j j i i

j

St X p

St S St X p

  

  



−

=

=   =

= −  
 (18) 

where 11St  is compose of functions which only relate to 1X , and 1 11St St is the functions 

which as long as involve 1X , while , 2iSt i  contains all the functions only relating to iX and the 

interaction terms between 1( , ,..., )i i dX X X+ . 

Based on this, the corresponding PCE can be acquired with GSO, the sparse representation 

of PCE and its coefficients a of orthogonal polynomials are obtained with LAR and wLS. 

Therefore, the first-order full sensitivity indices 1S  and the total full sensitivity indices 1ST  are 

defined as 

 11 1

2 2

1 1
( ) ( )

j jj St j St
a a

S ST
Var Y Var Y

 
= =
 

，  (19) 

By permuting the order of the inputs, such as to calculate ,i iS ST , the inputs can be adjusted 

into 1 1 2 1( , ,..., , , ,..., )i i d iX X X X X X+ − , the different sensitivity indices for each variable can be 

further calculated. 

3.5.2. Uncorrelated sensitivity indices 

In order to calculate the uncorrelated sensitivity indices of iX , we place the linearly 

independent functions relating to iX in the end. The order the linearly independent function for 

calculating uncorrelated sensitivity indices can be defined as  

 0 1 11 1 11( , , , )S St St St St St−= −  (20) 

where 0 0 ( ) 1St X= = , 1St−  refers to all the functions that are irrelevant with 1X , 11St and 1St are 

defined hereinabove. 

Therefore, the first-order uncorrelated sensitivity indices 1

uS  and total uncorrelated 

sensitivity indices 1

uST can be computed by 

 11 1

2 2

1 1
( ) ( )

j jj St j Stu u
a a

S ST
Var Y Var Y

 
= =
 

，  (21) 

In a same way, the uncorrelated sensitivity indices variable iX can be calculated by 

permuting the order of the inputs from 1 2( , ,..., )dX X X to 1 1 2 1( , ,..., , , ,..., )i i d iX X X X X X+ − . 

Note that uncorrelated sensitivity indices are not always less than corresponding full 

sensitivity indices since some interactions of inputs are likely to counteract their effects on the 

model variance. 
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4  SPARSE POLYNOMIAL CHAOS BASED ON LEAST ANGLE REGRESSION 

4.1. Least angle regression 

This paper adopts hyperbolic truncation to generate non-empty finite subset  of d , 

corresponding to truncated polynomial chaos. We aim at selecting those predictors which 

influence the model response most. Least angle regression (LAR) is an efficient approach for 

feature selection. It generates a sequence of PC representations, in a such way the -thi  

metamodel includes predictors from 1 to i . The LAR algorithm is given below. 

(i) Initialize the coefficients to 
0 1 1
, ...

P
a a a   −

. Set the initial residual equal to the vector of 

observations. 

(ii) Find the vector 
i

 which is most correlated with the current residual. 

(iii) Move 
i

a
 from 0 toward the least-square coefficient of the current residual on 

i
 , 

until some other predictor 
j

 has as much correlation with the current residual as does 
i

 . 

(iv) Move jointly ( , )
i j

a a 
in the direction defined by their joint least-square coefficient of 

the current residual on ( , )
i j   , until some other predictor 

k
  has as much correlation with 

the current residual. 

(v) Continue this way until min  ( , 1)N P m= −  predictors have been entered. 

4.2. Weighted Leja sequences 

Weighted Leja sequences is a stepwise search method which acquires sample one by one 

among thousands of given candidates. Suppose an input vector compose by given candidates

1 2( , ... )Nx x x x= , N is the number of sampling candidates. We aim to find a solution to linear 

system a y = , where 1 2( , ... )Pa a a a= is vector the coefficients of PCE and  is the matrix 

satisfying ( )ij j ix =  , j is the -thj orthogonal polynomials. Assure the unisolvence of a y = , 

multiplying a non-vanishing weight function in the linear system still has a unique solution.  

