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Abstract Real-time object tracking is an important

step of many modern image processing applications.

The efficient hardware design of real-time object tracker

must achieve the desired accuracy while satisfying the

frame rate requirements for a variety of image sizes.

The existing methods of visual tracking employ so-

phisticated algorithms and challenge the capabilities

of most embedded architectures. Discriminative scale

space tracking is one algorithm that is capable of

demonstrating good performance with affordable com-

plexity. It has a high degree of parallelism which can

be exploited for efficient implementation of reconfig-

urable hardware architectures. This paper proposes a

real-time implementation of the discriminative scale-

space tracker on FPGA for the major blocks. A careful

design exploration of core mathematical operations of
the tracking algorithm is performed to improve their

hardware utilization and timing performance. Among

the core functional units optimized in this work, the

discrete Fourier transform achieves a computational

time improvement of 92% relative to existing works,

QR factorization achieves a 2.3× reduction in resource

utilization, and singular value decomposition yields

a 3.8× improvement in processing time. The pro-

posed datapath architecture is designed using Vivado

HLS toolset and implemented for Zync Zed Board
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(xc7z020clg484-1). For an input image size of 320×240,

the proposed architecture achieves a mean 25.38 fps.
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1 Introduction

Visual object tracking has got significant research in-

terest in recent years. The purpose of visual tracking is

to identify the updated location of the target object in

the incoming video sequence, given an initial target lo-

cation in one frame. It finds its application in several ex-

citing scenarios, including, but not limited to, computer

vision, smart video surveillance, robotics, automation.

Real-time object tracking is a challenging task whose

performance is influenced by various factors, including

camera motion, background variations of the scene, and

complex motion of the object. To deal with these chal-

lenges, sophisticated algorithms with an optimal set of

parameters are required to achieve a good degree of

accuracy. Moreover, the use of high-resolution cameras

further increases the computations required for success-

ful tracking.

At present, visual tracking is mostly performed us-

ing software-based platforms, including PCs and em-

bedded processors. However, the frame rate perfor-

mance of software systems is mostly not enough to sup-

port several real-time, mission-critical applications such

as tracking for accident prevention, security and de-

fence etc. Moreover, scale variations and requirements

of multi-target tracking limits the use of the serial ap-

proach for data-centric applications. Therefore, signifi-

cant improvement is required at algorithmic and imple-

mentation levels to build a real-time, standalone object

tracking devices for most mission-critical systems. Field
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programmable gate array (FPGA) is a kind of hard-

ware inherently suited for such applications, thanks to

its parallel processing structure, large data throughput

interfaces, and integration capability. Existing works on

object tracking are either based on discriminative [1,2,

3] or generative [4,5] approaches. The discriminative

approaches use machine learning methods to learn the

target location employing a filter, which is later used to

estimate the target location. The generative approaches

deal with creating the statistical model of the tar-

get. Studies have shown that discriminative approaches

show better performance and require less computation

[6,7,8]. An emerging approach is a multi-aspect detec-

tion, which considers both the size and location of the

target. In this context, two techniques are proposed.

The first approach is named as joint scale space track-

ing and utilizes a 3D correlation filter. The second ap-

proach, named multi-resolution tracking, utilizes a 2D

filter at multiple resolutions, creating a 3D pyramid for

detection. Both approaches are computationally inten-

sive and not suitable for efficient hardware implementa-

tion. Recently, in [9], the authors proposed a technique

named as discriminative scale space tracking (DSST),

which demonstrates a good performance with reason-

able complexity. The DSST algorithm achieves better

performance by using separate filters for translation

and scale estimation[9,10]. At first, the change in the

target location is estimated using a translation filter.

Next, the updated location is fed to the scale filter to es-

timate the target size. Finally, both filters are updated

for the image frame. The method continues iteratively

for the video sequence. The high degree of parallelism

of the DSST algorithm makes it a suitable candidate

for hardware implementation. The major mathemati-

cal operations involved in DSST are singular value de-

composition (SVD), QR factorization, two dimensional

discrete Fourier transform (DFT2), and histogram of

gradients (HOG). The filter is applied to an image by

performing pointwise multiplication with all the pix-

els. This process is called windowing, which is the most

critical minor operation in terms of resources.

The majority of existing works are based on soft-

ware implementation of these mathematical operators,

mainly focusing on the performance rather than hard-

ware resources for higher dimensions. Therefore, there

is a substantial requirement for hardware implemen-

tation of these operations targeting a complete visual

tracking system on a standalone device. A survey on

hardware implementations on visual object trackers is

also provided in [11]. This work deals with the FPGA

implementation of major blocks of a real-time DSST

algorithm. We propose suitable implementation strate-

gies for the core operations of the DSST algorithm. The

implementation of the DSST is carried out using Xil-

inx Vivado HLS 2016.1 tool with Zedboard with Xilinx

Zynq xc7z020clg484-1 System on Chip as target device.

The proposed architecture is able to operate at 100MHz

clock frequency for an image of dimensions 320 × 240

pixels. It is able to achieve an estimated mean frame

rate of 25.38fps. The proposed system is fully scalable

for higher image dimensions.

The rest of this paper is organized as follows. Section

2 deals with the description of the algorithm and state

of the art regarding mathematical operations. Section 3

describes the proposed architecture of these operations.

Section 4 deals with the implementation strategies and

results. Finally, Section 5 concludes the paper.

2 Introduction to Discriminative Scale Space

Tracking (DSST) Algorithm

This section deals with the details of the DSST algo-

rithm [9] and discusses the state of the art implemen-

tations for the mathematical operations involved. Al-

gorithm 1 demonstrates the main computation steps of

Fast DSST (FDSST). The algorithm receives an im-

age and the initial target location as input. An image

patch f centered around an initial target location I

is extracted using a HOG extractor. These image fea-

tures are utilized for learning the target translation Dis-

criminative Correlation Filter (DCF). As the domain

dimension of f is arbitrary, this can also be used for

the scale translation DCF. H l refers to a filter under

which the correlation error between the extracted image

patch and the desired output is minimum. The detailed

derivation of (1) is provided in [9]. The filter equations

are given as,

H l =
GF l∑d

k=1 F kF k + λ
, l = 1 , . . . , d (1)

Yt =

∑d̃
l=1 Ãl

t−1 ◦ Z̃ l
t

B̃t−1 + λ
, ∀ t (2)

Ãlt = G ◦ Ũ lt , l = 1, . . . , d̃ (3)

B̃t = (1− η)B̃t−1 + η

d̃∑
k=1

F̃ kt ◦ F̃ kt , ∀ t (4)

The capital letters denote the Fourier transform of
the quantities. All quantities are described in Table 1.

