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Abstract—The autonomous navigation of agricultural field
machines strongly depends on the global path generation sys-
tem. Indeed, a correct and effective path construction heavily
influences the overall navigation stack compromising the suc-
cessfulness of the robot mission. However, the most commonly
used search algorithms struggle to adapt to environments where
a significant prior knowledge of the domain is not negligible.
Despite this crucial factor, path generation for row-based crops
has received little attention from the research community so far.
The proposed research introduces a novel global path planning
system that works in synergy with a deep learning model to
provide an accurate and centered path with respect to the
rows of the analyzed crop. It guarantees the full coverage of
the given occupancy grid with less processing time compared
to other available literature solutions. Moreover, the presented
methodology can detect an anomaly in the path generation
and provide the hypothetical user feedback of the missing full
coverage of the given crop. Indeed, especially in a practical
application, the correct coverage and centrality of the path are
essential for effective autonomous navigation. Experimentation
with synthetic and real-world satellite occupancy grid maps
clearly show the advantages of the proposed methodology and
its intrinsic robustness.

Index Terms—Autonomous Navigation, Global Path Planning,
Precision Agriculture, Deep Learning, Service Robotics.

I. INTRODUCTION

With the continuous growth of the world population, the
agriculture industries must focus on developing new tech-
nologies aimed at maximizing efficiency and product quality
in a sustainable way. Indeed, over the past years, precision
agriculture and smart farming have gained significant attention
from the research community [1] introducing robotics and
artificial intelligence into the agricultural processes as a means
to cut production costs, reduce the required resources, and
face labor shortage by also optimizing production quality and
quantity. In this context, autonomous navigation plays a crucial
role; in fact, agricultural machinery endowed with a self-
driving system and the proper set of accessories can be used
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to replace labors on high-intensive tasks such as harvest [2],
seed [3], spray, and irrigate [4]. Moreover, when configured as
a platform, it can carry workers to prune and thin trees, thus
eliminating the inefficiencies and injuries related to ladders
[5]. In addition, these autonomous vehicles can provide real-
time crop inventory management [6], as well as a disease
monitoring system for plants and fruits [7]–[9].

Thanks to this variety of possible applications, many efforts
have been made to come out with innovative autonomous
guidance systems for row crops. Indeed, the literature presents
different approaches based on 2D-Lidar [10], GPS [11], deep
learning [12], visual odometry [13], and computer vision [14].

Nevertheless, a reliable autonomous navigation system
strongly depends on the planned trajectory; therefore, a precise
and effective path generator is necessary to ensure high perfor-
mance and safety. Despite so, the path generation problem for
row-crops environments has been a bit neglected. Indeed, only
a few studies are available; the most common solutions apply
clustering to satellite images or aerial drone footage to extract
information related to the position and the orientation of the
rows. For instance, in [15], Zoto et al. identify the vineyard
rows from UAV imagery and exploit the gathered information
to automatically perform the path planning. However, as al-
ready demonstrated [16], this type of tasks is computationally
heavy and complex. On the other hand, alternative solutions
such as [17] require a significant amount of information
regarding the location and orientation of the crops that make
the whole pipeline very time-consuming.

In [18], the authors present DeepWay, a deep learning
waypoints estimator for row-based crops global path planning.
It simply requires an occupancy grid input map of the analyzed
crop in order to estimate all the waypoints of the given
map. Nevertheless, a path search algorithm is still required to
provide the final global path. The most commonly used search
algorithms, including A* and RRT*, can be computationally
demanding and, above all, far from the optimal requested path.
Indeed, row crops, in addition to connect all the waypoints
and cover the full extension of the crop, require paths evenly



Fig. 1: Given an occupancy grid of the analyzed crop Xmask, DeepWay estimates the global waypoints, Ŷ
(i)

, directly from the full input
image. Subsequently, a waypoint refinement algorithm post-processes the prediction of the network, taking care of possible missing and
misplaced waypoints (green dots and dashed circle). Finally, the adaptive row crops path generator produces a global path plan P ensuring
the full coverage of the crop and the centrality with respect the to rows.

spaced and centered from the border of the rows.
So, building on top of the DeepWay framework, a fast

and accurate adaptive row crops global path planner is pro-
posed that exploits the prior knowledge of the environment
to produce a centered and smooth path with on average less
processing time compared with available literature solutions.
Moreover, such novel solution is capable of detecting an
anomaly in the pipeline generation and providing as output
feedback of the missing full coverage of the given crop.
That, used in conjunction with active user intervention, would
provide an assurance of the correctness and full coverage of the
path. Overall, the proposed algorithm is capable of providing
an accurate and reliable global path at a low computational
cost, given an occupancy grid map.

