
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Faster-LTN: a neuro-symbolic, end-to-end object detection architecture / Manigrasso, Francesco; Davide Miro, Filomeno;
Morra, Lia; Lamberti, Fabrizio. - STAMPA. - 12892:(2021), pp. 40-52. (Intervento presentato al convegno 30th
International Conference on Artificial Neural Networks (ICANN 2021) tenutosi a Fully online event nel 14-17 September
2021) [10.1007/978-3-030-86340-1_4].

Original

Faster-LTN: a neuro-symbolic, end-to-end object detection architecture

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-030-86340-1_4

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-86340-1_4

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2910392 since: 2021-12-29T16:07:33Z

Springer

Faster-LTN: a neuro-symbolic, end-to-end object
detection architecture

Francesco Manigrasso1[0000−0002−4151−8880], Filomeno Davide Miro1, Lia
Morra1[0000−0003−2122−7178], and Fabrizio Lamberti1[0000−0001−7703−1372]

Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy
francesco.manigrasso@polito.it, filomenodavide.miro@studenti.polito.it,

{lia.morra, fabrizio.lamberti}@polito.it

Abstract. The detection of semantic relationships between objects rep-
resented in an image is one of the fundamental challenges in image
interpretation. Neural-Symbolic techniques, such as Logic Tensor Net-
works (LTNs), allow the combination of semantic knowledge represen-
tation and reasoning with the ability to efficiently learn from examples
typical of neural networks. We here propose Faster-LTN, an object de-
tector composed of a convolutional backbone and an LTN. To the best
of our knowledge, this is the first attempt to combine both frameworks
in an end-to-end training setting. This architecture is trained by opti-
mizing a grounded theory which combines labelled examples with prior
knowledge, in the form of logical axioms. Experimental comparisons show
competitive performance with respect to the traditional Faster R-CNN
architecture.

Keywords: Object detection · NeuroSymbolic AI · Convolutional Neu-
ral Network · Logic Tensor Networks.

1 Introduction

A long-standing problem in Semantic Image Interpretation (SII) and related
tasks is how to combine learning from data with existing background knowl-
edge in the form of relational knowledge or logical axioms [1]. Neural-Symbolic
(NeSy) integration, which aims at integrating symbolic knowledge representation
and learning with machine learning techniques [2], can provide an elegant and
principled solution to augment state-of-the-art deep neural networks with these
novel capabilities, increasing their performance, robustness and explainability.

The present work leverages the Logic Tensor Network (LTN) paradigm that
was proposed by Serafini, Donadello and d’Avila Garcez [3,4]. In very simple
terms, LTNs operate by interpreting (or grounding) a First-Order Logic (FOL)
as functions on real vectors, which parameters can be trained via stochastic
gradient descents to maximize the satisfiability of a given theory. LTNs have been
successfully applied to the tasks of part-of relationship detection [3] and visual
relationship detection [5]. Previous works have shown how LTNs can compensate

2 F. Manigrasso et al.

the lack of supervision (e.g., in few-shot learning scenarios) by relying on logical
axioms derived from pre-existing knowledge bases.

To close the semantic gap between the symbolic (concept) and subsymbolic
(pixel) levels, LTNs for SII rely on convolutional neural networks (CNNs) to
extract semantic features which form the basis for grounding object instances in a
real vector. Previous works [5,3] relied on pre-trained CNNs, which however suffer
from all the limitations traditionally associated with deep learning, namely, the
need for a large-scale annotated dataset for training, and lack of interpretability.
To fully reap the benefits of NeSy techniques in SII, end-to-end architectures in
which the LTN is jointly trained with the feature extraction CNN are needed.

In this work, we propose Faster-LTN, an object detector which unifies the
Faster R-CNN object detector with a LTN-based classification head. Differently
from previous works [3,5], both modules are jointly trained in an end-to-end
fashion. The logical constraints imposed by the LTN can thus shape the training
of the convolutional layers, that are no longer purely data-driven. To achieve this
objective, we propose several modifications to the original LTN formulation to
increase the architecture scalability and deal with data imbalance. Experimental
results on the PASCAL VOC and PASCAL PART datasets show that Faster-
LTN converges to competitive performance with respect to purely neural archi-
tectures, thus proving the feasibility of this approach. The Faster-LTN was im-
plemented in Keras and is available at https://gitlab.com/grains2/Faster-LTN.