 , ( )ii ia y V a Vy V v x =  = =  (22) 

V is a diagonal matrix and v is the weight function. Inspired by the introduction of weight 

function, a sampling strategy is proposed by building sampling sequentially to maximize the 

determinant of V . Then a nested sequence can be created by seeking sample among 

candidates to maximize determinant of matrix V  gradually, that is 

  arg max det (:,1: ) ,  1ix V i i=   (23) 

Greedy algorithms can be employed to solve such maximization. In fact, the choice of weight

v is vitally important and determining special properties of the sequence. When joint 

probability density ( )Xf X is known, adopting ( ) ( )Xv X f X= as weight constructs a 

asymptotically optimal wLS. While ( )Xf X is unknown, an alternative showed in [2] is using 

the root inverse of the Christoffel function 2( ) 1/ ( )v X X
=  , where Christoffel function is 

the root of sum of squares of the whole basis functions. 
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4.3. Cross validation criterion for selecting the optimal LAR metamodel 

With this sequential experimental design (wLS), We aim to gradually add samples into 

experimental design in use until satisfying the stop-sampling criteria. The K-fold cross 

validation is adopted to appraise the accuracy of PCE surrogate and select the best PCE model 

with the minimal K-fold cross validation error.  

At first, we must set some parameters for this algorithm. 

 For K-fold cross validation, a small K tends to low variance and high bias, while a large 
K tends to low bias and high variance as well as higher computational costs since it needs to 

solve more instances of the reduced problem. This paper we set 10K =  since the experimental 

design can be added in by multiples of 10 easily. 

 A reasonable initial number of samples 0 10m d= , and the increment for next step m  

take an integer divisible by 10 in interval 0 0[0.25 ,0.35 ]m m  

Stop-sampling criteria. When the K-fold CV error converges, the algorithm comes to an 

end. We adopt the gradient of K-fold CV error as evaluation indicator  

 
1 1/k k k

k CV CV CV   − −= −（ ）  (24) 

k is the times for adding samples to the experimental design. The algorithm is terminated 

when three or four successive k  less than hundredth. Three or four depends on the increment

m , we aim to assure a convergence over consecutive sample’s increment (greater than 0m ). 

In addition, in case of the K-fold CV error drops drastically without convergence, we set a 

threshold of Threshold

CV as thousandth. Once relative K-fold CV error less than the threshold value, 

terminate the whole algorithm. Besides, the maximal size of experimental design is given on 

account of the limited computational resources. 

The pseudocode for the overall method is presented as follow. 

Algorithm for selecting the optimal LAR metamodel based on CV 

1:  Set parameters. Select CV fold size K ; initial sample size 0m ; sample increment size m ; 

stop-sampling parameters 

2:  0m m=  

3:  while stop-sampling conditions are not met 

4:      for max1,2,...,p p= do 

5:          for 0.1,0.2,...,1q = do 

6:              Run GSO and LAR for a set of PCE model and compute coefficients by least 

square method, calculate for each PCE and find the one with minimal min  

7:          end for  

8:      end for 

9:      Discard some ( , )p q combinations which have poor performance consecutively 

10:      if stop-sampling conditions are met then 

11:          Record ( , )p q , polynomials coefficients and   for the best model selected 

12:      else 

13:          m m m= +  

14:      end if 
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15:  end while 

In practice, it is no need to traverse all q from 0 to 1. Because for a high dimension problem, 

when q  equals to a large value like 1, plenty of orthogonal polynomials ( p d

dP C += ) result in 

high computational costs. One prefers increasing maxp rather than q to expand the polynomial 

candidates. Empirically, set [0.3,0.6]q  is a reasonable choice. Besides, the LAR is carried on 

the whole data available, we just assign the experimental design into K folds to calculate K-

fold error instead of running K times of LAR for different folds. 

5  BENCHMARK TEST WITH DEPENDENT INPUTS 

The Ishigami function is adopted as test function with dependent inputs and defined as 

 
2 4

1 2 3 1sin( ) 7sin ( ) 0.1 sin( )y x x x x= + +  (25) 

where ( , )x U  −  and we set there exist correlation 13 between variables 1 3,X X . It’s easy to 

find the linear combination which satisfies above requirements. 

 
1 2 1

2 2

3 13 1 3 13 13

( , )

( ) (1 ) ( , ), 1/ ( (1 ) / 1)

x U

x sign hx h U h

 

    

− − −

= + − − − = − +
 (26) 

After computing the orthogonal polynomials for different truncated set (different values of 

,p q ), the selection of the optimal PCE metamodel based on LAR and CV is carried out and 

given below in figure 1.  

