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Summary

Nowadays, it is widely recognized that algorithms risk to reproduce and am-
plify human bias that historically have led to discriminatory functioning, especially
towards disadvantaged groups. Evidence of such discrimination has been collected
and reported in several fields: credit score, allocation problems, criminal justice,
advertising, job placement, etc. Solutions to mitigate the effect of biased decision
systems focused on metrics to measure the degree of equity of the algorithms and
different notions of fairness have been introduced. As a consequence, achieving fair-
ness don’t merely involve the process of planning and engineering algorithms that
satisfy mathematical and statistical properties. These algorithms indeed should
also explicitly encode specific values and equity criteria.

As a result, a significant ethical and political challenge arises for those who are
responsible to decide which measures of fairness and which values an algorithm
should embody. Several recent studies have drawn attention to this issue related
to the implementation of machine learning systems. Evidence emerging from these
studies suggests that fairness should be considered as a trade-off process whereby
the system background priorities are established. In fact, since the beginning of
the first studies on fairness in the field of machine learning, the main challenge has
been to define what fairness means: the large number of fairness measurements
appeared in the literature is due to this effort, although conciliating different met-
rics of fairness might be mathematically not achievable, except under constrained
special cases. As a consequence, choosing a fairness metric not only involves math-
ematical aspects or technical requirements the model is supposed to exhibit, but
also conditions belonging to moral and political philosophy, as well as issues of hu-
man perception of fairness metrics, thereby shifting the focus from purely technical
requirements to a multi-facet problem.

In such a context, the primary thesis goal is to investigate the role of fairness and
bias in Automated Data-Driven Decision-Making Systems (ADMs). The current
work lies at the interface of science, technology and society by offering an wide-
ranging interdisciplinary perspective on fairness and bias in automated systems.
The discussion about fairness and bias is approached from different perspectives
across different application domains. In this vein, four case-studies are provided.

The thesis initially introduces three major Research Problems that constitute
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the ground on which the whole work is based. More specific Research Questions
are subsequently outlined for each of the case studies.

The first case-study analyses the limitations of the mainstream definition of Ar-
tificial Intelligence (AI) as a rational agent, which currently drives the development
of most AI systems. In this work, the need of a wider range of driving ethical
principles for designing more socially responsible AI agents is drawn.

In the second case-study we propose a method of data annotation based on
Bayesian statistical inference that aims to warn about the risk of discriminatory
results of a given data set. The method aims to deepen knowledge and promote
awareness about the sampling practices employed to create the training set, high-
lighting that the probability of success or failure conditioned to a minority mem-
bership is given by the structure of the data available.

The third case-study a decision-making model to mitigate potential discrimina-
tory effects of ranking systems is presented. We introduce AFteRS, an Automated
Fair-Distributive Ranking System, that has the objective of determining the best
top-N-ranking in a set of candidates while simultaneously satisfying fairness con-
straints and preserving the general utility of the system.

Lastly, in the fourth case-study we propose a Decision Support System that
aims to ensure long-term fairness. The methodology extends Decision Theory to
automated decision-making systems by introducing a theoretical model to apply
fairness to a binary partition of the target population. In the spirit of promoting
fairer and more effective automated decision systems, the role of individual dy-
namics in automated decision-making is explored and integrated in our theoretical
formalization.

Based on the context, functioning, Research Problems and Questions analyzed
throughout the work, and based on the results obtained in the case studies, the the-
sis ultimately suggests and outlines New Research Trajectories, Cross-Disciplinary
Validation, Multi-High-Interpretability and Systematic Ground Encoding.
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and quantile; ỹi= standardized score; adj(ỹt
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Chapter 1

Introduction

Over the last few decades, we have witnessed a growing diffusion of automated
software and increasingly sophisticated predictive models for decision-making, which
exploit an ever-growing amount of personal and proxy data, suggesting how the data
itself should be interpreted and what actions should be pursued, as a consequence
of such analysis. As a results, the availability of large-scale data, often regarding
human behavior, is profoundly changing the world in which we live. The auto-
mated flow and analysis of this type of data offers an unprecedented opportunity
for actors in both public and private sectors to observe human behaviors for a large
variety of purposes: to provide insights to policy-makers; to build personalized ser-
vices like automated recommendations on online purchases; to optimize business
value chains; to automate decisions; etc. Automated decision systems are thus very
popular nowadays. The algorithms on which these systems are based, are involved
in a variety of domains. For instance, they are involved in deciding whether we
are reliable enough to receive a mortgage or a loan [106]; they suggest if we are
inclined to re-offend [20]; they suggest what our future purchases should be [191,
145], what music we should listen to [168] or what movie we should watch [92]; they
suggest which are the best candidates for a job [181, 142] or if we are good enough
to attend a particular university [100], searching for characteristics that historically
lead to success. These decisions are the result of a massive and increasingly pow-
erful profiling and classification mechanism used in Machine Learning and, more
generally, in Artificial Intelligence algorithms. At the heart of this kind of AI is the
ability to turn intelligent robots and process-driven automation into superheroes
who represent their own unique abilities. This kind of transformation is mostly due
to the increase of data storage and computational power, that is giving to AI the
potential to enable smarter decisions in a variety of areas, including intelligence, an-
alytics, and data management. Big data analysis associated with AI can influence
intelligence analysis by sifting through vast amounts of data, providing technicians
with unprecedented levels of intelligence and analytical productivity [201, 166]. In
such a context, the Automated Decision-Making (ADM) has been hailed as a silver
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bullet that promises to replace human subjectivity with objective, infallible deci-
sions [175]. This means that it is increasingly playing a central role in public life,
replacing human decision-making processes.

However, automated decision-making systems, while having the potential to
bring about greater efficiency and consistency, also open up new forms of discrimi-
nation that may be more difficult to identify and combat [16]. Furthermore, the way
data are collected, tested and analyzed poses a number of risks and questions related
to the context of use [53]. Many researchers, in fact, identified a number of ethical
and legal issues where the application of software automated techniques in decision-
making processes has led to intended and unintended negative consequences, and
especially disproportionate adverse outcomes for disadvantaged groups [13, 116].
Recent scandals such as the one involving Cambridge Analytica and Facebook [27],
the study conducted by ProPublica of the COMPAS Recidivism Algorithm [84] or
the recent experiment published by AlgorithmWatch on Google Vision AI racism
[104], are three well-known examples of the relevance of these issues for our soci-
eties. As a consequence, the states legal systems are starting to require a review of
the risks that automated decision-making systems pose to the privacy and security
of consumers’ personal information, as well as any systems that may lead to or
contribute to inaccurate, unfair, biased or discriminatory decisions [163, 135]. In
this spirit, in the last years both public and academic institutions have provided
some technical guidelines [93, 94, 133, 170, 186, 91, 34, 52] by stressing the need
to proactively address the ethical and legal risks of decision-making systems such
as artificial intelligence (AI) and machine learning, and bringing to light a lack of
transparency in the development of these new systems [196, 144].

In such a context, the failure to recognize algorithms value led to the emergence
of a new perspective. The role of algorithms in decision-making could have strong
implications for science, as ethical decision-making provides lessons for algorithms
[101]. This begs the question: if we base our solutions on principles and explain
and examine what happens in cases of bias against people who cannot be proven
fair by technology, what do we do about it? In the United States, opaque decision-
making systems make decisions and serve credit advertisements, without the target
ever knowing exactly why, or even if they are wrong [50]. In the case of auto-
mated decision-making, these decisions are essentially probabilistic, and the model
is based on features similar to those in historical cases [142]. However, this data
may contain hidden prejudices, due to the way in which certain races and ethnic
groups have been treated in the past. Automated decision-making systems can have
disproportionately negative effects on minorities by encrypting and perpetuating
social prejudices. One problem is that the data and evidence for the decisions made
may be biased if the people who write the algorithms allow their own prejudices to
creep into the system. Algorithms can also reproduce or exacerbated social prej-
udice and discrimination by using training data that reflect existing prejudices in
society or present a distorted representation.

2



1.1 – Motivation and Challenges

However, it is not easy to define what constitutes bias in algorithmic decision-
making, although most would probably agree that bias in the examples above is
harmful and unfair. Even assuming that AI decision-making is generally reliable,
total blindness to these differences can lead to injustice. The idea of a moral or
ethical machine remains abstract and unsuitable for real contexts. For instance,
it has been shown that ethical codes do not influence decision-making in software
development [130]. In the last decade, a number of scholar have started to develop
bias detection algorithms to mitigate the bias present in the data collected and
in the decision-making process (e.g., [55, 83, 106, 14]). The aim is to monitor
the different impacts that arise from the use of AI in a variety of contexts, such
as human-machine interaction, data collection and analysis, and decision-making.
The main objectives of algorithmic accountability are to increase transparency in
automated decision-making, to raise awareness against prejudice and to introduce
reasonable controls in the data processing practices of ADM systems.