The rest of the paper is organized as follows. In Section 2, related work
is presented. In Section 3, different variations of the Faster-LTN architecture
are presented, after a brief introduction to the theory behind LTNs. Section 4
presents the experimental setting and results. Finally, conclusions are drawn.

2 Related work

A natural image is comprised of scenes, objects and parts, all interconnected by a
complex network of spatial and semantic relationships. Thus, developing seman-
tic image interpretation (SII) components requires to recognize a hierarchy of
components, and entails both robust visual perception and the ability to encode
and (reason about) visual relationships. Several techniques have been proposed
to augment Convolutional Neural Networks (CNNs) with relationship represen-
tation and reasoning capabilities, including Relational Network [6], Graph Neural
Networks [7] and Neural-Symbolic (NeSy) techniques [8,3,5]. For a more general
introduction to NeSy techniques, the reader is referred to recent surveys [9,10].

Many recent approaches extract features from CNNs to a subsequent sym-
bolic or neuro-symbolic module [11,3,5,12]. Yuke Zhu et al. [11] use a Markov
Logic Network (MLN) to process text information with associated visual fea-
tures; a knowledge base is used to represent relations between objects using vi-
sual, physical, and categorical attributes. Kenneth Marino et al. [13] incorporate
a Graph Search Neural Network (GSNN) into a classification network. Donatello
et al. [3] and Cewu Lu et al. [12] have demonstrated the use of visual features
to train LTNs for visual relationship detection, in form of subject-verb-object

https://gitlab.com/grains2/Faster-LTN

Faster-LTN: a neuro-symbolic, end-to-end object detection architecture 3

triplets or part of relationships. These works demonstrate how NeSy techniques
enable the definition of logical axioms that serve as high-level inductive biases,
driving the network to find the optimal solution that is compatible with said
inductive biases. However, since in the above-mentioned cases the feature ex-
traction and the classification networks are trained separately, the CNN cannot
leverage these additional inductive biases during training.

There are, however, some practical hurdles associated with the training of
NeSy architectures. Scalability, when dealing with large amounts of data, is
a known issue associated with symbolic AI [14]. For this reason, many NeSy
architectures rely on a conventional object detector to provide an initial list
of candidate objects [3], thus disregarding the effect of the background and
simplifying (i.e., reducing) the scale of the problem. In this work, we compare
several strategies that are effectively capable of training a LTN-based object
detector from scratch, taking into account the effect of the background and the
resulting data imbalance.

Another aspect related to scalability is the choice of aggregation function and
fuzzy logic operators. Emilie van Krieken et al. [14] and Samy Badreddine [4]
found substantial differences between differential fuzzy logic operators in terms of
computational efficiency, scalability, gradients, and ability to handle exceptions,
which are important characteristics in a learning setting. Their analysis lays
the groundwork for the present FasterLTN architecture, which incorporates and
extends the log-product aggregator analyzed in [14].

3 The Faster-LTN architecture

This section describes the Faster-LTN architecture and training procedure in
detail. An overview of the overall architecture is presented in Figure 1. We
first summarize the Faster R-CNN overall architecture (Section 3.1). Then, we
introduce the main concepts behind LTNs (Section 3.2) and their application to
object detection (Section 3.3), referring the reader to [3,4] for additional details.
Finally, the joint training procedure of Faster-LTN is explained in Section 3.4,
highlighting the main changes introduced to make end-to-end training feasible.

Architecture

3.1 Faster R-CNN

Faster R-CNN is a two-stage object detector composed of a Region Proposal
Network (RPN) and a classification network with a shared backbone [15]. For
each anchor, the RPN generates a binary classification label (Background vs.
foreground), while a regression layer computes the bounding box coordinates.
Regions of Interest (ROIs) selected by the RPN are fed to an ROI Pooling
layer, which extracts and resizes each proposal bounding box’s features from the
shared backbone. Feature maps of equal size are passed to the classifier. The
classifier comprises two convolutional heads, a classification layer (with softmax

4 F. Manigrasso et al.

xa

CONV
Layers

Extract
Features

Feature
Maps

C
O

N
V

Classification

Regression

Feature Maps
with

Region Proposal Projection Regression

RPN

Training

Loss

Literal 1 Clause 1

Literal 2

Literal 3

Literal N

Clause 2

Clause 3

Clause N

... ...

