
18 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Queueing in the mist: Buffering and scheduling with limited knowledge / Cohen, Itamar; Scalosub, Gabriel. -
ELETTRONICO. - (2017), pp. 1-6. (Intervento presentato al convegno International Symposium on Quality of Service
tenutosi a Vilanova i la Geltru nel 14-16 June 2017) [10.1109/IWQoS.2017.7969126].

Original

Queueing in the mist: Buffering and scheduling with limited knowledge

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IWQoS.2017.7969126

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2921052 since: 2021-09-03T15:24:00Z

IEEE

Queueing in the Mist:
Buffering and Scheduling with Limited Knowledge

Itamar Cohen and Gabriel Scalosub
Department of Communication Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Email: itamarq@post.bgu.ac.il, sgabriel@bgu.ac.il

Abstract—Scheduling and managing queues with bounded
buffers are among the most fundamental problems in computer
networking. Traditionally, it is often assumed that all the proper-
ties of each packet are known immediately upon arrival. However,
as traffic becomes increasingly heterogeneous and complex, such
assumptions are in many cases invalid. In particular, in various
scenarios information about packet characteristics becomes avail-
able only after the packet has undergone some initial processing.

In this work, we study the problem of managing queues with
limited knowledge. We start by showing lower bounds on the
competitive ratio of any algorithm in such settings. Next, we
use the insight obtained from these bounds to identify several
algorithmic concepts appropriate for the problem, and use these
guidelines to design a concrete algorithmic framework. We
analyze the performance of our proposed algorithm, and further
show how it can be implemented in various settings, which differ
by the type and nature of the unknown information. We further
validate our results and algorithmic approach by a simulation
study that provides further insights as to our algorithmic design
principles in face of limited knowledge.

I. INTRODUCTION

Some of the most basic tasks in computer networks involve
scheduling and managing queues equipped with finite buffers,
where the primary goal in such settings is maximizing the
throughput of the system. The always-increasing heterogeneity
and complexity of network traffic makes the challenge of
maximizing the throughput ever harder, as the packet processing
required in such queues span a plethora of tasks including
various forms of DPI, MPLS and VLAN tagging, encryption /
decryption, compression / decompression, and more.

The most prevalent assumption in the research studying these
problems is that the various properties of any packet – e.g., its
QoS characteristic, its required processing, its deadline – are
known upon its arrival. However, this assumption is in many
cases unrealistic. For instance, when a packet is recursively
encapsulated a few times by MPLS, GRE or IPSec, it is hard to
determine in advance the total number of processing cycles that
such a packet would require. Furthermore, the QoS features
of a packet are commonly determined by its flow ID, which is
in many cases known only after parsing [1].

In data center networks and in software defined networks, a
switch first looks for the forwarding and priority information in
a local cache [2], [3]. A cache miss, which is unpredictable by
nature, results in forwarding of the packet to the switch software
or to a central controller, thus requiring a few additional
processing cycles before the packet can be transmitted.

However, packet’s characteristics usually become known
once some initial processing is performed. This is common in
many of the applications just described. Furthermore, for traffic
corresponding to the same flow, it is common for characteristics
to be unknown when the first few packets of the flow arrive at
a network element, and once these properties are unraveled,
they become known for all subsequent packets of this flow.

In this work we address such scenarios where the character-
istics of some arriving traffic are unknown upon arrival, and
are only revealed when a packet has undergone some initial
processing (parsing), “causing the mist to clear”. We model
and formulate the problem of maximizing the profit obtained
from delivered packets in such settings. We further show lower
bounds on the competitive ratio of any randomized algorithm
for the problem, and devise online algorithms with proven
analytic guarantees on their expected performance. Lastly,
we validate and evaluate the performance of our proposed
solutions via a simulation study which sheds further light on
the performance of our algorithms, beyond that provided by
our analysis. We believe that our algorithmic design concepts
might be applicable to additional scenarios as well.

Due to space constraints, most proofs are omitted and can
be found in [4].

A. System Model

Our system model consists of the following modules: (a) a
finite input buffer, which can contain at most B packets,
(b) a buffer manager, which performs admission control,
(c) a scheduler, which decides which of the pending packets
should be processed, and (d) a processing element (PE), which
processes the scheduled packet.

