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Abstract: Bio-based monomers represent the future market for polymer chemistry, since the political
economics of different states promote green ventures toward more sustainable materials and pro-
cesses. Industrial pulp and paper processing represent a large market that could advance the use of
by-products to avoid waste production and reduce pollution. Lignin represents the most available
side product that can be used to produce a bio-based monomer. This review is concentrated on the
possibility of using bio-based monomer derivates from pulp and the paper industry for UV-curing
processing. UV-curing represents the new frontier for thermoset production, allowing a fast reaction
cure, less energy demand, and the elimination of solvent. The growing demand for new monomers
increases research in the environmental field to substitute for petroleum-based products. This review
provides an overview of the main monomers and relative families of compounds derived from indus-
trial processes that are suitable for UV-curing. Particular focus is given to the developments reached
in the last few years concerning lignin, rosin and terpenes and the related possible applications of
these in UV-curing chemistry.

Keywords: pulp and paper industry; lignin; UV-curing; 3D printing

1. Introduction

Petroleum-based monomers are currently the most available source of both thermo-
plastic and thermoset plastic materials. The growing awareness of pollution and environ-
mental problems arising from the use of petroleum-derived materials is driving scientific
research toward the replacement of commonly used polluting products with bio-based
ones. The US department of Agricultural and Energy has set a target to increase the per-
centage of bio-based materials as sources of chemicals and materials by as much as 25% by
2030 [1].

The exploitation of the biomass of plants can represent an attractive source of bioen-
ergy as well as bio-based chemical precursors [2]. This is particularly important considering
that plant biomass is the most abundant renewable feedstock on Earth. For this reason, the
pulp and paper manufacturing industry is being considered as a source for new vitalizing
markets [3].

The reason for choosing the pulp and paper industry sector is connected to the large
availability of bio-sources, which make it possible to forecast new polymer production
products. Figure 1 shows the main constituents of waste liquor, the by-product of paper
and pulp industry [4]. The relative amounts and characteristics of the main fractions are
related to the process used to produce the paper [5–7].
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Figure 1. The main families of constituents present in the by-products derived from pulp and paper industry. Lignin, rosin 
and terpenes used as a platform for valuable chemicals. 

1.1. Lignin and Derivatives 
Cellulose, hemicellulose and lignin made up the lignocellulosic biomass. Lignin ac-

counts for about 15 to 30% of the wood constituents, as shown in Table 1. Its structure 
changes according to the biomass family. Softwoods are richer in lignin, whereas hard-
woods are richer in hemicellulose [19]. Cinnamic alcohols are the main constituents of 
lignin; this family is composed of p-coumaryl alcohol, coniferyl alcohol and sinapyl alco-
hol [1]. Grasses contain all three components, while softwood mainly has coniferyl alco-
hol, and hardwood contains both coniferyl and sinapyl alcohol. Table 2 shows the differ-
ent percentages of monolignol present in the three main wood families, that is, broadleaf 
wood, conifer wood, and grasses [20]. 

Table 1. The different percentages of cellulose, hemicellulose, and lignin in different plants. Reprinted with permission 
from [3], Copyright © 2021 Elsevier. 

Lignocellulosic Materials Cellulose (%) Hemicellulose (%) Lignin (%) 
Hardwood stems 40–55 24–40 18–25 
Softwood stems 45–50 25–35 25–35 

Nut shells 25–30 25–30 30–40 
Corn cobs 45 35 15 

Wheat straw 30 50 15 
Rice straw 32 24 18 

Leaves 15–20 80–85 0 
Grasses 25–40 25-50 10–30 

Switch grass 31–32 35–50 20–25 
Sugarcane bagasse 42 25 20 

Sweet sorghum 45 27 21 
Cotton seed hairs 80–95 5–20 0 

Coconut husk 39 16 30 

Figure 1. The main families of constituents present in the by-products derived from pulp and paper industry. Lignin, rosin
and terpenes used as a platform for valuable chemicals.

Lignin is the second most abundant polymer in the world, and around 50 million tons
of lignin are provided by the pulp and paper industry, of which less than 2% is used to make
chemical value products [8,9]. The other 98% is used for energy generation purposes. Lignin
has conventionally been considered as a low-value waste product, but it may be proposed,
in this new scenario, as an interesting polymeric precursor. In fact, lignin is a complex
aromatic polymer that contains different reactive groups, such as phenylpropanoid entities
and carbon–carbon bonds, which can be exploited as polymerizable reactive groups [3].

Looking at the by-products of the pulp and paper industry, there is another important
family of compounds, called rosins, which may be interesting as a source of bio-based
polymer precursors. Rosin is an important candidate for obtaining polymerizable structures
for both linear and crosslinked materials [9]. More than one million tons of rosin are
produced annually. Rosin is mainly used as a constituent of inks, varnishes, adhesives,
paper size, cosmetics and medicines, but rosin itself and its derivatives may also be
proposed as reactive monomers for the production of polymers [10].

The volatile fraction of the resin, turpentine, which is composed of a mixture of
terpenes, should also be considered as a valuable organic feedstock. Turpentine is by far
the most frequently used source of terpenes, whose yearly production throughout the world
amounts to some 350,000 tons. Certain derivatives, such as α-pinene, β-pinene, limonene
and myrcene, have been studied as starting materials for the synthesis of polymers, and α-
pinene (45–97%) and β-pinene (0.5–28%) are the main products [11]. Pinenes and limonenes
are cheap and abundant natural products, and are used extensively as chemical precursors
for a wide variety of polymerizable monomers [9].

The above cited family of compounds is becoming more attractive as a substitute
for petroleum-derived monomers. A huge amount of work has already been done to
exploit their use in several different application fields, ranging from linear polymers, such
as polyester, polyurethane and polycarbonates, to crosslinked resins, such as vinyl ester,
epoxy and acrylate resins [12–17].
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This review is focused on the following three main families of products obtained from
industrial pulp and paper processing: lignin, rosin and terpenes, as they can be exploited
as photocurable starting materials.

The use of the UV-curing technique, instead of the thermal-curing method, is particu-
larly interesting because of its reduced energy consumption, high cure speed, even at room
temperature, and the absence of VOC emissions [18]. The following sections deal with the
significant families of compounds that can be processed from the paper and pulp industry
in order to create a natural base for UV-curable materials.

1.1. Lignin and Derivatives

Cellulose, hemicellulose and lignin made up the lignocellulosic biomass. Lignin ac-
counts for about 15 to 30% of the wood constituents, as shown in Table 1. Its structure
changes according to the biomass family. Softwoods are richer in lignin, whereas hard-
woods are richer in hemicellulose [19]. Cinnamic alcohols are the main constituents of
lignin; this family is composed of p-coumaryl alcohol, coniferyl alcohol and sinapyl alco-
hol [1]. Grasses contain all three components, while softwood mainly has coniferyl alcohol,
and hardwood contains both coniferyl and sinapyl alcohol. Table 2 shows the different
percentages of monolignol present in the three main wood families, that is, broadleaf wood,
conifer wood, and grasses [20].

