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Abstract: In the last few years, manufacturing systems are getting gradually transformed
into smart factories. In this context, an increasing number of information and communication
technologies is incorporated towards facilitating management, production, and control processes.
The introduction of advanced embedded systems with enhanced connectivity produces a vast
amount of data, posing a challenge in terms of data analytics. However, the in-time collection
and analysis of acquired data can create insight into the manufacturing process as well as
its assets. One aspect of major importance for every production system is preserving its
equipment in operational condition, and within those limits that could minimize unplanned
breakdowns and production stoppages. This paper details the predictive analytics methodology
integrated into the SERENA platform able to: (i) streamline the prognostics of the industrial
components, (ii) characterize the health status of the monitored equipment, (iii) generate an
early warning related to the condition of the equipment, and (iv) forecast the future evolution
of the monitored equipment’s degradation. To demonstrate the effectiveness of the proposed
methodology, different use cases are discussed with results obtained on real-data collected in
real-time from the industrial environments.
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1. INTRODUCTION

The emergence of technological advances in computer
systems and connectivity have given birth to concepts
such as the Internet of Things (IoT) and Cyber-Physical
systems Greer et al. (2019), which facilitate the acquisition
and analysis of huge volumes of data Ahmed et al. (2017).
In turn, those data can create insights over underlying

� This research leading has been partially funded by the European
Commission under the H2020-IND-CE-2016-17 program, FOF-09-
2017, Grant agreement no. 767561 ”SERENA” project, VerSatilE
plug-and-play platform enabling REmote predictive mainteNAnce.

processes, which when combined with advanced machine
learning techniques can help to identify similarities and
underlying patterns that are not easily visible to the
human operator or even human expert Yang et al. (2019).

Data analytics can be defined as the means by which
raw data is converted into useful information and value
Bumblauskas et al. (2017). In a factory, downtime can be
costly and machine failures are also potentially dangerous
for the operators. In this context, distributed sensors
can capture multiple parameters from the shop floor and
through a proper feeding mechanism. The analysis enables
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technologies is incorporated towards facilitating management, production, and control processes.
The introduction of advanced embedded systems with enhanced connectivity produces a vast
amount of data, posing a challenge in terms of data analytics. However, the in-time collection
and analysis of acquired data can create insight into the manufacturing process as well as
its assets. One aspect of major importance for every production system is preserving its
equipment in operational condition, and within those limits that could minimize unplanned
breakdowns and production stoppages. This paper details the predictive analytics methodology
integrated into the SERENA platform able to: (i) streamline the prognostics of the industrial
components, (ii) characterize the health status of the monitored equipment, (iii) generate an
early warning related to the condition of the equipment, and (iv) forecast the future evolution
of the monitored equipment’s degradation. To demonstrate the effectiveness of the proposed
methodology, different use cases are discussed with results obtained on real-data collected in
real-time from the industrial environments.

Keywords: Data analytics, data management and analytics architecture, predictive analytics,
production systems.

1. INTRODUCTION

The emergence of technological advances in computer
systems and connectivity have given birth to concepts
such as the Internet of Things (IoT) and Cyber-Physical
systems Greer et al. (2019), which facilitate the acquisition
and analysis of huge volumes of data Ahmed et al. (2017).
In turn, those data can create insights over underlying
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plug-and-play platform enabling REmote predictive mainteNAnce.

processes, which when combined with advanced machine
learning techniques can help to identify similarities and
underlying patterns that are not easily visible to the
human operator or even human expert Yang et al. (2019).

Data analytics can be defined as the means by which
raw data is converted into useful information and value
Bumblauskas et al. (2017). In a factory, downtime can be
costly and machine failures are also potentially dangerous
for the operators. In this context, distributed sensors
can capture multiple parameters from the shop floor and
through a proper feeding mechanism. The analysis enables
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prediction when a machine will need maintenance in
advance of its failure, reducing the risk of a downtime or
reducing the cost of repair Jin et al. (2016).

Nowadays, several companies across the world are turning
to predictive analytics to increase their savings. It is
worth mentioning that, according to Diab et al. (2017),
predictive analytics and smart connected products are the
two highest-ranked advanced manufacturing technologies.
Tata, Schneider, American Electric Power are just some of
the companies investing heavily in their tech infrastructure
to enable early warning notification systems. In turn, this
has allowed to enable the identification of an imminent
failure and profit losses.