Equation (2) is the final equation of the correlation fil-

ter. As the approach is iterative, for each new frame

the filter is updated. The numerator Ãlt in (2) is up-

dated according to (3) while the denominator B̃t in

(2) is updated according to (4). The dimensions are
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compressed using standard principal component analy-

sis (PCA) to reduce the size of DFTs considering the

compression suggested in [9] to realize a fast DSST.

Mathematically, it is performed by exploiting a tem-

plate ut = (1−η)ut+ηft. The tilde terms are obtained

by windowing the quantities with P , which is a low di-

mension subspace of the features. The compressed di-

mensions are obtained by using the eigenvalue decom-

position of the autocorrelation matrix of ut. As shown

in Algorithm 1, the compression step is achieved with

SVD and QR decomposition. This step is the train-

ing or learning step. The filter application or detec-

tion part is implemented by (2), which calculates the

correlation scores. zt is a new extracted sample from

the estimated 2D target location using HOG extrac-

tor. By taking the inverse DFT of Yt and maximizing

the correlation scores, the new target estimation is ob-

tained. This step completes the translation estimation.

The scale estimation is obtained by repeating the above

steps for scale 1-dimensional filter, using the updated

target location from translation estimation. This way,

by searching the scale in the updated location saves a

lot of computations. The algorithm performs the scal-

ing, translation, filter estimation and update process, as

described in (1), (2), (3) and (4). They involve the scale

and translation filter estimation and update equations.

As mentioned earlier, the core mathematical operations

of DSST algorithm involve DFT2, QR, SVD and HOGs.

These operations are discussed as follows.

2.1 DFT and DFT2

The synthesis and analysis equations of discrete Fourier

transform (DFT) are given respectively as;

Xk =

N−1∑
n=0

xne
− j2π

N kn & xk =
1

N

N−1∑
n=0

Xne
j2π
N kn (5)

respectively. Where Wnk
N = e−

j2π
N kn is the twiddle

factor, Xn and xn are complex numbers. The twiddle

factor can also be expressed as Wnk
N = cos( 2πn

N ) −
j. sin( 2πn

N ) by using Euler’s identity.

Xk =

N−1∑
n=0

xn

[
cos(

2πn

N
)− j. sin(

2πn

N
)

]
(6)

A straightforward implementation of N-Point DFT has

a complexity of O(N2) operations. Fast Fourier Trans-

form (FFT) is a hardware friendly algorithm which

reduces the DFT computations to O(Nlog2N), using

well-known decimation in time (DIT) and decimation

in frequency (DIF) techniques [12]. A number of hard-

ware implementations of FFT exist including parallel

Table 1 Symbols in DSST [9]

Symbol Meaning

¯ Complex conjugate
˜ Compressed dimensions
λ Regularization parameter
η, ◦ Learning rate, element-wise multiplication
F Input image extracted features
l, d Feature channel and length dimensions
G Gaussian function for CF output
Yt Correlation scores
Al, Bt Numerator and denominator of the CF
Zl Image features extracted from new location
P Projection matrix using PCA
U l Iterative compression of featuresf

Algorithm 1 FDSST algorithm [9]

Inputs: Image It, Prior target position pt−1 and scale st−1,
Translation model At−1,trans, Bt−1,trans,
Scale model At−1,scale, Bt−1,scale

Outputs: Estimated target position pt and scale st,
Updated translation model At,trans, Bt,trans,
Updated scale model At,scale, Bt,scale

1: for all frames t do
2: if t 6= 1 then
3: Translation estimation:
4: Extract zt,trans ← It at {pt−1, st−1} using HOG
5: Zt,trans ← zt,trans using DFT2 and compute

correlation scores yt,trans using (2)
6: Set pt = max{yt,trans}
7: Scale estimation:
8: Extract zt,scale ← It at {pt, st−1} using HOG
9: Zt,scale ← zt,scale using DFT2 and compute cor-

relation scores yt,scale using (2)
10: Set st = max{yt,scale}
11: end if
12: Model update:
13: Extract ft,trans ← It at pt−1 , ft,scale ← pt at st−1

using HOG extractor
14: Using SVD compute Pt,trans, calculate DFT2 of

ut,trans and ft,trans then update the translation
model At,trans, Bt,trans using (3) and (4)

15: Using QR compute Pt,scale, calculate DFT of ut,scale
and ft,scale then update scale model At,scale,
Bt,scale using (3) and (4)

16: end for

[13] and serial approaches [14]. FFT requires N = 2n

which is not fixed in this case. So, instead DFT is imple-

mented. An implementation for DFT is provided in [15],

which uses the Coordinate Rotation Digital Computer

(CORDIC) algorithm to calculate the twiddle factor.

Our approach uses precalculated twiddle factors and

thus improves performance.

The DFT2 is the two dimensional Fourier transform

applied to a matrix. To compute DFT2, first DFT is

applied along the rows of the matrix, and the result

is transposed. Then, DFT is applied along with the

columns. Finally, results are transposed and assigned to

the output. In most of the published works, the DFT2 is
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approximated by two dimensional Fast Fourier Trans-

form (FFT2). Instead, this work adopts the approach

of [16] based on modified row-column decomposition.

2.2 QR Factorization

QR factorization is the decomposition of a matrix A of

dimensions m × n into two matrices, i.e. Q matrix of

dimensions m×m and R matrix of dimensions m× n.