 
Figure 1: K-fold CV error and relative 2L error for different truncated set for Ishigami function 

Figure 1 depicts the evolution of K-fold CV error and relative 2L error for different truncated 

set when 13 0.5 = . It’s almost the same that the truncated set 8, 1p q= =  behaves best for all

13 [ 0.9,0.9]  − , therefore all sensitivity indices computations are based on this truncated set 

with same experimental design. 

And all sensitivity indices are given in figure 2. Just see into the Ishigami function, the 

function items with regard to 1 2 3, ,X X X are nothing but 4

1 2 3sin ,sin ,x x x , in which variable 2X is 

independent with variables 1X and 3X . We can easily conclude that the variance of variable 2X

( 2

2 2(7sin ( ))V Var x= ) is fixed. In other words, the equation
2 2 2

u uS S ST= =  is satisfied all the time. 

And one can deduce the variance of variables 1 3,X X  as 
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4 4 4

1,3 1 3 1 1 3 1 1 3 1

2 4 4 2

1 1 3 1 3 1

2 4

1 1 1

(sin( ) 0.1 sin( ))= (sin( )) (0.1 sin( )) 2 (sin( ),0.1 sin( ))

     (sin( )) 0.1 ( (1 ) ) sin 2 (0.1 sin ( )), 0

      = (sin( )) 0.1 (

= + + +

 = +   + −  +  

+ 

V Var x x x Var x Var x x Cov x x x

Var U Var hU h U U E x x h

Var U Var c U

 

3 1 2 2 1 3 4

2 1 3 3 1 3 4 1 3 5 3 1

4 2 2 4

1 1 3 1 3 5 3 1,...,5

) sin

                             +0.2 ( ), 0


  +  +  

 + + 
i

c U U c U U c U U c U U

E c U c U U c U c

 (27) 

 
Figure 2: Sensitivity indices                 Figure 3: Derivative of variance

1,3V for different 13  

based on the variance formula ( ) ( ) ( ) 2 ( , )Var A B Var A Var B Cov A B+ = + + . 

At first, we aim at proving the  which depends on the sign of 13  doesn’t affect the 

variance 
1,3V . The expansion items of 4

3x  can be divided into group  4 2 2 4

1 1 1 3 1 3 5 3, ,G cU c U U c U=  

and group  3 1 1 3

2 2 1 3 4 1 3  ,G c U U c U U=    based on whether involves , , 1,...,5ic i = is abbreviation of 

coefficient relating to h . And it’s demonstrated that the elements between group 1G  and 

group 2G  is uncorrelated mutually, which means 
1 2( , ) 0i jCov G G = , 1,2,3i = and 1,2j = are the 

-thi and -thj element in group 1G  and group 2G .  

 
1 2

1 2 1 1 2 2 1 2 2

1 3 1 2

( , ) ( ( )) ( ( )) = , ( ) 0

                     = 0,   , 2 1, 1

i j i i j i i j i

k k

ij

Cov G G E G E G G E G E G G E G

E c U U k k n n

   = −  −  =   

  = = +  

 (28) 

As a result, one can simplify the second item of 
1,3V  into 

 
 

4 3 1 2 2 1 3 4

1 1 2 1 3 3 1 3 4 1 3 5 3 1 1,...,5

4 2 2 4 3 1 1 3

1 1 3 1 3 5 3 1 2 1 3 4 1 3 1

( ) sin , 0

[( ) sin ] [( ) sin ]

i
Var cU c U U c U U c U U c U U c

Var cU c U U c U U Var c U U c U U U


  +  +   

= + +  +   
 (29) 

Then go on to deduce the second item with   in above formula 

 

3 1 1 3

2 1 3 4 1 3 1

3 1 1 3 2 2 3 1 1 3

2 1 3 4 1 3 1 2 1 3 4 1 3 1

3 1 1 3 2 2

2 1 3 4 1 3 1

[( ) sin ]

[( ) sin ],   [( ) sin ] 0

[( ) sin ]

Var c U U c U U U

E c U U c U U U E c U U c U U U

E c U U c U U U

  

=       =

= + 

 (30) 

and we eliminate the  induced by the sign of 13 . One knows that 2 2

13 131/ ( (1 ) / 1)h  = − + is 

an even function, so that the variance 
1,3V  and all sensitivity indices should be even functions. 