The remainder of the article is organized as follows. Section
2 covers the proposed methodology with an explanation of the
DeepWay architecture, the waypoint refinement, and the fast
adaptive row crops path generation process. Section 3 presents
the experimental results and discussion. Finally, section 4
draws some conclusions.

II. METHODOLOGY

Given an occupancy grid of the analyzed crop Xmask ∈
Nh×w, where h and w are the height and width, respectively,
DeepWay predicts the global path waypoints directly from the
full input image, straight from image pixels to points in one
evaluation. The end rows waypoint detection is framed as a
regression problem, estimating positions of the different points
with a fully convolutional deep neural network. So, as shown
in the following equation,

Ŷ
(i)

= HDeepWay(X(i)
mask,Θ) (1)

DeepWay, parametrized with Θ, takes a i-th X(i)
mask occu-

pancy grid map and produces the final waypoints estimation
in the original input space Ŷ

(i) ∈ Nh×w. Subsequently, a
waypoint refinement algorithm post-processes the prediction
of the network, taking care of possible missing and misplaced
waypoints. Moreover, it further elaborates Ŷ

(i)
, clustering all

the predictions and ordering them. The output of this post-
processing phase is an ordered list of waypoints, W ∈ Nl×2,
ready to be processed with a search algorithm. Finally, the pro-
posed fast adaptive row crops path generator produces a global
path plan, efficiently connecting all predicted waypoints. The
final result is a global path that covers the crop in its full
extension, strictly maintaining the centrality with respect to
the crops. The full pipeline is summarized in Fig. 1.

A. Waypoints Estimation

DeepWay is a fully convolutional neural network that is
directly fed with an occupancy grid map of a row-based crop
X(i)
mask, and predicts waypoints for the successive global path

generation. The input spatial dimension is reduced with a stack
of N residual reduction modules. The synergy of the channel
and spatial attention layers lets the network focusing on more
promising and relevant features. Finally, the neural network
outputs a tensor Y(i) of dimension U ×U × 3, where the first
channel features a probability P (u) for each cell u and the
second and third channels contain the position compensation
couple ∆x,∆y , respectively. Indeed, the considered method-
ology divides the input image of dimension h × w into a
Uh ×Uw grid and, if the centre of an end row waypoint falls
into a grid cell u, that cell is responsible for detecting that
point. More specifically, the two values (∆x,∆y) predicted
for each cell u let displace a possible prediction respect to a



Fig. 2: DeepWay estimates for each cell u of a grid Uh×Uw a certain
probability P (u) and position compensations ∆x,∆y to better adjust
detected waypoints on the original occupancy map with dimension
h×w. The magnification shows with a red square the actual position
of the ground truth taken into account and the need to displace the
prediction from the centre of the cell.

reference RU , placed in the centre of the cell. Consequently,
the coordinates of a certainly detected waypoint in the original
input dimension h × w can be found using the following
equation:

ŷO = k(ŷU +
∆ + 1

2
) (2)

where ŷO and ŷU are the two vectors containing the coor-
dinates x and y in the input RO and output RU reference
frames, respectively. Position compensations are normalized,
and the reference frame, Ru, of the cell u is centered with
respect to the cell itself, as shown in Fig. 2.

So, in order to obtain the waypoints estimation in the
original input space, h × w, a certain confidence threshold
tc is applied to the first channel in order to filter all de-
tected waypoints with a probability P (u) > tc. Subsequently,
Eq. 2 is exploited together with the position compensations
∆x,∆y maps in order to obtain the respective coordinates
on the original reference frame of the input RO. Finally, a
simple waypoint suppression process is applied to remove all
predicted points with a reciprocal Euclidean distance inferior
to a certain threshold dc. P (u) values are used to discriminate
points to be maintained. The final output is a binary matrix,
Ŷ
(i)

, with dimension, h×w, that embeds in its representation
if a waypoint is present or absent from every i, j cell, 1wp

i,j .

B. Waypoints Refinement

The waypoints predicted by the neural network are then
post-processed in order to reach the following goals:

• the points should be organized into two main clusters that
contain the starting and ending point of each row

• in each cluster the point should be ordered so that it is
possible to identify the right connections between them

Fig. 3: A representation of the costmap used by the gradient
planner function to find the inter-row partial path. The axes scale
is represented in terms of pixels.