Q is the orthogonal matrix, while R is the upper tri-

angular matrix. The literature proposes three main ap-

proaches for QR factorization, namely, Gram-Schmidt

approach [17], Householder transformation [18] and ap-

proach based on Givens rotation [19][20]. This work

adopts the third approach, i.e. Givens rotation. The

idea is to apply Givens rotations to elements of the

lower triangle of A and turn them to zero. When all

the lower triangle elements are zeroed, matrix R is ob-

tained. Applying the same transformation to an iden-

tity matrix in parallel gives the matrix QT . The Givens

rotation matrix is of the form,

G =

[
c s

−s c

]
,

where c= a√
a2+ab

, s= b√
a2+ab

, a is the first element of

the row pair and b is the element which has to be turned

to zero below a. A systolic array-based implementation

is proposed in [20]. Our approach is similar, but we fo-

cus on resource optimization rather than performance.

We also employ row-parallel approach, which improves

performance by offering more parallelism.

2.3 SVD

SVD is the eigenvalue decomposition of a matrix A of

dimensions m × n into three matrices U , S and V of

dimensions m×m, m×n and n×n respectively. U and

V contain the left and right eigenvectors of A, while S

is a diagonal matrix containing real eigenvalues. SVD

in hardware is mostly implemented by using two-sided

Jacobi method [21]. The idea is to divide the matrix

into 2×2 small matrices. Jacobi rotations to elements of

the matrix A are applied from left and right, hence the

name two-sided Jacobi. This multiplication turns non-

diagonal elements to zero giving the matrix S. Similar

transformations to the identity matrix gives matrix U

and V. The Jacobi rotation matrix is of the form,[
c −s
s c

] [
a b

c d

] [
c s

−s c

]
=

[
a1 0

0 a2

]
,

where c=cos(θ) , s=sin(θ) and θ is given by θ =
1
2 arctan c+b

d−a . Fixed point based implementation are

given in [21,22]. Our approach is similar but we focus

on time optimization because this unit has small di-

mensions in the algorithm, so it is operated in parallel.

2.4 Histogram of Gradients (HOG)

HOG is a classifier used for target recognition. It is

constructed with the help of image gradients and ex-

tracts the features contained in image pixels. HOG is a

computationally intensive operation, and its implemen-

tation is proposed by a number of approaches [23,24,

25]. The authors of [23] provide a comparative study

of different implementations as well. The implementa-

tion in [24] utilizes the least amount of resources but

operates below 100MHz. In [25], an approach is pro-

posed which achieves a frame rate of 60 and requires

less amount of hardware resources. It avoids expensive

angle calculation by using integer multiplication and

inequality comparisons.

As a first step, the magnitude and orientation of

an image gradient are computed. The magnitude of the

gradient is assigned to suitable bins among the nine

available. This assignment is done based on the gradi-

ent orientation (0-180) and for (0-360). The window for

detection is composed of 8×8 pixels of non-overlapping

cells. Afterwards, an aggregate module is utilized for

summing the 64 pixels of each bin to create the his-

togram. Finally, they are passed to a normalization

phase. The details of the algorithm are given in [25].

3 Proposed Architectures

This section deals with the details of the architecture

of the mathematical operations described in the previ-

ous section. The flow chart is depicted in Fig. 1. The

proposed DSST algorithm has four major steps. The

translation search, i.e. the 2D position of target and

translation filter update steps involve HOG extraction

and DFT2 of 3D matrices. The scale search and scale

filter update involve HOG extraction and DFT of a 2D

matrix. SVD and QR are involved in translation filter

update and scale filter update steps respectively. The

DFT unit is the most critical block in terms of perfor-

mance because of operation on 3D 320 × 320 matrix.

Vivado HLS is used as the base tool for synthesizing

and simulation.

3.1 Discrete Fourier Transform and DFT2

The vector DFT acts as a building block for matrix

DFT, i.e. DFT2. The architectures for both are dis-

cussed as follows.
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3.1.1 DFT

Fig. 2 demonstrates the proposed architecture to com-

pute one dimensional DFT. In the first clock cycle i

(input loop counter) the sample X real [i] and X imag

[i] are received along with twiddle factors cos [i] and

sin [i]. Four multipliers and two adders/subs are re-

quired to complete the complex multiplication which

is the basic DFT block. This goes to the accumulator

(at first, the other input to the accumulator is 0 be-

cause the register is at reset). This produces real part of

complex multiplication i.e. X real [i].(cos [i]) - X imag

[i].(sine [i]). Similarly, the other output of accumula-

tor produces X real [i].(sine [i]) + X imag [i].(cos [i]).

Now, in the next clock cycles, the basic DFT receives

the inputs X [i+ 1] along with the twiddle factors. Af-

ter it performs the complex multiplication, the results

are accumulated. When the last input is processed, j

(the output loop counter which is 0 at first) assigns the

first output Y real [i], Y imag [i] via demultiplexers. In

the end, j is incremented and the register is reset. This

whole process is repeated until all the N outputs are

produced. This approach is serial as it takes N cycles

New Frame

First frame ?

Translation Search

HOG Extraction

Windowing

DFT2(3D)

Windowing & IDFT2

Scale Search

HOG Extraction

Windowing

DFT

Windowing & IDFT

Last frame ?

Translation Filter Update

HOG Extraction

SVD

Windowing

DFT2(3D) & windowing

Scale Filter Update

HOG Extraction

QR

Windowing

DFT & windowing

Final Target Location

YES

NO

YES

NO

Fig. 1 Flow chart of the DSST algorithm[9].

Flipflop

reset at i=max

Flipflop

reset at i=max

Demux

j

Y real[j]

Y real[j+1]

Demux

j

Y imag[j]

Y imag[j+1]

Basic
DFT

Basic
DFT

Basic
DFT

Basic
DFT

Basic
DFT

Basic
DFT

Basic
DFT

Basic
DFT

Accumulator Accumulator

Demuxj

Real out

Demuxj

Imaginary out

X real[i]

Cos[i]

Sine[i]

X imag[i]

X real[i]

Sine[i]

Cos[i]

X imag[i]

Basic
DFT

Accumulator

L1 adders

L2 adders

L3 adders

8 parallel DFT

Fig. 2 RTL diagram of DFT 1D unit.

to produce one output and consumes 1 input per cycle.