1.1 Motivation and Challenges
It is now widely accepted that algorithms reproduce and reinforce human prej-

udice, especially against disadvantaged groups. Evidence for that is found in many
fields of application, as credit scoring, recidivism assessment or job recruitment.
For this reason, in recent years a variety of solutions have been proposed to miti-
gate bias and introduce different notions of fairness. Some of these solutions focus
in particular on proposing metrics to measure the degree of fairness of an algo-
rithm. In this way, the algorithm should also explicitly encode certain values or
equity criteria. Recent evidence suggests that fairness should be seen as a trade
process that sets the system’s priorities. As the focus shifts from purely technical
requirements to a complex problem, choosing a fairness metric is not only about
whether a model should have a certain degree of fairness, but also about conditions
that are part of moral and political philosophy. However, this domain still raises
many issues and poses several challenges and risks. Below, we summarize some of
the research problems that have driven this manuscript:

RP1. Paucity of research: although in recent years a undeniably growing interest
in this domain has occurred, this field of research is still in its beginning,
suffering in many corners of a shortage of literature;

RP2. Lack of validation methods: this highly interdisciplinary domain requires
validation methods pertaining to different disciplines. However, evaluation of
automated decision-making systems is still far to be cross-disciplinary;

RP3. Separate entities problem: the implementation of equitable ADM systems
requires data and algorithms are not treated as two separate entities. Many
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studies have shown that a fair algorithm can often only partially compensate
for the unfairness of the data. Despite this premise, a substantial portion of
previous work addresses this problem one at a time, treating the data and
the algorithm as distinct entities.

1.2 Thesis Contributions
The current manuscript lies at the interface of science, technology and society.

The undertaken approach to automated decision-making systems with big data
focuses on linking data and automated tools to human-technology interaction in
social justice domain, offering an interdisciplinary perspective on fairness and bias
in automated systems. This work is not intended to be purely technical; in many
chapters theories and studies from the social sciences and humanities are drawn
upon. The manuscript represents an attempt to provide a wide-ranging perspective
on issues related to fairness and data-driven automatic decision systems, which
from different points of view presents several problems and challenges related to
the interdisciplinary nature of the research domain. Indeed, both fairness and bias
should not be considered as a purely technical domain, but as a domain in which
technical boundaries are opened to make room for social considerations, and thus
as such is treated in the manuscript. The primary contribution of this thesis is
therefore to offer an interdisciplinary perspective on fairness and bias in automated
decision-making systems across specific application domains. In this work, general
issues related to fairness in ADM are addressed by refining the research questions
in each of the selected application contexts. In this way, the discussion about
fairness and bias is approached from different perspectives. Since this domain has
received increasing attention in recent years, this manuscript is unable to address
all fairness issues brought up in automated systems. Therefore, the discussion
is initially limited to data-driven automated decision-making systems and some
specific applications. We describe below the application contexts and the main
contributions this manuscript has brought to each of them.

Mainstream AI This study analyses the limitations of the mainstream definition
of Artificial Intelligence (AI) as a rational agent, which currently drives the develop-
ment of most AI systems. The need of a wider range of driving ethical principles for
designing more socially responsible AI agents is drawn. An experience-based line
of reasoning by argument to identify the limitations of the mainstream definition of
AI is followed, which is based on the concept of rational agents that select, among
their designed actions, those which produce the maximum expected utility in the
environment in which they operate. Then, taking as an example the problem of bi-
ases in the data used by AI, a small proof of concept with real datasets is provided.
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It is observed that biases measurements on the datasets are sufficient to demon-
strate potential risks of discrimination when using those data in AI rational agents.
Starting from this example, we discuss other open issues connected to AI rational
agents and provide a few general ethical principles. The study contributes to the
scientific debate on the governance and the ethics of Artificial Intelligence with a
novel perspective, which is taken from an analysis of the mainstream definition of
AI.

Data Bias Awareness In this study we propose a method of data annotation
based on Bayesian statistical inference that aims to warn about the risk of discrim-
inatory results of a given data set. In fact, although the process of rigorous data
collection and analysis is fundamental in the model design, this step is still largely
overlooked by the machine learning community. Our method aims to deepen knowl-
edge and promote awareness about the sampling practices employed to create the
training set, highlighting that the probability of success or failure conditioned to a
minority membership is given by the structure of the data available. We empirically
test our system on three datasets commonly accessed by the machine learning com-
munity and we investigate the risk of racial discrimination. The empirical findings
in this study provide a new perspective on data annotation practices by showing
that Bayesian inferences may reveal the risk of bias in three different widespread
dataset.

Fairness in Ranking Systems In this study we develop a decision-making
model to mitigate potential discriminatory effects of ranking systems. We in-
troduce AFteRS, an Automated Fair-Distributive Ranking System, that has the
objective of determining the best top-N-ranking in a set of candidates while simul-
taneously satisfying fairness constraints and preserving the general utility of the
system. The approach takes inspiration from Roemer’s Equality of Opportunity
theory. We implement three fairness criteria, each one based on a different dimen-
sion of the distributive justice theory, namely equity, equality, and need. We test
the system in an hypothetical scenario of a university selection process in which the
decision-maker determines which students are suitable on the basis of their personal
qualifications and achievements, so as to maximize the institution utility. In such a
context, we examine the expected outcome for groups of individuals in the ranking
system before and after the application of our distributive fairness approach, and
we explore the trade-off between the three different fairness policies in relation to
the obtained rankings. Results of our research don’t show an absolute predomi-
nance of one fairness criterion over another one, and that it is possible to achieve
fairness constraints with a minimal impact on the general utility of the system.
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Long-term Fairness in Decision Support Systems The study of long-term
effects in automated decision-making systems is still a largely unexplored field of
research. However, these systems when imposing fairness constraints are implicitly
required to achieve an equilibrium or equality between two or more groups in the
underlying population, often named majority and minority groups or privileged
and unprivileged groups. How do decisions resulting from an automated decision-
making process affect the underlying population? Do the fairness constraints keep
their validity for as long as they act? How do individual dynamics in the long run
affect system decisions? The current study is designed to answer these research
questions. In this paper, we propose a Decision Support System that aims to en-
sure long-term fairness. Our methodology extends Decision Theory to automated
decision-making systems by introducing a theoretical model to apply fairness to a
binary partition of the target population. In the spirit of promoting fairer and more
effective automated decision systems, the role of individual dynamics in automated
decision-making is explored and integrated in our theoretical formalization. To of-
fer a best understanding of our theoretical model, we set a simulation scenario of a
university selection process, in which an institutional decision-maker has to select
in a set of policies, the policy to be adopted in order to maximize the long-term
selection. Our theoretical formulation allows to study how automated system deci-
sions affect the population and groups. Results on the case-study indicate that: i)
policies, although showing similar performance, have different influences on groups;
ii) individual dynamics affect system’s decisions and fairness constraints in long run.

In addition, the author wishes to clarify that a partial contribution of this thesis
consists of previously published work. Specifically, the contribution in Chapter 3
was previously published in an academic journal. In contrast, from Chapters 4, 5,
and 6, academic publications drawn concurrently with or subsequent to the thesis
preparation were derived. The entire list of papers published during the Ph.D.
program can be found in Section 1.5; papers that were drawn from the thesis work
are currently in process of publication or under review, and the reporting year is
2021.

1.3 New Research Trajectories
As a further contribution, the following manuscript intends to provide some

new research trajectories in the domain of fairness in ADMs. Indeed, although an
increasing number of scholars are devoting a lot of efforts in this topic, the road
to fairness in machine learning and AI is strewn with obstacles not all easy to
overcome. As a result, several unanswered questions still remain. In light of the
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questions that will be raised by this manuscript, some insights and new trajecto-
ries for future research will be drawn: Cross-Disciplinary Validation, Multi-High-
Interpretability and Systematic Ground Encoding.

1.4 Organization
The remainder of this work is organized as follows. Chapter 2 provides the con-

ceptual background in order to facilitate the understanding of the rest of the thesis
work. It introduces the notion of Automatic Decision-Making systems (ADMs) and
discrimination in ADMs, it discusses the causes of discrimination and the concept
of bias, and presents the notion of fairness in ADMs. Chapter 3, 4, 5 and 6 are
four themed chapters based on the application contexts described in Section 1.2.
Each of these chapters addresses the research problems set forth in Section 1.1,
refining the research questions to the specific application context. In Chapter 7 the
Conclusions and New Research Trajectories are drawn.