Table 1. The different percentages of cellulose, hemicellulose, and lignin in different plants. Reprinted
with permission from [3], Copyright © 2021 Elsevier.

Lignocellulosic Materials Cellulose (%) Hemicellulose (%) Lignin (%)

Hardwood stems 40–55 24–40 18–25
Softwood stems 45–50 25–35 25–35

Nut shells 25–30 25–30 30–40
Corn cobs 45 35 15

Wheat straw 30 50 15
Rice straw 32 24 18

Leaves 15–20 80–85 0
Grasses 25–40 25-50 10–30

Switch grass 31–32 35–50 20–25
Sugarcane bagasse 42 25 20

Sweet sorghum 45 27 21
Cotton seed hairs 80–95 5–20 0

Coconut husk 39 16 30
Sorted refuse 60 20 20

Paper 85–99 0 0–15
Newspaper 40–55 25–40 18–30

Waste paper from chemical pulps 60–70 10–20 5–10
Primary wastewater solids 8–15 NA 24–29

Table 2. The percentages of the three main alcohols in the principal plant families. Reprinted with
permission from [20], Copyright © 2021 Elsevier.

Monolignol Broadleaf Wood (%) Conifer Wood (%) Grass (%)

Sinapyl alcohol (S) 50–75 0–1 25–50
Coniferyl alcohol (G) 25–50 90–95 25–50

p-Coumaryl alcohol (H) Trace 0.5–3.4 10–25

In addition to the principal phenolic nuclei, considerable amounts of other components
can also be found in lignin, such as coniferaldehyde, sinapaldehyde, p-hydroxybenzoate,
ferulate, p-coumarate, hydroxycinnamates, and other by-products from incomplete mono-
lignol biosynthesis [20].

The most common linkage, the β-O-4 ether linkage, which typically accounts for 50%
of the bonds, is created during the polymerization reaction, and it is the typical target of a
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degradation process. Figure 2 shows the principal linkages between the different aromatic
units present in lignin [1,8].
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Figure 2. The main chemical bonds present in the chemical structure of lignin. Adapted with permission from [8]. Copyright
© 2021, American Chemical Society.

Lignin can be separated by chemical, physical and biological processes [21]. The
strategy used to reduce lignin has a great impact on the chemical structure of the resulting
products. Figure 3 shows a scheme of the catalytic processes that could be conducted
to obtain chemicals and fuels. Several industrial sources of lignin, which have different
features according to the used method, are available [2,3,22,23]. The main ones are:

• Kraft lignin (KL), which is a by-product of the paper and pulp industry after ligno-
cellulose has been treated at an elevated temperature (170 ◦C) and pressure. KL is
becoming the added value product of this industry, transforming the entire process
into a bio-refinery system.

• Lignosulfonates (LS), which are derived from the sulfite process, are obtained through
a neutral or acidic treatment/cooking. Sulfite pulping is the second most commercially-
used process, and it produces about 7 million tons of lignin annually.

• Soda lignin (SL), which is generated as a co-product from flax, straw, and/or non-
wood fibers, using anthraquinone as a catalyst. However, SL has a low production
capacity, due to the annual variability of the feedstock.

• Organosolv lignin (OL), which is obtained from pulp by means of an organic solvent
treatment. In this process, the lignin is obtained using solvents, using neither acidic
or alkaline conditions, and it is an alternative process to the pulping technology. The
extraction of lignin with an organic solvent mainly involves breaking down the α-aryl
ether bonds. OL is usually less contaminated than other types of technical lignins, and
with recovery of the solvent it is a closed process.

• Steam-explosion lignin (SEL), which is derived from a steam process. The process
involves the impregnation of lignin with steam at high temperature and pressure. This
leads to an increase in the reactivity of the substrate, allowing more enzyme access
and digestibility in order to separate the components.
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Figure 3. Catalytic processes for lignin depolymerization to obtain new platform chemicals. Compar-
ison between the different starting materials used. (a) Lignocellulose fractionation prior to catalytic
processing; (b) Reductive catalytic fractionation (RCF) in the presence of a catalyst; (c) complete
conversion of all lignocellulose mass by one-pot catalytic processing. Adapted with permission
from [8]. Copyright © 2021, American Chemical Society.

The previous sections consider methods used in the chemical degradation of lignin to
yield a soluble and isolable product from a biomass, which is generally known as technical
lignin. This section instead focuses on the degradation methods and chemical processes
necessary to convert technical isolated lignin into useful (chemical) products. Several cat-
alytic strategies are aimed at obtaining high yields and the selective production of defined
aromatic monomers from lignin and lignocellulose. The most important strategies are:

• Hydrogenolysis, which is a pyrolysis process that results in the formation of small
fragments in the presence of hydrogen. Cleavage refers to the C–C bond [17]. Typical
temperatures of around 300–600 ◦C are used. Catalysts, such as Ru/C, Pd/C or
Pt/C, are used to improve the final yield of the product, and bimetallic systems have
also been explored. An appropriate choice of the catalyst leads to a high degree of
depolymerization and a high product yield. The hydrogenolysis of the C–C bond is
catalyst dependent, as shown in Figure 4 [8].

• Oxidation, whereby lignin is generally oxidized with nitrobenzene, hydrogen peroxide
or a metal oxide. Some methods use heterogeneous catalysts, such as metal or surface-
supported metal, Pt, Pd, Re, Ti, Ni and Cu. Homogeneous catalysts include meta
and organic compounds; ionic liquid has also been used as an alternative catalytic
system [1].
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Only three products are produced commercially on a large scale from lignin: vanillin,
dimethyl sulfide and dimethyl sulfoxide [2]. Of these, vanillin is currently one of the
only molecular phenolic compounds manufactured from biomass on an industrial scale,
and it has the potential of being a key renewable aromatic building block [24,25]. The
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oxidative cleavage of lignin to produce vanillin is one of the oldest known depolymerization
processes [8]. Relevant vanillin derivatives can be isolated under pulping conditions, while
vanillic acid can be isolated under a strongly oxidizing condition. Vanillin alcohol could
instead be obtained under reducing conditions [1].

Most catalytic methods have focused on facing the fundamental challenge of selec-
tive bond cleavage in organosolv lignin or lignocellulose, focusing on the β-O-4 moiety.
However, more research is required for the development of robust and recyclable cata-
lysts. Novel catalytic systems should be studied to fully valorize all the lignocellulose
components. Techno-economic analyses should be performed for these processes to un-
derstand the utility and possible new products that may be derived from the emerging
building blocks.

Aromatic compounds are key intermediates in the manufacturing of polymers, and
the synthesis of these derivatives from lignin is therefore one of the major topics of interest
in this field, since lignin is the main source of aromatic bio-based substrates. Phenols can
be obtained with a variety of chemical structures from lignin deconstruction, as shown in
Table 3; besides vanillin, as previously mentioned, ferulic acid (FA) is the main one [26].
Other products, such as sinapic acid and its derivatives, can be isolated from lignin depoly-
merization mixtures [8]. A Fenton modification improves the yields of phenolic monomers,
especially for ethyl-p-coumarate and ethyl-ferulate [21].