Using the basic blocks discussed above, now the archi-

tecture is parallelized to support fast DFT for higher

image dimensions. This parallelization is shown in the

lower part of Fig. 2. By operating eight elements in

parallel Equation (6) can be modified as;

Xk =

N/8−1∑
n=0

xn

[
cos(

2πn

N
)− j. sin(

2πn

N
)

]
+ · · ·+ xn+7[

cos(
2π(n+ 7)

N
)− j. sin(

2π(n+ 7)

N
)

]
(7)

xn is complex. Each complex multiplication i.e.

Cn = xn.
[
cos( 2πn

N )− j. sin( 2πn
N )
]

is performed by a

basic DFT block. The L1 adders add the outputs of

basic DFT in pairs of {Cn, Cn+1} , {Cn+2, Cn+3} ,
{Cn+4, Cn+5} , {Cn+6, Cn+7} . Let Mn = Cn +

Cn+1 then L2 adders add the following pairs

{{Mn,Mn+1} , {Mn+2,Mn+3}}. Finally, the L3 adders

add the Mn terms to produce 8 point DFT. Accumu-

lator sums the DFTs until N inputs are processed.

Similarly to the serial approach when the last input

is processed demultiplexers assign the output, j is in-

cremented and accumulators are reset. Thus, with an

adder tree between the basic unit and accumulator

8-parallel DFT is performed. All the DFT coefficients

are pre-computed and stored in memory. The HLS

compiler mostly handles the intermediate computation

results. However, in some cases, we instantiate and

partition the BRAMs for intermediate values so, the

elements can be processed in parallel. For this unit,

the input and output arrays are partitioned into 8

BRAMS. So, eight elements can be accessed in parallel.

The general DFT has a delay of O(N2). This architec-

ture improves it to delay = O(N
2

8 ) + pipelinestages ≈
O(N

2

8 ). The architecture is implemented for maximum
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Memory/
BRAM

Mux

rc sel

Mux

rc sel

8
Parallel
DFT

Mux

[r][c]

[c][r]

c num >= r num

Mux

[r][c]

[c][r]

c num >= r num

X real Row

X real Col

X imag Row

X imag Col

Cos

Sin

Real

Imag

Y real

Transpose Unit

Y imag

Fig. 3 RTL diagram of DFT2 unit.

N = 320. If N < 320 then a comparator (not shown

in figure for simplicity) limits the number of traverses

through the block. For improving performance, task-

level parallelism is used with the help of Vivado HLS

Dataflow pragma.

3.1.2 DFT2

The proposed DFT2 architecture is shown in Fig. 3 and

uses the row-column decomposition approach. The real

and imaginary parts are kept separate so that oper-

ations run in parallel. The 2D matrix is taken as in-

put. Rows are selected and passed to the DFT calcu-

lation blocks first, while the coefficients are precom-

puted and saved in BRAM blocks. 8-parallel unit is

used as a basic block for this unit. The output goes

to a transpose unit and afterwards to the memory. In

the next steps, relevant outputs are fed along with the

weights to 8-parallel DFT block, in order to compute

the column-wise DFT. The transpose unit has a delay

proportional to N. It is given by O(N2 −
∑N−1
i=1 i)). It

is parallelized to O(N
2

8 −
∑N

8 −1
i=1 i)). The total delay is

2M×(TDFT +TTrans)). Where M is the number of rows

of the matrix. This is nearly equal to 2M × (TDFT ). As

this unit lies in the critical path, at the cost of twice the

hardware, the maximum delay can be reduced to half

that is M × (TDFT ). It was synthesized for a maximum

size of 320×320. To save the BRAM resources, the same

input matrix is used for saving the outputs. For DFT2

(3D), DFT2 is used as a base unit. The maximum delay

will be P × (TDFT2) where P is the third dimension,

i.e. the number of 2D matrices. The maximum value of

P is 18 for fDSST. The same DFT2 unit is used with a

divisor in the accumulator before the delay element to

divide by N .

3.2 QR Factorization

The proposed DSST architecture performs the QR

factorization using the Givens Rotation Method [20].

The Vivado HLS QR factorization library [26] is used as

Magnitude
Calculator

Mux

>=

Mux
c

sel

Mux
s

sel

Matrix
to vector
multiplier

Givens Rotation Unit

Givens Matrix Generation

Matrix
to vector
multiplier

Mux

[
R a
R b

]

b=0

a

b

M

0

M

1

sel

a

b

1

0

a

b

I a

I b

[
T a
T b

]

[
M
0

]
[
Q a
Q b

]
Comparator

Divider

>=

Matrix G

Fig. 4 RTL diagram of QR factorization.

a reference unit and modified for our architecture. This

implementation is for real numbers and is shown in Fig.

4. Algorithm 2 highlights the main computational steps

of QR factorization. The QR factorization unit consists

of Givens matrix generation and rotation units. The

Givens matrix generation takes as input, two elements

from two rows of matrix A and provides the Givens

matrix as output. The input 2D matrix A and the

Givens matrix G are given by;

A =


a11 a12 a13 a14

a21 a22 a23 a14︷︸︸︷
a31 a32 a33 a34

a41︸︷︷︸ a42 a43 a44

 and G =

[
c s

−s c

]
, (8)

where c = a
M & s = b

M . Magnitude M is calculated as;

M =
√
a2 + b2 = x×

√
1 + y × y, (9)

where x = max(a, b) and y = min(a,b)
x . Lets take a = a31

and b =a41. With the help of (9) matrix G is calculated.

Equation (9) is implemented by magnitude calculation

unit shown in Fig. 5. In this unit, the maximum of the

two inputs is determined using a comparator and two

multiplexers. Afterwards the divider calculates y. In

the end, magnitude M is obtained by a combination of

adder, multiplier and square root unit. To obtain matrix

G, c and s are determined. As the magnitude appears

in the denominator, divide by zero is checked using a

comparator and a multiplexer. Matrix R is obtained by

turning the lower triangular elements of matrix A to

zero. For this purpose, the Givens rotation is applied in

the following manner,

G ·
[
a31 a41

]T
=
[
a31∗ 0

]T
(10)

The Givens rotation block is shown on the left of Fig.