1.5 Publications
i (Under Review) Beretta, E., Vetró, A., Lepri, B. and De Martin, J.C. (2021)
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Chapter 2

Background

2.1 Automated Decision-Making in the Algorith-
mic Era

Artificial intelligence (AI) is based on quantitative methods that have been ubiq-
uitous in society for at least a hundred years [147], and it is a form of automated
decision-making that recently started to have a significant impact on decision-
making and human behavior [54]. In fact, automation has become increasingly
used in decision-making over the past decade in a variety of domains, for instance,
whether to figure out which YouTube video to recommend or to decide whether
to grant a loan. In a such a context, Automated Decision-making Data-Driven
Systems have become widespread and widely employed to rule on various aspects
of individuals’ lives [167]. An automated decision system is a system that uses
data, algorithms, or computer programs to replace or support the human decision-
making process [10]. In some cases, it is a way of integrating certain technologies
and big data into the decision-making process. In other cases, they leverage ma-
chine learning systems [14]; we define them as Automated Decision-making Data-
Driven System (ADMs) [111]. Unlike the first case that use traditional automated
decision-making, machine learning systems do not follow explicit rules written by
humans. Rather, the machine derives its own rules based on the data it has been
trained on, such as data from a variety of sources [116]. A series of inputs flow
into the system and its algorithm explains an answer, a verdict or a result. In this
case, decisions are made automatically without human involvement (e.g. an algo-
rithm that decides whether to get a loan or automated processing to reduce human
decision-making costs). In general, decision support can improve decision quality in
semi-structured situations [174] where decision automation is not possible or desir-
able, but is typically considered a "programmed" decision situation. Furthermore,
automated decisions by means of algorithms makes practical and economic sense
when decisions need to be taken very quickly, when the risk of a wrong decision is

9



Background

perceived as low or when the result is reversible.

2.1.1 Discrimination in Automated Decision-Making
However, unrecognized or ignored, potential distortions could prevent machine

learning from delivering on its promise to significantly improve the accuracy and
fairness of automated decision-making systems. When data are used to actually
drive decisions, the decisions are not suddenly neutral, objective, or right, rather
they are vulnerable to inheriting many of the same kinds of biases that we thought
they could eliminate [72]. Since automated data-driven decision-making systems
are written and maintained by humans, AI and machine learning algorithms are not
devoid of human influence but adjust their own behavior based on that of humans
[33]. As a result, algorithms can reinforce human biases and especially that types
of biases that reinforce human prejudices [189] . In this sense, we have seen a
radical shift in recent years: whereas at to begin with there was a part of eagerness
and trust approximately the possibility that machine learning and algorithms more
generally would be a force for advancing civil rights and protecting people against
discrimination, as of late there has been a realization that this is not an automatic
feature of using this technology and that there are many ways in which it can
end up having the same kinds of problems as the human decision-making it could
replace [142].

About the Term Bias

The meaning of the term bias in this area can be easily confused. In statistics
and computer science, this term is in fact used to identify a few concepts: a biased
mode of data collection, i.e., when the sample collected is not representative of the
population; a biased estimator, i.e., a systematic prediction bias. Whereas within
the broader domain of machine learning systems the term discrimination, or differ-
entiation, refers to the system’s capability to distinguish between instances in order
to determine which class a particular example belongs to, in this particular domain
the term discrimination is used in a different way, to which we refer as unjustified
discrimination [131]. Both concepts explained above can effectively contribute to
the problem of unfair bias or unjustified discrimination, but the term bias in the
algorithmic ethics domain refers to a somewhat different concept [14, 13]. The
term bias in this specific domain is used when there is unjustified discrimination:
for example, when a particular characteristic of individuals - such as gender or eth-
nicity - is not relevant to the decision but is nonetheless assigned a causal effect; or
when this said characteristic is used by the system because it is predictive, despite
the law stating that certain characteristics should not be considered by the system
because they are ethically irrelevant.
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About Discrimination in Law and how to explain it in ADMs

From a legal perspective, discrimination is conceptualized by two different doc-
trines, called Disparate Treatment - or Differential Treatment - and Disparate Im-
pact [210]. These doctrines address how to treat certain protected characteristics
of individuals in high stakes decisions. Later in this Section, we will formally de-
scribe what these characteristics are and what decisions are considered high-stakes.
Under the first doctrine, discrimination is considered intentional when there is a
deliberate intent to treat two subgroups of the population differently. Accordingly,
the law states that it is illegal to consider protected characteristics in high-stakes
decision making. For example, in a credit context, Disparate Treatment exists if the
ethnicity of individuals is used to determine the granting of a loan. In ADMs, this
is formally defined as the inclusion of individuals’ protected characteristics in the
system such that different subgroups of people are intentionally treated differently.
A second way of understanding this type of disparity in ADMs is through the use of
proxy variables [209, 131]. For instance, suppose that there exists a very convenient
proxy variable, a kind of factor that is closely related to ethnicity, but that is not
ethnicity itself, that is used in credit decision making precisely because it is a proxy
variable. It would be something like intentional discrimination, even though the
system is not directly considering the prescribed characteristic. However, under
the second doctrine, this distinction does not appear so clear-cut. Specifically, the
doctrine focuses on the seemingly neutral factors, i. e., that set of factors that
apparently seem non-harmful, but which conceal the perpetration of an outcome
disparity for certain protected characteristics [29]. In this spirit, the doctrine states
that the decision-maker is held responsible for the disparity in some specific areas
unless the use of such factors is justifiable. In other words, this means that unless
there are good reasons that justify the use of such factors in the decision-making
process, which is actually creating a disparity of outcome, then this use should not
be justified. This means that the decision-maker is responsible about avoiding this
outcome. In automated systems, this doctrine translates to not using these factors
and minimizing outcome disparity [113, 6]. While the first prescription has been
shown to be ineffective in avoiding discriminatory outcomes in these systems, sev-
eral solutions have arisen on the second prescription, which we will describe later
in this Chapter (Section 2.3). Table 2.1 provides a schematic summary of these
doctrines and how to apply them in ADMs.

Protected Characteristics and High Stakes Decisions

As highlighted above, the law has established that there exist some protected
characteristics based on certain characteristics of individuals. In ADMs these char-
acteristics are called protected or sensitive attributes. The regulation of protected
attributes and how they should or should not be used in decision-making is es-
tablished through a number of civil rights laws in high-stakes areas, for example,
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Law ADMs
Doctrine Type of Use of features Principle

discrimination
Disparate Formal Protected characteristics Equality
Treatment or explicitly encoded as input; of

intentional Proxy variables opportunity
Disparate Avoidable Protected characteristics Minimize

Impact or not necessarily explicitly inequality
unjustified included as inputs of results

Table 2.1: Application of Disparate Treatment and Disparate Impact doctrines in
Automated Decision Data-Driven Systems

credit, education, housing, and employment. From a legal perspective, in both the
United States [66] and the European Union [126], there is no a universal and unique
law regulating this issue, but rather a series of laws in each of the high-stakes areas
have been drawn [165]. A list of protected characteristics for both legal systems is
provided in Table 2.2.

European Union United States
Race Race
Color Color

Religion or creed Religion
National origin or ancestry

Sex Sex
Sexual orientation

Gender reassignment
Age Age

Physical or mental disability Disability status
Veteran status Veteran status

Genetic information
Citizenship Citizenship

Marriage and civil partnership Familial status
Pregnancy and maternity Pregnancy

Genetic information

Table 2.2: List of protected or sensitive attributes in US and European Union

We emphasize that the list of these characteristics has not always been this
way since its inception, but has undergone changes in both the characteristics
themselves and the areas of application, reflecting changes in society over time. So
discrimination both from a legal point of view and in ADMs has to do with some
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unjustified or questionable basis on which important decisions are to be taken. So
it has to do with considering as discriminatory all those decisions that are made
on the basis of very specific characteristics and in very specific areas, often because
these have been the kind of basis on which certain populations have been held in a
subordinate position for unjustified reasons. These kinds of decisions are crucial and
often determine the course of people’s lives and their ability to access fundamental
opportunities in their lives.

2.2 How Systems Learn to Discriminate
The ways in which systems learn to discriminate are many [24]. The following

list shows some well-known cases of bias in literature and their discriminatory
results:

• Skewed Samples: is due to biased samples and is a direct result of using
an already biased data collection process. This process can lead to distorted
patterns resulting in negative impacts that will reinforce the pre-existing data
bias. This bias is also commonly known as a biased feedback loop. In the
same way that sampling from a skewed distribution reinforces skewness by
excluding less frequent observations, biased models will only have the best
results on the privileged class, and their output will tend to exclude non-
privileged classes. If decisions about biased ADMs impact the data collection
process, the information collected will be increasingly focused on the privi-
leged class. As a result, a vicious cycle will be established in which injustice
will continue to grow in the process. An example of Skewed Sample can be
found in the work of Lum et al. [123], who describe how predictive policing
systems, which are increasingly being used by law enforcement to prevent
crime before it occurs work. In particular, the authors highlight how these
models create bias feedback loops through the suggestion that police should
be employed in a particular type of attack. The fundamental problem with
these models is that instead of predicting crime wherever it occurs, the model
is more likely to predict a crime where the police have been able to observe
it in the past. This problem is confirmed by the fact that even though they
observe crime in a particular area predicted by the model, police are still
called from other areas, and so there is less chance of observing crime in areas
other than those where police had previously conducted attacks. In this way,
the false negative rate remains very low, even though it does not match the
actual data, and the predictions are confirmed without giving the model a
chance to learn from other types of data as well;

• Sample Size Disparity: is due to the lower availability of data for the mi-
nority group. This implies that strong of size differences are present in the
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sample for the majority and minority group [151]. As results, the system
tends to show worse performance on minorities than on the overall popula-
tion if it fails to generalize to these groups. The difference in sample size is
exacerbated when when the features used by the classifier behave differently,
even oppositely, in the majority and minority groups.

