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Abstract- This paper investigates the impact of battery ageing on 
the fuel economy and drivability capability of a power-split 
hybrid electric vehicle (HEV). The HEV is modelled first, an 

optimal energy management strategy based on dynamic 
programming is then implemented, and experimental 
characterization data for the battery cell is presented.  The 

batteries are tested to a heavily aged state, with up to an 84% loss 
of capacity. Numerical simulations for the HEV performing the 
WLTP cycle and full power acceleration maneuvers are used to 

calculate the progressive worsening of fuel economy and rate of 
acceleration as the battery ages. The fuel economy and 
acceleration of the vehicle are found to be relatively unaffected 

until the battery loses more than 20% of original capacity.  For 
the most aged case, with 84% loss of capacity, vehicle fuel 
economy increases by 25% and 0 to 100 km/h acceleration time 

reduces by 3.5 seconds compared to performance with a new 
battery.   

I. INTRODUCTION 

Hybrid electric vehicles (HEVs) are a promising technology 

to reduce tailpipe emissions without depending on charging 

infrastructure like pure electric vehicles [1]. In HEVs, high-

voltage batteries play a crucial role providing a second 

bidirectional energy source in the vehicle. Internal combustion 

engines (ICEs) in HEVs can operate more efficiently through 

their synergetic cooperation with the electric motor/generators 

(EMs) that are powered by batteries. Moreover, vehicle 

batteries enable storing electrical energy harvested in 

regenerative braking for future use as propelling energy [2]. It 

is therefore crucial that the battery operates effectively 

throughout the entire HEV lifetime, even as the battery ages 

significantly [3].  

As batteries age their properties change; internal electrical 

resistance increases, capacity decreases, and the open-circuit 

voltage characteristics may change, leading to reduced 

capability [4][5]. Ageing of high-voltage batteries for 

electrified vehicles is a growing research topic as electrified 

vehicles become more prevalent and those in the field reach an 

advanced stage of life. 

Research studies have considered how battery ageing 

impacts a few types of vehicles. Herb et al. in 2013 modeled 

the performance variation for a fuel cell electric vehicle by 

assuming the battery power capability linearly decreases over 

time [6]. In 2015, Saxena et al. studied how battery capacity 

fade and reduced power capability impacts the ability of pure 

electric vehicles to satisfy daily travel needs [7]. The study 

suggested that batteries could meet driver needs well after the 

battery has lost 20-30% of capacity, which is the threshold 

often considered to be end-of-life. The potential for batteries 

to perform functionally even when highly aged inspired this 

work, which investigates how well an HEV performs after the 

battery loses more than 80% of initial capacity. Such analysis 

allows providing an estimate to the HEV user of how much 

fuel consumption increases and acceleration capability 

decreases as the high-voltage battery progressively ages. The 

HEV user could in turn decide whether to replace the battery 

pack at the conventional end-of-life limit of 80% residual 

capacity or to maintain the same battery pack until the loss of 

capacity and power capability results in unacceptable 

performance. Residual capacity, the ratio of current capacity to 

capacity at beginning of life, is defined as state of health (SOH) 

for this research. Even though high-voltage batteries can be 

reused in a second-life operation [8], replacing an HEV battery 

pack is a costly operation for the user and involves additional 

CO2 emissions to produce a new battery pack, thus providing 

further motivation for the presented work. 

The paper is organized as follows: the HEV model and the 

adopted simulation approach are presented first. Experimental 

results for three cells are then presented, including residual 

capacity and power capability at various ageing conditions. 

Results are presented for HEV simulations conducted at 

different levels of battery SOH to assess fuel economy 

potential and acceleration capability, and conclusions are 

given. 

II. HEV MODEL AND CONTROL STRATEGY 

A. Representative HEV 

The HEV powertrain architecture investigated in this study 

is representative of the third generation Toyota Prius® hybrid. 

