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Abstract—Speed monitors provide on-chip measurements of
the the performance of integrated circuits. In recent years, they
have been extensively used to predict Fmax of microcontrollers for
speed binning and performance screening during production test.
However, while the use of machine learning is getting increasingly
popular, the models may become significantly inaccurate if not
trained on the appropriate devices. Previous research has demon-
strated how to predict performance from speed-monitor data
using corner-lot wafers. We show how to extend this approach
to select the best corner-lot wafers to label when preparing the
training set, thus significantly reducing the time and cost required
for the process.

Index Terms—Performance Screening, Fmax, Speed Monitors,
Machine Learning, Active Learning

I. INTRODUCTION

Microcontrollers (MCUs) are important components for
many products, including many safety-critical products such
as automotive and aerospace electronics. Manufacturers must
assure their customers that the delivered devices can fulfill
the specifications of the datasheet. To meet dependability
standards, MCUs undergo several different tests; and one of
those tests is performance screening. The performance Fmax

is the maximal frequency at which the device can correctly
execute all its tasks. The desired level of confidence for Fmax

may vary, and devices employed in safety-critical applications
require much higher effort in performance screening than
devices for the low-cost consumer market.

Several different approaches exist to identify the Fmax of
a circuit; the most common are based on structural patterns
(e.g., for transition delay testing or path delay testing), func-
tional patterns, and speed monitors [1]–[5]. To implement
speed monitors, different kinds of ring oscillators are inserted
on-chip at different locations to catch various performance
variations [6], [7]. Prediction algorithms can be used to
characterize performance-related physical parameters of the
chip using speed monitors; they can be based on simple
data analysis (e.g., correlations between two quantities) or
on more complex machine learning (ML), where algorithms
are fed with multiple “features” [3], [4], [7], [8]. A model is
trained on labeled devices, that is, devices with known Fmax,
and it is later used to predict the Fmax of new, unlabeled
devices. Since the effects of manufacturing defects may not be
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observable using speed monitors, different methods to identify
such outliers, or additional features, may be required [9]–[11].

Wafer-specific relations between Fmax and features are
known to exist [12]. Thus, if only chips from a single wafer
— or from very similar wafers — are used for the initial
performance characterization, there is a significant risk that
the model will fail on new data. The term “dataset shift”
[13]–[15] is sometimes used when the joint distribution of
inputs and outputs differs between training and test, while in
biological applications these phenomena may be referred to
as “batch effect” [16]. Moreover, the effects of manufacturing
defects are not easily observable using speed monitors and
negatively influence the prediction [3], [8]; in this case,
additional features are needed, or methods to identify outliers
[9]–[11].

In this paper, we propose a methodology to identify the most
useful wafers for model characterization, by observing only
the speed-monitor values. Considering how expensive it is to
collect functional Fmax values for labeling, our methodology
can impact significantly on the cost of IC production. The
key contribution of this work is a methodology based on
unsupervised active learning able to select an effective dataset
for training the initial ML models; in our experiments, it
reduced by more than one half the size of training.

The rest of the paper is organized as follows. Section II
presents related work. Section III presents the generalization
problem in ML and active learning as a means to improve it.
The proposed methodology is presented in Section IV, and the
results gathered in our experiments are presented in Section V.
Section VI concludes the paper.

II. RELATED WORK

The correlation between structural and functional Fmax was
investigated in several works. An approach using complex ML
algorithms was first presented in [3], while previous works
were only considering single parameters [1], [2]. The work
identified, among various algorithms applied on a dataset of
60 devices, the Gaussian Process [17] as the most effective
way to learn from different sets of features (100 flip-flops,
100 transition fault patterns, and 112 testable paths). The work
also showed that outliers negatively influence the prediction,
and should be identified and removed from the training set; a
conformity check was implemented for this purpose.



In a related work, the same research group compared two
lots of devices of the same product but with different packages,
composed of 79 and 74 devices, respectively [4]. According to
authors, the models trained on one lot were not able to predict
devices belonging to the other lot, and this might be caused
by the use of different packages or by the limited number of
samples in the dataset.