• Tainted examples: is due to the incorrect definition of the target of the
model. It occurs when the model’s target is arbitrarily defined causing the
characteristics of some individuals to be more suitable than others. Consider
as an example a scenario in which an ADMs is trained on data containing past
hiring decisions to predict who to hire in the future [77]. To train this type
of model an objective must be defined, i. e. a target to understand which
individuals to select. Therefore the decision-maker could choose as target
of the model the score achieved by the employees in the annual reviews.
However, the attempt to formalize in an objective and neutral way the target
variable fails, since in the human decision-making process the implicit biases
end up influencing the evaluation [59]. So what the model is learning to do is
not to predict the actual job performance of employees, but it is learning to
predict how a human manager would evaluate that person [150]. In addition,
it may turn out that women, for example, show lower evaluations on average,
which is not necessarily due to their actual performance; it may be that
the target variable chosen for the model is actually influenced by contextual
variables, such as an environment that is unwelcoming or hostile to women.
In this way, the model would be biased in favor of one part of the population;

• Limited features: It occurs when a model is trained on unrepresentative
data. It is due to the diversity of data creation and collection, thus leading
to signal problems where some subgroups are overlooked and thus underrep-
resented [19, 131]. In fact, data collection can only partially capture highly
sophisticated real-life phenomena. This loss of information can be so severe
that the data collected will not be granular enough to capture the differences
between subgroups, resulting in poorer data quality for observations of those
groups. As a result, the difference in data quality will have a direct impact
on model performance; models with poor data quality will likely be biased
toward subpopulation. This kind of bias is very common, since there is often
very little information about certain parts of the population, as there is on the
credit data [49, 138]. In this way, some factors end up being more informative
for some subgroups than others, affecting the distribution of results;

• Proxies: is due to the use of proxy variables, i.e., when characteristics that
are not directly considered as protected attributes are intentionally or un-
intentionally used to produce decisions [209]. As mentioned in Section 1,
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removing protected attributes from the model does not guarantee a non-
discriminatory outcome, since performance may still turn out to be poorer on
minority classes than in the overall population. This phenomenon is called
redundant encodings [141], and occurs when a particular protected attribute
is encoded across one or more features in the data, making it unnecessary to
remove the attribute itself. In this case, the model will catch the inequalities
encoded in the data and learn how to reproduce them.

2.2.1 Other Sources of Bias
A list of other possible causes of bias is provided below [190]:
• Historical bias: when there is a misalignment between real world expecta-

tions and model outcomes. It requires understanding and studying the appli-
cation and generation of data over time. Even if we have perfectly-measured
features, they might still reflect historical factors, for instance conditions that
we find only in poorer neighborhoods. Accordingly to this, we can even reflect
the world perfectly, but still inflict harm on a population;

• Representation bias: when defining and sampling a population still un-
derdevelopment, then certain part of the input space are under represented
and others are over represented. This bias may be due to two main reasons:
i) the sampling methods reach only a part of the population and ii) the tar-
get population has changed or is anyway different from the original training
population;

• Measurement bias: when measuring features and labels in a prediction
problem, random noise is added. This might be caused by three main rea-
sons: i) different measurement process for different groups or ii) different
data quality for different groups and iii) oversimplification of the classifica-
tion model (e.g. selecting or having available too few features for a good
prediction);

• Aggregation bias: when a single model is used for all groups, which require
in fact different specific models, due to different conditional distributions,
backgrounds, cultures etc. Usually with this kind of bias the model will be
optimal only for the dominant population;

• Evaluation bias: when the evaluation and/or test data for an algorithm
does not represent the target population. Misrepresented test data lead to the
development of models that are optimized only for a subset of the population;

• Deployment bias: when there is a misalignment between the problem a
model is intended to solve and the way in which it is actually carried out
after deployment (e.g. when we adapt a specific model to a generic task).
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2.3 Fairness and Ethics in ADM systems
Since the emergence of adverse outcomes has been shown in several application

domains, an increasing number of researchers are focusing on the way algorithms
encode prejudices and lead to disproportionate results [142]. As a result, many so-
lutions to overcome the problem of discrimination in ADMs by embedding the idea
of fairness in the algorithm’s structure have arisen. In the recent years, several for-
mal definitions of fairness have been suggested by the machine learning community.
In Table 2.3, we report the most widespread ones grouped by similar characteris-
tics: in particular, the first column indicates the name of the partitioning, while
the second one the extended name of the fairness definition; the third column con-
tains scientific references. Some of these definitions will be used throughout this
manuscript.

First of all, we provide some mathematical notations that compose a typical
setup in a machine learning domain:

• X denotes the features of an individual;

• Y denotes the target variable;

• A denotes a sensitive attribute (i.e. gender, race, etc.);

• C denotes a classifier;

• S denotes a score function or a conditional expectation. For example, the
frequency of an event given certain observed characteristics can be written as
S = E [Y |X ];

• t is a threshold. In case of binary classifiers, the score value causes the accep-
tance of classifier outputs when it is above t, otherwise causes the rejection.

We introduce and briefly describe the fairness definitions listed in Table 2.3,
supplied with examples regarding risk assessment in the criminal justice domain.
Individuals rated high risk of re-offending are classified by 0, otherwise 1 - that
means low risk of recidivism.

The variable race has been considered as a sensitive and protected attribute.

Group fairness. Below, we introduce several formal definitions of group fairness.

Statistical parity. Classifier C satisfies statistical parity if Pa(C = 1) = Pb(C
= 1) for all groups a, b - i.e. a = black, b = white. This means that both black
and white people should have equal probability to be classified as low risk.
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Partition Definition Reference
Group Statistical [55, 53, 110]
fairness parity

Accuracy [51]
parity

False positive [44, 40]
parity

Positive rate [83, 23, 211]
parity

Predictive parity [176, 40]
Predictive value parity [53]

Equal [83, 40, 110]
opportunity

Equal [83, 40]
threshold

Well-calibration [106]
Balance for [106]

positive class
Balance for [106]

negative class
Individual [55]

fairness
Counterfactual [110]

fairness
Preference-based Preferred treatment [212]

fairness Preferred impact [212]
Fairness through [55, 83, 110]

unawareness

Table 2.3: Fairness in Machine Learning literature

Accuracy parity. Classifier C satisfies accuracy parity if Pa(C = Y) = Pb(C
= Y) for all groups a, b. This means that both black and white people should have
equal probability to be correctly classified as low risk, if belonging to actual low
risk rate, and correctly classified as high risk, if belonging to actual high risk rate.

False positive parity. Classifier C satisfies false positive parity if Pa(C =
1|Y = 0) = Pb(C = 1|Y = 0) for all groups a, b. This means that both black
and white people with actual high risk rate should have equal probability to be
incorrectly classified as low risk (False Positive Rate).
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Positive rate parity. Classifier C satisfies positive rate parity if Pa(C = 1|Y
= i) = Pb(C = 1|Y = i), i ∈ 0, 1, for all groups a, b. This means that both black
and white people should have equal probability to be incorrectly classified as low
risk - False Positive Rate - and to be correctly classified as low risk (True Positive
Rate).

Predictive parity. Classifier C satisfies predictive parity if Pa(Y = 1|C = 1)
= Pb(Y = 1|C = 1), for all groups a, b. This means that both black and white
people with low risk predicted score (Positive Predictive Value) should have equal
probability to really belong to the low risk class.

Predictive value parity. Classifier C satisfies predictive value parity if (Pa(Y
= 1|C = 1) = Pb(Y = 1|C = 1)) ∧ (Pa(Y = 0|C = 0) = Pb(Y = 0|C = 0)) for all
groups a, b. This means that both black and white people with low risk predicted
score (Positive Predicted Value) should have equal probability to really belong to
low risk class, and both black and white people with high risk predicted score
(Negative Predictive Value) should have equal probability to really belong to high
risk class.