Table 3. Phenolic acids derived from lignin. Reprinted with permission from [20], Copyright © 2021 Elsevier.

Phenolic Acid and
Aldehydes

Lignin Fraction (% yield, w/w)

OPF Lignin Caligonum Monogoliacum
Lignin

Tamarix spp.
Lignin

Maize Stem
Lignin

Rice Straw
Lignin

p-Hydroxybenzoic acid 0.42 1.68 1.67 0.82 1.12
p-Hydroxybenzaldehyde 0.49 1.35 1.21 2.48 1.59

Vanillic acid 0.25 1.04 1.14 0.03 0.36
Syringic acid 0.84 2.16 1.77 1.28 1.82

Vanillin 1.02 17.96 18.12 10.49 15.49
Syringaldehyde 2.60 9.36 10.34 13.05 13.00
p-Coumaric acid N/A 3.08 2.55 0.32 0.61

Ferulic acid 0.30 0.91 0.47 0.82 1.22
Molar ratio (S:G:H) 58:22:15 58:22:15 31:59:10 N/A N/A

Ferulic acid is a component of lignin, and it is part of the hydroxycinnamic family,
together with sinapic and caffeic acid. It is a key component of the cell wall and it has
several useful functions for the life of a cell, such as antioxidant and free radical scavenger
properties [27–30]. New methods are being implemented to isolate these components from
sugarcane bagasse, bark trees and kraft lignin obtained from the pulp and paper industries.
These methods can involve chemical and physical approaches, such as hydrolysis and
extraction, or bacterial action [31–35]. An alternative method could be that of resorting to
synthetic biology to valorize lignin and biosynthesized coumarins [36]. Another bio-source
of FA could be agro-industrial waste, which represents a large, cheap and available source
of chemicals [29,37].

1.2. Rosins and Its Derivatives

Rosin is a component of conifer tree resin and it is also known as colophony [38]. Pine
trees (Pinus genus), which are widespread in the Northern Hemisphere and are adopted
intensively in the pulp industry, are the most important source of rosin [39]. The main
structures of the different derivates are built on abietane and pimarane skeletons, as shown
in Figure 5 [38,40].

Gum rosin and tall oil rosin are the two most industrially important types of rosin.
Gum rosin is the non-volatile fraction of conifer resin [11]. Tall oil rosin is a by-product
of wood pulping in the kraft process, and it accounts for 35% of the total production of
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rosin, which is around 1.2 million tons per year. Pine trees are used extensively in the
pulp industry. Wood rosin is the least available type of rosin. It is extracted from mature
pine stumps, which are chipped and soaked in a solvent, after which solid wood rosin is
obtained by means of a distillation process [10].
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1.3. Terpenes

Terpenes are mainly synthesized by plants, but also by a limited number of insects,
marine micro-organisms and fungi. The chemical composition of turpentine depends to
a great extent on the tree species, geographic location and the overall procedure used
to isolate it. The major components are a few unsaturated hydrocarbon monoterpenes
(C10H16), namely, α-pinene (45–97%) and β-pinene (0.5–28%), and smaller amounts of
other monoterpenes [41]. Most terpenes have a cycloaliphatic structure with isoprene
as the elementary unit, as shown in Figure 6. Terpenoids can be considered as modified
terpenes [11]. Only a few terpenes are at present under analysis to produce bio-based
polymers, despite their low cost, abundance and large variety [10].
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Recent studies have demonstrated that it is possible to isolate different products, in
particular using the waste of the sugi wood-drying process (BWP), thereby making BWP
a source of these useful compounds. Sugi is the one of the most common conifers in
Japan [42,43].
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2. UV-Curable Monomers from the Pulp and Paper Industry

Among the different possibilities of using lignin, rosin, terpenes and the relative
bio-based derivates obtained from the pulp and paper industrial process, this review has
focused on UV-curable applications. Several works illustrate the role of such applica-
tions in polyesters, polyurethanes, epoxy resins, foam, hydrogels and aerogels [1,3,22,23].
However, there is a lack of information about this specific approach to obtain different
bio-based products.

Therefore, the next sections are focused on new approaches to UV-curing. In particular,
the first section is on the use of lignin as a raw material. The second section is on vanillin,
since this bio-based monomer is already made at an industrial scale and is very attractive
as a UV-curing resin. The third section is devoted to rosin, and the final one to terpenes.

2.1. The Photopolymerization of Lignin and Its Derivatives

The use of lignin has developed over the few past decades. Several groups have
started to exploit biomass as an alternative source to petroleum-based materials. In 1989,
Hatakeyama et al. [44] presented the relationship between the chemical structures and
the physical properties of the new types of high-performing polymers that had been
synthesized from degraded lignin products. The complex nature and the heterogeneity
of the reagent were the reasons for the difficulties of using this biomaterial as a source
to produce polymers. In 1998, Gandini et al. discussed the synthesis of polyesters and
polyurethanes based on lignin of various origins [45]. After the first studies, the same group
investigated different kinds of biomass as resources for various synthetized polymers. They
employed organosolv lignin in ink, paints and varnishes in order to study the effect on
these systems. The main results were a linear increase in viscosity and a reduction of
misting as a consequence of adding lignin to the composition [46,47]. In 2006, coatings and
composites were formed using lignin derived from sugarcane bagasse. Thermal curing was
employed to form the different films [48]. The same group investigated the substitution
of phenol in phenol formaldehyde resin with lignin. The acetylated lignin obtained from
sugarcane bagasse showed an increase in the water resistance of the formed coatings [49].
Cazacu et al. [50] and Laurichesse et al. [51] described the employment of lignin in the
chemical and polymer industries, highlighting the advantages and disadvantages of using
biomass instead of petroleum-based sources. Most of the cited works reported the use of
lignin while exploiting the thermal curing method; it is only in recent years that lignin has
starting to be used in UV applications.

Alsuami et al. wrote a review on the use of lignin in the UV-curing technique [52]. The
same group developed a study on the reactivity of lignin in photopolymerization. Lignin
can also be used as a filler in UV applications. In such a case, no chemical functionalization
is performed, and lignin, which is used in the extracted form without modification, acts as
a reinforcement. Rozman et al. [53] studied the utilization of lignin as a filler in UV-curable
systems in the presence of both a cationic photoinitiator and a free radical photoinitiator.
The stiffness and resistance to abrasion improved as the lignin content in the photocurable
formulation increased, due to the intrinsic stiffness of lignin and the presence of phenol
groups. Zhang et al. [54] incorporated lignin in methacrylic resin at various concentrations
(1 wt % as a maximum). The positive effect on the mechanical properties was related
to the ultimate strength, which increased by 46–64%, and to an enhancement of Young’s
modulus of 13–37%. Fracturing the samples revealed that a certain amount of lignin was
favorable for dissipating the stress concentration. This could be one of the reasons for
the improvement in the mechanical performance of 3D-printed composites which include
lignin. Ibrahim et al. [55] exploited organosolv lignin in polyurethane resins. The important
outcome was the enhancement of the mechanical properties of the resins with lignin. The
optimal concentration was 0.6%.