In this context, this work discusses on a lightweight indus-
trial internet of things (IIoT) platform to facilitate data ex-
change and analysis across different stakeholders and users
towards enabling predictive analytics on the shop floor and
for versatile cases. In particular, the proposed architecture
can identify the symptoms of imminent machine failure,
through the characterization of the current dynamics of
the process/machine using data collected in the factory.
A scalable and modular approach has been taken in the
design of the architecture, decoupling the overall design
from any specific set of technologies. A prototype imple-
mentation has been tested in a use case related to the
white goods industry and a discussion on its application
on the steel industry is also included, focusing on the
transferability of the proposed analytics methodology.

2. RELATED WORK

Referring to some state-of-the-art methodologies that ad-
dress the problems of predictive maintenance research,
in Wang et al. (2016) the authors present an intelligent
factory model that incorporates industrial networks, the
cloud, and supervisory control terminals with intelligent
objects such as machines, conveyors and products. In this
way, the results are obtained thanks to a self-organized
system that uses feedback and coordination of the cen-
tral control in order to achieve high efficiency. In such a
system, more flexible tools and platforms are needed to an-
alyze the huge amount of data collected by the sensorized
equipment, able to guarantee a good quality of the data
collected, limiting the anomalies. Good data quality is a
fundamental condition to estimate some important param-
eters such as the RUL, which can be estimated in different
ways as described in Zhang et al. (2016), and Asmai et al.
(2011). Methods to improve data quality are discussed in
Chen et al. (2013), where the authors describe how data
sets can be displayed, grouped, classified, and evaluated
in order to detect and remove outliers. Furthermore, the
importance of having properly structured data for training
and testing Machine Learning (ML) models is discussed in
Aremu et al. (2018). In the aforementioned study, a frame-
work is proposed using entropy measurements to minimize
information loss during data processing, while preserving
important information about the asset life cycle.
Some of this data can also be analyzed in real-time, as
in the architectures described in Apiletti et al. (2018),
both distributed on state-of-the-art open-source frame-
works (e.g. Apache Kafka, Apache Spark, Cassandra). The
first of these architectures also provides the integration of

a visualization tool, while the second features an auto-
tuning engine for predictive maintenance.

Lee et al. (2014) examines the trend of production trans-
formation in industrial 4.0 environments and assesses the
adaptation of IT tools in managing industrial Big Data and
predictive maintenance operations. Moreover, to overcome
the complexity of Big Data pipelines, in Ardagna et al.
(2017) the authors propose a new methodology based
on Model-Driven Engineering (MDE), intending to limit
the skills needed to manage a Big Data pipeline. Similar
efforts to try to reduce the need for domain experts have
also been made in the Machine Learning context. Among
the works to make ML solutions exploitable as a service,
Ribeiro et al. (2015) propose an architecture to create
a flexible and scalable Machine Learning service, while
Yao et al. (2017) provide a detailed empirical comparison
between MLaaS platforms, analyzing the effectiveness of
fully-automated, turnkey and customizable systems.

3. DESCRIPTION OF INDUSTRIAL USE CASES

In this section three real use-cases are introduced requiring
predictive analytics services to improve the efficiency of the
production by avoiding production breakdowns. The data-
driven methodology (either complete or only a portion of),
which will be adequately described in section 5, can be
fruitfully applied to all three use cases below. However,
in this paper we only discuss the experimental results
obtained in the context of a white-goods industry (3.1),
since it is more complex than others thus requiring more
analytics building blocks. In addition, a preliminary set of
results obtained in the context of robotics use-case (3.2)
has been discussed in Panicucci et al. (2020), and the
validation of the methodology for the rolling-mill machine
(3.3) is still running.