Equal opportunity. Classifier C satisfies equal opportunity if Pa(C = 1|Y =
1) = Pb(C = 1|Y = 1) for all groups a, b. This means that both black and white
people with actual low risk rate should have equal probability to be incorrectly
classified as high risk (False Negative Rate). Since mathematically a classifier that
satisfies False Negative Rate equity satisfies at the same time True Positive Rate
equity, the definition also implies that both black and white people with actual low
risk rate should have equal probability to be correctly classified as low risk.

Equal threshold. Classifier C satisfies equal threshold if Pa(Y = 1|S = s) =
Pb(Y = 1|S = s), s ∈ [0, 1], for all groups a, b. This means that both black and
white people should have equal score threshold t under which they are classified at
low risk, and above which they are classified at high risk.

Well-calibration. Classifier C satisfies well-calibration if Pa(Y = 1|S = s) =
Pb(Y = 1|S = s) = s, s ∈ [0, 1], for all groups a, b. This means that both black and
white people with the same score should be treated comparably “with respect to the
outcome, rather than treating black and white people with the same score differently
based on the race group they belong to"[106].

Balance for positive class. Classifier C satisfies balance for positive class
if Ea(S|Y = 1) = Eb(S|Y = 1), for all groups a, b. This means that both black
and white people with an actual low risk rate should have the same expected value
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assigned by the classifier C (a classifier uses the characteristics of individuals to
identify which class - or group - they belong to). That is to say, it should not
happen that the scoring process is “systematically more inaccurate for negative
cases - high risk score - in one group than the other"[106].

Balance for negative class. Classifier C satisfies balance for negative class
if Ea(S|Y = 0) = Eb(S|Y = 0), for all groups a, b. This means that both black and
white people with an actual high risk rate should have the same expected value
assigned by the classifier C. That is to say, it should not be that the scoring process
is "systematically more inaccurate for positive cases - low risk score - in one group
than the other"[106].

Individual fairness. Given a set of individuals V and a set of outcomes A =
{0, 1}, and considering a metric on individuals d: V x V → R and randomized
mappings M: V → ∆A, individuals fairness is achieved if a randomized classifier,
mapping individuals to distributions over outcomes, minimizes expected loss subject
to the (D,d)-Lipschitz condition of D(Mx, My) ≤ d(x, Y) [55].
This means that two individuals are similarly classified if they are considered similar
with respect to a particular task, such as to pay off a debt with a bank.

Counterfactual fairness. Classifier C satisfies counterfactual fairness if P(CA←a

(U1) = y|X = x, A = a) = P(CA←a′ (U) = y|X = x, A = a). That is, given a set of
attributes (education level, type of crime, drugs problems and protected attribute A
= race) and an outcome Ŷ to be predicted (recidivism), a graph is counterfactually
fair if race is not directly linked to Ŷ through any other attributes. Intuitively, this
means that a decision is fair towards an individual if it is the same in (i) the actual
world and (ii) a counterfactual world where the individual belonged to a different
demographic group (i.e. white instead of black).

Preference-based fairness. Here, we introduce new formalization of fairness
[211] that are inspired by the concepts of fair division in economics and game
theory [197, 21].

Preferred treatment. Classifier C satisfies preferred treatment if Ba(Ca) ≥
Ba′(Ca′), for all a, a’ ∈ A2. This means that the preferred condition is preserved if
each group obtains more benefit from their own classifier then it would be assigned

1"U is a set of latent background variables, which are factors not caused by any variable in the
set V of observable variables"[110]

2Ba is the fraction of beneficial outcomes received by users sharing a certain value of the
sensitive attribute a[211]
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from any other classifier. In other words, both black and white people should prefer
“the set of decisions they receive over the set of decisions they would have received
had they collectively presented themselves to the system as members of a different
sensitive group"[211].

Preferred impact. Classifier C satisfies preferred impact if Ba(C) ≥ Ba(C’),
for all a ∈ A. This means that the preferred condition is preserved if a classifier C,
with respect to any other classifier, assigns at least the same benefit for all groups.
In other words, both black and white people should prefer “the set of decisions
they receive over the set of decisions they would have received under the criterion
of impact parity"[211].

Fairness through unawareness. Classifier C satisfies fairness through unaware-
ness if X: Xa = Xb → Ca = Cb for both individuals a, b. This means that for
example the attribute race should not be used to train the classifier and thus to
take a decision (i.e. granting or not a loan).

2.3.1 Algorithmic Fairness in Classification
Recently, a comprehensive discussion on fairness and discrimination in machine

learning algorithms has been provided by Barocas et al. [14]. In particular, the
authors summarize the advances in this field and classify the main definitions of
fairness into three macro categories: (i) independence, (ii) separation, and (iii)
sufficiency. Table 2.4 provides the most widespread definitions of fairness belonging
to the above macro categories. As shown in second column, mostly of them are
equivalent. In third column we give examples of their application in a classification
task by considering the gender as sensitive attribute.

The following paragraphs provide a more detailed explanation of the above
definitions.

Independence criterion. A fairness definition satisfies the independence crite-
rion if sensitive attributes are statistically independent with regard to the classifier.
The more widely adopted definitions falling under this independence criterion are
(i) demographic parity, also known as statistical parity or group fairness [55], and
(ii) conditional statistical parity [44].

Separation criterion. Regarding the separation criterion, it requires that the
correlation between sensitive attributes and a classifier is “justified by the target
variable" [14]. Equalized odds [83], conditional procedure accuracy [20], and avoid-
ing disparate mistreatment [211] codify the same principle by which both members
of the unprotected and protected group should have the same probability of being
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Category Fairness Definition Example
Independence Demographic Parity Both females and males must

have the same probability to be
Conditional Statistical Parity classified with good scores

Separation Equalized Odds In both groups, individuals with
actual good scores and

Conditional Procedure Accuracy individuals with actual bad
scores must have the same

Avoiding Disparate Mistreatment probability to be correctly and
incorrectly classified with
good scores respectively

Predictive Equality The model must classify
individuals with actual good

Balance for the Positive Class scores in the same way
in both groups

Equal Opportunity Both groups must have the same
probability to be incorrectly

Balance for the Negative Class classified with bad scores
Sufficiency Conditional Use Accuracy The probability of belonging to

the good/bad score class having
a good/bad predictive score must
be the same for both groups

Predictive Parity The probability of belonging
to the good score class having
a good predictive score must
be the same for both groups

Table 2.4: Examples of the most widespread fairness definitions

correctly classified positively and the same probability of being wrongly classified
positively. Predictive equality [40] and balance for the positive class [106] constitute
a relaxation in the separation category, providing that both groups have the same
false positive rate, i.e. the same probability of being incorrectly classified positively.
Along the same line, the equal opportunity [83] and the balance for the negative
class [106] provide a false negative rate for both groups, i.e. the same probability
of being incorrectly classified negatively.

Sufficiency criterion. Finally, conditional use accuracy [20] and predictive par-
ity [40] belong to the sufficiency category that establishes sensitive attributes and
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target variable are statistically independent [14]. According to conditional use accu-
racy, both the unprotected and the protected groups should show the same accuracy
for the predicted outcome, while the predictive parity constitutes a more relaxed
approach where equal accuracy is required only for the positive predicted value.

Barocas et al. [14] observe that the majority of the proposed fairness definitions
in machine learning literature are an approximation of these criteria. The key
assumption behind the concept of fairness is based on the idea that some types of
bias can be eliminated, especially those related to human error.

2.3.2 The Cost of Fairness
Recent contributions have analyzed the trade-off of implementing different types

of fairness, and have shown the mathematical impossibility of satisfying more than
one fairness criterion simultaneously [70], [106], [14]. From these findings, we can
derive that no universally accepted notion of fairness can exist. Indeed, each mea-
sure of fairness embodies a different criterion of equity. Friedler et al. [70] demon-
stration is crucial: by proving the impossibility of simultaneously satisfying the
mathematical constraints of multiple definition of fairness, they show the impos-
sibility of simultaneously satisfying different criteria of equity. Hence, this result
paves the way to a major challenge in the design, development and evaluation of
machine learning systems.

2.3.3 Social Notions to design Algorithms
Achieving fairness doesn’t merely involve the process of planning and engineer-

ing algorithms that satisfy mathematical and statistical properties. These algo-
rithms indeed should also explicitly encode specific values and equity criteria. As a
result, a significant ethical and political challenge arises for those who are respon-
sible to decide which measures of fairness and which values an algorithm should
embody. Several recent studies have drawn attention to this issue related to the
implementation of machine learning systems. Evidence emerging from these studies
suggests that fairness should be considered as a trade-off process whereby the sys-
tem background priorities are established. In fact, since the beginning of the first
studies on fairness in the field of machine learning, the main challenge has been
to define what fairness means [23]: the large number of fairness measurements
appeared in the literature is due to this effort, and, as already mentioned above,
conciliating different metrics of fairness might be mathematically not achievable,
except under constrained special cases [106]. As a consequence, choosing a fairness
metric not only involves mathematical aspects or technical requirements the model
is supposed to exhibit, but also conditions belonging to moral and political philoso-
phy [98], [82], as well as issues of human perception of fairness metrics [185], thereby
shifting the focus from purely technical requirements to a multi-facet problem.
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Several of the difficulties on this issue are in fact related to two kinds of concerns
historically debated in moral and political philosophy: the problem of theoretically
defining what equity means, and the problem of defining what is fair in a given
context [28].