A spark-ignition Atkinson ICE and two EMs are used in the 

HEV. The ICE, EM1 and final drive input shaft are 

respectively linked to the carrier, sun gear, and ring gear of a 



planetary gear (PG) set, a mechanical device that allows 

decoupling the speed of the ICE and EM1 from the speed of 

the vehicle. This HEV powertrain is a well-known layout from 

the state-of-the-art, and open-source data regarding it is 

available [9]. The HEV parameters used in this analysis are 

reported in Table 1, while the hybrid powertrain configuration 

is illustrated in Fig. 1. The battery pack has been assumed in 

this case to consist of quantity 240 A123 ANR26650M1-B 

cells in a 120 series, 2 parallel (120S2P) configuration, since 

these cells from A123 were tested experimentally as described 

in Section III.  The investigated 1.8 kWh pack has somewhat 

more capacity than the 3rd Gen Prius’s 1.3kWh NiMH battery 

pack.     

B. Modeling approach 

The HEV powertrain is modeled using a backward quasi-

static approach to derive the requested power values and the 

speed of components directly from the driving mission 

requirements (i.e. vehicle speed and acceleration over time). 

Fuel consumption as well as EM loss is evaluated by means of 

empirical lookup tables with speed and torque as independent 

variables [10]. For the battery, an equivalent circuit model is 

adopted with open-circuit voltage, internal resistance, charge 

power capability, discharge power capability and residual 

capacity values depending on the instantaneous values of both 

state of charge (SOC) and SOH [11][12]. 

C. Fuel economy assessment 

To estimate the fuel economy of the HEV, an appropriate 

energy management strategy needs to be implemented. In this 

case, the HEV energy management strategy selects at each 

time instant either pure electric or hybrid operation. If pure 

electric operation is selected, only EM2 is activated to either 

propel the vehicle or to recover electrical energy during 

regenerative braking. On the other hand, if hybrid mode is 

enabled, the ICE is in operation and the controller selects the 

values of ICE speed and ICE torque. In a backward quasi-static 

approach, knowing speed and torque of the ICE allows 

automatically determining speed and torque values for the EMs 

based on the gear ratios. Once speed and torque of the 

components are known, the instantaneous fuel consumption 

rate and battery SOC variation can be easily determined. The 

reader can find details regarding the HEV modeling approach 

and the related equations in [13]. 

Dynamic programming (DP) is used here to create a globally 

optimal HEV control approach. As an off-line method, DP 

requires the knowledge of the vehicle speed profile for the 

entire drive cycle before performing the simulation [14]. While 

DP cannot practically be applied in a vehicle due to its off-line 

nature and computational cost, DP does provide an upper 

bound for how well a control policy could perform for this 

HEV architecture [15]. In this case, DP controls the speed and 

torque of the ICE and EMs to minimize fuel consumption 

solely over a predefined drive cycle while sustaining battery 

charge and limiting the overall number of ICE activations. The 

cost function J that is minimized with DP over a given drive 

cycle and the related HEV operational constraints are reported 

in (1): 

𝐽 = ∫ [�̇�𝑓𝑢𝑒𝑙(𝑡) + 𝜇𝑐𝑟𝑎𝑛𝑘 ∙ 𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸(𝑡)] 𝑑𝑡
𝑡𝑒𝑛𝑑

𝑡0

 

subject to: 

Mechanical constraints: 

𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓(𝑡)=[0,1] 

0 ≤ 𝜔𝐼𝐶𝐸(𝑡) ≤ 𝜔𝐼𝐶𝐸𝑀𝐴𝑋 

𝜔𝐸𝑀1𝑚𝑖𝑛 ≤ 𝜔𝐸𝑀1(𝑡) ≤ 𝜔𝐸𝑀1𝑀𝐴𝑋 

0 ≤ 𝜔𝐸𝑀2(𝑡) ≤ 𝜔𝐸𝑀2𝑀𝐴𝑋
 

0 ≤ 𝑇𝐼𝐶𝐸(𝑡) ≤ 𝑇𝐼𝐶𝐸𝑀𝐴𝑋
[𝜔𝐼𝐶𝐸(𝑡)] 

𝑇𝐸𝑀1𝑚𝑖𝑛
[𝜔𝐸𝑀1(𝑡)] ≤ 𝑇𝐸𝑀1(𝑡) ≤ 𝑇𝐸𝑀1𝑀𝐴𝑋

[𝜔𝐸𝑀1(𝑡)] 

𝑇𝐸𝑀2𝑚𝑖𝑛
[𝜔𝐸𝑀2(𝑡)] ≤ 𝑇𝐸𝑀2(𝑡) ≤ 𝑇𝐸𝑀2𝑀𝐴𝑋

[𝜔𝐸𝑀2(𝑡)] 

