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Abstract: We investigate the generalization capabilities of neural network–based Ra-
man amplifier models. The new proposed model architecture, including fiber parameters
as inputs, can predict Raman gains of fiber types unseen during training, unlike previous
fiber–specific models. © 2021 The Author(s)

1. Introduction

Future autonomous optical networks will require reliable quality of transmission (QoT) and optical performance
monitoring (OPM) estimators [1]. Optical amplifiers are the main source of noise in optical communications
systems, with different gain and noise characteristics along the frequency. Therefore, QoT/OPM estimators should
incorporate accurate and fast amplifier models. Highly–accurate machine learning (ML)–based optical amplifier
models have been recently proposed in the literature for erbium-doped fiber amplifiers (EDFAs) [2,3] and Raman
amplifiers (RAs) [4, 5]. These models allows effective signal power optimization [6, 7] and QoT estimation [8].

Unlike EDFAs, RAs can provide gain in a variety of optical fibers and frequency bands, and are thereby highly
relevant for the next generation of ultra-wideband optical communication systems. Their achievable gain is directly
linked to the optical fiber [9], therefore the ML–based RA models proposed so far are specific for a given optical
fiber type. This choice would require countless models, one for each considered fiber [10], and massive dataset
to train them. Therefore, generalizable RA models that can predict RA performance for fiber types unseen during
training are critically needed.

In this paper, first we confirm the poor generalization capabilities of the artificial neural network (NN)–based
RA models presented in [10]: trying to predict the gain profile of a fiber different from the one used to train
the model results in a poor prediction accuracy. We therefore propose a new NN model that include the fiber
parameters as additional inputs and consider a training dataset with samples from multiple fiber types. The chosen
fiber parameters define the RA gain and are easily-accessible from the fiber data–sheets, keeping the approach
practical. Performance-wise, this refined model yields the same accuracy as a fiber-specific model, i.e., when the
fiber–under–test (FUT) is part of the training. Furthermore, good generalization is achieved for a FUT unseen
during training, as long as such FUT has parameters within the range of the fibers used to train the model.

2. Experimental setup and the general RA models

Fig.1(a) shows the experimental setup used to generate the datasets to train the NN models. An amplified spon-
taneous emission (ASE) source is used to generate the C–band signal. The RA consists of an optical FUT and a
commercial Raman pump module combining four lasers with fixed wavelengths and adjustable powers (shown
in Fig.1(a)). Pumps and signals are combined through a wavelength division multiplexer (WDM) in a counter-
propagating scheme. At the RA output, an optical spectrum analyzer (OSA) captures the power spectra to calculate
the on-off gain profiles.

A different dataset with 3000 examples is generated for each FUT case in Fig.1(b). Each example in the dataset
consists of a pump power configuration, with values drawn from uniform distributions, and its corresponding
measured RA on–off gain. The gain profile is down–sampled to 40 channels at 100-GHz (ITU-T grid). The datasets
are divided into model selection/training (50%) and test (50%).

A total of 13 NN models are built: 6 specific models, independently trained for each FUT case, and 7 general
models, trained with a combined dataset considering different fiber cases. Two general models are considered:
[All], trained considering all fibers cases in Fig.1(b), and [All–one out], trained considering all fiber cases, except
one. The NN architecture is illustrated in Fig.1(c). The specific models consider only P1−4 as the NN input. The
general models, on the other hand, are applied also to learn how the fiber characteristics affect the RA gain profiles.
Therefore, some relevant fiber parameters are considered as additional inputs. They are the fiber length (L), the
signal (αs) and pump (αp) attenuation coefficients, and the effective area (Ae f f ) (values shown in Fig.1(b)). To
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Fig. 1. (a) Raman amplifier experimental setup; (b) evaluated optical fiber cases and their corre-
sponding parameters in terms of length (L), signal (αs) and pump (αp) attenuation coefficients, and
effective area (Ae f f ) (minimum/maximum values are bold); and (c) neural network architecture.

keep the approach practical, these parameters were chosen due to their importance on determining the gain profiles
and also because they are commonly provided by the fiber’s suppliers on data–sheets. The Raman gain coefficient
requires additional and more complex characterization, and it is, therefore, not considered in this work.

Model selection and training are performed using 10-fold cross validation and extreme learning machine [11],
respectively, following the same procedure described in [12]. The parameters of the optimized models are summa-
rized in Table 1, where fact is the activation function, NHN is the number of hidden nodes, λ is the regularization
parameter to calculate the last layer’s weights and σNN is the standard deviation of the normal distribution used
to assign the hidden layers weights. Model averaging using 20 parallel NNs is used to reduce the impact of the
randomly initialized weights.