In machine learning, several works on fairness actually refer to a technical trade-
off [211], [218], i.e. losing accuracy in favor of a fairer classification [44]. This
means sacrificing a part of utility, because there is a loss of accuracy in prediction,
in favor of a common good, in other words, the good of the individuals concerned.
A number of studies have postulated a convergence between social context and
selection process of fairness metric, although the majority of contributions are still
aimed at assessing the more technical aspects of automatic learning models [3], [81],
[125]. According to Farnadi et al. [62], fairness cannot be achieved only by taking
into account the individual’s attributes, whereas the individual’s relational context
should also be considered. Heidari et al. [85] analyze the similarities arising among
some fairness definitions and different economic models of Equality of Opportunity,
proving fairness metrics actually embed justice criteria, although these are not
clarified. Finally, a broader perspective has been adopted by Beretta et al. [19],
who argue that fairness definitions are affected by specific ideas of democracy.

An important conclusion emerges from the studies discussed so far: assessing
fairness is a procedure which embeds ethical, political and social aspects. Therefore,
it is a process which is only apparently technical.
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Chapter 3

AI: from rational agents to
socially responsible agents

3.1 What kind of Rationality for AI Systems?
The expression Artificial Intelligence is gaining considerable attention from both

private and public sector [162]. The hype is very high and, as it often happens in
such situations, all this attention has generated confusion, even among experts,
who refer to Artificial Intelligence to talk about very different things. We refer
to AI following the mainstream definition of Russell and Norvig [164]: it is “the
study of designing and building intelligent agents (p.30), where agent is “anything
that can be viewed as perceiving its environment through sensors and acting upon
that environment through actuators” (p.34). An intelligent agent “takes the best
possible action in a situation” (p.30), i.e. it is a rational agent the one which, for
each possible percept sequence, is supposed to “select an action that is expected
to maximise its performance measure, given the evidence provided by the percept
sequence and whatever built-in knowledge the agent has” (p.37). An advantage of
this definition is that the few concepts above are the building blocks for designing
AI systems with scalable complexity, e.g. from a "simple" vocal translator to an au-
tonomous vehicle. However, this definition of AI is based on a very precise, and in
a sense narrow, vision of the concept of intelligence, which is bound to a particular
type of rationality. In fact, if the actions undertaken by an agent must always max-
imize a performance measure, it is clear that the functionality and the effectiveness
of such actions are strictly dependent on the form of knowledge the agent itself
incorporates: an action is always the consequence of a certain vision of the world,
of the world’s rules that are considered to be true and for this reason are embed-
ded in the form of algorithms elaborating data, and of a precise conviction about
what the world should become according to that logic. There is a vast amount
of evidence showing that designing and building AI agents according to such de-
terministic perspective is producing relevant negative social effects. Recently, the
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investigative website ProPublica discovered the COMPAS algorithmic tool - Cor-
rectional Offender Management Profiling for Alternative Sanctions - widely spread
in the American criminal justice to prevent recidivist behaviors, was biased against
black defendants, revealing the tool was assigning them a higher risk rate generally
[84]; Latanya Sweeney [191] has highlighted that delivery of ads by Google AdSense
was biased in the sense that in a Google search for an individual’s name an arrest
record was suggesting by algorithm on the basis of racial association, and Cathy
O’Neil underlined a large-amount of case-studies in which people are subjected to
racial, gender, or any other kind of discrimination, in AI ground [142]. In addition,
there are already many examples, in this regard, from AI agents that help financial
institutions decide to which category of people to lend money, and that are based
on the idea - implicitly embedded in the code and in the data used by the software-
that it is better to favor white, educated citizens residing in certain specific areas
of the cities, and especially males [188]; or other examples that include AI agents
deciding (or recommending) to grant probation to prisoners, which once again favor
individuals belonging to certain ethnic groups, or targeting to men more than to
women job offers that are more economically advantageous [184]. Evidently, the
"forms of knowledge" on which the algorithms that "animate" these machines are
based, are the result of databases (or, in the simplest of cases, statistical surveys),
which, even if accurate, they represent certain distortions of our society. So the
question is: do we want these distortions to increase and to be perpetuated by our
Artificial Intelligence tools, or do we prefer to create instruments that may help
us diminish the unjust situations we live in? In this sense, the scientific world is
taking important steps to include other perspectives, such as the ethical one , at
the center of Artificial Intelligence programming, in order to avoid giving rise to a
world in which we can design certainly effective and high-performative AI agents,
but at the same time let them decidedly unfair, and in our place. This work is
part of this community effort, and we advocate the need of a wider range of design-
ing principles for AI agents, which goes beyond the perspective of the mainstream
definition of AI.

3.2 Bias of the Forms of Knowledge governing AI
The problem of bias in the data used by AI systems is well represented in the

following excerpt of Cathy O’Neal’s book “Weapons of Math Destruction" [142]: “if
the admission models to American universities had been trained on the basis of data
from the 1960s, we would probably now have very few women enrolled, because the
models would have been trained to recognize successful white males”. The observa-
tion made by O’Neal entails an important, more general, reasoning: not only how
AI collects and elaborates data has ethical consequences, but, before that stage, also
the input data properties (percepts, in the terminology analyzed in the previous
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section) are connected to important ethical interdisciplinary issues. The character-
istics of the “forms of knowledge” involve ethical issues [69], and those problems
propagate downwards throughout all subsequent phases of the data life cycle in AI
systems, until affecting the output, i.e. the decisions or recommendations made
by the software. Therefore, certain data characteristics may lead to discriminatory
decisions and therefore it is important to identify them and show the potential
risks. We take as reference two characteristics of input data: disproportions and
collinearity.

3.2.1 Disproportionate Datasets
AI systems work on the base of large amount of historical data, very often elab-

orated with machine learning models. Problems of fairness and discrimination may
arise due to disproportionate datasets, which lead to disproportionate results, gen-
erating problems of representativeness when the data are sampled - thus leading to
an underestimation or an overestimation of the groups - and of imbalance when the
dataset used has not been generated using the classical sampling methods. Simple
random sampling - which is the most widely used method in statistical surveys -
requires that the probability of sample extraction is known and not zero, and that
not only each element but also each combination of elements (of equal number)
has the same probability of being extracted. A biased sample leads to biased es-
timates. For this reason, statistical sampling is a fundamental step. However, in
the era of Big Data, many of the data used today have not been generated using
probabilistic sampling, but are rather selected through non probabilistic methods
(very often acquired from third parties, or with opportunistic methods, thanks to
the pervasiveness of digital technologies), which do not provide to each unit of the
population the same opportunity to be part of the sample; this means that some
groups or individuals are more likely to be chosen, others less. Representativeness
is a property of the outcome of the extraction process, which itself has randomness
as its property. For this reason, it is essential to keep this aspect under control in
non-probabilistic samples. In general, solutions relating to demographic or statis-
tical parity are useful in cases where there is no deliberate and legitimate intention
to differentiate a group considered protected, which would otherwise be penalized
[55]. It should therefore be borne in mind that the solutions vary according to both
the nature and use of the data. Take as an example a type of analysis that includes
in its attributes the individual income. If the choice to include in the sample only
individuals with a high income is voluntary, no representativeness problems arise,
since the choice of a given group is based on the purposes of the analysis. However,
if the probability of being included in the sample is lower as the income is lower, the
sample income will on average be higher in the overall income of the population.
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3.2.2 Collinearity
In statistics two variables x1 and x1 are called collinear variables when one

is the linear transformation of the other and therefore there is a high correlation.
Collinearity is a group phenomenon involving at least two regressors and which may
affect, in different extents, different groups of regressors. In general, there are always
relationships between regressors that involve a certain degree of linear dependence,
but it is good practice to consider the correlation value 0.9 as the limit beyond
which singularity or almost singularity in the matrix of regressors is observed; over
this threshold the estimation of parameters in Ordinary Least Squares are to be
considered not reliable. In general, the main causes of collinearity are due to data
collection techniques, such as similar measurement errors on different regressors;
spurious correlations; inconsistency of a regressor data with the model specification,
e.g. when using a higher than necessary polynomial; or application of a model to a
small number of cases. The attempt to contain the negative effects is mostly due to
the fact that collinearity damages the estimates of parameters and their precision.
To prevent this effect some researchers adopt a naive approach that precludes the
use of sensitive attributes such as gender, race, religion and family information, but
may not be effective in case of multicollinearity. The use of geographic attributes,
for example, is reported to be unsuitable when the use of protected data is to
be foreclosed, because it easily leads to tracing protected attributes, such as race
[116]. Hardt et al. [83] points out that the condition of non-collinearity requires
that the predictor (Ŷ) and the protected attribute (A) are independent conditional
on Y - e.g., the variable to be predicted, income, must be independent of the
gender variable. In practice, it is encouraged to use features that allow to directly
predict Y, but prohibits abusing A as a proxy for Y. Another common error is
“mistake correlation with causation"; a high entropy dataset can induce thinking
that the large number of features is sufficient to explain causality. Cause-effect
ratios are often confused with correlations when features are used as proxies to
explain variables to be predicted. For example, the IQ test is a test that measures
logical-cognitive abilities, but if used as a proxy to select the smarter students
for admission to a university course, it would almost certainly reveal itself as an
imperfect proxy, since intelligence is a too broad concept to be measured by a
number only. As a consequence, the test of the IQ is not sufficient to explain
the variable to be predicted. To avoid the risks mentioned above, the following
thresholds, defined on the base of literature and experience, are useful to identify
cases of collinearity:

• correlation values higher than 0.9 should be avoided;

• the absence of high correlations does not exclude collinearity; it is therefore
always good to also consider the value of R2, in the case of R2 = 1, we are in
presence of multicollinearity;
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• in case of collinearity there is no increase in the explained deviance which is
certainly attributable to the effect of a specific regressor.

In addition, an effective method to identify collinearity is to calculate the Variance
Inflation Factors that indicate how much parameter variability depends on the
regressors. VIFs are calculated in this way:

V IFi = 1
1−R2

i

(3.1)

If the i-th regressor is not linearly linked to the others, R2
i = 0 and VIF will be

equal to one. High levels of VIFs indicate the presence of a relation of linearity: it
is commonly assumed that for V IF (βi) > 10 multicollinearity is strong. Finally,
since correlation measurements can only be used for quantitative variables, the
degree of dependency between categorical data is measured using the estimation of
Pearson residuals1, which is a commonly accepted measure of discrepancy between
observed and expected values [214].

3.3 Overview of Data sets used
We applied the metrics defined above to the following three datasets, each re-

ferring to a different application domain. Table 3.1 shows to which datasets which
measure was applied.

3.3.1 Credit Card Default dataset
This dataset [118] contains information on default payments, demographic fac-

tors, credit data, history of payment, and bill statements of credit card clients in
Taiwan from April 2005 to September 2005. The dataset is composed by 24 vari-
ables, of which four demographic ones that can be considered as protected attributes
(sex, age, education, marital status).

1Pearson residuals are widespread in statistic domain to study the linear relationship
among two categorical variables. When two categorical variables are analyzed, the cor-
relation is called association; therefore, Pearson’s residuals measure the strength and di-
rection of the association between two categorical variables and is particularly appropri-
ate when one of the two is dichotomous categorical. The absolute value of the resid-
uals indicates the strength of the association, while the direction is indicated by the
sign. See more at: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient and at:
https://en.wikipedia.org/wiki/Pearson%27s_chi−squared_test
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3.3.2 COMPAS Recidivism Racial Bias dataset
Data [112] contains variables used by the COMPAS algorithm in scoring defen-

dants, along with their outcomes within two years of the decision, for over 10,000
criminal defendants in Broward County, Florida. COMPAS (Correctional Offender
Management Profiling for Alternative Sanctions) is an algorithm used by judges
to assess the probability of recidivism of defendants. Three subsets of the data
are provided, including a subset of only violent recidivism, as opposed to, e.g. be-
ing re-incarcerated for non-violent offenses such as vagrancy or Marijuana. The
original dataset contains 28 variables, of which eight are considered protected at-
tributes: Last name, first name, middle name, sex, race, date of birth, spoken
language, marital status. The dataset is well-known because of a study of the U.S.
non-profit organization Pro Publica [84] that showed that the COMPAS algorithm
is distorted in favor of white individuals, thus exposing black people to a risk of
distorted recidivism, because it would be higher than it actually was.

3.3.3 Student Alcohol Consumption dataset
The data [45] were obtained in a survey done by students of mathematics and

Portuguese language courses in secondary school. It contains social, gender and
study information about students. Two datasets are provided: The one containing
the students of the mathematics course contains 395 observations, the one relating
to the Portuguese language course contains 649 observations. Both contain 33
variables, most of which are protected attributes describing demographics, such as
school, context of belonging (urban, rural), family indications, etc.

Disproportion Collinearity
Credit card default dataset x x

COMPAS Recidivism racial bias dataset x
Student alcohol consumption dataset x

Table 3.1: Measures and Datasets

3.4 Applications

3.4.1 Credit Card Default dataset
The field of creditworthiness often appears in the literature alongside issues

related to ethical decisions [207], [158]. Recently, some studies have shown that
access to credit for black people is modulated by certain attributes such as race,
rather than by information about the payer’s status [25], [15], [39]. The dataset
that we use does not contain the protected attribute race, however it contains other
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personal information that can be used in a discriminatory way if applied to assess
creditworthiness, such as gender and level of education.

Disproportion

Figure 3.1 reports the frequency of variables gender, marital status, age, edu-
cation, expressed as a percentage for each of their categories. The data shows that
60% of individuals are women, 46.7% of individuals have attended university, the
age group most represented is that of 25 to 40 years, the proportion of married
individuals is the same for single individuals. Although we do not have information
neither on the real frequencies of protected attributes in the source population nor
on the sampling method used (if any), the results of the analysis of disproportions
suggests to use the age variable with caution: in fact the variable age shows a more
considerable disproportion compared with the other protected attributes, exposing
a potential risk of discrimination (e.g., if the dataset is used to automate decisions
or recommendations on the capability to repay a debt, and attribute age is one of
the predictors).

Collinearity

We perform the analysis for each protected attribute in the Credit Card default
dataset, in relation to default payment (1 = yes, 0 = no). We report on Figure
3.2 the mosaic plots2 for the attributes education, marital status and gender: blue
indicates cases in which there are more observations in that cell than would be
expected under the null model of independence between attribute education and
attribute default payment; red means there are fewer observations than would have
been expected; eventually, grey indicates that observations are coherent with the
assumption of independence. Figure 3.2 shows that:

• default payment is highly correlated to the education level, for all its levels;

• the correlation between the protected attributes and the default payment
variable is significant for the gender variable (both male and female);

• the correlation is significant for the marital status variable in correspondence
with the default payment group = yes;

• in addition, Pearson residuals show that the most correlated categories are:
the education variable and the male, both in correspondence with default
payment = yes.

2A mosaic plot is an area proportional visualization of a (possibly higher-dimensional) table
of expected frequencies. It visualizes Pearson Residuals.
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Figure 3.1: Distributions of selected attributes in the Credit Card Default dataset

As a consequence of the analysis, the identified correlations should be taken into ac-
count when using the dataset in an algorithm that supports or automate decisions.

3.4.2 COMPAS Recidivism Racial Bias dataset
Disproportion

As reported above, previous research has shown that the data in the COMPAS
dataset is unbalanced in favor of white people. Table 3.2 shows the variability
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Figure 3.2: Analysis of collinearity with mosaic plots for selected attributes in the
Credit Card Default dataset

in race attribute, which is the underlying reason of the findings of the previous
study: the highest levels of reoffending are observed in black individuals. Moreover,
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33.22% of the dataset’s observations refer to white people, while 53.45% refer to
black people, indicating that there may be an over-estimation of the race attribute
- against black people - which would contribute to the estimation of recidivism
(confirmed by follow-up analyses showing a highly dependence between that the
race variable and the level of recidivism).

Ethnic Group High Low Medium N/A
African-American 3400 3369 3010 12

Asian 9 50 12 0
Caucasian 943 3554 1579 10
Hispanic 191 945 315 0

Native American 15 26 16 0
Other 56 653 150 1

Table 3.2: Distribution of ethnic groups within the COMPAS database, by level of
risk of recidivism

3.4.3 Student Alcohol Consumption dataset
The dataset is composed of 33 variables, principally qualitative; 649 observations

for the dataset referring to students of Portuguese, 395 for that referring to students
of mathematics.