Chao et al. synthesized lignin-based waterborne polyurethanes [56]. A positive effect
of the lignin was found in the mechanical properties, and its addition influenced the gloss
and the light transmittance of the cured films.
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Wang et al. [57] prepared UV-curable lignin thermoplastic copolymers, as shown
in Figure 7. A benzophenone acrylate derivative, ABP, was selected as a photosensitive
comonomer. In a general photo-cross-linking mechanism, ABP is excited by the absorption
of a photon, and the excited benzophenone abstracts aliphatic hydrogens from neighbor-
ing polymer chains, and thus generates radicals. The photogenerated radicals combine
to produce a cross-linked network. The UV-cured films were 100 µm thick; under UV
irradiation, up to ~30 wt % of the lignin-g-poly(styrene-co-ABP) copolymers cross-linked
to form polymer networks. These results are expected to provide a convenient and robust
alternative to lignin-based functional coatings, with enhanced surface hardness, solvent
resistance and thermal stability.
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Hajirahimkhan et al. [58] optimized the synthesis of methacrylated lignin through a
central composite design and response surface methodology. The chosen lignin was kraft
(KL) from a pulp waste process. The obtained product was used in a UV-curable system.
Methacrylic lignin (30 wt %) was added to a UV-curable coating formulation, containing a
hexafunctional methacrylated siloxane-based crosslinker (EB-1360). The presence of lignin
induced an increase in hydrophobicity, an improvement of the double bond conversion
(reaching 64%), and better thermal stability.

Hajirahimkhan et al. [59], in a subsequent work, developed another lignin-based
UV-cured coating. The selected type of lignin was, as before, KL, which was methacrylated
with methacrylic anhydride, as previously reported [58]. They successfully prepared UV-
cured coatings using up to 31 wt % methacrylated lignin in the formulations (Figure 8).
The addition of lignin improved hydrophobicity, induced higher thermal stability/char
formation, and enhanced surface adhesion of the UV-cured coatings.

Yan et al. also studied the use of lignin in coating applications [60]. They used
organosolv lignin to prepare UV-curable coatings. They successfully synthesized lignin-
based epoxy acrylate oligomer (LBEA) in two steps. First, lignin reacted with bisphenol
A diglycidyl ether (DGEBA) to produce a lignin-based epoxy (LBE). In the second step,
LBE reacted with acrylic acid to produce LBEA. The insertion of lignin improved the pencil
hardness, as well as the flexibility, adhesion and chemical resistance of UV-cured films.
Hence, lignin was confirmed to be a favorable new biomaterial that could be exploited in
UV-curable formulations.

Yan et al. [61] used organosolv lignin (OL) to synthesize organosolv-lignin-based
epoxy acrylate (OLBEA) coatings. OLBEA was prepared, as before, in two steps. In
their study, the curing process was a UV-thermal dual-cured strategy: the UV curing was
performed first, and then a final thermal post-curing process was done on the crosslinked
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films. The OL content in the formulations was varied between 5 and 25 wt % and mixed
with bisphenol-A-diglycidyl ether diacrylate (BADGE). The mechanical properties of the
photocured films improved as the modified lignin content in the photocurable formulation
increased; the hardness, adhesion and flexibility of films were enhanced.
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Some researchers have studied the exploitation of functionalized lignin for 3D printing
technology. Sutton et al. [62] used organosolv lignin from pulp-grade wood chips to
generate new photoactive acrylate resins. The resins were a mixture of commercially
available resin components with up to 15 wt % of lignin. The lignin was functionalized, by
means of methacrylation, using methacrylic anhydride. The difference in color, when the
lignin-based resin was varied, is shown in Figure 9.

Polymers 2021, 13, x 11 of 28 
 

 

generate new photoactive acrylate resins. The resins were a mixture of commercially 
available resin components with up to 15 wt % of lignin. The lignin was functionalized, 
by means of methacrylation, using methacrylic anhydride. The difference in color, when 
the lignin-based resin was varied, is shown in Figure 9. 

 
Figure 9. Printed material, from the top: 0 wt %, 5 wt % and 10 wt % of lignin resin. Adapted with 
permission from [62]. Copyright © 2021, American Chemical Society. 

Hence, methacrylic lignin resin is compatible with 3D printing, and it could have a 
great potential as a binding agent to improve printing quality. A challenge for future work 
is the correlation between penetration depth and critical cure dosage, which depends on 
the amount and chemical structure of the lignin in each sample. 

All these works, which are listed in Table 4, showed good results when using lignin 
as a co-monomer in photocurable formulations. Indeed, the addition of modified lignin 
enhanced the final properties of the new UV-cured materials, at least for some of the fea-
tures, such as hydrophobicity, crosslink density and thermal stability. Thus, lignin can be 
considered a promising UV-curable bio-based material, and it is worth doing further and 
deeper investigations for future green developments. 

Table 4. Summary of the use of lignin in the aforementioned studies. 

Lignin type Maximum amount (wt %) Role of Lignin Reference 
Acell lignin 20 filler Rozman [53] 
Kraft lignin 1 filler Zhang [54] 

Organosolv lignin 3 filler Ibrahim [55] 
Alkali lignin (hydroxymethylated) 12 monomer Chao [56] 

Kraft lignin (copolymerized) - monomer Wang [57] 
Kraft lignin (methacrylated) 30 monomer Hajirahimkhan [58] 
Kraft lignin (methacrylated) 31 monomer Hajirahimkhan [59] 

Organosolv lignin (epoxy acrylate) 25 monomer Yan [60] 
Organosolv lignin (epoxy acrylate) 25 monomer Yan [61] 

Organosolv lignin (acrylate) 15 monomer Sutton [62] 

As mentioned before, vanillin is one of the monomers available from lignin for in-
dustrial purposes, and it has been investigated by means of a UV-curing technique [26]. 

Ding et al. [63] studied the behavior of a sustainable thermosetting resin of natural 
phenolic (meth)acrylates derived from softwood lignin. The bio-derived monomers were: 
guaiacol, vanillin alcohol and eugenol. Acrylation was performed on guaiacol (G) and 
vanillin alcohol (V) with methacrylic anhydride, see Figure 10. On the other hand, thiol-

Figure 9. Printed material, from the top: 0 wt %, 5 wt % and 10 wt % of lignin resin. Adapted with
permission from [62]. Copyright © 2021, American Chemical Society.

Hence, methacrylic lignin resin is compatible with 3D printing, and it could have a
great potential as a binding agent to improve printing quality. A challenge for future work
is the correlation between penetration depth and critical cure dosage, which depends on
the amount and chemical structure of the lignin in each sample.

All these works, which are listed in Table 4, showed good results when using lignin
as a co-monomer in photocurable formulations. Indeed, the addition of modified lignin



Polymers 2021, 13, 1530 11 of 26

enhanced the final properties of the new UV-cured materials, at least for some of the
features, such as hydrophobicity, crosslink density and thermal stability. Thus, lignin can
be considered a promising UV-curable bio-based material, and it is worth doing further
and deeper investigations for future green developments.