Classification

Predicate 1

Predicate 2

Predicate 3

Predicate N

...

Inference

Regression

Training Loss
L1 C1

L2

L3

Ln

C2

C3

Cn

... ...

P1

P2

P3

Pn

...

Inference

CONV
Layers

Extract
Features

Feature
Maps

C
O

N
V Classification

Regression

Region
Proposal
Projection

RPN

Classification

Fig. 1: Faster-LTN architecture. The first part of the architecture, up to the RPN,
is the same as in the Faster R-CNN network [15]. The feature maps associated
to the RPN proposals are extracted by the backbone, concatenated and passed
to the LTN, which includes a collection of predicates Pi, each corresponding
to a specific class. At training time, a batch of labelled examples in the train-
ing dataset are used to define a partial theory Texpl. Each positive or negative
example corresponds to a positive or negative literal (L) for the corresponding
predicates. The truth value of the aggregated clauses (C) is maximized to find
the optimal grounding G∗. At inference time, the truth value of the predicates
Pi is computed.

activation) that computes the final object classification and a regression layer
(with linear activation) that computes the bounding box.

Training of the RPN and classifier heads is performed jointly in an alter-
nating fashion. At each forward pass (corresponding to one image), the RPN
is trained and updated; then, the RPN output is kept fixed, and the detector
head is updated. A fixed number of positive (object) and negative (Background)
examples are selected at each step to train the classifier head.

The loss is as a combination of regression and classification loss:

L({pi}, {bi}) =
1

nc

∑
i

Lcls(pi, p
′
i) + λ

1

nr

∑
i

pi ∗ Lreg(bi, b′i) (1)

In the Faster-LTN, we keep the RPN module intact and substitute the clas-
sifier head with an LTN.

3.2 Logic Tensor Network

Grounding In the LTN framework, it is possible to encode a FOL language L

by defining its interpretation domain as a subset of Rn. In the LTN formalism,
this process is called grounding.

Given the vector space Rn, a grounding G for L has the following properties:

1. G(c) ∈ Rn, for every c ∈ C;
2. G(P) ∈ Rn∗k → [0, 1], for every p ∈ P

Faster-LTN: a neuro-symbolic, end-to-end object detection architecture 5

The grounding of a set of closed terms t1, .., tm of L in an atomic formula
is defined as:

G (P (t1, ...tm)) = G (P) (G (t1) , ...,G (tm)) (2)

Formulas can be connected with fuzzy logic operators such as conjunctions
(∧), disjunctions (∨), and implications (=⇒), including logical quantifiers
(∀ and ∃). Several real-valued, differentiable implementations are available in
the fuzzy logic domain [14]. Our implementation, as in [3], is based on the
 Lukasiewicz [16] formulation:

G (¬φ) = 1− G (φ) (3)

G (φ ∨ ψ) = min(1,G (φ) + G (ψ)) (4)

Predicate symbols are interpreted as functions that map real vectors to the
interval [0, 1], which can be interpreted as the predicate’s degree of truth. A
typical example is the is-a predicate, which quantifies the existence of a given
object. For instance, if b = G(x) is the grounding of a dog bounding box, than
G(Dog)(v) ' 1. A logical constraint expressed in FOL allows to define its prop-
erties, i.e., ∀x (Dog(x)→ hasMuzzle (x)).

In LTNs, predicates are typically defined as the generalization of the neural
tensor network:

G (P) (v) = σ
(
uT
P tanh

(
vTW

[1:k]
P v + VPv + bp

))
(5)

where σ is the sigmoid function, W [1 : k] ∈ Rk×mn×mn, Vp ∈ Rk×mn ,up ∈ Rk
and bp ∈ R are learnable tensors of parameters. With this formulation, the truth
value of a clause can be determined by a neural network which first computes
the grounding of the literals (i.e., atomic objects) contained in the clause, and
then combines them using fuzzy logical operators, as defined by Eqs. 3-4.