We divide time into discrete cycles. Each cycle consists of
three steps: (i) Transmission, where fully-processed packets
leave the queue, (ii) Arrival, where new packets may arrive, and
the buffer manager decides which of them should be retained in
the queue, and which of the currently buffered packets should
be pushed-out and dropped, and (iii) Processing, where the
scheduler assigns a single packet for processing by the PE.

We consider unit-size packets arriving at the queue. Upon
its arrival, the characteristics of each packet may be known
(resp. unknown), in which case we refer to the packet as a
K-packet (resp. U -packet). We let M denote the maximum
number of U -packets that may arrive in any single cycle. We
assume that upon processing a U -packet for the first time, its
properties become known [5].

Each arriving packet p has some (1) required number of
processing cycles (work), w(p) ∈ {1, ...,W}, and (2) profit
v(p) ∈ {1, ..., V }. We use the notation (w, v)-packet to denote
a packet with work w and profit v.

The head-of-line (HoL) packet at time t (for a given
algorithm Alg) is the highest priority packet stored in the
buffer just prior to the processing step of cycle t, namely, the
packet to be scheduled for processing in the processing step of
t. We say the buffer is empty at cycle t if there are no packets
in the buffer after the transmission step of cycle t.

We focus our attention on algorithms which are responsible
for both managing the buffer and scheduling the packets for
processing. In particular, we focus on algorithms targeted at
maximizing the throughput of the queue, i.e. the overall profit
from all packets successfully transmitted out of the queue.

We evaluate the performance of online algorithms using
competitive analysis [6], [7]. An algorithm Alg is said to be c-
competitive if for every finite input sequence σ, the throughput
of any algorithm for this sequence is at most c times the
throughput of Alg (c ≥ 1). We let OPT denote any (possibly
clairvoyant) algorithm attaining optimal throughput.

B. Related Work

Competitive algorithms for scheduling and management of
bounded buffers have been extensively studied for the past two
decades. An extensive survey of these models and their analysis
can be found in [8]. While traditionally the research assumed
uniform work, some recent studies addressed the problem
of heterogeneous work, combined with either homogenous
profits [9] or heterogeneous profits [10]. In particular, [10]
showed that the competitive ratio of some straight-forward
deterministic algorithms for the problem of heterogeneous
work combined with heterogeneous profits is linear in either
the maximal work W , or in the maximal profit V , even when
the characteristics of all packets are known upon arrival. These
results motivate our focus on randomized algorithms. These
problems are also related to job scheduling in multi-threaded
environments [11].

While most of the literature above assumed that all the char-
acteristics of packets are known upon arrival, this assumption
was put in question recently [5] by noting that it is often
invalid. However, the main problem addressed in [5] revolved
around developing schemes for transmitting packets of the
same flow in-order, even when their required processing times
are unknown upon arrival.

Maybe closest to our work is the recent work considering
serving in the dark [12], which investigates an extreme case,
where the online algorithm learns the profit from a packet
only after transmitting it. This work considers highly oblivious
algorithms, whereas our model and our proposed algorithms
dwell in a middle-ground between the well studied models
with complete information, and these recent oblivious settings.
Our work further considers traffic with variable processing
requirements, whereas [12] focuses on settings where all
packets require only a single processing cycle, and they differ
only by their profit.

II. ALGORITHMIC CONCEPTS

In this section we describe the algorithmic concepts under-
lying our proposed algorithms for dealing with scenarios of
limited knowledge.

Random selection: Ideally, we would like every arriving
U -packet to have at least some minimal probability of being
accepted and parsed, thus avoiding a scenario where OPT
successfully transmits a bulk of “good” packets which the
online algorithm discards. An intuitive way to do that is to
pick the unknown packets at random.

Speculatively Admit: Competitive algorithms must ensure
they retain throughput from both K-packets and U -packets.
Furthermore, once a U -packet is accepted, there is a high
motivation to reveal its characteristics as soon as possible, thus
making educated decisions in the next cycles. We therefore
propose to speculatively over-prioritize unknown packets over
known packets in certain cycles. The act of making such a
choice in some cycle t is referred to as admitting, in which
case cycle t is referred to as an admittance cycle. A U -packet
retained due to such a choice is referred to as an admitted
packet.

Randomly classify and select: Intuitively, as unknown
packet characteristics are drawn from a wider range of values,
the task of maximizing throughput becomes harder, especially
when compared to the optimal throughput possible. To deal
with this diversity, we apply a classify and select scheme [13],
which enables us to provide analytic guarantees on the expected
performance of our algorithms.