• duplicated points should be removed and missing points
should be added whenever possible

An initial clustering is obtained using the density-based
clustering algorithm DBSCAN [19]. This approach clusters
together points depending on their density and creates a
variable number of groups, depending on the specific geometry
of the field. The groups computed with this first clustering are
merged with a heuristic approach based on the clusters size
and position until two main clusters representing the starting
and ending points of the rows are obtained. The ordering of the
points in each cluster is performed by sorting their projections
along the perpendicular to the rows. This direction is estimated
with the progressive probabilistic Hough transform technique
[20].

To remove duplicated points and add missing ones, the
number of rows crossed by the line are computed connecting
each subsequent couple of points in a cluster. The correct
condition is when a single row is found; when no rows are
detected, the two points are redundant, so they are replaced
with their average; when more than one crosses occur, rows
with no points are present, thus the missing points are added in
the middle between the crossing points. Eventually, the final
order is obtained by selecting the points from the two final
clusters following an A-B-B-A scheme to get the ordered list
of waypoints W ∈ Nl×2. Each couple of points of this list is
used as start and goal for the path generator algorithm.

Code and data related to DeepWay are available on Github1.

C. Adaptive Row Crops Path Generator

A fast, adaptive, and innovative global path planner is
designed that exploits both the general-purpose A* algorithm
and the fast computing gradient descent principle, in order
to speed up the path computation and maintain the row crop
centrality. The planner is able to find a suitable solution in
a straightforward manner. First of all, it takes as input: the
occupancy grid image Xmask ∈ Nh×w (where obstacles and
free spaces are represented with 0 and 255, respectively), the

1https://github.com/fsalv/DeepWay



Algorithm 1 Adaptive Row Crops Path Generator
Input: Xmask, W, M
Output: P

1: function GRADIENT PLANNER(s,g,O,Cmap)
2: cmin ←∞
3: current node← s
4: d← Euclide distance(current node, g)
5: while d > th do
6: for j = 1, · · · , q do
7: x← current node1 + Mj,1

8: y ← current node2 + Mj,2

9: if Cmap(y,x)
< cmin∧ (x, y) 6∈ Vn∧ (x, y) 6∈ O

then
10: nmin ← current node + Mj,:

11: costmin ← Cmap(y,x)

12: end if
13: Vn ← Vn ∪ (x, y)
14: end for
15: current node← nmin

16: R← R ∪ nmin

17: d← Euclide distance(current node, g)
18: end while
19: return R
20: end function
21:
22: O ← obstacle extraction(Xmask)
23: for i = 1, · · · , l − 1 do
24: s ← Wi,:

25: g ← Wi+1,:

26: k ←compute kernel size(s,g,O)
27: if i%2 == 0 then
28: if k == 1 then
29: k = kmin

30: end if
31: Cmap ←compute costmap gradient(k,Xmask)
32: PP← gradient planner(s,g,O,Cmap)
33: else
34: Hmap ←compute occupancy map(k,Xmask)
35: PP← a star planner(s,g,Hmap)
36: end if
37: P← P ∪ PP
38: end for

waypoints computed by the deep neural network and succes-
sive refinement W ∈ Nl×2 and the admissible movements
among cells M ∈ Nq×2. Second, the obstacles positions are
extracted from the mask image, checking whose pixels are
set to 0 and storing the row-column pairs in the 2D arrays
O ∈ Nm×2. Then, the procedure exploits the gradient descent
principle in case the partial path to be computed should lay
inside the row crop, while it uses the well-known A* algorithm
to switch between different rows crop.

In the first case, a costmap Cmap ∈ Rh×w is obtained,
shown in Fig. 3, overlapping two custom 3D functions:

(a) (b)

Fig. 4: Two examples of synthetic occupancy grids. The black pixels
are a representation of the rows crop.

Fig. 5: An example of ground truth waypoints placement.

Dgoal(i,j) =

(√
(i− gi)2 + (j − gj)2

)
i=1,...,h
j=1,...,w

(3)

Dgoal(i,j) =

(
kgoal ·

Dgoal(i,j)

max(Dgoal)
· 255

)
i=1,...,h
j=1,...,w

(4)

Xblur = kblur · (K ∗ Xmask) (5)

Cmap(i,j)
=
(
Dgoal(i,j) + Xblur(i,j)

)
i=1,...,h
j=1,...,w

(6)

where Dgoal ∈ Rh×w takes into account the distance from the
considered goal g ∈ N2, Xblur ∈ Nh×w is obtained through
a convolution operation with a Gaussian kernel K ∈ Nk×k

over the mask image Xmask, kgoal and kblur are two gains
to weight the distance from the goal and the blurring effect,
respectively. Finally, a portion of the total path PP ∈ Nu×2

is computed exploiting the gradient planner function, well
described in Algorithm 1, where R ∈ Nu×2 is the computed
portion of total path, while s ∈ N2 and g ∈ N2 are 1D arrays
that contain the row and column indexes of the start and goal
points, respectively.