Table 4. Summary of the use of lignin in the aforementioned studies.

Lignin Type Maximum Amount (wt %) Role of Lignin Reference

Acell lignin 20 filler Rozman [53]
Kraft lignin 1 filler Zhang [54]

Organosolv lignin 3 filler Ibrahim [55]
Alkali lignin (hydroxymethylated) 12 monomer Chao [56]

Kraft lignin (copolymerized) - monomer Wang [57]
Kraft lignin (methacrylated) 30 monomer Hajirahimkhan [58]
Kraft lignin (methacrylated) 31 monomer Hajirahimkhan [59]

Organosolv lignin (epoxy acrylate) 25 monomer Yan [60]
Organosolv lignin (epoxy acrylate) 25 monomer Yan [61]

Organosolv lignin (acrylate) 15 monomer Sutton [62]

As mentioned before, vanillin is one of the monomers available from lignin for indus-
trial purposes, and it has been investigated by means of a UV-curing technique [26].

Ding et al. [63] studied the behavior of a sustainable thermosetting resin of natural
phenolic (meth)acrylates derived from softwood lignin. The bio-derived monomers were:
guaiacol, vanillin alcohol and eugenol. Acrylation was performed on guaiacol (G) and
vanillin alcohol (V) with methacrylic anhydride, see Figure 10. On the other hand, thiol-ene
click chemistry was performed on eugenol to exploit the allylic double bond (as shown
in Figure 10), then the phenolic end groups were acrylated using acryloyl chloride. This
allowed a novel acrylate monomer to be prepared from eugenol (E in Figure 10). These
natural acrylates possess fast photo-curing rates, and the crosslinked material showed high
thermal stability and good mechanical properties, thus ensuring a competitive alternative
to commercial prototype resins for the stereolithography (SLA) 3D printing technique. The
synthetic route is schematized in Figure 10, where the results of tests on binary and ternary
formulations are also shown. The G and E monomers were mixed, in different molar
ratios, to test the reactivity and the performance; a third component, a cross-linker, was
then introduced to achieve the high photo-reactivity necessary for the SLA process. Two
cross-linkers were selected, that is, a widely used commercial one (trimethylolpropane-
trimethacrylate, T in Figure 10) and a natural synthesized one (vanillin-dimethacrylate, V
in Figure 10).

The outcome of this work was that the natural phenolics functionalized from the
biomass had excellent photocuring kinetics, which helped form the crosslinked networks
that allowed the light-based 3D printing of mechanically robust and high bio-based con-
tent objects.

Bassett et al. synthetized a bio-based resin using vanillin-based monomers for SLA
techniques [64]. They used methacrylated vanillin (MV) as a monomer, and glycerol
dimethacrylate (GDM) as a cross-linker. The two molecules were mixed in a 1:1 mol ratio,
and TPO was used as a photoinitiator. Photorheology was performed to optimize the
printing parameters. Additionally, some samples were further thermally post-processed
after the printing. The effect of post-processing after printing was evaluated, and an
enhancement of the double bond conversion of 23% was observed. The vanillin-based
resin, prepared via SLA with post-processing, showed the highest Tg (153 ◦C) and highest
Young’s modulus (4900 MPa). It was also found that the post-processing induced an im-
portant enhancement of the final properties of a 3D-printed structure, thus demonstrating
the potential for the use of resin as a robust material for the SLA process. Moreover, as a
result of the low viscosity and low critical curing energy, the vanillin-based resin showed a
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potential for use as a component in the development of bio-based, high Tg, high strength
materials for SLA.
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Maturi et al. [65] developed a new resin for digital light processing (DLP)-based 3D
printing. The important feature of this resin was the extremely high bio-based content of
96.5%. Itaconic acid, glycerol, 1,3 propendiol and vanillic acid were used as precursors
in the photocurable formulation. Itaconic acid-based photocurable polyester, poly(1,3-
propanediyl-co-glyceryl) itaconate-co-vanillate (PPGIV), was synthetized by reaction at
a high temperature (145 ◦C) under a nitrogen atmosphere. The double bonds of itaconic
acid represented the photocurable moieties; however, the concentration was too low to
guarantee a feasible application in DLP. Thus, two different crosslinkers were synthesized,
by means of the acrylation of itaconic acid and citric acid with 2-hydroxyethyl methacrylate
(HEMA). The printed structure showed a better mechanical resistance and lower fragility
than most of the commercial equivalents, thus demonstrating that there is no loss of perfor-
mance when moving from fossil to bio-based sources. Moreover, a biocompatibility test
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was conducted and no cytotoxicity or sensitization stimulating immune cellular response
was observed.

Navaruckien et al. [66] investigated a bio-based system with photocurable resins for
optical 3D printing; therefore, novel vanillin acrylate-based resins were studied. Cross-
linked polymers were prepared by means of the radical photopolymerization of vanillin
dimethacrylate, VDM, and vanillin diacrylate, VDA. The photo crosslinking of the VDM
resins was faster than with the VDA resins. The vanillin diacrylate-based resins showed a
higher double bond conversion, and the crosslinked materials showed high thermal stabil-
ity and better mechanical properties than the vanillin dimethacrylate-based photocured
films. Moreover, the vanillin diacrylate polymer film showed a significant antimicrobial
effect. Two types of optical printing techniques were used to produce 3D objects out of
custom-made photo cross-linkable resins: direct laser writing (DLW) and the microtransfer
molding technique (µTM), which is also known as nanoimprint lithography, see Figure 11.
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Figure 11. A schematic view of the two 3D printing techniques used; (a) direct laser writing (DWL) and (b) microtransfer
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Ferulic acid is also used in several applications; it has antioxidant, anti-inflammatory,
antimicrobial and antiallergic properties and it is thus widely employed for biological and
pharmaceutical purposes [67,68]. Moreover, FA can be used as a base for different chemicals,
from polyester to epoxy [28,69–72]. Another important feature of FA and its derivates is
the presence of a cinnamoyl double bond. This allows ferulic derivates to be exploited as
monomers for UV-curable formulations or as reactive moieties, since they can go under
[2 + 2] cycloaddition. The [2 + 2] cycloaddition is a dimerization that takes place when the
molecule is exposed to UV: the C=C bond breaks and creates a new cyclobutane ring that
links two molecules. The cinnamic derivatives have also been used to produce polyesters,
polyamides and poly(anhydride esters), and many other types of polymers [69,73].

Teramoto et al. [74] synthetized a trehalose cinnamoyl ester by exposing the monomer
to UV. The dimerization was confirmed by means of a UV−Vis, FITR measurement. More-
over, an increase in the Tg revealed that photo-crosslinking had occurred. In a successive
work, the same group, headed by Yano [75], photo-crosslinked cellulose using cinnamoyl
moieties. This example of a possible cinnamoyl functionalization of bio-based monomers
produced materials with high cell proliferation. New biocompatible and bio-based materi-
als could be further explored starting from these studies.