Alternate between fill & flush: This paradigm is especially
crucial in cases of limited information. The main motivation for
this approach is that whenever a “good” buffer state is identified,
the algorithm should focus all its efforts on monetizing the
current state, maybe even at the cost of dropping packets
indistinctly.

III. COMPETITIVE ALGORITHMS

In this section we study competitive online algorithms for
the problem of buffer management and scheduling with limited
knowledge. We first show a lower bound on the competitive
ratio of every online random algorithm for this problem, and
later present a competitive online algorithm, and provide a
rigorous analysis of its performance.

The following theorem shows a lower bound on the com-
petitive ratio attainable by any randomized algorithm for
our problem. We note that this bound essentially relates any
algorithm’s performance with the amount of uncertainty and
heterogeneity in the underlying traffic (proof omitted).

Theorem 1. The competitive ratio of any randomized algorithm
is Ω(min {VW,M}).

In what follows we present a basic competitive online
algorithm for the problem of buffering and scheduling with
limited knowledge. We later describe in Section IV several
improved variants of this algorithm.

For simplicity of analysis and algorithm presentation, we
assume that the values of W and V are known to the algorithm

in advance. However, it is possible to remove this assumption
without harming the performance of our algorithm (proof
omitted). We further note that neither of our proposed solutions
require knowing the value of M in advance.

A. High-level Description of Proposed Algorithm

Our algorithm is designed according to the algorithmic
concepts presented in Section II as follows.

Randomly select and speculatively admit: In every cycle
t during which a U -packet arrives, the algorithm picks t as an
admittance cycle with some probability r (to be determined in
the sequel). In every admittance cycle the algorithm picks a
single U -packets arriving at t to serve as the admitted packet.
This U -packet is chosen uniformly at random out of all U -
packets arriving at t. At the end of the arrival step, the algorithm
schedules the admitted U -packet (if one exists) for processing,
hence parsing the packet. If no such U -packet exists, or if t is
not an admittance cycle, then the Head-of-Line (HOL) packet
is scheduled for processing. The exact determination of the
HoL packet will be detailed later.

Randomly classify and select: We implicitly partition the
possible types of arriving packets into classes C1, C2, . . . Cm;
the criteria for partitioning and the exact value of m will
be specified later. Our algorithm picks a single selected class,
uniformly at random from the m classes. Our goal is to provide
guarantees on the performance of our proposed algorithm for
packets belonging to the selected class, which is henceforth
denoted G. Packets which belong to the selected class are
referred to as G-packets. Following our previously introduced
notation, known (unknown) packets that belong to the selected
class, i.e., G-packets for which their attributes are known
(unknown), are denoted as GK-packets (GU -packets).

Focusing solely on packets belonging to G may seem like a
questionable choice, especially if there are few packets arriving
which belong to this class, or if the characteristics of packets
belonging to this class are poor. However, this naive description
is meant only to simplify the analysis. In Section IV we show
how to remedy this naive approach, while keeping the analytic
guarantees intact.

Alternate between fill & flush: Our algorithm will be
alternating between two states: the fill state, and the flush
state. We define an algorithm to be Hfull if its buffer is filled
with known G-packets. Once becoming Hfull, our algorithm
switches to the flush state, during which it discards all arriving
packets and continuously processes queued packets. Once the
buffer empties, the algorithm returns to the fill phase. Again,
in Section IV we show how to remedy this naive approach.

B. The Randomly Classify and Select Mechanism

We now turn to define the various classes considered by our
algorithm. We say a packet p with w(p) > 1 is of work-class
C

(W)
i if dlog2 w(p)e = i. If w(p) = 1 we assign it to work

class C(W)
1 . Similarly, we say p with v(p) > 1 is of profit-class

C
(P)
j if dlog2 v(p)e = j, and we assign it to profit class C(P)

1

if v(p) = 1. Note that the work-class of a packet p is defined

statically by the total work of p, and does not depend upon its
remaining processing cycles, which may change over time.

This yields a collection of log2W work-classes, and log2 V
profit-classes. Lastly, we say a packet p is of combined-class
C(i,j) if it is of work-class C(W)

i and of profit-class C(P)
j . Upon

initialization, the algorithm chooses the selected combined-
class G = C(i∗,j∗) by picking i∗ ∈ {1, . . . , log2W} and j∗ ∈
{1, . . . , log2 V }, each chosen uniformly at random.