Grounded theory A Grounded Theory (GT) T is defined by a pair 〈K, Ĝ〉,
where the knowledge base K is a set of closed formulas, and Ĝ is a partial
grounding. K is constructed from labelled examples, as well as logical axioms, as
defined in Section 3.3. In practice, a partial grounding is optimized since, qual-
itatively, our set K represents a limited and finite set of examples. A grounding
G satisfies a GT 〈K, Ĝ〉 if G completes Ĝ and G (φ) = 1 ∀ φ ∈ K.

Best satisfability problem Given a grounding Ĝθ, where θ is the set of pa-
rameters of all predicates, the learning problem in LTNs is framed as a best
satisfability problem which consists in determining the values of Θ∗ that maxi-
mize the truth values of the conjunction of all clauses φ ∈ K:

Θ∗ = argmaxΘĜθ

 ∧
φ∈K

φ

− λ||Θ||22 (6)

6 F. Manigrasso et al.

where λ||Θ||22 is a regularization term. In practical problems, it is unlikely that a
grounded theory can be satisfiable in the classical sense. Hence, we opt instead to
find the grounding which achieves the best possible satisfaction, while accounting
for the inevitable exception to the rule. Such exceptions can easily arise in the
visual domain not only to account to allow the occasional deviation from the
norm, but also to account for properties that are not visible. For instance, a cat
has (usually) a tail, but a few cats may be tail-less; more frequently, the tail will
be occluded or cut from the image.

3.3 LTN for object detection

A grounded theory for object detection Let us consider a set of bounding
boxes b ∈ B with known class c ∈ C. An object with bounding box bn is grounded
by the vector:

vbn =< zbn , bn > (7)

Where zbn = f(I, bn) is an embedding feature vector, calculated by a convolu-
tional neural network f , given an image I and the bounding box coordinates bn
predicted by the RPN layer. This is slightly different from previous works [3],
where the grounding of a bounding box was defined by the probability vector
predicted by a pre-trained Faster R-CNN, and allows to effectively connect the
convolutional layers and the LTN.

We set the embedding f(I, bn) to the output of the last fully connected layer
of the classifier head, without softmax activation. Other choices are possible,
e.g., by sum pooling the output of an earlier convolutional layer.

The is-a predicate for class c ∈ C is grounded by a tensor network, defined
as in Eq. 5, which implements a one-vs-all classifier. It must be noticed that,
differently from [3], the is-a predicate takes as input only the embedding features
zbn , excluding the bounding box coordinates. This allows to retain one of the
basic properties of object detectors, i.e., invariance to translation.

The part-of predicate is defined over pairs of bounding boxes [3]. A pair of
two generic bounding boxes bm and bl is grounded by the vector:

vbm,l
=< zbm , bm, zbl , bl, irm,l > (8)

where irm,l is the containment ratio defined as:

irm,l =
Area (bm ∩ bl)
Area (bm)

(9)

The grounding G (part− of) (vbm,l
) is a neural tensor network as in Eq. 5.

Defining a theory from labelled examples Let us now consider how a GT
is constructed to solve the best satisfiability problem defined in Eq. 6 for ob-
ject detection. As in [3], two grounded theories Texpl and Tprior are defined.
The former, Texpl, aggregates all the clauses derived from the labelled training

Faster-LTN: a neuro-symbolic, end-to-end object detection architecture 7

set, essentially replicating the classical learning-by-example setting. The theory
Tprior, on the contrary, introduces logical and mereological constraints that rep-
resent prior knowledge or, in a more general sense, desirable properties of the
final solution.

In this work, two types of constraints are defined. First, we enforce mutual
exclusion through the clause:

∀x(P1(x) =⇒ (¬P2(x) ∧ ... ∧ ¬Pn(x))) (10)

Eq. 10 is translated into K(K − 1))/2 clauses, corresponding to all unordered
class pairs over K classes, e.g., Cat(x) =⇒ ¬Person(x).