3.1 A white-goods industry

In this use case, a nozzle injecting a combination of two
reacting chemicals has been sensorized in order to monitor
the overall process. A model of the overall system con-
ditions is desired to predict possible alarms and failures
in the process Proto et al. (2019). Several signals were
collected during the process: temperature of the chemicals
involved, the pressure of the liquids before the injection, in-
jection timing and quantity, ratio of the injected chemicals,
etc. Moreover, a set of different alarms, each describing a
specific failure, has been collected and associated with the
original production cycle that presented such failure. In
particular, in recent past, domain experts have observed
that after an alarm on the piston, the change of the foam
injection head has always been necessary for a short period
(about a week). Unfortunately, although the importance
of the piston alarm is known, the physical events that
determine this kind of alarm are still not known.
So, based on these premises, we tried to propose a data-
driven methodology in order to identify which variables
could be good predictors of piston alarms. The final goal of
the use case is to predict whether a given set of monitored
production cycles (for example every 8 hours or every day),
characterized through several signals (e.g., temperature,
pressure, etc), will trigger an alarm on the piston at a
given time horizon (for example, the next day).

3.2 A robotics industry

Nowadays automation means a huge complexity since the
objective is to produce high volumes of product often
without any stops. In typical production lines, there are
numerous machines with an increasing number of robots.

In order to preserve the equipment in operational condi-
tion, preventive maintenance procedures are applied, with
particular attention to robotic assets.

One component monitored in the maintenance activity
is the axes belt tension; indeed, belts are in charge of
transmitting the power of the motor to the adaptor and
so are a key element in robot precision. The less the belt
tension, the more the skidding and decay of it; on the other
hand, the more the tensioning, the more the stress on the
mechanical component and thus the overheating.

Towards artificially creating a high quality and useful for
predictive analytics dataset, a testbed has been designed
and implemented, called RobotBox Panicucci et al. (2020),
facilitating the study of all the physical behaviours with-
out the entire complexity of an actual industrial robot.
The RobotBox is made of a motor, whose position data
is gathered thanks to an encoder, an adaptor, a rubber
belt for the transmission and a five kilos weight to sim-
ulate a realistic application. In order to conduct realist
experiments and achieve reusable results, all RobotBox
components corresponded to the actual components of a
6-axis industrial robot and specifically from the sixth one.

It was possible to define a zero pre-configured status of
the belt tension using the procedures used in a robotic
line which enables to define as well the correct level of
the belt tensioning. In order to simulate the ageing of the
belt and incorrect setup of it, a slider with a centesimal
indicator has been introduced in order to create different
tensioning classes in a reproducible manner.

The purpose of this use case is to develop some predic-
tive maintenance algorithms to predict the belt tension;
gathering current data every 2 milliseconds from the robot
controller.

3.3 A Rolling mill machine

The requirements stemming from this use case are related
to the production of trailing arms and consider the con-
dition monitoring of a rolling mill machine. The rolling
machine is part of an automated line producing a set of
trailing arms with different characteristics depending on
the production orders.

In particular, the objective is to evaluate the wear of the
segments of a rolling mill machine aiming at increasing its
operational lifetime. In turn, this is expected to have a
direct impact on the maintenance cost of the production
line as well as its productivity.

In greater detail, the rolling mill machine has three top
and bottom segments which are used to form the trailing
arm by applying forces. The existing preventive mainte-
nance plan involves a downtime of approx. 120 minutes
for segments replacement every 2 weeks. In order to enable
predictive analytics, different measurements are acquired
including position, straightness, length, etc. associated

with a specific product and time. These measurements
were selected after a discussion with domain experts, who
advised on the most influential parameters to monitor
based on the final business objectives. Based on the discus-
sion, a set of IoT devices were deployed on the machinery
to monitor the selected parameters. The analytics tasks
rely on the complete set of measurements monitored over
time.

The data analytics target the correlation of the different
measurements to the monitoring of the machine’s con-
dition and its association to a predictive maintenance
indicator suggesting when the replacement of the segments
should occur.

4. PROPOSED IIOT ARCHITECTURE

The proposed IIoT platform, the SERENA system, is built
upon a lightweight micro-services architecture based on
Docker Swarm virtualisation technology. The environment
modularity facilitates the replacement of a service with
other containerised alternatives, allowing the platform to
be characterised as a “plug-and-play” solution. The plug-
and-play concept is also extended to the management of
data repositories. The platform services do not access the
data storage directly but using some intermediate layers as
an interface to them. This decoupling allows replacing in-
dependently either the data interfaces (a broker, a modular
set of REST APIs), the storage format and technologies
(HDFS, relational DBMS, distributed data systems) or
both.