In a more recent work, a different research group correlated
the functional Fmax with low-cost embedded sensors to accu-
rately measure the slack of a selected number of paths [7].
The method was tested on 300 OpenSPARCT2 SoC devices
equipped with 25 sensors, using transition level simulations of
two process variation scenarios with both features and labels
coming from the wafer sort.

In [8], we correlated the values of 27 speed monitors coming
from wafer sort to functional Fmax measured on more than
4,000 packaged devices extracted from 26 corner-lot wafers;
training devices were randomly selected among the available
ones.

III. (LACK OF) GENERALIZABILITY IN ML MODELS

The term generalizability is broadly used to describe a
model’s ability to make accurate predictions on new, unseen
data. Attaining it is the ultimate ambition of ML scholars, but
it is not always fulfilled.

The best known cause of a lack of generalizability is overfit-
ting: when a model instead of learning is simply memorizing
the training set, the error on new data will be significantly
higher than on the training data [18]. Another cause of the
lack of generalizability is dataset shift: when new data differ
systematically from the one used during training, performance
are naturally impaired.

Dealing with the generalization problem requires analyzing
new data and understanding when they are not modeled
properly. And, if the problem can be attributed to dataset
shift, selecting how to re-train the model. In the following, we
describe the concept of dataset shift, which strongly affects the
generalization in our models, and active learning that allows
us to cope with this problem.

A. Dataset shift

The hypothesis of independent and identically distributed
data (IID) often does not hold in a real-world application, and
this can lead to sub-optimal models. Dataset shift manifests
itself in different forms: the first is the covariate shift, when
the features considered in the problem, i.e., the independent
variables, have different distributions in the test and training
set: ptrain(x) 6= ptest(x). The second form is the prior
probability shift, when the dependent variable distributions
(i.e., the label distributions) between test and training set are
different: ptrain(x|y) = ptest(x|y) and ptrain(y) 6= ptest(y).

The most common causes are bias in samples selection,
that can also occur in cross-validation split schemes without
noticing [13], and non-stationary environments that occur
when training and test sets environments are different due
to temporal or spatial change [14]. Technological processes,

Fig. 1. PCA-based two-dimensional representation of the corner-lot devices
used for the initial model’s characterization, colored by wafer.

such as those we are dealing with, consist of several steps
carried out in different environments and influenced by time-
dependent parameters: they are therefore non-stationary envi-
ronments, where the data measurements depend on the time
at which the measurement is done. This may lead to time-
dependent distributions of the training data causing the dataset
shift: time drift is, therefore, to be taken into account during
the construction of a model.

In the current application, the dataset shift cause can be the
fact that we have samples from different well-distinguished
wafers, and some of them can be underrepresented in a
classical random train-test split; new clusters are likely to
appear in different positions during production. Fig. 1 shows
an example of this phenomenon: devices belonging to the same
wafer are plot using the same color.

B. Active learning

In some domains, annotated data is hard and expensive to
obtain, such as the cost of the process or the time needed.
Active learning (AL) aims at easing the data collection process
by automatically deciding which instances an annotator should
label to train an algorithm as quickly and effectively as
possible. The general settings for an AL framework provide a
model trained on a small amount of data and the learning of
a function that decides which data points must be inserted in
the training set in order to improve the model score.

AL is based on the fact that an ML model trained with a
small amount of carefully-chosen data can perform as well
as the same model trained with a large random dataset [19],
if not better. AL can be applied to classical well-known ma-
chine learning models such as SVM to significantly improve
classification accuracy with a small amount of labeled data.

Applications such as Remote Sensing Image Classification
[20], Text Classification [21], Optical Networks [22] and
certainly ours too, need a representative dataset to learn from:
training sets created with random labeling can lead to noisy
or redundant data, slowing down the learning process. Several
methods exist and can be used to select the best samples
that have to be labeled, in order to improve classification
score. Active Learning performs as well as Domain Adaptation
Transfer Learning approaches [22], and can be an alternative
to this technique if obtaining samples from other sources is
expensive.