Secondly, we impose mereological constraints on the grounding of part-of and
is-a predicates derived from an existing ontology (e.g., Wordnet) which includes
meronimy (i.e., part-whole) relationships. Axioms are included to specify that
a part cannot include another part, that a whole object cannot include another
whole object, and that each whole is generally associated with a set of given
parts. An example of such axioms is as follows:

∀x, y (Cat(x) ∧ partOf(y, x)→ Tail (y) ∨ Head (y) ... ∨ Eye (y)) (11)

to indicate that if an object y is classified as part of x and x is a cat, than
y can be only an object that we know is a part of the whole cat. Mereological
constraints were enforced exploiting the KB developed in [3], to which the reader
is referred for further information.

3.4 Faster-LTN

The overall architecture, illustrated in Figure 1, is an end-to-end system con-
necting a convolutional object detector with an LTN. Specifically, the classifier
head is modified, by removing the softmax activation, and feeding the output
to the LTN. At training time, a GT is constructed as defined in Section 3.4.
The LTN is implemented by defining three additional layers: Predicate, Literal
and Clause layers. For each class c, the corresponding literal computes the truth
value of all positive (i.e., belonging to class c) and negative (i.e., not belonging to
class c) examples. The Clause layer aggregates all literals for a given class, using
the selected aggregation function. Additionally, it is possible to define clauses
(e.g., for part-of predicates) that take as input multiple literals. For the sake of
simplicity, in Figure 1 only Texpl is shown. The final loss of the LTN is given by
summing LLTN with the regression loss, as for the RPN layer.

Training In order to deal with memory constraints, a partial Texpl needs to be
rebuilt with every batch of examples. In the original implementation [3], the
LTN was trained on the predictions of a pre-trained object detector, allowing for
a relatively large batch size. In our setting, the LTN is trained on all proposals
extracted by the RPN, and a separate batch is constructed for each image, taking
into account background as well as foreground examples. It is worth noticing

8 F. Manigrasso et al.

that one-vs-all classification amplifies the data imbalance between positive and
negative examples for each class, even when the training batch consists of an
equal number of objects and background proposals.

Aggregation function The chosen aggregator function is the log-product,
which was shown in [14] to scale well with the number of inputs, and which
formulation is equivalent to the cross-entropy loss. However, in our case, this
choice does not weight adequately the contribution of positive examples, given
the high level of class imbalance. Hence, inspired by [17], we introduce the focal
log-product aggregation defined as:

LLTN = −
K∑
j=0

N∑
i=0

αc(1− xi,j)γ log (xi,j) (12)

where αc is a class-dependent weight factor, γ enhances the contribution of
literals with low truth value (i.e., misclassified examples), xi is the literal of the
i-th ROI in the j-th class, K is the number of classes and N is the batch size.

To set the value of αc, we simply observe that for each training batch and each
class c, the number of negative examples is given by the number of background
examples (which is fixed during training), plus the positive examples that belong
to other classes. Hence, we set αc = 1−β

1−βposc and αc = 1−β
1−βnegc , for positive and

negative examples respectively. Let p(c) be the fraction of bounding boxes in the
training set belonging to class c. Then, for a given batch the percentage of posi-
tive and negative examples becomes posc = N

2 p (c) and negc = N
2 +N

2 (1− p (c)),
respectively.

4 Experiments

4.1 Dataset

Experiments were performed on the PASCAL VOC 2010 [18] and PASCAL
PART [19] benchmarks. For the latter, we selected 20 classes for whole objects
and 39 classes for parts. All experiments are conducted on the trainval parti-
tion with 80:20 split. For PASCAL PART (10K images), we further experiment
reducing the training set by 50% by random selection: the number of images is
thus roughly 8K for PASCAL PART and 4K for PASCAL PART REDUCED.