In case of different rows crop, an occupancy map Hmap ∈
Nh×w with enlarged obstacles is built using,

Tconv = K ∗ Xmask (7)

Hmapi=0,...,h
j=0,...,w

(i, j) =

{
1, if Tconv(i,j)

≤ thdynamic

0, if Tconv(i,j)
> thdynamic

(8)

In these equations, Tconv ∈ Nh×w stores the result of the
convolution operation and thdynamic is a dynamic threshold,



established to avoid issues in case of close row crops as
follows:

thdynamic = thstart + (
k − 1

2
) · step (9)

When the dynamic threshold thdynamic is greater than a
predefined maximum value thmax, it will be set equal to such
value. Moreover, in Eq. 9, thstart refers to a minimum value of
the threshold and step is a scalar. Eventually, the partial path
between different rows crop is obtained by means of the A*
algorithm, using the occupancy map with enlarged obstacles.

The overall algorithm exploits the dynamic computation of
the kernel size k,

k = (dmin − (dmin mod 2)) · 2 + 1 (10)

to overcome issues of both different distances between rows
crop and waypoints near obstacles. In order to obtain a suitable
value of k, the minimum Euclidean distance dmin is computed
between obstacles O ∈ Nm×2, start s ∈ N2 and goal
g ∈ N2 nodes, then the obtained number is transformed in
an effective kernel size, that means an odd scalar, as shown
in Eq. 10. The proposed fast and adaptive path generator does
not guarantee to find the global path with full coverage in case
of missing waypoints, as may happen. However, it is able to
find anomalies in the path generation task and notify a human
operator that something is going wrong.

Code and data related to ARC-PG are open source and
available on Github2.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset Creation

Since there is not any ready-to-use dataset of row crop
occupancy grids available online and creating a real one is
a really hard task due to its complexity, a custom synthetic
dataset has been generated. Since most of the crop scenarios in
the real world present straight rows, an algorithm that exploits
geometry properties to produce linear row crops occupancy
grids is developed. More specifically, each occupancy grid of
dimensions h×w contains a random number of lines from 20
to 50. All the lines share the same angle α ∈ [−π/2, π/2] in
order to simulate the real-world texture, as represented in Fig.
4. In order to make the occupancy grids more realistic, diverse
inter-row distances are set on the same image, the rows with
circles of radius 1 or 2 are thickened for each 1-pixel , and
finally the parcels edges are made irregular. Furthermore, the
images are randomly rescaled, and holes along the lines are
added to simulate errors in the grid generation as a means to
increase the robustness of the network.

Regarding the ground truth waypoints, one point is placed
between each of the two extremities of every pair of rows, and
then they are moved inward the row as shown in Fig. 5. In
this way, the path generator task is simplified, since waypoints
outside the rows can lead to a wrong choice of the next row
to go through.

2https://github.com/SimoCerra/FARCPathGenerator

(a)

(b)

Fig. 6: An example of path solution found by the proposed algorithm
ARC-PG. (a) shows the partial path inside the row crops, while (b)
represents the portion of the path between two different rows.

(a)

(b)

Fig. 7: An example of path solution found by the standard A*
algorithm. (a) shows the partial path inside the row crops, while (b)
represents the portion of the path between two different rows.



TABLE I: Comparison between different path planning algorithms
on the artificial dataset. t and #c stand for time and number of visited
cells, respectively.

Algorithm tmin[s] tmax[s] tµ[s] #cmin #cmax #cµ

A* 4.89 45.50 10.61 53536 173557 92522
RRT* 56.52 659.08 216.21 39 97 67
ARC-PG 1.44 8.67 4.60 49054 122906 83194

TABLE II: Comparison between A*, RRT* and ARC-PG algorithms
on the dataset composed of satellite images. t and #c stand for time
and number of visited cells, respectively.

Algorithm tmin[s] tmax[s] tµ[s] #cmin #cmax #cµ

A* 1.19 92.78 4.37 26736 436913 70604
RRT* 18.63 475.65 129.38 17 119 55
ARC-PG 0.64 62.96 3.69 23135 355093 63817

The solely synthetic dataset is not enough to validate
the deep neural network, so 100 satellite images of row-
based crops are collected from the Google Maps database,
then they are manually labelled to extract the corresponding
occupancy grids and the ground-truth waypoints. Eventually,
both artificial and real-world binary masks are used in order
to evaluate the novel approach.