The SERENA platform is composed of two sub-systems:
Edge and Cloud. On the Edge side, one or more gateways
fetch the data coming from the plant sensors, processing
and enriching them with metadata and finally sending
them to the Cloud sub-system. On the Cloud side, data
is processed by several components. The Reverse Proxy
Certification Authority (RPCA), implements a two-way
TLS authentication rejecting or accepting the incoming
requests based on a set of security policies. The legitimate
requests are forwarded by the RPCA to the Message
Broker and from there to the appropriate cloud services.

The cloud services communicate with each other through
JSON-LD messages which format is partially based on the
MIMOSA CRIS 3.2 standard. These messages carry the
data gathered from the plant machinery along with their
associated metadata. The data portions of the messages
(measurements and alarms) are stored in a Hadoop Cluster
living inside the cloud. The metadata portions of the mes-
sages are stored into the MIMOSA Metadata Repository
that associates them to the plant elements which they
refer to. The Metadata Repository can interact with any
authorized services through the RESTful APIs provided
by the Metadata Web Service.

An illustration of the proposed architecture with three
of its supported services is illustrated in Fig 1. The
Predictive Analytics Service fetches the stored data and
metadata to feed them to data analytics algorithms, while
The Visualization components and the Scheduler, working
together on the predictions, support the maintenance
operator(s). The Predictive Analytics service is discussed
in greater detail in the following sections.
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In particular, the objective is to evaluate the wear of the
segments of a rolling mill machine aiming at increasing its
operational lifetime. In turn, this is expected to have a
direct impact on the maintenance cost of the production
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arm by applying forces. The existing preventive mainte-
nance plan involves a downtime of approx. 120 minutes
for segments replacement every 2 weeks. In order to enable
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were selected after a discussion with domain experts, who
advised on the most influential parameters to monitor
based on the final business objectives. Based on the discus-
sion, a set of IoT devices were deployed on the machinery
to monitor the selected parameters. The analytics tasks
rely on the complete set of measurements monitored over
time.

The data analytics target the correlation of the different
measurements to the monitoring of the machine’s con-
dition and its association to a predictive maintenance
indicator suggesting when the replacement of the segments
should occur.

4. PROPOSED IIOT ARCHITECTURE

The proposed IIoT platform, the SERENA system, is built
upon a lightweight micro-services architecture based on
Docker Swarm virtualisation technology. The environment
modularity facilitates the replacement of a service with
other containerised alternatives, allowing the platform to
be characterised as a “plug-and-play” solution. The plug-
and-play concept is also extended to the management of
data repositories. The platform services do not access the
data storage directly but using some intermediate layers as
an interface to them. This decoupling allows replacing in-
dependently either the data interfaces (a broker, a modular
set of REST APIs), the storage format and technologies
(HDFS, relational DBMS, distributed data systems) or
both.

The SERENA platform is composed of two sub-systems:
Edge and Cloud. On the Edge side, one or more gateways
fetch the data coming from the plant sensors, processing
and enriching them with metadata and finally sending
them to the Cloud sub-system. On the Cloud side, data
is processed by several components. The Reverse Proxy
Certification Authority (RPCA), implements a two-way
TLS authentication rejecting or accepting the incoming
requests based on a set of security policies. The legitimate
requests are forwarded by the RPCA to the Message
Broker and from there to the appropriate cloud services.

The cloud services communicate with each other through
JSON-LD messages which format is partially based on the
MIMOSA CRIS 3.2 standard. These messages carry the
data gathered from the plant machinery along with their
associated metadata. The data portions of the messages
(measurements and alarms) are stored in a Hadoop Cluster
living inside the cloud. The metadata portions of the mes-
sages are stored into the MIMOSA Metadata Repository
that associates them to the plant elements which they
refer to. The Metadata Repository can interact with any
authorized services through the RESTful APIs provided
by the Metadata Web Service.

An illustration of the proposed architecture with three
of its supported services is illustrated in Fig 1. The
Predictive Analytics Service fetches the stored data and
metadata to feed them to data analytics algorithms, while
The Visualization components and the Scheduler, working
together on the predictions, support the maintenance
operator(s). The Predictive Analytics service is discussed
in greater detail in the following sections.
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Fig. 1. Proposed IIoT platform architecture and supported
services.

