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Abstract—Nowadays, the modern electronic systems are facing
an important limitation in terms of performance, known as von
Neumann bottleneck. It affects the communications between two
crucial elements, the CPU and the memory, which suffer from
a saturation in bandwidth. Many solutions are currently under
investigation and among them the concept of Logic-in-Memory
(LiM) has been introduced: a memory enriched in its array
of computational elements which enable the implementation
of a flexible distributed processing system. The current work
introduces Octantis, a High-Level Synthesizer useful for the
exploration of LiM architectures. The proposed software analyzes
an input algorithm described in standard C language and
identifies which LiM architecture would implement it better. At
its output, the synthesized solution is provided together with a
test-bench, to properly characterize it, in terms of performance,
spatial occupation and power consumption. Many algorithms
have been successfully synthesized by Octantis and some of the
results achieved will be discussed along the document.

Index Terms—High-Level Synthesis (HLS), Logic-in-Memory
(LiM), von Neumann bottleneck

I. INTRODUCTION AND BACKGROUND

Retracing the history of the evolution of electronic
devices, Moore’s law has strongly influenced the growth of
their computational capabilities. However, today’s scientific
community is called upon to tackle the so called Von
Neumann bottleneck, where such a prosperous behavior is
gradually undermined by a bandwidth limitation between
the CPU and the Memory. Therefore, new computational
paradigms are currently under investigation, to exceed these
challenges. Among the different promising solutions, the
Logic-in-Memory (LiM) concept has been recently proposed.
Simple logic elements are introduced inside the same Memory
array, which is now capable of performing partial computation

without considering the CPU. This enables, consequently,
a reduction of the load on the channel through which they
exchange information. An intense research activity has been
carried out over the years and important results have been
achieved in [1], [2]. For the implementation of LiM structures,
not only traditional technology has been considered, but also
beyond-CMOS ones [3].

The aim of this paper is to present Octantis, a High-Level
Synthesis (HLS) tool for the exploration of Logic-in-Memory
architectures. The concept of HLS has been refined in the
last decades and various approaches have been adopted.
However, its design flow has remained almost constant [4],
as the program represents essentially a compiler, a software
which is able to transform an algorithm through different
forms, and from which it inherits the overall structure [5].
In particular, these tools receive as an input an algorithm
described by means of a High-Level language (e.g. C and
C++) that has to be implemented in an Integrated Circuit.
Hence, at their output, a customized hardware solution is
provided. They are typically employed for the definition
of regular designs, like Intellectual Property (IP) blocks
and Memories and they are widely diffused throughout the
Electronic Industry [6]. As Logic-in-Memory units consist
in quite regular array structures, a High-Level Synthesis tool
represents a good candidate for the agile exploration and
design of those architectures.

Currently, there are many commercial High-Level
Synthesizer, among which Xilinx’ “Vivado” [7] and Mentor
Graphics’ “Catapult” [8]. However, there are many other
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research tools made available for free, as “LegUp” [9] from
the University of Toronto and “Bambu” [10] from Politecnico
di Milano. Therefore, these programs have been considered
as a reference for the definition of Octantis’ structure. Then,
it has been developed to bring to completion the synthesis of
LiM Units. Therein lies the innovative nature of the tool and
that sets it apart from the alternative solutions present in the
state-of-the-art. The introduced High-Level Synthesizers are
valuable for the definition of highly optimized Application
Specific Integrated Circuits (ASICs), which refer to many
design techniques belonging to traditional schemes of
electronic computation. Octantis inherits part of these
synthesis strategies, but at the same time it introduces others
which shall endeavour to design specifically leading-edge
architectures, as the Logic-in-Memory arrays are.

Octantis has been developed for the study of Logic-in-
Memory architectures at Politecnico di Torino. More in detail,
Octantis is conceived to work in pair with another tool, called
DExIMA [11], which represents a simulator for generic Logic-
in-Memory architectures. Hence, Octantis and DExIMA merge
in a unicum for the effective exploration of new Logic-in-
Memory implementation possibilities, providing to a designer
a complete architecture, fully characterized in terms of perfor-
mance, spatial occupation and power consumption, starting
form an input algorithm. A high level representation of the
framework under development is depicted in Figure 1.