Battery constraints: 

𝑆𝑂𝐶(𝑡0) ≤ 𝑆𝑂𝐶(𝑡𝑒𝑛𝑑) ≤ 𝑆𝑂𝐶(𝑡0) + 𝛿 

𝑃𝑏𝑎𝑡𝑡−𝑚𝑖𝑛(𝑆𝑂𝐶, 𝑆𝑂𝐻) ≤ 𝑃𝑏𝑎𝑡𝑡(𝑡)

≤ 𝑃𝑏𝑎𝑡𝑡−𝑀𝐴𝑋(𝑆𝑂𝐶, 𝑆𝑂𝐻) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑀𝐴𝑋 

𝑐(𝑡) ≤ 𝑐𝑀𝐴𝑋 

(1) 

TABLE I 
ASSUMED HEV PARAMETERS 

Component Parameter Value 

Vehicle Mass 1531 kg 

ICE Capacity 1.8 L 

Power max 72 kW @ 5,000 rpm 

Torque max 142 Nm @ 4,000 rpm 

EM1 Power max 42 kW 

EM2 Power max 65 kW 

Transmission  

PG ratio (Ring / Sun) 2.6 

Gear ratio (EM2) 1.26 

Final drive ratio 3.27 

Efficiency (EV mode) 0.95 

Efficiency (HEV mode) 0.85 

Auxiliaries 
Electrical subsystem 

power 
500 W 

Battery 

Pack capacity 1.82 kWh 

Pack configuration 120S – 2P 

Cell type A123 ANR26650M1-B 

 

 

Fig. 1 Toyota Prius hybrid electric powertrain scheme. 
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where �̇�𝑓𝑢𝑒𝑙 and 𝜇𝑐𝑟𝑎𝑛𝑘 are the fuel rate consumed by the ICE 

at each time instant (as computed following the HEV model 

described) and a constant penalization term for cranking the 

ICE, respectively. The parameter 𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸 represents a binary 

flag detecting ICE cranking events. When solving the optimal 

HEV control problem, imposed mechanical constraints involve 

limiting torque (denoted as T) and speed (denoted as ω) of the 

power components within the corresponding allowed 

operating regions. 𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓  is a binary variable for the ICE 

state, and values of 0 and 1 relate to the ICE being off and on, 

respectively. The battery SOC is set to have similar values at 

the beginning (i.e. 𝑡 = 𝑡0) and end (i.e. 𝑡 = 𝑡𝑒𝑛𝑑) of the drive 

cycle assuming an appropriate tolerance δ. Finally, both 

battery SOC, battery C-rate and battery power are constrained 

within the corresponding allowed operating regions. Battery 

charge and discharge power limits are calculated based on the 

SOC and SOH dependent resistance. The charge power is 

particularly important because it limits how much energy can 

be captured from regenerative braking. Any energy which 

cannot be captured is dissipated by friction braking. Moreover, 

only friction braking is assumed to operate here below vehicle 

speed values of 10 km/h, given the limited amount of kinetic 

energy available to capture at low vehicle speeds [16]. 

When solving the control problem backwardly from the last 

time instant of the drive cycle, DP considers the state variables 

which are the parameters whose evolution throughout the drive 

cycle depends on the preceding time steps [17]. The states 𝑋 

for the HEV powertrain layout are battery SOC and the ICE 

on/off state as reported in (2), The Control variables 𝑈 are also 

listed in (2), and include ICE speed and torque as discussed at 

the beginning of this sub-section: 

𝑋 = {
𝑆𝑂𝐶(𝑡)

𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓(𝑡)
} ;     𝑈 = {

𝜔𝐼𝐶𝐸(𝑡)
𝑇𝐼𝐶𝐸(𝑡)

}           (2) 

where battery SOC is managed to guarantee charge-sustenance 

and the ICE state (i.e. on/off) is considered to limit the 

frequency of cranking events to a reasonable value.  

When solving optimal HEV control problems, there are 

typically some operating points that are very efficient, which 

may lead to binary controlled variables (e.g. ICE de/activation) 

toggling a lot to maximize operation at these high efficiency 

points [18]. Therefore, it is necessary to constrain the ICE 

cranking frequency to create a control policy which is feasible 

in the real-world. The DP implemented in MATLAB© 

software in this work uses the open-source function provided 

by Sundstrom and Guzzella [19]. 