Castillo et al. [76] synthetized novel polyamides, containing a cyclobutane ring, by
[2 + 2] cycloaddition. After the functionalization of FA, the product was irradiated by
stirring for 20 h under an argon atmosphere. Nuclear magnetic resonance spectroscopy
(1H-NMR) and liquid ionization mass spectroscopy (LI-MS) analyses confirmed the pres-
ence of dimers. Tunc et al. [77] developed other photosensitive polyamides by using
cinnamoyl moieties. The cross-linking reaction was reversible, and the functionalized
aliphatic polyamides cross-linked photochemically at 364 nm could be de-cross-linked
photochemically at 254 nm. This demonstrated the possibility of a reaction in two different
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directions being performed. The trigger was constituted in the different wavelength of the
light, which allowed the properties to be modified and varied accordingly.

Hu et al. [78] developed a cyclic carbonate monomer containing cinnamoyl moieties.
The copolymerization of the monomer was carried out with L-lactide. The kinetics was
studied by means of UV–Vis and FTIR measurements, which confirmed the cycloaddition
(the mechanism is presented schematically in Figure 12).
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Nagata et al. [79] developed a photocurable biodegradable polyester The cast films
were irradiated; the polymer network was formed since the cinnamoyl group underwent
[2 + 2] cycloaddition, producing the cross-links. The gel contents increased as the photocur-
ing time increased, reaching values of over 90% for all the films after 90 min of irradiation.
These new films could be used for bio-medical or environmental applications.

Kim et al. [80] prepared a photocurable polymer by mixing a commercial epoxy resin
and cinnamic derivates. Thin films were formed after exposing it to UV. The main features
of the films were good thermal stability and optical transmittance.

Ding et al. [81] synthesized a trans-cinnamate epoxidized soybean oil (ESOCA) by
reacting renewable biomass raw materials, trans-cinnamic acid and epoxy soybean oil.
The decrease of the C=C peak was followed to confirm cycloaddition; the Tg of the film
was 38.5 ◦C and good flexibility, adhesion and UV shielding performances were observed.
This study demonstrated a new strategy to prepare flexible high-performance renewable
biomass thermosetting materials.

Shibata et al. [82] synthetized allylated derivates of coumaric and caffeic acids. They
used thiol-ene chemistry to achieve cross-linked networks.

Pezzana et al. [83] developed another bio-based coating using ferulic acid (FA). They
used the allylation of FA in their study, and showed that thiol-ene chemistry allowed
the resins to be cross-linked. They tested different bi- and tri-functional ferulic bio-based
monomers. The photocured network was achieved by means of a reaction with a tri-thiol,
as shown in Figure 13. The properties of the cured films were studied, and good adhesion
and stability were observed. The highest Tg reached was 24 ◦C for the trifunctional ferulic
derivate. This work demonstrated the feasibility of using ferulic acid as a starting green
monomer to develop UV-curable coatings, with the possibility of modulating the final Tg
of the crosslinked networks.

2.2. The Photopolymerization of Rosin

Rosin has been used for coating formulations for centuries. The unique properties of
rosin are due to its hydrophobic skeleton and its hydrophilic carboxy groups. These features
lead to its excellent solubility and compatibility with a variety of synthetic resins. Rosin
derivates can be obtained by means of the appropriate modifications, and this renewable
resource is therefore widely available to develop new resins for coatings applications [84].
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Lee et al. studied one of the first examples of using rosin in UV-curable applica-
tions [85]. They synthesized functional monomers from gum rosin. They synthesized
monofunctional acrylic rosin derivatives and a trifunctional acrylate, starting from male-
opimaric acid anhydride (MPA) and fumaropimaric acid (FPA). Copolymers were also pro-
duced, by copolymerization between methyl methacrylate and monofunctional monomers.
All the resins showed good solubility and absorbance in the UV region, and the photocur-
ing method was therefore used to produce negative photoresists. After irradiation, the
films were developed in a base solution. These results showed the possibility of functional-
izing rosin-based monomers to produce different resins, with a large variety of properties
and applications.

Do et al. [86] synthesized a photocurable hydrogenated epoxy methacrylate rosin
(HREM). Glycidyl methacrylate was used to functionalize rosin via an epoxide ring opening
reaction. The photopolymerization reactivity of HREM was studied by means of photo-DSC.

Do et al. [87], in a subsequent work, further explored the use of HREM to make
a pressure sensitive adhesive (PSA). The rosin-based monomer was mixed, up to 30%,
with a formulation of acrylic PSA. For the polymerizable photoinitiator, 2-(acryloyoxy)
ethyl 4-(4-chlorobenzoyl) benzoate (P-36) was used. The Tg of HREM and the modulus
of the PSA/HREM blends were sufficiently low, and the PSA molecular mobility and its
crosslinking efficiency increased after blending with HREM. The PSA/ HREM blends
maintained their Tg in the sub-zero temperature range, with high wettability, and the
properties and probe tack of the PSAs increased remarkably as the HREM content increased,
compared with the PSA/hydrogenated rosin blends.

Another group, led by Ahn [88], investigated the effect of rosin on adhesive formu-
lations. Cationic polymerization was exploited, and the bio content was extremely high,
i.e., 97%. The peel and tack properties were similar to those of commercial tapes, and the
formed tapes had a significantly stronger shear strength than commercial tapes.

Liu et at. [89] developed a polyurethane acrylate system with hydrogenated rosin.
The Tg was 54.4 ◦C, and the positive effect of the rosin resulted in less shrinkage than that
of a commercial oligomer, and a better adhesion to glass. Moreover, the formulation was
highly UV reactive, thus indicating a promising application for this type of oligomer.

Lu et al. [90] synthesized a rosin allyl ester in order to produce a bio-based resin for UV
curing. The cured film showed good properties (Tg of 24 ◦C), with a thermal decomposition
that started at 264 ◦C. This could therefore be a good example of a soft monomer with
superior properties, in terms of flexibility, impact strength and adhesion. Lu et al. [91]
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also used a new method to functionalize rosin derivates. Microwave irradiation led to
the production of an allyl derivate of levopimaric acid. Monofunctional and bifunctional
monomers were produced. Certain synthesis parameters, such as microwave power,
temperature, reaction time and catalyst dosage, were optimized. The UV-cured products
(see Figure 14) were formed by mixing synthesized allyl acrylpimarate with 7% Michlers
ketone (MK). Other photoinitiators were also tested, but the results were poor. Rosin
molecules can improve chemical resistance, adhesion, and certain mechanical properties,
such as thermal stability and hardness. Indeed, the thermal decomposition started at 292 ◦C
for the crosslinked resins and at 263 ◦C for the linear polymer, while the Tg of the cured
products were 49 ◦C and 11 ◦C, respectively.
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The same group developed another rosin-based resin for UV curing [92] (see Figure 15).
In this case, mono and tri-allyl maleopimarates were synthetized. The introduction of
the rosin structure into polymeric UV-cured films improved the adhesion and mechanical
properties. The tri-allyl maleopimarate polymers showed good chemical stability and a
great potential for coating applications.