Fig. 1. Schematic of the Tool-chain under development at Politecnico di
Torino for the exploration of innovative Logic-in-Memory Systems.

II. OCTANTIS

The presented tool is capable of exploring Logic-in-
Memory architectures from an input algorithm, expressed in
standard C language, providing the description and the test-
bench of a possible implementation. The tool requires also
a configuration file to adapt the behavior of the synthesizer
according to the constraints and specifications of the designer.
Octantis is based on the LLVM Compiler Infrastructure, an
open-source framework for the flexible definition of new
compilers, or extensions for the existing ones [12]. The Clang
library has been considered as the front-end of the entire
compilation process, letting most of the Octantis’ modules the
roles of optimizer and back-end. The workflow of Octantis

is depicted in Figure 2, where the main elements of the
synthesis process are reported.

Fig. 2. Octantis’ working principle. The whole program is integrated
inside the LLVM Framework, from which it inherits Clang and some other
compilation functions. At the output, the DExIMA’s input file contains both
the synthesized LiM Architecture and its Test-bench.

The algorithm provided at the input of Octantis, is
firstly processed by the front-end component, translated
into the Intermediate Representation (IR) which is, as its
name suggests, a less abstract form of the input algorithm.
However, the description remains generic enough to let
the back-end component to easily adapt it into a specific
hardware implementation. In particular, Clang verifies the
general correctness of the input code, from a semantic and
a syntactic perspective. As these operations are considered
standard for a specific input language, the integration of
Clang into Octantis has been conceived to be easily extended
and reusable.

Starting from the IR of the input algorithm, Octantis
performs a series of optimizations, executed in pipeline and
standardized for the LLVM Infrastructure in Passes. These
functions are useful to apply algorithmic transformation
to the original algorithm to better express and accent the
characteristics that could benefit from a Logic-in-Memory
implementation. Then, the back-end compilation catches on,
which is useful to finalize the translation of the algorithm
into a real Logic-in-Memory architecture. As this process is
complex and many operations are performed, the back-end
component has been subdivided into different modules,
according to the modularity principle. At the output of the
program, the results of the logic synthesis are expressed into
a format compatible with the simulator engine DExIMA,
another tool capable of performing a full characterization of



the Logic-in-Memory solution, providing information about
the spatial occupation, the maximum operating frequency and
the static and dynamic power consumption.

In particular, Octantis provides as output two data structures:
• A complete hardware description of the synthesized

Logic-in-Memory Array;
• A test-bench to estimate the performance of the proposed

solution.
The detail of the working flow are discussed in the fol-

lowing, where the implementation choices are detailed. The
compilation phase of the input C code into the Intermediate
Representation by Clang is not reported as it represents a
standard process. Hence, particular attention is given only to
the subsequent elaborations, the ones proper to the synthesis
of Logic-in-Memory architectures.

A. The input Optimizations

First, the Intermediate Representation code, directly ob-
tained by Clang, is elaborated by means of various algorithmic
optimization techniques, some of which inherited by the
LLVM framework (e.g. simplifycfg and licm Passes [12]),
others specialized to exploit the massive parallel computational
capabilities that Logic-in-Memory architectures can provide.
As the most important technique to describe parallel codes is
represented by loops, an effective loop pipeline optimization
has been introduced. This is a common operation performed by
the most diffused High-Level Synthesizers [13], which allows
to execute in parallel the different iterations of a loop, provided
that the memory dependencies are not too binding. Therefore,
a speedup can be introduced in the execution performance of
the same algorithm.

B. The Allocation process

The optimized algorithm is then analyzed to extract the main
needed resources to implement it effectively. In particular,
the input configuration file is parsed, where the designer has
imposed the hardware constraints for the synthesis process.
Among them, there are parameters regarding the specifications
on the data to be processed, as the word length (i.e. the
parallelism of the data stored inside the memory). Others refer
to hardware limitations, as the maximum dimension of the final
LiM array. The obtained information is then organized in a
proper data structure, useful for the subsequent compilation
processes.
For the purpose of simplifying the definition of possible
constraints, when Octantis starts the user is prompted if a
template for a configuration file should be generated. In this
way, the designer has to modify only the parameters related
to the synthesis constraints, leaving the others to their default
values.