5. It is simply a 2 × 2 matrix to vector multiplication.

If the second element b is already zero, then Givens ro-

tation is simply a = M and b = 0. This assignment is

implemented with multiplexers. Givens rotation unit is

accompanied by a comparator to avoid assigning wrong

values to zeroed positioned elements shown in the top

left of Fig. 5. In that case, the first element is equal
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Fig. 5 RTL diagram of magnitude calculator for QR.

to the magnitude. For complete matrix R now select a

= a21 and b =a31∗ and repeat until all the lower tri-

angular elements are turned to zero. The matrix Q is

obtained by performing the same generated rotations

to an identity matrix. A small address generation unit

is used for row selection. Row pairs are selected to be

operated in parallel. The rotations are applied to all the

columns of the selected rows. A single matrix is used

for input A and output R to reduce the number of re-

sources. The critical path is in the Givens generation

block because of the magnitude unit. This block has a

division and square root operator. The generated Ver-

ilog code can be modified at RTL level to pipeline the

architecture. Also, the number of parallel rotations im-

pact resources and performance. Resource optimization

is employed since this unit is not on the critical path.

The generation and rotation blocks are parallelized by

a factor of two and pipelined with an Initiation Interval

of 4.

Algorithm 2 QR calculation algorithm.
Inputs: Matrix: A
Outputs: Orthogonal matrix: Q , Triangular matrix: R

Givens rotation Generation:
1: for all r, c ∈ A do
2: if r > c & A [r] [c] 6= 0 then
3: for all non overlapping [ra, rb] pairs do
4: Compute magnitude M using (9)
5: Generate the matrix G using c = a

M
& s = b

M
6: end for
7: end if
8: end for

Givens rotation Application:
9: for all r, c ∈ A do

10: if r > c & A [r] [c] 6= 0 then
11: for all non overlapping [ra, rb] piars do
12: for all c ∈ [ca, cmax] do
13: Triangular matrix R computation:
14: Obtain R by applying (10) to [ra,rb] pairs
15: Orthogonal matrix Q computation:
16: Generate matrix Q by applying (10) to I
17: end for
18: end for
19: end if
20: end for

Swap
operator

SVD 2×2
Diagonal
Processor

SVD 2×2
Diagonal
Processor

Matrix A
(Input)

Diagonal Processor(DP)

Matrix 2×2
Multiplier

Matrix 2×2
Multiplier

DP vDP u

I u from
identity
matrix

I v from
identity
matrix

Right Eigen Vectors
Matrix V (Output)

Left Eigen Vectors
Matrix U (Output)

Matrix VMatrix U

Mux

DP c!=col

A s

DP s

Conjugate
DP u

Matrix 2×2
Multiplier

Mux

DP c>=col

Matrix 2×2
Multiplier

DP v

Mux

DP c!=col

Matrix 2×2
Multiplier

MuxDP c>=col
Diagonal Eigen
values Matrix S

(Output)

Matrix S

Fig. 6 RTL diagram of SVD.

3.3 SVD

This work uses the two-sided Jacobi method [21] to per-

form SVD. The Vivado HLS library [26] is adopted as a

reference unit and optimized for the target application.

This implementation is for real numbers. The imple-

mentation is shown in Fig. 6. Algorithm 3 demonstrates

the execution of SVD. The SVD unit consists of the di-

agonal processor (DP) and non-diagonal processor. The

DP takes as input the 2D matrix A, divided into N/2

2 × 2 submatrices. Matrix A is the same as Equation

(8) and Jacobi left and right matrices are given by;

u =

[
c1 s1

−s1 c1

]
and v =

[
c2 s2

−s2 c2

]
,

where c = cos(θ) and s= sin(θ). For θ we have, θ =
1
2 arctan b+c

d−a to avoid calculation of arctan consider;

tan(2θ) =
2b

(d− a)
(11)

The implementation of angle calculation is shown

in Fig. 7. A divisor depicted in the figure generates

tan(2θ). By the use of trigonometric identities, cos and

sine are derived. They are as under;

cos(θ) =
1√

1 + (tan2(θ))

sin(θ) = cos(θ). tan(θ)

tan(
θ

2
) =

(1− cos(θ))
sin(θ)

(12)

The computation of half-angle identities is shown on the

left of Fig. 7. Angle calculator is shown in the right of

Fig. 7, which consists of a tree of multiplexers to select

the correct angle based on whether the number is real,

imaginary or complex. The Jacobi matrices generation

is shown in Fig. 8. The numerator and denominator of

(11) are computed via adder and subtractor and passed

to the angle calculator unit. The Jacobi matrices are

generated by using c = cos(α ∓ β) and s = cos(α ± β)
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Fig. 7 RTL diagram of angle calculator.

identities. Where α and β are half angles calculated

previously. The identities are implemented with simple

vector multiplier. The Jacobi rotations are given by;[
c1 −s1
s1 c1

] [
a11 a12

a21 a22

] [
c2 s2

−s2 c2

]
=

[
a11 0

0 a22

]
(13)

Thus Jacobi rotations are simple matrix multiplications

and are implemented by vector multipliers in Fig. 8.

As all the building blocks are described, next is the

demonstration of how the three U , S and V matrices

are generated. As shown in Fig. 6 SVD consists of DP

and non-DP. The quantities used are defined as; A s

denotes diagonal submatrix of A, terms with DP mean

newly updated submatrix from DP unit and terms with

I indicate they are from identity matrix. DP c and

col represent 2× 2 submatrix the current iteration and

currently selected column pairs respectively. The algo-

rithm is repeated for a minimum number of iterations

to achieve convergence. Literature suggests that 6 to 10

iterations are enough for it. In our case, for a dimension

of 32, the iteration factor is 6. The iteration factor is

determined from the table given in [21].