The results of our proposed method, as shown in figure 2, accord with the analytical prove 

that all sensitivity indices are symmetric with regard to 13 0 = . 
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In the following, we take derivative on 
1,3V  for parameter h , As the below formula shown. 

 

4 8 2
1,3 23 1 3 1

8 2
8 2 2

1 2 1 2 12 1 2 1

2

[ (0.1 sin( ))] [ ( sin ( ))]
0.1

[ (( (1 ) ) sin ( )) ][ (( (1 ) ) sin ( ))] 0.1
              0.1

(2 )

h

dV d Var x x d E x x

dh dh dh

d hU h U U du dud E hU h U U

dh dh









−

= = =

+ −+ −
= =

 
 (31) 

   The derivative h is not difficult to obtain and have an analytical solution. Then we draw the 

relation between the derivative 1,3 13/dV = and the correlation 13 in figure 3. The derivative 

of variance 
1,3V is less than 0 for 13 in the range of ( 0,0.9 and greater than 0 for 13 in  )0.9,0− . 

In other words, the correlation 13 reduces the total variance 
1,3V of variables 1 3,X X . In the 

figure 2, correspondingly, the sensitivity indices 
2 2 2 2, , ,u uS ST S ST  go up as 13  increasing while 

model variance 
yV decreases. For variable 1X and 3X , as the correlation 13 increasing, the total 

full sensitivity indices 1 3( , )ST ST  and the total uncorrelated sensitivity indices 
1 3( , )u uST ST go 

down. However, their first-order sensitivity indices 1 3( , )S S and first-order uncorrelated 

sensitivity indices 
1 3( , )u uS S  is more concerned about the functional relation ( 4

3 1sin( )x x ) and is 

difficult to explain their variations. But the results produced by our proposed approach tells us 

the first-order sensitivity indices for 1X (
1

uS , 1S ) diminish while 
3

uS , 3S  increase. 

When 13 0 = , it’s the situation for test of Ishigami function with independent. The 

uncorrelated sensitivity indices are equivalent to the Sobol’ indices for independent test

( = , = )u u

i i i iS S ST ST . Just as shown in table 1, sPC obtains sensitivity indices accurately with 

lower computational costs in contrast to Monte Carlo (MC) and reference values. 

Table 1: Sobol’ indices of Ishigami function with independent inputs 

Sensitivity 

indices 
Reference 

Sparse PCE 

Crude MC 0.035CV =  0.008CV =  

2 0.020
L
 =  2 0.001

L
 =  

1S  0.31 0.2639 0.3040 0.3245 

2S  0.44 0.4540 0.4544 0.4430 

3S  0 0.0000 0.0000 0.0098 

1ST  0.56 0.5387 0.5444 0.5572 

2ST  0.44 0.4544 0.4545 0.4330 

3ST  0.24 0.2816 0.2431 0.2425 

Evaluations  60 100 200000 

6  CONCLUSIONS 

In this paper, a global sensitivity analysis (GSA) approach for dependent inputs has been 

proposed based on sPC.  Firstly, a generalization of the Sobol’ indices is introduced. Then 

PCE model is constructed by Gram-Schmidt algorithm directly. To reduce the computational 

costs, The LAR algorithm is employed to produce a set of sparse PCE models as a feature 

selection method, while CV appraise those models and find the best one with minimal CV 
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error. An adaptive algorithm is designed to determine best truncated set for sparse 

representation of PCE and the suitable size of the nested experimental design called wLS. 

After the accurate sparse PCE has been established, sensitivity indices for dependent inputs 

can be calculated by algebraic operations on the coefficients of the polynomial expansions.  

The benchmark test illustrates that the adaptive algorithm based on LAR, CV and wLS 

works well for constructing sparse representation of PCE. And it’s proved that our proposed 

method is effective and accurate to compute sensitivity indices for dependent inputs, with no 

need to fit variable data to any distribution, with no need to preset or fix the size of 

experimental design, and with no need to transform dependent inputs into independent inputs. 
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