C. The SA Algorithm

We now describe the specifics of our algorithm, Speculatively
Admit (SA), and analyze its performance. The pseudo-code of
SA, depicted in Algorithm 1, uses the following procedures:

• DecideAdmittance() returns true with probability r.
• UpdatePhase(): if the buffer is empty (rsep., Hfull), set

phase to fill (resp., flush). Otherwise, phase is unchanged.
• Admit(p): If at cycle t admittance is true and p is a U -

packet, then admit p w.p. 1/Nt, where Nt is the number
of U -packets that have arrived in cycle t by the arrival of
p (including p itself). This procedure essentially performs
reservoir sampling [14].

• SortQueue() sort queued packets in GK -first order, break-
ing ties by FIFO

Once in the arrival step, the algorithm updates its phase (line
1). If the phase is flush, the algorithm skips the while loop
(lines 3-12), thus discarding all arriving packets. If the phase
is fill, the algorithm greedily accepts every arriving packet as
long as its buffer is not full (lines 4-5). If the buffer is full,
however, the algorithm accepts an arriving packet only if it is
either a GK-packet, or an admitted U -packet (lines 6-8). In
either of these cases, the last packet in the queue is dropped
(line 7), so as to free space for the accepted packet. While

Algorithm 1 SA: at every time slot t after transmission
Arrival Step:
1: phase = UpdatePhase()
2: admittance = DecideAdmittance()
3: while phase == fill and exists arriving packet p do
4: if buffer is not full then
5: accept p
6: else if p is a GK-packet or Admit(p) then
7: drop packet from tail
8: accept p
9: end if

10: phase = UpdatePhase()
11: SortQueue()
12: end while

Processing Step:
13: if phase == fill and there exists an admitted packet p then
14: move p to the HoL
15: end if
16: process HoL-packet
17: phase = UpdatePhase()
18: SortQueue()

in the processing step, if the algorithm is in the fill phase
and there exists an admitted packet, the algorithm pushes it to
the HoL, so as to parse it and reveal its characteristics (lines
13-15). Finally, the algorithm updates its phase and sorts the
queued packets in GK-first order each time it either accepts
or processes a packet (lines 10-11 and 17-18).

We now turn to show an upper bound on the performance
of our algorithm (for W,V > 1).

Theorem 2. SA is O(M
r log2W log2 V)-competitive.

Proof sketch: We first prove the following propositions:
(a) The algorithm never drops a GK-packet. (b) In every
admittance cycle t, SA’s admitted packet is chosen uniformly
at random out of all U -packets arriving at t.

As a result of the two propositions above, the overall number
of G-packets transmitted by SA is at least an r

M fraction of the
G-packets accepted by an optimal policy during a fill phase.

We then use the fact that every class C(i,j) is the selected
class with probability O(1

log2 W ·log2 V) to show that the ex-
pected performance of SA is at least an O(M

r log2W log2 V)
fraction of the best performance possible.

Our analysis shows that the best bound on the competitive
ratio is attained for r = 1, i.e., every cycle where we have
U -packets arriving should be an admittance cycle. In practical
scenarios, however, one might want to be more conservative
in choosing admittance cycles. E.g., one might choose r < 1
so as to allow non-parsing cycles even when U -packets arrive.

We note that when a characteristic consists of a small
set of potential values, the logarithmic dependency on the
maximal value of the characteristic can be transformed to a
linear dependency on the number of distinct values for this
characteristic. Furthermore, it is possible to implement SA
even when the values of W and V are not known in advance,
without any performance degradation (proofs omitted).

IV. IMPROVED ALGORITHMS

Algorithm SA selects a single class uniformly at random so
that the characteristics of packets on which it focuses differ by
at most a constant factor. This gives the sense of “uniformity”
of traffic, which in turn reduces the variability of characteristics
of packets on which the algorithm focuses. However, in
practice there are various cases where the strict decisions
made by SA can be relaxed without harming its competitive
performance guarantees. In practice, such relaxations actually
allow obtaining a throughput far superior to that of SA.
In what follows we describe such modifications, which we
incorporate into our improved algorithm, SA*. We note that all
our performance guarantees for SA still hold for SA* (proofs
omitted).