4.2 Experimental setup

Faster R-CNN The architecture of the Faster R-CNN follows quite closely
the original implementation [15]. The backbone architecture was ResNet50 pre-
trained on ImageNet; the anchor scales were set to 1282,2562, and 5122, with
aspect ratios of 1:1, 1:2,and 2:1. The number of RPN proposals is set to 300. For
training the classifier head, 128 bounding boxes were randomly selected, with a
ratio of 32:96 positive and negative examples, for the PASCAL VOC dataset; for

Faster-LTN: a neuro-symbolic, end-to-end object detection architecture 9

Class FR-CNN FR-CNN FL F-LTN F-LTN α F-LTN bg F-LTN bg+α

aeroplane 66.5 56.9 87.1 85.1 87.8 85.2

bicycle 69.9 64.1 75.6 77.3 77.8 77.4

bird 70.8 68.4 84.9 87.8 87.2 87.1

boat 41.3 35.8 59.7 70.3 62.2 67.1

bottle 51.0 44.1 48.2 45.8 43.7 47.0

bus 75.8 71.3 79.1 79.0 79.8 78.6

car 59.0 53.1 60.0 58.7 62.9 60.1

cat 92.4 90.0 93.5 92.4 94.1 94.8

chair 32.1 32.7 53.4 42.8 53.4 42.9

cow 64.6 60.7 67.1 66.3 60.1 72.6

diningtable 57.2 51.1 74.2 77.0 71.3 77.1

dog 85.3 83.3 93.6 92.3 92.5 92.0

horse 61.1 62.3 82.2 80.4 85.4 85.0

motorbike 62.0 65.3 86.7 81.0 85.6 85.0

person 70.7 68.7 72.6 49.5 74.1 53.3

pottedplant 29.0 25.4 53.1 49.2 48.8 51.8

sheep 62.2 62.1 71.2 71.4 74.7 69.1

sofa 59.9 51.9 79.2 82.0 86.4 80.1

train 73.3 73.2 75.4 77.2 79.6 81.6

tvmonitor 68.7 63.3 78.5 76.6 77.1 76.6

mAP 62.6 59.2 73.8 72.1 73.3 73.25

Table 1: Results of the Faster R-CNN (FR-CNN), Faster R-CNN with focal loss
(FR-CNN FL), and Faster-LTN (F-LTN) on PASCAL VOC.

PASCAL PART, 32 bounding boxes with 16:16 ratio. The network was trained
for 100 epochs with the Adam optimizer; the learning rate was set to 10−5 for the
first 60 epochs, and then reduced to 10−6. Regularization techniques included
data augmentation (horizontal flip) and weight decay (with rate 5× 10−4).

Faster-LTN The architecture of Faster-LTN was the same as Faster R-CNN,
except for the classifier head in which the LTN was embedded.

Each predicate is defined by Eq. 5, with k = 6 kernels. Lukasiewicz’s t–
norm was chosen to encode the literals’ disjunction, and the focal log-product,
with γ = 2, was selected as the aggregation function. Tprior included mutual
exclusion constraints for PASCAL VOC, and mutual exclusion and mereological
constraints for PASCAL PART experiments. In the latter case, the LTN was
expanded to include part-of predicates, but for the sake of comparison with
Faster R-CNN, only the object detection performance was evaluated.

On the PASCAL VOC dataset, different experiments were performed with
variations of the focal log-product aggregation function: with and without class
weights α, and with and without adding an additional predicate bg to represent
the background class. The experiments are denoted as Faster-LTN, Faster-LTN
α, Faster-LTN bg, and Faster-LTN bg+α. Experiments on PASCAL-PART were
performed with the Faster-LTN bg configuration. All networks were trained for
150 epochs using the Adam optimizer, with weight decay (decay rate 5× 10−4),
random horizontal flip and L2 regularization (λ is set to 5×10−4.). The learning
rate was set to 10−5 for the first 60 epochs, and then reduced to 10−6.

All experiments were performed on the HPC@Polito cluster, equipped with
V100 NVIDIA GPU. The performance metric was the mean Average Precision
(MAP) implemented as in the PASCAL VOC challenge 2010 [20].

10 F. Manigrasso et al.

Dataset Metric FR-CNN F-LTN Tprior
PASCAL PART mAP 35.1 41.2

PASCAL PART REDUCED mAP 28.5 32.8

Table 2: Comparison of Faster R-CNN and Faster-LTN (including mereological
constraints) on the PASCAL PART dataset.