The diagonal processor receives a 2× 2 main diago-

nal submatrix A s of matrix A. It has a swap operator

implemented with a mux. The swap operator swaps the

columns to arrange the diagonal elements in ascending

order as SVD requires it. After the swap, DP generates

the Jacobi matrices and applies the rotations. A s is

rotated by DP v first, and then it is post multiplied by

DP u. Now the non-diagonal elements of A s are turned

to zero. DP now outputs the new matrices DP s, DP u

and DP v to the non-DP. Non-DP in Fig. 6 receives 2

identity matrices U , V and matrix A. It also receives

DP u, DP s and DP v from the DP . Now there are two

subcases, current 2×2 submatrix DP c is less than cur-

rent column indices col and DP c is greater than col.

In the first case, A s is pre-rotated by Hermitian trans-

posed DP u then post-rotated by DP v. In the second

case, A s is pre-rotated by DP v then post-multiplied

by Hermitian transposed DP u. If the submatrix over-

laps with DP s, then DP s values from DP are used

Angle
Calculator

Angle
Calculator

Adder

Subtractor

Vector 2x1
Multiplier

Vector 2x1
Multiplier

Vector 2x1
Multiplier

Vector 2x1
Multiplier

Vector 2x1
Multiplier

Vector 2x1
Multiplier

Vector 2x1
Multiplier

Vector 2x1
Multiplier

Vector 2x1
Multiplier

Vector 2x1
Multiplier

d a b c c b a dJacobi Matrix
Generation

cos α cos β sin α sin β

c1 s1 c2 s2

Matrix U Matrix VMatrix A

V
rotation

U
rotation

Diag 1 Diag 2

SVD 2×2 diagonal processor
Jacobi Matrix Rotation

Diagonalized Matrix S

Fig. 8 RTL diagram of SVD 2× 2 unit.

otherwise from matrix A. This process is repeated until

the matrix A is diagonalized. This diagonalized matrix

is the matrix S containing the eigenvalues. Matrix U

(left eigenvectors) and V (right eigenvectors) are ob-

tained by applying the same DP u and DP v rotations

to identity matrices I u and I v respectively.

A single matrix is used for input A and output U to

reduce the number of resources. The critical path is in

Algorithm 3 SVD algorithm.
Inputs: Matrix: A
Outputs: Diagonalized eigen values matrix: S

Left and right eigen vectors matrices: U and V
1: repeat
2: for all c ∈ A do
3: Diagonal Processor:
4: for all 2× 2 DP c ∈ [0, columns/2] do
5: if cdiag1 < cdiag2 then
6: Swap the columns.
7: end if
8: Jacobi matrices generation:
9: Compute half angles cosα, cosβ & sinα, sinβ us-

ing (11) and (12)
10: Generate the matrix DP u and DP v by using c

= cosα∓ β & s =sinα± β identities
11: Jacobi two sided rotation:
12: Matrix S diagonal is computed by applying the

Jacobi rotations on A using (13)
13: end for
14: Non Diagonal Processor:
15: for all 2× 2 DP c ∈ [0, columns/2] do
16: Jacobi rotations for matrix S:
17: if DPc < col then
18: Pre-rotate A by Hermitian DP u & post-rotate

by DP u
19: end if
20: if DPc > col then
21: Pre-rotate A by DP v & post-rotate by Hermi-

tian DP u
22: end if
23: Jacobi rotations for matrices U and V:
24: For matrix U rotate identity matrix I u by DP u
25: For matrix V rotate identity matrix I u by DP v
26: end for
27: end for
28: until minimum number of iterations to converge
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the DP block because of the SVD 2× 2 unit, which has

the angle calculator. The generated Verilog code can be

modified at the RTL level to pipeline the architecture

as the critical path is too long. At the cost of resources,

frequency and latency optimization is employed. The 2

generation and rotation blocks are used in parallel and

pipelined with the initiation interval of 8.

In summary, initially, Jacobi’s left and right rota-

tions are generated. They are applied to original ma-

trix A to obtain S. Left rotations on identity matrix

produce Matrix U while the right rotations produce

matrix V T . But this approach can only be applied to

Symmetric matrices. If the matrix is not symmetric,

then a further step is needed to symmetrize the ma-

trix. The symmetrization can be done with the help of

Givens rotations.

3.4 Histogram of Gradients HOG

The architecture suggested relies on the implementa-

tion provided by the authors of [25]. The 2D grayscale

image is taken as input. Gradients px and py are calcu-

lated for each pixel in both x and y directions respec-

tively using two subtractors. The gradient magnitude

and direction are given by;

M =
√
p2
x + p2

y tan(θ) =
py
px

The angle (0-180) is used to assign a gradient magni-

tude to 9 different bins [24]. The histogram is built from

these bins. To save resources angle calculation, i.e. the

orientation of the gradients is computed using integer

multiplications instead of division. This improvement
is achieved by performing angle calculation and bin as-

signments together. If the angle lies between any one of

the nine available slots, then that gradient magnitude

is assigned to the corresponding bin. As demonstrated

by authors of [25], the gradient magnitude is assigned

to bin one if the following inequality holds.

0 ≤ py/px ≤ tan(20) → 0 ≤ py ≤ px tan(20)

This step simply involves a multiplication of integer

constant to satisfy the inequality. This step helps save

resources because it avoids a calculation of tan(θ),

which involves divisions. Based on the orientation, the

gradients are assigned to 9 different bins. They are the

contrast insensitive bins. Afterwards, they are aggre-

gated for smoothening among all bins. At last, they

are normalized by using L1-norm. As compared to the

L2-norm, L1-norm avoids squaring. Also, instead of di-

viding the reciprocal is multiplied. This improvement

further saves hardware resources without sacrificing ac-

curacy too much. To obtain Felzenszwalb’s HOG two

extra steps need to be performed. First bin assignment

step is performed again. This time the gradients are as-

signed to 18 different bins based on orientation (0-360).

They are the contrast sensitive bins. These 18 bins from

each block are averaged together. Also the previously

calculated 9 bins are averaged for each block. For 4

blocks, the 9 normalized bin elements are also averaged.