Class closure: Given any partitioning of packets into
classes as described in Section III-B, we let the (i, j)-closure
class be defined as C∗

(i,j) =
⋃

i′≤i,j′≥j C(i′,j′). This definition
effectively assigns any packet which is at least as good as any
packet in C(i,j), to the (i, j)-closure class. We emphasize that
any such packet p must satisfy both w(p) ≤ 2i and v(p) ≥
2j−1. We let SA* denote the algorithm where the selected

class G is chosen to be C∗
(i,j), for some values of i, j chosen

uniformly at random from the appropriate sets.
Fill during flush (pipelining): Algorithm SA was defined

such that no arriving packets are ever accepted during the flush
phase. In practice, however, accepting packets during a flush
phase cannot harm the analysis, nor the actual performance, if
this is done prudently: packets which arrive during the flush
phase are accepted according to the same priority suggested by
the algorithm’s behavior in the fill phase. Furthermore, packets
which arrive during the flush phase are stored in the buffer,
but never scheduled for processing before all B packets that
are stored in the buffer when it turns Hfull are transmitted.

Improved scheduling: SA sorts the queued packets in
GK-first order. For simplicity of presentation, we assumed
in Section III that within the set of GK-packets, as well
as within the set of non-GK-packets, packets are internally
ordered by FIFO. However, one may consider other approaches
as well to performing such scheduling for each of these
sets, while maintaining GK-first order between the sets. In
Section V we suggest different scheduling regimes, and study
their performance. We emphasize that the packet scheduled
for processing during an admittance cycle remains a U -packet,
which is selected uniformly at random from the arriving U -
packets at this cycle.

V. SIMULATION STUDY

In this section we present the results of our simulation study
intended to validate our theoretical results, and provide further
insight into our algorithmic design.

A. Simulation Settings

We simulate a single queue in a gateway router which
handles a bursty arrival sequence of packets with high work
requirements (corresponding, e.g., to IPSec packets, requiring
AES encryption/decryption) as well as packets with low work
requirements (such as simple IP packets requiring merely IPv4-
trie processing). Arriving packets also have arbitrary profits,
modeling various QoS levels.

Our traffic is generated by a Markov modulated Poisson
process (MMPP) with two states, LOW and HIGH, such that
the HIGH (resp., LOW) state generates an average of 10 (resp.,
0.5) packets per cycle. The average duration of LOW-state
periods is W times longer than the average duration of HIGH-
state periods, so as to potentially allow some traffic arriving
during the HIGH-state to be drained during the LOW-state.

We do not deterministically bound the maximum number, M ,
of U -packets arriving in a cycle, but rather control the expected
intensity of U -packets by letting each arriving packet be a U -
packet with some probability α ∈ [0, 1]. The expected number
of U -packets per cycle during the HIGH state is therefore 10α.

In real-life scenarios, the maximum work, W , required by a
packet, is highly implementation-depended. It depends on the
specific hardware, PEs, and software modules. However, some
studies indicate that W is two orders of magnitude larger than
the work required for doing a fundamental work (“parsing”),
such as a IPv4-Trie search or a classification of a packet [15].

We therefore set the maximum work required by a packet
to W = 256 throughout this section. The maximum profit,
V , associated with a packet, depends both on implementation
details, as well as on proprietary commercial and business
considerations. In order to have a diverse set of values, which
model distinct QoS requirements, we set the maximum profit
associated with a packet to V = 16.

The values W = 256 and V = 16 imply a total of 8 ·4 = 32
potential classes for the algorithm to select from. The value
of each characteristic for each packet is drawn from a Pareto-
distribution, with average and standard deviations of 17.97 and
22.22 for packet work, and 3.66 and 3.20 for packet profit.

We assume that B = 10, r = 1 and each arriving packet is
a U -packet with probability α = 0.3. We thus obtain that the
expected number of U -packets arriving during the HIGH state
is 0.3 · 10 = 3 per cycle.

As a benchmark which serves as an upper bound on the
optimal performance possible, we consider a relaxation of the
offline problem as a knapsack problem. Arriving packets are
viewed as items, each with its size and value (corresponding
to the packet’s work and profit, resp.) The allocated knapsack
size equals the number of time slots during which packets
arrive. The goal is to choose a highest-value subset of items
which fits within the given knapsack size. This is indeed a
relaxation of the problem of maximizing throughput during
the arrival sequence in the offline setting, since the knapsack
problem is not restricted by any finite buffer size during the
arrival sequence, nor by the arrival time of packets (e.g., it
may “pack” packets even before they arrive).