B. Algorithm Comparison

The proposed Adaptive Row Crops Path Generator (ARC-
PG) is compared to some other popular path planning algo-
rithms, as A* and RRT*, in order to show how the designed
custom solution is able to outperform standard path planning
algorithms in terms of time consumption and the number
of visited cells, as shown in Tables I and II. During the
experimentation, some gains and variables, described in the
previous part, are set to a fixed value found with a trial and
error procedure over the entire dataset. In particular, kmin = 9,
kgoal = 12, kblur = 0.7, thstart = 180, step = 10,
thmax = 240, and th = 2. All the algorithms have been tested
in the same working condition on an Intel Core i7-9750H CPU
@ 2.60 GHz and 16 Gb of RAM, using 100 synthetic and 100
real-world binary images, in order to check the accuracy of
the proposed approach on both artificial and real images.

One of the main advantages of ARC-PG is the ability
to detect anomalies during the path computation task, that
may be caused by missing or wrong ordered waypoints and
very close rows crop. This additional feature comes from
the intrinsic structure of the algorithm, indeed it exploits the
gradient descent principle inside rows crop and A* algorithm
to switch between different rows. As a consequence, in case of
the gradient planner is not able to find a valid path between
two consecutive waypoints, it means either there are issues
with the waypoints (ordering or absence) or the row crops are
too close and the planner fails. Such intrinsic feature allows to
require the attention of a hypothetical user in order to check
what is going wrong in the path computation.

Furthermore, the proposed adaptive path planner shows very
promising results in terms of row crop centrality, number

(a)

(b)

Fig. 8: An example of path solution found by the standard RRT*
algorithm. (a) shows the partial path inside the row crops, while (b)
represents the portion of the path between two different rows.

TABLE III: Comparison of different path planning algorithm in
terms of Mean Absolute Error(MAE) and Fault Rate (FR).

Dataset Type Algorithm MAE FR[%]
A* 7.88 34

Synthetic RRT* 1.08 34
ARC-PG 1.60 5

A* 8.10 29
Satellite RRT* 1.07 43

ARC-PG 1.57 31

of visited cells and processing time using both the artificial
and the real images dataset. Indeed, it visits a lower number
of cells with respect to A* and is faster of both A* and
RRT* algorithms, as shown in Tab. I and Tab. II. Moreover,
it outperforms the A* regarding the row crop centrality as
shown in Tab. III, where the Mean Absolute Error (MAE)
has been computed inside the rows crop with respect to the
ground truth reference obtained by connecting the ground truth
waypoints with a line. The row crop centrality can be visually
checked observing Fig. 6 and Fig. 7. Finally, the RRT* is
able to maintain a better central path with respect to the novel
designed algorithm, as can be visually observed comparing
Fig. 6 and Fig. 8 and numerically in Tab. III, however it has
very high processing times relative to both dataset type as
shown in Tab. I and Tab. II.

For what concern the Fault Rate (FR) on the synthetic
dataset, both the A* and the RRT* algorithms have higher
values than the proposed solution, as shown in Tab. III,
because the main fault conditions are free spaces on the same



Fig. 9: An example of path fault due to a free space in the row crop.

row crop as shown in Fig. 9 that leads standard path planning
algorithms to fail easily. It is worth highlighting that the ARC-
PG algorithm does not fail in such particular condition thank
to the usage of a custom computed costmap.

For what concerns the real-world dataset, all the considered
algorithms have similar values of FR since the main issue
is a lack or wrong ordering of estimated waypoints. In such
conditions, any of the used planners are not able to find a valid
path; however, the innovative proposed ARC-PG succeeds in
notifying the unreliability of the current waypoints array.

All considered, the provided results show clear advantages
in using the fast row crops path planner with respect to
general-purpose and standard global path planning algorithms.

IV. CONLCUSIONS
In the presented work, an innovative and fast computing

approach has been proposed to solve the global path planning
problem in row crops. As proved by the provided results,
the novel solution outperforms the most used global path
planning algorithms in terms of computing time and path
accuracy with respect to row centrality. Moreover, the designed
path generator algorithm is able to detect anomalies in the
waypoints array provided by the deep neural network and
successive refinement. As a consequence, a hypothetical user
may be informed about the missing full coverage of the row
crops field. Future works are intended for designing a complete
autonomous framework, that takes as input a single remote
sensed image of a row-based crop field and provides as output
the complete global path.
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