D. Acceleration capability assessment 

Other than fuel economy potential, the drivability of the 

HEV is evaluated as a function of battery SOH. To this end, 

three full power acceleration maneuvers are considered: 0-30 

km/h, 30-60 km/h and 60-100 km/h. The time required for the 

HEV to complete each acceleration maneuver is determined 

and used as evaluation metric for the drivability of the HEV as 

function of battery SOH. The same HEV numerical model used 

for the fuel economy assessment and implemented in 

MATLAB© software is considered. However, instead of 

evaluating the HEV powertrain consumption in terms of fuel 

and battery energy, the maximum amount of tractive power 

deliverable by the power components is used to simulate the 

HEV acceleration capability [20]. The time to accelerate to a 

given speed increases with ageing due to significantly reduced 

battery power capability.  

III. CELL EXPERIMENTAL CHARACTERIZATION AT 

VARIOUS SOH VALUES 

In a previous work, the authors performed an experimental 

campaign assessing the ageing behavior of three A123 

ANR26650M1-B cells subjected to different current profiles 

associated with an HEV performing the worldwide 

harmonized light-vehicle test procedure (WLTP) cycle. The 

current profiles were designed using a numerical ageing model 

to age the battery after approximately 100 thousand, 200 

thousand, and 300 thousand km of driving.   The three battery 

cells are referred to in this work as “Batt1”, “Batt2” and 

“Batt3”, respectively.  

The experimental setup and the trend of the residual capacity 

over time for the tested cells are shown in Fig. 2 and Fig. 3, 

respectively, while more details regarding the experimental 

campaign can be found in [21]. Specifically, the cells were 

placed in an Envirotronics SH16C thermal chamber and 

temperature was regulated to 25°C. A ±75A, 0–5 V rated 

channel of an MCT 75–0/5-8ME Digatron Power Electronics 

battery cycler was used to test each cell. Cell voltage was 

measured at the battery terminals via the battery cycler and a 

temperature sensor was fixed to the front center face of the cell.  

 

 
Fig. 2 Experimental setup for tested cells. 

 
Fig. 3 Trend of residual capacity over time for tested cells. 
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The voltage and current measurement and control accuracy of 

the battery cycler is ±0.1% of full scale and the accuracy of the 

temperature sensor is ±0.5°C. The cycler can regulate voltage 

from 0 V to 5 V, current from -75A to 75A, and power from -

375W to    375 W. The battery cycler utilizes an automated 

software, named “Battery Manager”, which is provided by 

Digatron. It runs on a desktop computer and can be used to 

create test programs and to save the results in a database. Each 

program consists of thousands of steps which can be a pause, 

constant voltage, constant current, or constant power step, or a 

power or current profile, as used for the WLTP cycles in this 

specific case. 

Fig. 4(a) shows that internal cell resistance at 50% SOC is 

relatively constant until 80% SOH, and then steadily increases 

and doubles by around 40% SOH. Resistance was calculated 

from a hybrid pulse power characterization (HPPC) test which 

was repeated periodically throughout the ageing tests.  

Increased resistance results in reduced pack power capability, 

as is illustrated in Fig. 4(b) and (c) for 50% SOC, an upper 

battery cell voltage limit of 3.6V, a lower limit of 2.5V, and 

240 cells.  These plots, which were not published in the prior 

work in [21], are used as lookup tables in the HEV model 

illustrated in Section 2.  Specifically, the considered battery 

modeling approach updates the open-circuit voltage and 

resistance values with respect to the SOC characteristic for 

each value of the SOH. Then, the charge and discharge power 

capability is computed at every time step of the simulation, 

while respecting the voltage limits. An in-depth description of 

the battery ageing modeling approach which is used can be 

found in [21], assuming a lumped cell temperature equal to 25 

°C. 

The analysis uses data for each cell from beginning of life 

(100% SOH) to the end of the test, 16%, 40% and 69% SOH 

for the “Batt1”, “Batt2” and “Batt3” test cases, respectively. 

IV. SIMULATION RESULTS AT VARYING BATTERY 

AGEING CONDITIONS  

This section illustrates the simulation results obtained for the 

power-split HEV powertrain at varying battery ageing 

conditions in terms of fuel economy potential and drivability. 