IV. PROPOSED METHODOLOGY

The method we proposed in [8] is used as the baseline for
the active learning approach. The method was based on state-
of-the-art regression algorithms, trained using speed-monitor
values as features, and performing the fine-tuning of the
models’ hyper-parameters using cross-validation. All corner-
lot wafers were used to build the model, in a random train-
test split; no wafer-level information was taken into account
by the method. The root mean squared error (RMSE) of the
predictions using the models can be used as the reference error.

In the proposed methodology, wafer-level information is
derived and used in an active learning flow. Such an aggregate
information is given by the unsupervised strategy used to select
the target wafer to include in the training set — we will refer to
it as the selection strategy [23] of the active learning. Selection
strategies compare samples in the current training set with
samples in new wafers. Three strategies are analyzed in this
work: Euclidean distance (ED), Local Outlier Factor (LOF),
and Query by Committee (QBC).

The Euclidean distance d(W,wn) between wafers in a
training set W and a new wafer wn /∈ W is computed as

d(W,wn) = min
∀i∈W

(cwi − cwn) (1)

where cwi is the centroid of a generic wafer wi, calculated
as the mean vector in wi. ED values are computed on the
normalized features. Given a set of new wafers, the one with
the highest ED is selected.

The Local Outlier Factor algorithm [24] measures the local
deviation of density of a given sample with respect to its
neighbors. It is “local” in that the anomaly score depends
on how isolated the object is with respect to the surrounding
neighborhood. By comparing the local density of a sample to
the local densities of its neighbors, one can identify samples
that have a substantially lower density than their neighbors. In
our case, the anomaly score LOF(wn) is computed as the mean
value of all anomaly scores LOF(xi ∈ wn) of the samples in
the new wafer wn. Outliers have higher LOF values, thus the
wafer with the highest LOF is selected.

The Query-by-Committee method [25] constructs a “com-
mittee” of (two or more) models based on the statistics of
the current training set. The QBC measures the degree of
disagreement among the committee members. In our problem,
unlabeled wafers are processed by each of the members and
the wafer having the maximum variance in predictions, that
is the wafer on which they most disagree, is selected. In the
experimental results, we used Decision Tree Regressor, rbf-
based Support Vector Regression (SVR), Gaussian Process
Regressor, and Polynomial Ridge as the committee members.

Experimental analyses based on the Pearson correlation or
the Spearman correlation show that the proposed selection
strategies correlate with the error computed using the Fmax

regression model on the labeled devices.
The proposed flow can be summarized as follows:
1) Given a set of labeled wafers WL and a set of unlabeled

wafers WU , we identify candidate wafers by means of a

selection strategy model and a threshold τ ; for example,
using LOF, we identify the set WN ⊆ WU where
each wafer is selected as follows: wU

i ∈ WN ⇐⇒
LOF (wU

i ) > τ
2) If the set of candidate wafers WN is not empty, the

active learning strategy can be applied: wafers in WN

are ranked according to the selection strategy (LOF in
the example). One wafer at a time is extracted from WN

according to the ranking and added to a set of selected
wafers WS . The selection strategy model is retrained
using WL ∪WS and the remaining wafers in WN are
checked again with the new model: wafers below the
threshold are removed from WN . The extraction/retrain
process continues until WN is empty.

3) Wafers in WS are labeled and a new Fmax model is
developed.

One corner-lot wafer has to be included in the initial
dataset of the selection strategy model, e.g., the wafer in the
production corner-lot.

V. EXPERIMENTAL EVALUATION

A. Experimental setup

The proposed methodology was applied to a dataset of 3,616
labeled samples from 26 corner-lot wafers; for each wafer,
the number of devices labeled ranged from 46 to 204, with
an average of 139. Each sample is described by 27 features,
one for each speed monitor. Labels related to functional Fmax

were collected following the process described in [8], as well
as outliers were removed from each wafer as described there.

B. Model selection for active learning

We compared three regression algorithms – Ridge regres-
sion using polynomial features, Support Vector Regression
(SVR), and Random Forest (RF) – to study the generalization
problem in our domain. We used a random approach where
Fmax models were trained using a subset of the available
wafers. At each step, the models are tested on the remaining
wafers. Fig 2 shows that the error – normalized RMSE
(nRMSE) in this case – is high in the first steps and progres-
sively decreases when adding other wafers. In the last step,
SVR and RF are slightly better than Ridge; however, Ridge
presents a better generalization in the intermediate steps and
the lowest area under the curve, showing how more complex
models tend to do overfitting if the amount of data is not
sufficient. We used Ridge in the remaining experiments.