3. Results and discussions

The statistics of the gain prediction performance are summarized in Fig.2. The figure of merit is the maximum
error between target and prediction gains over the signal channels, referred to as EMAX . The plots in Fig.2 show
mean (dots) and standard deviation (bars) EMAX . Each FUT case in Fig.2(a) to (f) has four plots. Plots 1-2 are the
specific models trained on a given FUT case (marked (a) to (f)). They are tested over the corresponding FUT case
used for training [Self] (plots 1) and over all the other fibers [Others] (plots 2). Plots 3 are for the general model
[All] jointly trained over all fibers and tested over each FUT case. Plots 4 are for the general model [All–one
out] trained over all fiber cases, except one, and tested over the corresponding removed fiber case, i.e. a fiber type
unseen by the model during training.

As observed in previous work [10], the specific models are highly accurate when tested over the same FUT they
were trained on (plots 1). In such cases, mean EMAX values are /0.2 dB. However, when these specific models are
used to predict the gain of a different FUT (Others, plots 2), the performance can be highly degraded, with mean
EMAX >2 dB. This is expected as the Raman gain shape and level are highly dependent on the properties of the
optical fiber [9]. A model without knowledge of the fiber characteristic cannot generalize to a different fiber type.

By considering the fiber parameters as input, the general model [All] (plots 3) has performance similar to the
0.2 dB of [Self]. These results show that the impact of the fiber properties on the Raman gain can be learned
to provide highly accurate predictions for different fibers types. This general model, however, requires massive
measurements to gather the datasets. The ability of a model to generalize, i.e. predicting the gain profile for a
unseen FUT, is investigated considering the general models jointly trained over 5 fiber types [All–one out]. The
sixth fiber type, i.e. the “one out”, is used only for testing and is the corresponding FUT in Fig.2(a-f).

The results for [All–one out] show a degradation in performance with the worst generalization for the fiber
cases corresponding to maximum or minimum values of one of their fiber parameters (Fig.1(b)). [All–HNLF7.5],
for e.g., has the highest αs/p and the lowest Ae f f values (Fig.1(b)). Thus, when predicting [HNLF7.5] gain profiles
using the [All–HNLF7.5] model, the inputs are outside the training range, and NNs are known for their poor
ability to extrapolate information. In this condition, the NN generalization performance is highly dependent on the

Table 1. Neural network parameters.

Specific models General models
FUT→ [HNLF7.5] [DCF4.8] [IDF15] [SMF50] [SMF100] [ULLF50] [All] [All–one out]

fact sine tanh logsig sine tanh tanh sine sine
NHN 700 100 400 50 100 60 900 *
σNN 1e-3 1e-3.5 1e-2.5 1e-3 1e-3.5 1e-4 1e-2.5 1e-2.5

λ 1e-7.5 1e-5.5 1e-2 1e-8 1e-6 1e-8.5 1e-8 1e-8

* 500 (one out = [HNLF7.5]), 400 ([DCF4.8]), 700 ([IDF15] and [ULLF50]), 600 ([SMF50]), 800 ([SMF100]).
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Fig. 2. Maximum errors (EMAX ) bar plots with mean (circle) and standard deviation (bars) values for
all models tested over different fiber cases (from (a) [HNLF7.5] to (f) [ULLF50]).

FUT, ranging from accurate (as for [All–SMF100] and [All–ULLF50], with mean EMAX ≈ 0.5 dB) to poor (as for
[All–DCF4.8] and [All–HNLF7.5], with mean EMAX ≈ 2 dB).

Although [IDF15km] parameters have no minimum/maximum values in Fig.1(b), [All–IDF15km] has also a
relatively poor generalization performance with mean EMAX ≈ 1 dB. We believe that this is because the [All–
IDF15km] model is trained not considering values close to [IDF15km]’s fiber L and Ae f f (see Fig.1(b)). [All–
SMF50], on the other hand, share all its parameters with other fiber cases ([SMF100] and [ULL50]]), which leads
to the best generalization performance for the general model, with mean EMAX of 0.22 dB, i.e. close to the [Self]
model performance. This highly accurate result for a totally new FUT show that a good generalization can be
achieved as long as the new FUT is inside the model training range and have sufficient examples close to it.

4. Conclusions

In this paper, we proposed a refined NN-based Raman amplifier model considering the optical fiber parameters
as additional inputs, and using data from several fiber types during training. The model was able to learn the
complex mapping between the Raman pumps and fiber parameters to the Raman gain profile, yielding similar
performance to fiber–specific models when the fiber–under–test is part of the training dataset. More importantly,
such a model showed good accuracy (e.g. mean(Emax) ≈ 0.22 dB) as long as the unseen fiber–under–test is inside
the model training range of fiber parameters and has sufficient examples around it. These results confirm that the
generalization capabilities of the proposed model can reduce the number of models required and the size of the
training dataset compared to the fiber-specific models.
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