C. The Scheduling process

The different instructions belonging to the algorithm are
here scheduled in time. In this first version of Octantis, it has
been decided to favour the performance of the synthesized

solutions, therefore an As-Soon-As-Possible (ASAP) algorithm
has been implemented. A specific time slot is assigned to each
input operator in which it has to be executed and a suitable
data structure is organized to gather this information.

D. The Binding process

Starting from the data structures collected during the pre-
vious steps, the instructions are mapped into physical hard-
ware resources. During this process, also target-oriented op-
timizations are implemented, which try to exploit at best the
peculiarities of the Logic-in-Memory paradigm. An example
of these optimizations consists in the condensation of various
operations that have to be executed into memory rows enriched
in logic ports. Indeed, the Logic-in-Memory arrays can be
composed of both traditional memory rows and memory rows
with integrated logic. The more the rows are equipped with
computational capabilities, the greater the speed up of the
execution time of the algorithm.
Two data structures are here produced, describing: one the
Logic-in-Memory array, expression of a complete synthesized
architecture, and the other the Finite-State-Machine (FSM),
useful for characterizing its behaviour over time. At this point,
the synthesis process is ended and the obtained architecture is
ready for the last stage, which translates the results into a
specific output language.

E. The Code Generation process

The two data structures just defined, i.e. the LiM Array
and the associated FSM, are considered for the generation
of a DExIMA’s input file, ready for the simulation. This
process consists of a translation, which can be substituted to
bring compatibility to other target languages, oriented for the
hardware description (e.g. VHDL or Verilog).

In conclusion, the synthesis ends with a complete Logic-
in-Memory architecture implementing the input algorithm.
This synthesis process is optimized for the exploitation of
the Logic-in-Memory paradigm and provides results correct
by definition. In fact, the algorithm is translated step-by-step
in order to guarantee a one-way equivalence between the
source information and the elaborated one. This aspect is
important for the validation procedure of the synthesized
architecture, which can be also tested through a test-bench
which is automatically generated by the same tool.

III. THE XNOR-NET: A CASE STUDY

With a view of detailing the behavior of Octantis and
how a designer can approach to the tool, a case study is
here discussed. The description of the produced data will be
preparatory to better understand the effective output of the
program and, consequently, the results presented in the next
Section. It is emphasized that the ease of use of Octantis is
independent of the complexity of the input algorithm, hence
the designer has to follow the same steps argued in the
following.



In particular, the XNor-Net, described in [14], is synthesized.
The circuit consists of an array of Logic-in-Memory cells
which integrate XNor logic gates. This is an hardware
component useful to perform the convolution operation inside
the presented Binarized Convolutional Neural Network. Inside
the memory array, the input data are stored together with
a fixed weight which has to be applied through the XNor
operation to each of them. This procedure represents an
approximation of the multiplication. The obtained results
are then externally accumulated to extract the needed features.

First, the input C code which describes the circuit has to
be defined. An example of this algorithmic representation
is reported in Figure 3. The designer has also to character-
ize Octantis’ configuration file. In this case study, the only
information requested for the correct synthesis of the final
circuit is the dimension of the word-length. Considering the
specifications of the reference article, a word length of 5 bits
has been imposed as constraint.

//Code for the implementation of a XNor Net

void XNor_Net(){

//Allocation of the weight

unsigned weight;

//Allocation of the matrix for the input data

unsigned dataMatrix[5];

//Allocation of the rows for the output results

unsigned outData[5];

//Execution of the Xor operations on the data

for(int i=0;i<5;++i)

outData[i]=˜(weightˆdataMatrix[i]);

}

Fig. 3. Tested input code for the LiM implementation of the XNOR Net.