These 18 directional, 9 non-directional and 4 normal-

ization bins form the 31 third dimensional features of

fHOG. After this step, the output is assigned. The im-

plementation diagram is demonstrated in [25].

4 Implementation Results and Discussion

The datapath of the proposed DSST system is speci-

fied using the Vivado HLS tool. The prototyping is per-

formed on Zedboard with Xilinx Zynq xc7z020clg484-

1 System-on-Chip. The block-wise implementation re-

sults are discussed as follows.

4.1 Discrete Fourier Transform

DFT 1D has maximum size N=320. For DFT, the

results are compared with [15]. Vivado HLS post-

synthesis timing and resources results, referred to as

HLS, are shown in Tables 2,3 and 4. HLS timing results

in Table 2 outperform the one in [15] by factor of 92%.

This improvement is because of using precalculated

twiddle factors. Also, in contrast to the implementa-

tion in [15], our implementation is extensively unrolled.

Two different implementations are provided here, serial

S HLS and parallel P HLS. Resources in Table 3 indi-

cate that our serial DFT uses less LUTs than the one

in [15] but uses twice the DSP48E units. The higher

number of resources is because of separate hardware for

imaginary and real parts. Also, for 8 parallel DFT our

resource consumption is much higher than [15]. The

higher resource consumption is justifiable because op-

timization is done for performance in the case of higher

dimensions. The maximum operating frequency for 8

parallel DFT is 112MHz while [15] operates at 50MHz.

The frequency can be further improved by pipelining

the Verilog code generated at the RTL level. It cannot

be improved in Vivado HLS as the pipeline commands

unroll the architecture in the scope available. So only

inner loops are pipelined. The simulation results were

compared against MATLAB generated golden matri-

ces. The relative percentage error is computed by,

E = (RMATLAB−RHLS)
RMATLAB

· 100,

where E is the error. The golden matrices were gener-

ated by using intermediate values of the algorithm at
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Table 2 Timing results for the FPGA based DFT in us.

N Cycles Cycles Cycles Time Time Time
[15] S HLS S HLS [15] P HLS P HLS

10 24179 260 247 484 2.2 2.4
12 28999 358 342 580 3.3 3.32
20 96509 910 883 1930 7.7 8.6

Table 3 Area results for the DFT implementation in FPGA.

N LUT LUT LUT MUL DSP48E DSP48E
[15] S HLS S HLS [15] P HLS P HLS

10 616 395 3702 4 8 32
12 648 421 3710 4 8 32
20 776 460 3823 4 8 32

Table 4 AREA and TIME results of DFT and DFT2.

N DFT type Time (ms) LUT DSP

320 DFT 0.475 1722 32
320 × 320 DFT2 273 11352 32
320 × 320 DFT2 (2 parallel) 170 14934 64

the input of each block. This is then applied to HLS

based units. Afterward, the outputs of both are com-

pared. The average error values, in this case, were 6.52

and 6.9 for real and imaginary matrices, respectively.

This is because MATLAB uses double-precision values.

Our results are still approximate enough because dou-

ble precision in hardware will consume four times more

resources. Also, the latency will be much slower. DFT2

is implemented for maximum dimensions of 320× 320.

The results for DFT and DFT2 are reported in Table

4. It has a maximum frequency of 112MHz.

4.2 QR Factorization

This unit has the maximum dimensions of 800 × 17.

For QR, the results are compared with [20] where im-

plementation is for a 4 × 4 matrix. QR [20] is fully

unrolled and uses fixed-point iterations while the ap-

proach is based on floating-point. The comparison can

be made from the 32-bit fixed-point version. A Compar-

ison of the timing results from Table 5 indicates that

HLS based approach takes 4 times more clock cycles

than the one in [20]. But HLS based area results are

significantly better. This approach takes 2.3 times less

DSP48E resources as this is not the critical block, so re-

source optimization was our target. The operating fre-

quency is almost similar to the non-pipelined version.

Our approach is generic while the one in [20] is a fixed

size. The worst-case delay for an input of size 800× 17

is 337us for QR economy. At the same time, it con-

sumes 26 DSP48Es resources. The maximum frequency

Table 5 TIME and area for FPGA based 4× 4 QR.

Architecture F (MHz) Cycles DSP FF LUT

Mult A [20] 117.1 116 48 10844 11337
Mult B [20] 377.6 140 48 11520 11225
HLS 115.9 467 21 6054 8824

Table 6 TIME results for SVD implementation in FPGA.

N Time[22] (us) Time[21] (us) Time HLS (us)

4 × 4 - 12.1 35
10 × 10 3570 1001 207
20 × 20 4280 12100 1135
30 × 30 12550 - 3445
40 × 40 26860 - 7799
50 × 50 - 69500 14872

Table 7 AREA results for SVD implementation in FPGA.

Architecture 4× 4 LUT BRAM DSP48E

Implementation [22] 5283 8 12
Implementation [21] 1504 3 16
HLS 10110 14 30

is 116MHz. The error is calculated using the same pro-

cedure as in section 4.1. The average error value is 0.034

for matrix Q as only matrix Q is needed for the DSST

algorithm. Our results are approximate enough because

double precision used by MATLAB in hardware will

consume four times more resources.

4.3 SVD

This unit is implemented for maximum dimensions of

32 × 32. For SVD, the results are compared with [21,

22]. The results are compared for low values of N with

[21] and for higher values with [22]. Authors of [21,

22] use fixed-point iterations while we have a floating-

point implementation. Comparison of the timing re-

sults from Table 6 indicates HLS based approach per-

forms better than both implementations for all dimen-

sions except for N=4 with [21]. Timing is improved by

nearly a factor of 3.7 and 4.8 as compared to [22] and

[21] respectively. But HLS based area consumption is

2 times higher, as shown in Table 7. The reason being

our angle calculation unit uses division and the square

root of floating-point numbers, while [21,22] uses the

CORDIC algorithm for it. The worst-case delay for an

input of size 32 × 32 is 4ms. At the same time, it con-

sumes 30 DSP48Es resources. The maximum frequency

is 108MHz. The error is calculated similarly as in sec-

tion 4.1. The average error value is 7.156 for matrix U.