5. THE SERENA DATA-DRIVEN METHODOLOGY

The purpose of the machine-learning-based predictive-
maintenance service is to predict alarms or failures in
multi-cycle industrial processes, by creating a data-driven
model on historical data. In order not to involve data scien-
tists and domain experts in manual interventions, different
strategies are exploited to describe cyclic time series data,
aggregating them over multicycle horizons. In order to do
this, two important analytic steps are implemented: Data-
preprocessing and Supervised Learning. In the following
subsections, each building block is described.

5.1 Data-preprocessing

In this first building block, outliers are identified and
removed, for cleaning the data collection under analysis.
To do this, the cycle length deciles are used, to remove the
cycles belonging to the first or last decile. This approach
was also validated by domain experts, who knew that some
cycles were not real production measures but test cycles,
for example. These cycles were successfully discarded.
Additionally, to address the cyclic nature of the industrial
processes under exam, an alignment task is performed to
make the data fit a fixed-time structure through padding
(the last value of the cycle is repeated until the cycle time
slot is filled). Moreover, since the data collected by the
sensors are raw time series, in the preprocessing phase
this data are transformed into time-independent features
set. This operation is performed through two main steps:
Statistics Computation and Smart Data computation.

Statistics Computation. First of all, the original time
series is split into contiguous portions, with the split
size being a fixed parameter of SERENA. Then, for each
portion, statistical features able to summarize the time
series trend are computed, such as mean, standard devia-
tion, quartiles, Kurtosis, Skewness, sum of absolute values,

number of elements over the mean, etc. It is important to
notice that having portions of the same size is a choice of
simplicity that has proven to work in our case, however the
proposed approach can be successfully applied to splits of
different sizes.

Finally, from the complete set of the numerous statistical
characteristics, the most informative ones are selected
and the unnecessary ones are discarded. To this aim,
two techniques are exploited: (i) multicollinearity-based,
that removes attributes whose values can be trivially
predicted by a multiple regression model of the other
attributes and (ii) correlation-based, which removes all the
most correlated attributes, on average over all the (other)
attributes.

Smart data computation. Often, in cyclic industrial
processes, there is no interest in predicting the alarming-
condition of a specific cycle, but that of a longer period,
such as hours or days, which span over many cycles.
The single cycle is too short for the target degradation
phenomena and its prediction horizon. For this reason, this
step aggregates the statistics data cycle-related features
over longer, multi-cycle, time windows. The aggregation is
performed separately for each split. SERENA captures the
degradation of each statistics data feature by computing a
linear regression on the aggregated multi-cycle period, and
records the slope and intercept coefficients. Furthermore,
for each attribute, the min, max, the mean and standard
deviation of the values within the multi-cycle time window
are recorded. It is worth noting that both the feature
selection and the feature aggregation preserve the meaning
of the measurements in terms of human readability, hence
keeping the approach transparent and its decisions easily
accountable.

5.2 Supervised Learning

This building block consists of two steps: model building
and real-time prediction. The real-time prediction step sim-
ply labels the new data, based on an already built model.
The model building instead performs the training on the
historical data and extracts the relations among the data
and the prediction labels (alarming conditions registered
in the past). SERENA exploits two different classification
algorithms: Decision Tree Classifier and Linear Support
Vector Machine, automatically selecting the best perform-
ing one according to a score metric (defaulting to F-Score).
However, other classification algorithms can be easily inte-
grated and tested in the project, in order to compare more
results. To assess the validity of the algorithms, a Stratified
K-Fold Cross Validation is performed, that assures good
robustness of the evaluation. This strategy equally divides
the dataset into K folds (keeping the proportions of the
original label distribution in each fold) and, in K iterations,
alternatively uses a fold as the test set and the other K−1
as the training set. In this way, at each iteration, a model
is used to test a set of cycles always different than the ones
used to train the model.
The most performing parameters of each algorithm are
chosen by SERENA itself, thanks to a self-tuned strategy
based on a grid optimization search over the classification
algorithm parameters.

Finally, the predictive model is validated by calculating
some metrics such as the precision, the recall and the F-
Score for the class of interest (i.e. the alarming conditions
or failures).