High-voltage battery SOH values from 95% to 16% in 5% 

steps are considered. HEV fuel economy capability as 

predicted by DP simulations of the WLTP cycle are first 

assessed. Then HEV performance for the WLTP cycle at 

beginning, middle, and end of life, i.e. 95%, 55% and 16% 

SOH, is compared. Drivability performance for full power 

acceleration maneuvers is then presented.  

A. Impact of ageing on fuel consumption   

HEV fuel consumption obtained by DP for the WLTP cycle 

is presented as a function of SOH in Fig. 5.  Fuel consumption 

is calculated for each of the three aged batteries (i.e. “Batt1”, 

“Batt2” and “Batt3”), demonstrating that fuel economy is 

mostly dependent on SOH and not on how the battery was 

aged.  For the new battery, fuel consumption is estimated by 

DP to be approximately 3.91 l/100km for the WLTP drive 

cycle, which is about 17% less than the 4.7 l/100km which the 

model year 2010 Toyota Prius® Hybrid is rated for [22]. 

Considering that the vehicle’s rated fuel economy is calculated 

from weighted UDDS and HWFET cycles scaled by a 

correction factor, the model fuel economy matches the rated 

fuel economy rather well.  Several aspects of the modeling may 

also contribute to the difference, including (1) the simplified 

HEV modelling approach, which neglects transient 

phenomena and thermal aspects; (2) the lookup tables used for 

modeling power components; (3) the considered cell type (i.e. 

A123 ANR26650M1-B), which is different than the cells used 

in the Prius®; and (4) the HEV energy management strategy, 

since DP is different than a real time control strategy. 

In Fig.5, fuel consumption is shown to be relatively flat 

during the first 20% of ageing, with fuel consumption only 

 
Fig. 4 Experimentally determined cell internal resistance and calculated pack 

power capability of the tested cells at 50% SOC and as function of SOH. 

 
 

(a) Internal resistance
(b) Discharge power 

capability

(c) Charge 

power capability

  
Fig. 5 HEV fuel economy capability predicted by DP in the WLTP over retained battery SOH values for the three test cases and related average. 
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increasing by 1.8% at 80% SOH. Beyond 80% SOH fuel 

consumption starts to increase significantly, reaching a 10% 

increase at 50% SOH, and a 25.2% increase at 16% SOH. 

These results suggest that beyond 80% SOH, and especially 

beyond 50% SOH, there will be noticeable fuel economy 

benefits when replacing the pack.   

B. Impact of ageing on battery use during WLTP cycle 

To demonstrate how the powertrain’s use of the battery 

varies with ageing, the powertrain performance is simulated 

using DP for 95%, 55%, and 16% SOH data for Batt1. Fig. 6 

illustrates battery pack power and net charge in amp-hours 

over time for the three ageing cases, while Table II reports 

corresponding loss and performance statistics for the overall 

drive cycle. In particular, electric motor losses are obtained by 

interpolating in the electrical loss tables as function of speeds 

and torques of the corresponding power components in the 

overall drive cycle. Friction brake loss are calculated by 

integrating the friction brake power contribution throughout 

the drive cycle. Battery loss derives from the integration of the 

instantaneous internal resistance multiplied by the squared 

instantaneous current. Finally, ICE mechanical energy 

corresponds to the integration of the engine rotational speed 

multiplied by the engine torque. 

As the cell ages, power capability and capacity are reduced, 

resulting in a substantial reduction of charge and discharge 

current and consequently net charge used from the battery as 

is seen in Fig. 6. This reduced use of the battery has two 

primary impacts on vehicle fuel economy.  First, the battery is 

capable of capturing much less regenerative braking energy, 

resulting in around eight times more friction brake loss when 

SOH has reduced to 16%, as shown in Table II.  Second, the 

system is not able to shut the engine off as often and operate 

only at the most efficient points, causing engine efficiency to 

reduce from 38% to 34%, as also shown in Table II.   

Table II also shows that EM1, which is linked directly with 

the ICE via the planetary gearbox, has loss increase with 

battery ageing due to increased use of the ICE.  EM2 loss 

decreases by a similar amount though, due to less time spent in 

electric mode. Even though battery resistance increases with 

age, battery loss ends up decreasing as the battery ages because 

loss is a quadratic function and power capability is linear, 

meaning loss falls faster than power capability.   