In 2019, Lu et al. [93] provided a route to produce a new bio-renewable resin. Isopi-
maric acid, methyl isopimarate and allyl isopimarate were synthesized and used for
UV-curing. They prepared the sopimaric acid by means of selective crystallization. They
synthesized the methyl isopimarate and allyl isopimarate using isopimaric acid as the raw
material. The monomers were mixed with the photoinitiator in a fixed proportion using
tetrahydrofuran as the diluent. The glass transition temperature of the UV-cured product
derived from methyl isopimarate was lower than that of the polymer of isopimaric acid,
and since the carboxylic acid group was converted into an ester group, it became more
flexible. On the other hand, the UV-cured product derived from allyl isopimarate was
generated from bifunctional monomers, which provided a comparable glass transition
temperature with that of the product from isopimaric acid. The important result of this
work was the formation of new types of natural rosin monomers, which showed high
potential for the substitution of petroleum-based polymer products.

Lu et al. [94] developed a two-step 3D-printing approach, to prepare a thermoset
derived from cellulose and rosin, by means of UV-induced chain-growth polymerization
and step-growth polymerization. They used the rosin to create a novel acrylate monomer
named dehydroabietic acid glycidyl methacrylated (DAGMA). DAGMA was tested as
a monomer with a percentage of 2-hydroxyethyl acrylate (HEA), while methacrylated
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cellulose (CMA) was used as a crosslinker in chain-growth polymerization and hexam-
ethylene diisocyanate (HDI) was applied as a cross-linker in step-growth polymerization
to form a dual-cure network in 3D-printed thermosets, as shown in Figure 16. Different
HEA/DAGMA ratios were analyzed, and the rosin content was proportional to the increase
in the mechanical strength and toughness of the 3D-printed thermosets. A mechanical test
showed that the dual-cure network could lead to phase separation and greatly increase
the mechanical and thermal properties of 3D-printed thermosets. 3D-printed thermosets
exhibited excellent shape memory and repairability, and the repair efficiency of the me-
chanical strength was up to 95.2%. A unique characteristic, originating from the rosin
moiety, was a strong luminescence from aggregation-induced emissions (AIE). As a final
experiment, hydrogels were made through degradation of the thermoset material. The
chemical degradation of cellulose, using a NaOH solution, led to hydrogels. These 3D-
printed thermoset-derived hydrogels have shown a great application potential for flexible
electronic and smart photoelectric materials.

Polymers 2021, 13, x 17 of 28 
 

 

 
Figure 14. Proposed structures for the cured film of mono and bifunctional monomers in the work 
by Lu et al. Reprinted with permission from [91], Copyright © 2021 Elsevier. 

The same group developed another rosin-based resin for UV curing [92] (see Figure 
15). In this case, mono and tri-allyl maleopimarates were synthetized. The introduction of 
the rosin structure into polymeric UV-cured films improved the adhesion and mechanical 
properties. The tri-allyl maleopimarate polymers showed good chemical stability and a 
great potential for coating applications. 

 
Figure 15. From rosin to the final coating as proposed by Lu et al. [92]. (Open access: 
doi:10.1038/s41598-018-20695-5.). 

In 2019, Lu et al. [93] provided a route to produce a new bio-renewable resin. Isopi-
maric acid, methyl isopimarate and allyl isopimarate were synthesized and used for UV-
curing. They prepared the sopimaric acid by means of selective crystallization. They syn-
thesized the methyl isopimarate and allyl isopimarate using isopimaric acid as the raw 
material. The monomers were mixed with the photoinitiator in a fixed proportion using 
tetrahydrofuran as the diluent. The glass transition temperature of the UV-cured product 
derived from methyl isopimarate was lower than that of the polymer of isopimaric acid, 

Figure 15. From rosin to the final coating as proposed by Lu et al. [92]. (Open access: doi:10.1038/s41598-018-20695-5).

2.3. The Photopolymerization of Terpenes

In the last few decades, a great deal of work has been conducted by James Crivello’s
group to investigate the reactivity of epoxidized limonene and other terpenes in cationic
photopolymerization using iodonium and sulfonium salt.

In 1995, Crivello et al. [95] investigated the reactivity of monoterpenes. They converted
α-terpinene, γ-terpinene and limonene to their corresponding diepoxies and photocured
them by cationic polymerization. They found different behaviors for the three components
of the same family; the derivates from γ-terpinene and limonene underwent ring-opening
polymerization of both epoxy groups to give crosslinked polyethers as the predominant
process while the epoxide from α-terpinene underwent an intramolecular rearrangement
to give the epoxy ketone that did not polymerize. Similar behavior was predicted for other
1,3-monoterpene diepoxides.

In a successive work [96], they used α-terpineol as a reagent to produce allyl and
propenyl derivates. Cationic photopolymerization was performed with the synthesized
monomers, and a good reactivity was revealed.
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Crivello et al. also studied other terpenes [97]. They synthesized allyl, allyl epoxide
and propenyl epoxide from nopol. Nopol is an optically active bicyclic primary alcohol,
used in soap fragrances as well as in agrochemical industries for the synthesis of pesticides
and household products. Nopol is a bio-renewable, inexpensive and easily available
substrate that can provide a suitable reagent for functionalization. Crivello demonstrated
the high reactivity of epoxy, allyl and propenyl monomers toward cationic polymerization.
This work paved the way toward further studies and research in UV-curable networks.

An epoxy alcohol was subsequently used to form hyperbranched polymers. Naturally
occurring terpene alcohols were epoxidized and they showed a marked reactivity toward
cationic photopolymerization. This study showed the possibility of increasing the reactivity
by having an alcohol function in an epoxy cyclohexane ring system [98].

Park et al. [99] investigated the reactivity of two epoxide derivates from terpenes,
that is, α-pinene and limonene. The outcome of their investigation revealed a high reac-
tivity to cationic photopolymerization initiated by iodonium salt. They found some side
reactions, which limited the production of homopolymerization, although considering the
two epoxides as comonomers could confer benefits, in term of viscosity, polymerization
rate and induction period. Moreover, they could change the mechanical properties of the
epoxy-based photopolymerized crosslinked network.

Tehfe et al. [100] developed a free-radical-promoting cationic polymerization process
for two epoxy monomers, one of which was limonene dioxide. The terpenes reacted with
epoxidized soybean oil, by means of cationic polymerization, when iodonium salt was used.
The novelty of this work lay in the possibility of operating under sunlight and of obtaining
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uncolored tack-free coatings. The same group considered the silyl radical chemistry, and
developed a resin containing limonene oxide [101]. The results indicated a high reactivity
to sunlight and selective irradiation over a narrower wavelength range. These results open
the way toward very efficient epoxy systems. Lalevée et al. [102] investigated the radical
chemistry of silyl in detail, and they overcame oxygen inhibition and developed renewable
epoxy monomers for green chemistry applications.