4.3 Results

Experiments on Pascal VOC, summarized in Table 1, show that Faster LTN
achieved competitive and even superior results compared to the original Faster
R-CNN architecture, with the mAP increasing from 62.6 to 73.8. In this ver-
sion of the LTN, the only axiomatic constraint was the one imposing mutual
exclusivity (see Eq. 11). We observed comparable performance when including
the background as an additional class (mAP from 73.8 to 73.4); on the other
hand, weighting positive and negative samples according to their frequency did
not improve results (mAP from 73.8 to 72.1).

Qualitatively, we observed that Faster LTN was able to detect more ob-
jects than Faster R-CNN. Given that log-product aggregation is mathematically
equivalent to the cross-entropy loss, and the backbone is the same, this difference
can be attributed to the different classification setting (K one-vs-all classifiers
instead of a single multi-class classifier) or the use of the focal loss [17]. How-
ever, when changing the loss of the Faster R-CNN classifier head to the focal
loss, performance dropped from 62.6 to 59.2. Hence, we attribute Faster-LTN
performance to the greater flexibility offered by a more complex classifier head,
with higher number of parameters. In fairness, Faster LTN took a few more
epochs to reach convergence.

In the PASCAL PART experiments, shown in Table 2, additional mereolog-
ical axioms were included in Tprior. This allowed to increase performance from
35.1 to 41.2; when reducing the training set size by half, the performance gap
was maintained (28.5 to 32.8). The comparable quality of the learned features
is further supported by the t-SNE embeddings of the extracted features, which
are shown in Figure 2.

5 Conclusion and future works

The availability of large scale, high quality, labelled datasets is one of the major
hurdles in the application of deep learning. A tighter integration between percep-
tion and reasoning, which is enabled by emerging Neural-Symbolic techniques,
allows to complement learning by examples with the integration of axiomatic
background knowledge. In this paper, we introduced the Faster-LTN architec-
ture, an end-to-end object detector composed by a convolutional backbone and
RPN (based on the Faster R-CNN architecture) and a LTN module. The detec-
tor is trained end-to-end by maximizing the satisfiability of a grounded theory
combining clauses derived from labelled examples with axiomatic constraints.

Faster-LTN: a neuro-symbolic, end-to-end object detection architecture 11

60 40 20 0 20 40 60
tsne-2d-one

60

40

20

0

20

40

60

ts
ne

-2
d-

tw
o

class
Car
Person
Dog
Bus
Cat
Horse
Boat
Tvmonitor
Pottedplant
Bird
Train
Aeroplane
Sofa
Cow
Chair
Motorbike
Bicycle
Bottle
Sheep
Diningtable

80 60 40 20 0 20 40 60
tsne-2d-one

60

40

20

0

20

40

60

80

ts
ne

-2
d-

tw
o class

Car
Person
Dog
Bus
Cat
Horse
Boat
Tvmonitor
Sofa
Pottedplant
Bird
Train
Aeroplane
Cow
Chair
Motorbike
Bicycle
Bottle
Sheep
Diningtable

Fig. 2: Comparison of the t-SNE embeddings of the features extracted for the
whole objects classes in the test test. Features extracted from Faster R-CNN
(left) and Faster-LTN with axiomatic constraints (right).

Our goal was to establish the feasibility of this approach, and indeed the re-
sults, albeit preliminary, prove that Faster-LTN is competitive or can even out-
perform the baseline Faster R-CNN. However, the scalability of this approach
to larger training sets and other object detector (e.g., single-stage detectors)
should be further investigated. Through the Faster-LTN model, available at
https://gitlab.com/grains2/Faster-LTN, we aim to provide a baseline architec-
ture on which new experiments and applications can be built. Future work will
investigate how high-level symbolic constraints can shape the learning process,
increasing robustness in the presence of noise and dataset bias.

Acknolewdgement

The authors wish to thank Ivan Donadello for the helpful discussions. Computa-
tional resources were in part provided by HPC@POLITO, a project of Academic
Computing at Politecnico di Torino (http://www.hpc.polito.it).