TABLE II 
STATISTICS OF THE HEV OPERATION CONTROLLED BY DP IN WLTP FOR 

BATTERY SOH VALUES OF 95%, 55% AND 16% OF “BATT1” 

 SOH=95% SOH=55% SOH=16% 

EM1 loss [kJ] 238 269 422 

EM2 loss [kJ] 1063 999 750 

Friction brake loss [kJ] 215 560 1645 

Battery loss [kJ] 607 581 273 

ICE off time [%] 70.9 63.6 27.9 

Fuel consumption [g] 670.4 705.5 845.4 

ICE mechanical energy [kJ] 10937 11333 12399 

Average ICE efficiency [%] 38 38 34 
 

 

C. Drivability  

To characterize the drivability of the HEV, three full power 

accelerations were simulated: 0-30 km/h, 30-60 km/h and 60-

100 km/h. The time required to complete each of the three 

maneuvers is plotted in Fig. 7 for different levels of battery 

ageing, assuming battery characteristics at each SOH are an 

average of the three test cases. With a new battery the vehicle 

can accelerate from 0-100 km/h in 9.8 seconds, and this 

increases by 5.1%, 11.2%, 22.4% and 35.7% at SOH values of 

80%, 60%, 40% and 16%, respectively. The acceleration rate 

is relatively stable until 80% SOH and increases substantially 

with further ageing. The 60-100 km/h acceleration time is most 

 

 
Fig. 7 HEV acceleration performance in 0-30km/h, 30-60 km/h and 60-100 

km/h full power acceleration maneuvers over retained battery SOH values. 

 
Fig. 8 Time series of drivetrain power and vehicle speed in 0-100km/h full 

power acceleration maneuver for battery SOH values corresponding to 95%, 
55% and 16% of “Batt1”. 
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Fig. 6 Battery pack power and SOC as predicted by DP in WLTP for battery 

SOH values corresponding to 95%, 55% and 16% of “Batt1”. 

 
 



affected because the drivetrain is operating in the peak power 

region here, rather than in the peak torque region as at lower 

speeds.  Peak battery pack power is reduced considerably with 

ageing, as shown in Fig. 4. This in turn affects the maximum 

tractive power deliverable by the drivetrain, as can be seen in 

Fig. 8 which shows drivetrain power and vehicle speed for 0-

100km/h full power accelerations for different states of ageing 

of Batt1. The drivetrain peak tractive power, depending on 

ICE, EM1, EM2, battery, and transmission power, reduces 

from 74kW for new battery conditions to 64kW for SOH=55% 

down to 53kW when SOH=16%. These results demonstrate 

that power capability reduces steadily with battery ageing. 

V. CONCLUSIONS 

Hybrid electric vehicle batteries continue to function well 

beyond the 80% SOH value which is often considered end of 

life.  As battery capacity degrades power capability decreases 

as well, preventing the vehicle from accelerating as quickly 

and recapturing as much regenerative braking energy as when 

the vehicle was new.  The loss of battery capacity and power 

capability also results in the ICE operating more frequently and 

at less efficient operating points.  For the HEV investigated in 

this study using experimentally derived battery characteristics, 

these factors combine to cause a 6% increase in fuel 

consumption at 60% SOH and a much greater 25% increase at 

16% SOH.  0 to 100 km/h acceleration time also increases 

significantly as the battery ages, going from 9.8 s when new to 

13.3 s at 16% SOH. 

While this study investigates performance degradation of 

cylindrical lithium iron phosphate (LiFePO4) cells, the same 

approach could be applied for battery packs using nickel 

manganese cobalt oxide (NMC) or nickel cobalt aluminum 

oxide (NCA) Li-ion cells or nickel metal hydride (NiMH) 

cells, which are commonly used in electrified vehicles. An 

extensive experimental validation would be needed to 

conclusively determine the proposed method can be applied 

generally for any battery pack.  

In general, the obtained results can be used to determine 

when an HEV user is likely to benefit from replacing the 

battery pack due to excessive ageing. Furthermore, the HEV 

simulations performed as the battery ages may be useful for 

developing more accurate battery state estimation algorithms, 

robust battery management systems and HEV energy 

management strategies capable of adapting to the SOH of the 

high-voltage battery pack.  
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