Claudino et al. [103] investigated the potential use of limonene for thermosetting resin
through thiol-ene chemistry. Limonene was used as a base for two different prepolymers,
as shown in Figure 17. The intrinsic difference in reactivity of the two unsaturations in
limonene was considered an advantage to form a branched oligomeric thermoset pre-
cursor. The choice of stoichiometry and the thiol functionality allowed different resin
structures to be formed. The second step was the crosslinking of the macromonomers
via UV. The authors showed the possibility of tuning the final properties according to the
initial stoichiometry between the macromonomers and the choice of the thiol crosslinker.
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Breloy et al. [104] made a green coating using a limonene derivative. They em-
ployed cationic polymerization and thiol-ene chemistry to achieve the formation of a film,
(Figure 18). They used both mono- and di-epoxide limonenes. Bis(4-methylphenyl)iodonium
hexafluorophosphate was used as the cationic photoinitiator. The final conversions obtained
for both the epoxy and allyl groups were extremely high (>70%). The irradiation time
required for tack free coatings was 20 min. A final study with eugenol was carried out to
prove the antibacterial effect of this natural monomer. The incorporation of eugenol led to a
marked decrease in bacterial adhesion.
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most effective for printing, due the combination of its low viscosity and its reactivity, with 
limonene requiring longer exposure times to induce photo-crosslinking. Figure 20 reports 
the objects printed for the different resins. The prepolymer technique was used to print 
limonene-based material. Nerol, geraniol, and the prepolymers were not suitable for 
printing into 3D structures because of the slow reaction kinetics under 3D printing condi-
tions. 
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Stamm et al. [105] functionalized a-pienene to generate a renewable material. They
used the enzymatic route to synthesize sobrerol. Methacrylation was then conducted
and the sobrerol was finally polymerized into poly(sobreryl methacrylate) (PSobMA)
(Figure 19), using different radical polymerization techniques. The PSobMAs were mixed
with a trifuncional thiol and a radical initiator (Irgacure 651) to assess the possibility
of utilizing the ene bond in the side-chain for crosslinking purposes. Successive tests,
FT-Raman spectroscopy and solubility investigations confirmed the curing reaction.
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Figure 19. UV-crosslinking of methacrylated polysobrerolmethacrylate [105], published by The Royal
Society of Chemistry.

Weems et al. [106] used vat polymerization to produce 3D printed structures with
terpene and terpenoid. They used limonene, linalool, nerol and geraniol as base monomers
for the resin. Prepolymers were formed by reacting half of the thiol groups with the same
quantity of alkenes. The remaining half of the thiol resin was added to the prepolymer to
make a resin. The crosslinking time for limonene and linalool-based resins was found to be
approximately 5 s, while the nerol- and geraniol-based resins crosslinked over the course
of 1 h, under 3D printing conditions. Thus, the linalool-based resin was the most effective
for printing, due the combination of its low viscosity and its reactivity, with limonene
requiring longer exposure times to induce photo-crosslinking. Figure 20 reports the objects
printed for the different resins. The prepolymer technique was used to print limonene-
based material. Nerol, geraniol, and the prepolymers were not suitable for printing into 3D
structures because of the slow reaction kinetics under 3D printing conditions.
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Figure 20. Examples of 3D-printed structures from (a,b) linalool and (c) limonene prepolymer
resins [106], published by The Royal Society of Chemistry.

Weems et al. [107] later also studied the use of myrcene for 3D printing. In the
same way as in the previous work, myrcene also suffered from low viscosity and low
reactivity. Hence, it was polymerized to develop a polymyrcene in linear and branched
form that was suitable for printing. They adopted free radical and anionic polymerization.
They tuned the properties by changing the thiol to cross-link or functionalize the surface.
The best parameters for 3D printing with the polymyrcene resins were an exposure of
10 s at an intensity of 10 mW/cm2 per 50 µm slice to produce template molds. This
study demonstrated the possibility of using a bio-based material for 3D printing, and the
versatility and width of different tunable properties.

Shimpf et al. [108] tailored limonene-based dimethacrylate for 3D applications. They
synthesized limonene dimethacrylate (LDMA) resins, starting from limonene oxide. Dif-
ferent oligomers were prepared, and different limonene oxide and methacrylic acid ratios
were tested. The tested resins were a blend of a base formulation (commercial product)
and the same formulation, but with the addition of the limonene-based resin. The addition
involved up to 50 wt %. Some 3D-printed objects are presented in Figure 21. The advantage
of using LDMA lies in the low viscosity and in the possibility of tailoring the properties by
mixing the resin with a commercial one. Moreover, the high stiffness and strength persisted
after the blending, and the addition of LDMA even enabled the Tg to be improved.

In 2020, Ortiz et al. [109] selected a terpenoid-like nopol as the starting material to
prepare epoxy monomers. Nopol is a terpene derivate that was bi- and tri-epoxidized.
Three different protocols were followed: alkylation of the nopol with epichlorohydrin;
aromatic substitution of the chlorine atom in the cyanuric chloride with the alkoxide
of nopol; and preparation of an acetal by means of the reaction between nopol and 3-
cyclohexene 1-carboxyaldehyde under an acid catalyst. Iodonium salt was used to start the
photopolymerization under UV. The resulting networks had Tg over a 61 to 66 ◦C range.

Li et al. proposed one of the latest studies available on terpenes [110]. They used
limonene in a powder coating. A thiol-ene network was formed by reacting trimethylol-
propane tris(3-mercaptopropionate) with poly(limonene carbonate)s (PLCs). The properties
of the UV-cured powder coating showed great potential for this renewable starting material.
The coating showed high transparency, good acetone resistance, high pencil hardness and
high König hardness.
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3. Conclusions

In this review, we have reported the exploitation of bio-based monomers, derived
from industrial pulp and paper processing, with UV-curing technology. The byproducts
of industrial processes, such as those of the pulp and paper industry, can become suitable
starting points to make valuable chemicals. Bio-derived raw materials, such as lignin,
can be used as they are or can be modified to achieve photocurable monomers, like
vanillin. Vanillin as an interesting example of a chemical derived from a green source that is
industrially available and has great potential for functionalization, which can lead to its use
as a monomer for UV-curing, is reported here. Rosin and terpenes are another two examples
of families that are readily available from the pulp and paper industry, which can be used
for UV-curing. The chemical structure of these families offers a good structural property
base that can be an important starting point to synthetize competitive bio-based resins.
Thus, the final properties of the new materials may be comparable with petroleum-based
materials. Of all the considered products, limonene appears to be particularly interesting,
due to its easy availability and intrinsic properties. Several of the reported studies have in
fact demonstrated its potential for UV-curing.

Hence, the aforementioned resins may be used for coating applications using thiol-ene
chemistry, epoxy chemistry or acrylate chemistry. In the latter case, the functionalization
can modify the different biomolecules, thereby allowing them to be used in 3D printing.
Several examples that show the great potential of green-based materials for this new
advanced manufacturing process, have been presented in this review.

However, the low usage of the by-product for chemical is a limitation in terms of
availability and development of new processes and monomers. The main fraction is
devoted to energy (98%).The future challenge will be to ensure that specific processes
isolate the starting monomers and oligomers in high yield and purity. These aspects may
contribute to obtain competitive commodities and products with respect to the petroleum-
based, allowing a greener future. The environmental cost of the entire processes should
be considered and evaluated to find the best opportunities for the use of pulp and paper
by-products.
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