We evaluated the three proposed selection strategies. The
iterative process used to compare regression algorithms was
repeated using active learning with ED, LOF, and QBC,
instead of random selection, using each of the 26 wafers in the
initial step. The results are reported in Table I. As expected,
the models converge way faster than random; ED is the worst
strategy, but the fastest to implement, while LOF and QBC
have similar profiles. According to the results, we can obtain
good accuracy (below 2% of nRMSE) with 13 wafers using
a random approach, 11 using ED, 8 using QBC, and only 6



Fig. 2. nRMSE obtained with different regression algorithms, using a random
strategy. The curves represent the mean value of the errors depending on all
possible initial wafer choices.

TABLE I
POLYNOMIAL RIDGE REGRESSION MEAN AND VARIANCE NRMSE

DURING ACTIVE LEARNING USING ALL POSSIBLE INITIAL WAFER CHOICES

Step nRMSE mean [%] nRMSE variance [%]

Rnd ED LOF QBC Rnd ED LOF QBC

1 10.76 10.76 10.76 10.76 3.29 3.29 3.29 3.29
2 7.95 4.84 4.95 4.92 2.96 2.68 2.71 2.54
3 7.15 3.39 2.80 2.83 2.98 0.70 0.57 0.63
4 6.31 2.56 2.26 2.58 2.62 0.54 0.23 0.46
5 6.33 3.09 2.12 2.41 2.58 0.97 0.16 0.53
6 5.95 2.41 1.99 2.15 2.45 0.47 0.16 0.21
7 5.65 2.26 1.93 2.02 2.25 0.28 0.09 0.13
8 5.09 2.11 1.89 1.92 1.85 0.27 0.06 0.08
9 3.66 1.99 1.89 1.91 1.26 0.16 0.07 0.09
10 3.68 2.01 1.87 1.87 1.31 0.11 0.06 0.08
11 2.77 1.99 1.83 1.84 0.48 0.09 0.05 0.06
12 2.16 1.94 1.82 1.82 0.11 0.07 0.06 0.06
13 1.98 1.89 1.80 1.78 0.06 0.05 0.05 0.03
...
26 1.70 1.70 1.70 1.70 0.00 0.00 0.00 0.00

wafers using LOF, which is also the metric with the lowest
nRMSE variance.

The results obtained on the Fmax models at each step of
the active learning were correlated to the unsupervised metric
and reported in Table II. The four metrics we used – mutual
information, Pearson, Spearman, and Kendall [26] – show very
strong correlations between nRMSE and each of ED, LOF, and
QBC; also in this case, LOF seems to be the best model to
use for the active learning. A graphical view of the correlation
can be observed in Fig. 3 (mean values are reported).

TABLE II
CORRELATION BETWEEN SELECTION STRATEGIES AND NRMSE ON THE

Fmax RIDGE REGRESSION MODELS WITH POLYNOMIAL FEATURES

Selection
strategy

Mutual
information

Pearson
correlation

Spearman
correlation

Kendall
correlation

Max. ED 0.928 0.708 0.927 0.782
Max. LOF 0.889 0.828 0.967 0.849
Max. QBC 0.898 0.526 0.973 0.854

Fig. 3. Correlation between unsupervised scores (EQ, LOF, QBC) for active
learning and nRMSE using polynomial Ridge regression.

VI. CONCLUSIONS

We presented an innovate work based on active learning for
the performance screening of microcontrollers. Three unsuper-
vised algorithms that highly correlate with the accuracy on the
Fmax regression models used for production screening were
successfully tested on a set of corner-lot wafers. Using the
proposed unsupervised algorithms, we observed a significant
speedup in the development of the Fmax models, given an
accurate selection of the most promising devices for the
training. In our experiments, we shown that a comparable
accuracy can be reached with just a fraction of the dataset.
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