As only matrix U is needed for the DSST algorithm.

Our results are approximate enough because double
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Table 8 Area, fps and power results of proposed architec-
ture for DSST algorithm.

Unit Bram DSP FF LUT FPS P(mW)

DFT 0 32 4419 6305 6153 258
DFT2 192 64 11922 18343 173 662
QR 33 26 6662 5837 2948 238
SVD 16 30 8294 10808 248 358
HOG1 7 12 3642 3924 60 244
Misc 0 8 591 1545 4392 156

Used 248 172 35530 46762 - 1916
(%) (88.6) (78.2) (33.4) (87.9) - -

Total 280 220 106400 53200 - -

precision used by MATLAB in hardware will consume

more resources. Also, the latency will be higher.

4.4 Histogram of Gradients HOG

The maximum dimensions of this unit are 320 × 240.

The results of [25] are reported here. The maximum

operating frequency is 270MHz. 60fps for an image size

of 1920× 1080. It consumes only 12 DSP blocks.

4.5 Overall Resources and Speed

Table 8 shows the maximum resources used by the units

in terms of DSP48E, BRAM, FF and LUTs. Also, the

maximum power for each unit is displayed. Power is

reported by using power reports of post place-and-route

from VIVADO HLS. The values are for the maximum

dimensions of each unit. The speed/ frames per second

(fps) is calculated for each unit separately. For each

block, an average fps is considered by using a range of

sizes as input. The fps is calculated as;

fps = Fmax
Cycles ,

where cycles is the number of clock cycles required

to process one frame. Table 8 shows the mean fps of

each unit. As for the whole architecture, there are four

stages, namely, Scale Search (SS), Scale Filter (SF),

Translation Search (TS), and Translation Filter (TF).

Table 9 shows the mean fps of each stage.Total fps for

a stage is computed by adding reciprocal fps of units

involved in the corresponding stage. The critical stages

are the TS and TF stages, as they involve DFT2 units.

By using 2-parallel architecture for DFT2, the fps is

improved. This is shown as TS2 and TF2 in Table 9.

The most critical stage (stage with the minimum fps)

1The resources and fps reported are from [25]. The power
is calculated using the implementation in https://github.

com/nikkatsa7/HOG_Zedboard.git

Table 9 FPS results for proposed DSST architecture for
240 × 320 image.

Unit SS SF TS TF TS2 TF2

HOG 60 60 60 60 60 60
DFT 6153 6153 - - - -
IDFT2 - - 29.9 - 59.8 -
DFT3 - - 86.52 43.26 173 86.52
SVD - - - 248 - 248
QR - 1474 - - - -
Misc 4392 4392 4392 4392 4392 4392

Total 58.63 56.38 16.16 22.71 25.38 30.78

Table 10 Comparison against other implementations.

Algorithm Platform Power FPS

DSST [9] Intel Xeon 2 core CPU - 25.4
fDSST [9] 2.66GHz 16GB RAM - 54.3

RPCF [27] Xilinx Soc Zynq dual core - 39.3
Cortex A9 + Artix7 FPGA

RADSST [28] Intel i7 6700k CPU 64GB - 20

MOSSE[29] Zynq US+ MPSoc (4k) 8.84W 60

VDSP[30] Vision DSP 4GB RAM - 165

HLS Zync Zedboard 1.92W 25.4

dictates the mean fps of the whole architecture. Thus,

for an image size of 320 × 240, it can fit in Zync Zed

board with a frame rate of 25.38fps. The maximum

frequency is 108MHz. Increasing the image size in the

same FPGA would decrease fps. If frame size doubles,

the fps is lowered by a factor of 1.5. With a different

FPGA, the same fps can be achieved at the cost of

higher resources. For the input and output images

(hls::Mat) from HLS is used. They are transformed into

an 8-bit integer matrix for processing.

Table 10 shows the comparison of our whole HLS ar-

chitecture against other tracker implementations. Our

frame rate is equal to the original DSST [9], but it is

less than the fDSST tracker. In terms of power HLS

based solution is much better as the fDSST runs on

Xeon CPU and uses more resources. Another correla-

tion filter-based tracker [27] reported is for IoT appli-

cations and is implemented for edge devices. It relies

on the server for computations, which helps it speed

up then our HLS based approach. Again in terms of

power our solution is much better. The authors of Ro-

tation Aware DSST tracker [28] use DSST but also in-

tegrate rotation awareness for accurate scale estima-

tion. Our solution dominates both in terms of power

and speed the RADSST [28]. MOSSE [29] is not DSST

based tracker but relies on programmable logic. It has

a higher speed at 4K resolution, but it is reported to

compare power. Again for power HLS solution is bet-

https://github.com/nikkatsa7/HOG_Zedboard.git
https://github.com/nikkatsa7/HOG_Zedboard.git
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ter. The best fps is of Moving Target Tracker MTT[30]

which uses SIMD based DSP platform. It also uses 4GB

of RAM. So in terms of power, resources and portability

our solution is better. In comparison to these trackers,

HLS based solution consumes less power. The speed is

comparable to some of the trackers, but the fewer re-

sources make it feasible to operate on the field.

5 Conclusions

In this paper, the RTL level implementation of the ma-

jor blocks of Discriminative Scale Space Tracker(DSST)

[9] is presented. The implementation is given in terms

of the major mathematical operations involved includ-

ing SVD, QR, DFT2 and HOG extractor. DFT is im-

plemented by 8-parallel architecture; this is the base

for DFT2 unit. This approach improves the timing by

92% with increased resources. For QR, the resource

consumption is improved by a factor of 2.3 compared

to [20]. For SVD, the timing is improved by a factor

of nearly 3.8 compared to [22]. For an image size of

320 × 240 it is able to fit in Zync Zed board with a

mean frame rate of 25.38fps, thus can be operated as a

standalone unit. Future research can be performed at

further optimizing the operations involved. The effort

can also be made to integrate the whole algorithm im-

plementation and interface with a real camera to test it

on the field. Finally, the overall accuracy can be com-

pared to the databases available.
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