The synthesis process can be now launched and both the
information about the LiM architecture and the related FSM
are detailed. On the terminal window where Octantis is under
execution, the final results of the synthesis are summarized,
including eventual error messages and suggestions to possible
corrections. Specifically, a logic representation of the obtained
solution is depicted in Figure 4, while the related details have
been gathered inside Table I.

TABLE I
INFORMATION ABOUT THE LIM STRUCTURE PROVIDED BY OCTANTIS.

Row
Number Address Word

Length
Integrated

Logic
Input

Connect.
Scheduling

Time
1 000 5 — — 0
2 001 5 XNor 0000 0
3 010 5 XNor 0000 0
4 011 5 XNor 0000 0
5 100 5 XNor 0000 0
6 101 5 XNor 0000 0

Fig. 4. Graphical representation of the synthesized XNor-Net. Only the
internal communication channels are reported in order to highlight the flow
of information inside the LiM array.

Considering the implemented ASAP scheduling algorithm,
the synthesized architecture is coherent with what could be
expected. In particular, assuming that the memory initialization
phase has been performed before the execution of the algo-
rithm starts, the XNor Net performs the associated operations
within a single clock cycle (as it could be seen in the Table,
looking at the assigned Scheduling Time).

IV. RESULTS

In order to prove the effectiveness of the tool, different
algorithms have been successfully synthesized. In addition
to the example proposed in the previous section, two more
architectures with different complexities are discussed. In
particular, two recent works [15] and [16] have been taken
in consideration as a benchmark for the Octantis’ synthesis
capabilities. However, simplified architectures have been
modeled before proceeding. In fact, they represent very
optimized ASIC circuits which allow to configure their
behavior in order to implement different nuances of the
algorithms that they are meant.

For each work, an algorithm in standard C has been defined
and then processed by means of Octantis. The obtained results
have been analyzed to verify the quality of the synthesis
process and particular attention has been given to the quantity
of logic integrated inside the memory array and the execution
time. This information has been subsequently compared with
the results achieved and discussed in the cited works. The
results of the conducted tests are gathered inside Table II,
where also the data derived from the case study are included.



TABLE II
RESULTS OF THE CONDUCTED TESTS ON OCTANTIS.

Implemented Synthesized Architecture Reference Architecture
Algorithm Memory dimensions Integrated Logic Exec. time Memory dimensions Integrated Logic Exec. time

X-NOR Net [14] 25 bits XNor: 25 1 Tclk 25 bits XNor: 25 1 Tclk

Bitmap Indexing [15] 144 bits And: 128 Texe
(a) 144 bits And: 128 Texe

(a)

Or: 128 Or: 128
Xor: 128 Xor: 128

Mux 3-to-1 16 bits: 8 Mux 3-to-1 16 bit: 8
Convolutional Neural 136 bits Full/Half-Adder: 64 Texe

(a) 120 bits Full/Half-Adder: 48 Texe
(a)

Network [16] Mux 2-to-1 8 bits: 9 Mux 2-to-1 8 bits: 9
(a)As the reference architectures are configurable and so many algorithms can be implemented, the execution time is expressed in a parametric way.

All the synthesis processes have produced Logic-in-
Memory architectures functionally equivalent to the original
implementations. The first one matches also structurally,
while the other one have featured an overhead of the
needed hardware resources due to the different optimizations
implemented, those of Octantis versus those of the Author.
As regards the timing information, both the solutions need
the same time, in terms of clock cycles, to execute the
implemented algorithms.

V. CONCLUSIONS

With this paper, the working principle of Octantis has
been described, bringing out its basic scheme and its
functionalities. Along this discussion, also importance has
been given to the environment in which the program is
located and to the contribution it provides to a designer
in the exploration of possible Logic-in-Memory solutions.
The synthesis performed from an input high-level algorithm
generates logical structures, independent from a particular
technology. Hence, it allows the study of different types of
final implementations, from the traditional to the newest ones,
today under investigation by researchers.

Octantis aims to be a valid guide during the exploratory
phase of Logic-in-Memory architectures, a promising solution
for how electronics could evolve in the coming years.
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