6. EXPERIMENTAL RESULTS

In this section the first set of experimental results obtained
in the context of a white-goods use case (Section 3.1) are
discussed. The data were collected in a WHIRLPOOL
production plant and the objective of the analytics task
is to predict in advance possible alarms and failures in a
given phase of the production line. In particular, the data
collected in the period from 13/09/2019 to 07/02/2020
have been considered, and the analysis aims to predict
an alarm on the piston. The number of cycles analyzed is
44,544 and the greatest difficulty in effectively predicting a
fault on the piston is the fact that only 14 alarms occurred
on the piston during the time in question. Besides, these 14
alarms have always occurred in pairs, with a time distance
of a few minutes from each other.

Each cycle immediately preceding an alarm has been
labeled as 1, while all other cycles have been labeled as
0. All cycles are then aggregated daily and each day is
labelled as 1 if it contains at least one cycle preceding
an alarm. Of the 148 days obtained after aggregation,
only seven of these are labeled as 1. In particular, each
of these seven days contains two cycles that immediately
preceded an alarm signal on the piston. Figure 2 shows the
number of cycles in each day. The seven red vertical lines
are positioned at the days on which the two alarm signals
occurred.

Fig. 2. Number of signals in each day

In order to effectively predict the alarm signals on the
piston, different signals and combinations of them have
been tested as input, evaluating which of these would
give better results. Towards this, a Decision Tree and a
Linear SVM have been employed as classifiers, and the
accuracy and F1-Scores values for the various input signals
were calculated. It is important to note that, since the
labels are strongly unbalanced, the most significant result
is considered to be the F1-Scores relative to the minority
class (F1-Scores(1)). Table 1 and table 2 report the results
found, highlighting in bold the major F1-Scores(1) values
between the two classifiers. In the tests, seven different
signals were used as input and some combination of them.

Table 1. Decision Tree metrics.

Input Accuracy F1-Scores(0) F1-Scores(1)

Signal1 0.97 0.99 0.71
Signal2 0.91 0.97 0.29
Signal3 0.92 0.97 0.43
Sig1+Sig2 0.91 0.98 0.14
Sig1+Sig3 0.92 0.95 0.57
Signal4 0.97 0.98 0
Signal5 0.96 0.97 0.17
Signal6 0.97 0.99 0
Signal7 0.97 0.99 0.17

Table 2. Linear SVM metrics.

Input Accuracy F1-Scores(0) F1-Scores(1)

Signal1 0.92 0.99 0.14
Signal2 0.92 0.98 0.29
Signal3 0.95 0.99 0.43
Sig1+Sig2 0.94 0.97 0.57
Sig1+Sig3 0.94 0.99 0.29
Signal4 0.98 0.99 0
Signal5 0.98 0.99 0
Signal6 0.98 1 0
Signal7 0.98 1 0

The two tables clearly show how the last four signals have
less impact on alarm prediction than Signal1, Signal2 and
Signal3. That’s because these last 3 signals are collected by
sensors on the head, while the other signals are collected by
sensors positioned near the tanks containing the products
to be mixed and for this reason the results are less
accurate.

6.1 Changing horizon and time aggregation

After finding these first results, additional experiments
were conducted to predict the alarm signal earlier (1 day,
2 days, 3 days before), allowing technicians to have more
time to intervene on the machinery and prevent the alarm.
The current model allows predicting whether a particular
day contains a cycle leading to an alarm signal. Now
instead, our goal is to predict whether a particular day
will lead to an alarm on the following days. To implement
this, the labels were shifted by (0,1) indicating the presence
of an alarm by one day. In particular, if previously it was
labeled with 1 the day in which an alarm occurred, now
instead it is labeled as 1 the day before this (if the horizon
is 1 day).
Table 3 shows the results obtained using the Signal1 as
input, trying to modify the horizon up to three days in
advance. In addition to the horizon, in these experiments,
the time of aggregation of the signals is also modified,
trying to group the signals in windows of two or three
days.

Table 3. Horizon and time aggregation.