References

1. Aditya, S., Yang, Y., Baral, C.: Integrating knowledge and reasoning in image
understanding. In: Proceedings of the 28th International Joint Conference on Ar-
tificial Intelligence, IJCAI 2019. pp. 6252–6259. International Joint Conferences on
Artificial Intelligence (2019)

2. Raedt, L.d., Dumančić, S., Manhaeve, R., Marra, G.: From statistical relational
to neuro-symbolic artificial intelligence. In: Proceedings of the Twenty-Ninth In-
ternational Joint Conference on Artificial Intelligence, IJCAI-20. pp. 4943–4950
(2020)

3. Donadello, I., Serafini, L., Garcez, A.D.: Logic tensor networks for semantic im-
age interpretation. In: Proceedings of the 26th International Joint Conference on
Artificial Intelligence. p. 1596–1602. AAAI Press (2017)

4. Badreddine, S., Garcez, A.d., Serafini, L., Spranger, M.: Logic tensor networks.
ArXiv abs/2012.13635 (2020)

https://gitlab.com/grains2/Faster-LTN
http://www.hpc.polito.it

12 F. Manigrasso et al.

5. Donadello, I., Serafini, L.: Compensating supervision incompleteness with prior
knowledge in semantic image interpretation. In: 2019 International Joint Confer-
ence on Neural Networks (IJCNN). pp. 1–8 (2019)

6. Shanahan, M., Nikiforou, K., Creswell, A., Kaplanis, C., Barrett, D., Garnelo, M.:
An explicitly relational neural network architecture. In: Proceedings of the 37th
International Conference on Machine Learning. vol. 119, pp. 8593–8603. PMLR
(2020)

7. Lamb, L.C., Garcez, A.d., Gori, M., Prates, M.O., Avelar, P.H., Vardi, M.Y.: Graph
neural networks meet neural-symbolic computing: A survey and perspective. In:
Proceedings of the Twenty-Ninth International Joint Conference on Artificial In-
telligence, IJCAI-20. pp. 4877–4884 (2020)

8. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-symbolic
vqa: Disentangling reasoning from vision and language understanding. In: Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems. p. 1039–1050. Curran Associates Inc. (2018)

9. Besold, T.R., Garcez, A., Bader, S., Bowman, H., Domingos, P.M., Hitzler, P.,
Kühnberger, K.U., Lamb, L., Lowd, D., Lima, P., Penning, L., Pinkas, G., Poon,
H., Zaverucha, G.: Neural-symbolic learning and reasoning: A survey and interpre-
tation. ArXiv abs/1711.03902 (2017)

10. Garcez, A., Gori, M., Lamb, L., Serafini, L., Spranger, M., Tran, S.: Neural-
symbolic computing: An effective methodology for principled integration of ma-
chine learning and reasoning. FLAP 6, 611–632 (2019)

11. Zhu, Y., Fathi, A., Fei-Fei, L.: Reasoning about object affordances in a knowledge
base representation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
European conference on computer vision – ECCV 2014. pp. 408–424 (2014)

12. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with
language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) European
conference on computer vision – ECCV 2016. pp. 852–869. Cham (2016)

13. Marino, K., Salakhutdinov, R., Gupta, A.: The more you know: Using knowledge
graphs for image classification. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 20–28 (2017)

14. van Krieken, E., Acar, E., Harmelen, F.V.: Analyzing differentiable fuzzy logic
operators. ArXiv abs/2002.06100 (2020)

15. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 39(6), 1137–1149 (2017)

16. Dutta, S., Basu, S., Chakraborty, M.K.: Many-valued logics, fuzzy logics and
graded consequence: A comparative appraisal. In: Logic and Its Applications. pp.
197–209 (2013)

17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: 2017 IEEE International Conference on Computer Vision (ICCV).
pp. 2999–3007 (2017)

18. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results

19. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you
can: Detecting and representing objects using holistic models and body parts. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 1971–1978 (2014)

20. Cartucho, J., Ventura, R., Veloso, M.: Robust object recognition through symbiotic
deep learning in mobile robots. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 2336–2341 (2018)

	Faster-LTN: a neuro-symbolic, end-to-end object detection architecture