We approximate an upper bound on the performance of OPT
by employing the classic 2-approximation greedy algorithm for
solving the knapsack problem [16]. To allow gain from packets
which reside in its buffer at the end of the arrival sequence, we
simply allow the offline approximation an additional throughput
of BV for free, which is an upper bound on the benefit it may
achieve after the arrival sequence ends.

We compare the performance of studied algorithms by
evaluating their performance ratio, which is the ratio between
the algorithm’s performance and that of our approximate
upper bound on the performance of OPT. We compare the
performance of the following algorithms:

1) FIFO: A simple greedy non-preemptive FIFO discipline
that simply accepts packets and processes each packet
until completion, regardless of its required work or value.

2) SA: Algorithm SA, described in Section III.
3) SA* FIFO: Algorithm SA* where packets are processed

in FIFO order.
4) SA* W -Then-V : Algorithm SA* where packets are

processed in increasing order of remaining work, breaking
ties in decreasing order of profit.

5) SA* EFFECT: Algorithm SA* where the packets are
processed in decreasing order of their profit-to-work ratio,
commonly referred to as effectiveness.

For each scenario we show the average of running 100
independently-generated traces of 10K packets each. In all
simulations the standard deviation was below 0.035.

B. Simulation Results

Figures 1 and 2 show the results of our simulation study.
First we note that SA exhibits a very low performance ratio,
similar to that of a simple FIFO (which disregards packets
parameters altogether). This is due to the fact that SA focuses
only on a specific class, which consists of a relatively small part
of the input, and it thus spends processing cycles on packets
that would not be eventually transmitted.

For the variants of SA* we consider, in all simulations the
best performance is achieved by SA* EFFECT, followed by
SA* W-THEN-V. FIFO scheduling, in spite of it being simple
and attractive, comes in last in all scenarios. This behavior is
explained by the fact that both former scheduling policies in
SA* clear the buffer more effectively once it is Hfull. The latter
FIFO scheduling approach clears the buffer in an oblivious
manner, and therefore doesn’t free up space for new arrivals
fast enough. We now turn to discuss each of the scenarios
considered in our study.

1) The Effect of Selected Class: These results shed light
on the effect of the class selected by an algorithm on its
performance. Figure 1 shows the results where the selected
profit-class is 1, which makes SA* allow all profits, and the
choice of work-class i∗ varies. The most interesting phenomena
is exhibited by SA* FIFO. Its performance is very poor if the
work-class may contain packets requiring very little work. This
is due to the fact that only a small fraction of the traffic requires
this little work, and the algorithm scarcely arrives at being
Hfull. As a consequence, the algorithm handles many low-
priority packets, which are handled in FIFO order, giving rise
to far-from-optimal decisions. The algorithm steadily improves
up to some point, and then its performance deteriorates fast
as it assigns high-priority to packets with increasingly higher
processing requirements. In this case the algorithm becomes
Hfull too frequently, and allocates many processing cycles
to low-effectiveness packets. The maximum performance is
achieved for i∗ = 3, which implies that the algorithm flushes
whenever its buffer is filled up with packets whose work is
at most 2i

∗
= 8. This value suffices to allow the algorithm

to prioritize a rather large portion of the arrivals (recalling
the Pareto distribution governing packet work-values), while
ensuring the processing toll of high-priority packet is not too
large. This strikes a (somewhat static) balance between the
amount of work required by a packet, and its expected potential
profit. The other variants of SA* exhibit a gradually decreasing
performance, due to their higher readiness to compromise over
the required work of packets they deem as high-priority traffic.
SA shows a similar performance deterioration, for a similar
reason, when the selected work-class i∗ is increased from 1 up
to 6. However, when increasing i∗ above 6, SA’s performance
increases again. This improvement is explained by the fact
that, due to the Pareto-distribution of the work values, the
number of packets which belong to each work-class rapidly
diminishes when switching to work-class indices closest to the
maximum of 8. In such a case, SA is coerced to process also
packets which do not belong to the selected class – namely,

Fig. 1: Effect of chosen work-class i∗

Fig. 2: Effect of chosen profit-class j∗

packets with lower work – which somewhat compensates for
the poor choice of the work-class. We verified this explanation
by additional simulations (not shown here), in which the work-
class of packets was chosen from the uniform distribution. In
such a case, where there is an abundance of packets from
every possible work-class, the performance of SA consistently
degrades with the increase of i∗, which implies a poorer choice
of work-class.