F1-Scores(0) F1-Scores(1)

Agg=1, H=0 0.99 0.71
Agg=1, H=1 0.95 0
Agg=1, H=2 0.90 0.57
Agg=1, H=3 0.96 0
Agg=2, H=2 0.92 0.17
Agg=2, H=3 0.82 0
Agg=3, H=3 0.92 0.33

The table shows the values of F1-Scores(0) and F1-
Scores(1), for each type of aggregation and horizon. The
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Finally, the predictive model is validated by calculating
some metrics such as the precision, the recall and the F-
Score for the class of interest (i.e. the alarming conditions
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Sig1+Sig3 0.92 0.95 0.57
Signal4 0.97 0.98 0
Signal5 0.96 0.97 0.17
Signal6 0.97 0.99 0
Signal7 0.97 0.99 0.17

Table 2. Linear SVM metrics.

Input Accuracy F1-Scores(0) F1-Scores(1)

Signal1 0.92 0.99 0.14
Signal2 0.92 0.98 0.29
Signal3 0.95 0.99 0.43
Sig1+Sig2 0.94 0.97 0.57
Sig1+Sig3 0.94 0.99 0.29
Signal4 0.98 0.99 0
Signal5 0.98 0.99 0
Signal6 0.98 1 0
Signal7 0.98 1 0

The two tables clearly show how the last four signals have
less impact on alarm prediction than Signal1, Signal2 and
Signal3. That’s because these last 3 signals are collected by
sensors on the head, while the other signals are collected by
sensors positioned near the tanks containing the products
to be mixed and for this reason the results are less
accurate.

6.1 Changing horizon and time aggregation

After finding these first results, additional experiments
were conducted to predict the alarm signal earlier (1 day,
2 days, 3 days before), allowing technicians to have more
time to intervene on the machinery and prevent the alarm.
The current model allows predicting whether a particular
day contains a cycle leading to an alarm signal. Now
instead, our goal is to predict whether a particular day
will lead to an alarm on the following days. To implement
this, the labels were shifted by (0,1) indicating the presence
of an alarm by one day. In particular, if previously it was
labeled with 1 the day in which an alarm occurred, now
instead it is labeled as 1 the day before this (if the horizon
is 1 day).
Table 3 shows the results obtained using the Signal1 as
input, trying to modify the horizon up to three days in
advance. In addition to the horizon, in these experiments,
the time of aggregation of the signals is also modified,
trying to group the signals in windows of two or three
days.

Table 3. Horizon and time aggregation.

F1-Scores(0) F1-Scores(1)

Agg=1, H=0 0.99 0.71
Agg=1, H=1 0.95 0
Agg=1, H=2 0.90 0.57
Agg=1, H=3 0.96 0
Agg=2, H=2 0.92 0.17
Agg=2, H=3 0.82 0
Agg=3, H=3 0.92 0.33

The table shows the values of F1-Scores(0) and F1-
Scores(1), for each type of aggregation and horizon. The
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number of days of aggregation is indicated by ’Agg’, while
’H’ indicates the horizon. As we can see in Table 3 the
performance in terms of F1-Scores(1) drastically changes
from a configuration set to another, this is mainly due
to the complexity of the analytics task and the amount
of data under analysis. Based on the available data, only
the configurations (i) Agg=1, H=0 and (iii) Agg=1, H=2
provide quite good results.

7. CONCLUSION AND FUTURE WORK

A prototype IIoT platform is proposed and implemented
based on a lightweight micro-services architecture, making
it scalable and not dependant to specific technologies,
enriched with an innovative certification mechanism, the
RPCA.

Moreover, a data-driven analytics methodology has been
presented as enabled through the aforementioned platform
and concerning the need for development and deployment
in versatile industrial cases with a significantly different
set of datasets and requirements. The results obtained
in the analyzed use case are very promising, especially
considering the high imbalance class distribution and
limited data availability. Despite these difficulties, the
proposed methodology has proven to be able to make
good predictions about the alarm signal. In addition, some
acceptable preliminary results have also been obtained
by extending the horizon-time, thus trying to predict the
failure with more notice.

In conclusion, future work will focus on integrating addi-
tional functionalities to the predictive analytics services for
smart manufacturing including (i) innovative strategies to
address concept-drift detection Cerquitelli et al. (2019),
(ii) general-purpose techniques to derive the Remaining
Useful Life of the machine under analysis by analyzing
the frequency of relevant alarms over time, and (iii) self-
configuring data analytics workflow able to automatically
identify the predictive analytics functionality needed by
the real-life application under analysis.
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