Similar phenomena are exhibited in Figure 2, where we
consider the effect of the profit-class j∗ selected by an algorithm
on its performance. In this set of simulations all work-values
were allowed (i.e., the selected work-class is 8). In this scenario
the performance of all algorithms improves as the selected
profit-class index increases, and the algorithms are able to
better restrict their focus on high profit packets as the packets
receiving high-priority. We note the fact that SA* FIFO and
regular FIFO have a matching performance in the case the
selected profit-class is 1, since in this case SA* FIFO is
identical to plain FIFO (since it simply indiscriminately accepts
all incoming packets in FIFO order).

In additional simulations (omitted due to space constraints)
we studied the effect of the number of U -packets per cycle;
and of the intensity of exploring unknown packets. These
simulations show that the performance of our proposed
solutions degrades as the amount of uncertainty increases; and
increases as we increase r, governing our exploration intensity.
These results coincide with our analytic results, which further
validate our algorithmic approach.

VI. CONCLUSIONS AND FUTURE WORK

We consider the problem of managing buffers where traffic
has unknown characteristics, namely required processing and
profits. We devise algorithms for the problem, and show
upper bounds on their competitive ratio. A simulation study
then provides further insight as to their performance. Our
work gives rise to a multitude of open questions, including:
(i) closing the gap between our lower and upper bound for the
problem, (ii) applying our proposed approaches to other limited
knowledge networking environments, and (iii) devising addi-
tional algorithmic paradigms for handling limited knowledge
in heterogeneous settings.

ACKNOWLEDGEMENTS

This research was supported by the Israel Science Foundation
(grant No. 1036/14), the Research & Innovation action MIKE-
LANGELO (project no. 645402) co-funded by the European
Commission under the Information and Communication Tech-
nologies (ICT) theme of the H2020 framework programme, and
the Neptune Consortium, administered by the Israeli Ministry
of Economy and Industry.

REFERENCES

[1] C. Kozanitis, J. Huber, S. Singh, and G. Varghese, “Leaping multiple
headers in a single bound: wire-speed parsing using the kangaroo system,”
in INFOCOM, 2010, pp. 830–838.

[2] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable
fault-tolerant layer 2 data center network fabric,” in ACM SIGCOMM
Computer Communication Review, vol. 39, 2009, pp. 39–50.

[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM
Transactions on Networking (TON), vol. 17, no. 4, pp. 1270–1283, 2009.

[4] [Online]. Available: http://tinyurl.com/lj3l4vs
[5] A. Shpiner, I. Keslassy, and R. Cohen, “Scaling multi-core network

processors without the reordering bottleneck,” in HPSR, 2014, pp. 146–
153.

[6] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and
paging rules,” Comm. of the ACM, vol. 28, no. 2, pp. 202–208, 1985.

[7] A. Borodin and R. El-Yaniv, Online computation and competitive analysis.
cambridge university press, 2005.

[8] M. H. Goldwasser, “A survey of buffer management policies for packet
switches,” ACM SIGACT News, vol. 41, no. 1, pp. 100–128, 2010.

[9] I. Keslassy, K. Kogan, G. Scalosub, and M. Segal, “Providing performance
guarantees in multipass network processors,” IEEE/ACM Transactions
on Networking (TON), vol. 20, no. 6, pp. 1895–1909, 2012.

[10] P. Chuprikov, S. Nikolenko, and K. Kogan, “Priority queueing with
multiple packet characteristics,” in INFOCOM, 2015, pp. 1418–1426.

[11] K. Pruhs, “Competitive online scheduling for server systems,” ACM
SIGMETRICS Perf. Eval. Review, vol. 34, no. 4, pp. 52–58, 2007.

[12] Y. Azar and I. R. Cohen, “Serving in the dark should be done non-
uniformly,” in ICALP, 2015, pp. 91–102.

[13] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, “Competitive non-
preemptive call control.” in SODA, 1994, pp. 312–320.

[14] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[15] M. E. Salehi, S. M. Fakhraie, and A. Yazdanbakhsh, “Instruction set
architectural guidelines for embedded packet-processing engines,” Journal
of Systems Architecture, vol. 58, no. 3, pp. 112–125, 2012.

[16] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge University Press, 2011.