Collinearity

We randomly chose 4 quantitative variables to predict workday alcohol con-
sumption and calculated the Variance Inflation Factor for each of the regressors,
and report results on Table 3.3. The variables indicate: i) number of school ab-
sences (numeric: from 0 to 93); ii) current health status (numeric: from 1 - very
bad to 5 - very good); iii) quality of family relationships (numeric: from 1 - very
bad to 5 - excellent); iv) age. The average of VIF is equal to 1.02, therefore among
the variables considered a relationship of collinearity is only moderate. However,
we observe that while some attributes in some contexts are considered protected,
in others are essential to avoid situations of risk or damage; in the case of alcohol
abuse among students, personal information are useful to identify areas of inter-
vention and define appropriate social policies. We underline once again how the
intended scope of the AI plays a fundamental role in the choice of considering some
attributes as protected or not.
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Absences Health Fam Rel Age
VIF 1.02 1.01 1.01 1.03

Table 3.3: Variance Inflation Factor for selected attributes in Student Alcohol Con-
sumption dataset

3.5 For Artificial Intelligence as a Socially Re-
sponsible Agent

The measurements reported in the previous section highlight that when biases
are incidentally encoded into the AI agents which the only purpose is to maximize
some performance measures, certain injustices and prejudices can be perpetuated
and exacerbated. In recent years, both in the scientific community and in civil
society a lively debate on this issue has arisen, as the use of big data and automatic
learning tools has brought many changes in various fields, including that of Artifi-
cial Intelligence. As we have seen before, a relevant problem in this field is related to
unbalanced datasets, which overestimate or underestimate the weight of some vari-
ables in the reconstruction of the cause-effect relationship needed to predict events,
as happened with some algorithms used by the American police to prevent crimes
[123]. In this work, the authors showed that the algorithm used by police patrols for
predicting future drug crimes, were fed with data that were under-representative
of the white consumers of drug. As a result, predictions of the software constantly
pointed to areas of the cities where non-white people resided, and police would
follow those recommendations to focus crime prevention activities. Arrests would
then be concentrated in those areas, and on the non-white people, creating a feed-
back loop that reinforces the initial bias. Furthermore, there are cases where biases
can be injected into the data during the agent training process [13], as it occurs
with supervised learning techniques that require humans to label the data. For
instance, Kate Crawford [46] showed that differences in gender or ethnic and social
background can produce different biases in assessing the meaning of an image or
concept. However, the ethical issues raised by the functioning of AI go well beyond
the composition of its databases. In some cases Artificial Intelligence poses prob-
lems of transparency and openness, since data, algorithms and the architectural
functioning are often opaque. This can be dangerous in many areas. For instance,
in the job recruiting domain some concerning are arising over the use of Artificial
Intelligence tools in the selection and management of personnel, the mechanisms of
which are unknown to employees and intermediate bodies. For this reason, an at-
tempt to pursue a policy linked to the promotion of open data and of the open code
has been carried on in some countries [149]. However, there are still situations in
which transparency and openness do not imply two other desired properties of AI:
explainability and understandability. It is the case for example of neural networks
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and black-box algorithms [146]. This issue has been regulated by the new General
Data Protection Regulation [1] at Article 22, that provides a general prohibition
of solely automated decision-making (that means with no significant human inter-
vention in any phase of the data processing) with legal effects on the individual;
furthermore, Article 29 of the Guidelines on Automated individual decision-making
and Profiling for the purposes of Regulation 2016/679 specifies that transparency
criterion is mandatory also in cases of high complexity of the technology concerned,
as the transparency conditions require that detailed explanations or disclosures of
the whole algorithm are not to be disclosed, but rather the underlying logic in order
to clarify the criteria leading to a particular decision. Finally, the counterbalance of
openness and transparency is the need to protect the privacy of individuals, leading
to the setting of boundaries beyond which transparency cannot be pursued. One of
the typical nodes, in the field of Artificial Intelligence and not only, is for example
that of the mosaic effect, linked to the secondary use of certain data, very frequent
in health research, which is not easy to be predicted from the beginning and which,
for this reason, makes informed consent complex to implement. Consensus needs
to be questioned as well to determine in which situations individuals can refuse to
be subjected to tools and processes that make use of Artificial Intelligence. This
issue has been regulated by the new General Data Protection Regulation at Ar-
ticle 22, that provides a general prohibition of solely automated decision-making
(that means with no significant human intervention in any phase of the data pro-
cessing) with legal effects on the individual (see also Art. 29 of the Guidelines on
Automated individual decision-making and Profiling for the purposes of Regulation
2016/679 ). In light of our results, we point out that a deterministic approach to
the design and construction of AI agents does not avoid the risk of discriminatory
outcomes. Alongside the definition of Artificial Intelligence as a rational agent, a
more comprehensive approach is needed that takes into account a complementary
definition, that of a socially responsible agent. AI should be rational in augmenting
social fairness. The White Paper Artificial Intelligence at the service of the citi-
zen [52] provides some useful and general principles to achieve more equitable AI
systems, suggesting to consider AI as a humanistic and anthropocentric process.
Furthermore, it suggests “principles of equity, such as procedural (non-arbitrariness
of procedures), formal (equal treatment for equal individuals or groups) and sub-
stantive (effective removal of obstacles of an economic-social nature)” [52](p.38). In
this study, it has been shown that an improperly designed AI may easily violate all
these criteria of equity. More in general, when people is the target of AI decisions,
the respect of universal human rights should be the ultimate reference [154], [103].
Along with technical developments in AI, a discussion of how the human-AI coop-
eration can be most efficiently managed without letting rational AI agents decide
on fundamental issues should be included.
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Chapter 4

Detecting discriminatory risk
through Data Annotation based
on Bayesian inferences

4.1 Introduction
In the last decades machine learning systems are widely spreading in differ-

ent academic domains, as well as many public and private sectors are increasing
the exploitation of these systems. Their widespread and pervasiveness is mainly
driven by the exponential growth of computational power and the extensive avail-
ability of large amounts of data [106]. Supervised machine learning models are
also particularly widespread and now deeply rooted in different sectors due to their
usage versatility. The predictive ability of supervised machine learning systems is
deployed in disparate areas of application: credit reliability [106], justice system
[20], job recommendations [181], university selection process [100], cultural contents
[168],[92] and purchases recommendations [145]. The key ingredient that supervised
machine learning models have in common is the availability of a set of labeled data
used to train the model in elaborating a response related to past events [75]. Since
the known properties of the available set of data is used to create a classifier that
makes predictions about new entities of the same type, the structure, properties
and quality of the data are aspects that largely and directly influence the quality
of the model and the results it produces [142], [5]. Although data-driven decision
models have been shown to produce both economic and social benefits, many re-
searchers have highlighted several problems and damages related to their use in
different areas, especially if they are built on partial or incomplete data [83], [55].
As a matter of fact, in recent years several studies have found a convergence of
issues related to the ethics and transparency of these systems in the process of data
collection and in the way they are recorded [127]. While the process of rigorous
data collection and analysis is fundamental to the design of the model, this step
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is still largely overlooked by the machine learning community [19], [96]. As the
practice of removing protected attributes from available data has been shown to
potentially exacerbate further discrimination [203] - making bias even more diffi-
cult to detect - practices related to data collection, data transparency and data
explainability become even more relevant and urgent. The aim of our work is to
provide a data annotation system that serves as a diagnostic framework containing
immediate information about the data appropriateness in order to more accurately
assess the quality of the available data used in training models. We propose a data
annotation method based on Bayesian statistical inference that aims to warn of
the risk of discriminatory results of a given data set. In particular, our method
aims to deepen the statistical knowledge related to the information contained in
the available data, and to promote awareness of the sampling practices used to
create the training set, highlighting that the probability of a discriminatory result
is strongly influenced by the structure of the available data. We test our data an-
notation systems on three dataset widely spread in machine learning community:
the COMPAS dataset [84], the Drug Consumption dataset [63], [64] and the Adult
dataset [107].

4.1.1 Problem Statement
The majority of machine learning systems are based on historical data processing

[140]. This is particularly true in supervised machine learning models. Several
studies have shown evidence that many equity and discrimination issues are due to
input data properties [18]. Most of today data sets used to train models are chosen
through non-probabilistic methods, generating problems of data imbalance and
representativeness [60], [140]. This means that different fractions of the population
do not show the same opportunity to be represented within the sample - aka,
training sets -, leading some groups of individuals to have a lower probability of
being represented. Common observed effects of a bad sampling are underestimation
and overestimation of some groups [14]. Undetected distortions in data may also
easily represent a spurious statistical noise. This happens when the data structure
induces dependence between two variables that are not linked by a real cause-effect
relationship.

Data Sampling A key moment in the pipeline of a machine learning model is
when the programmed algorithm is supplied with training data representing the
entities on which the model itself trains its knowledge to make predictions. The
quality of the data used in this phase is fundamental for the desired result, according
to the principle of "garbage in - garbage out": even the most sophisticated models
can present distorted results in the presence of low quality data [194]. One of the
main causes of data distortion is the way the data is selected and provided to the
algorithm displaying problems related to inaccuracy, lack of update or inadequate
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representativeness. However, while knowledge of bias typologies has proliferated
over the years, less attention is paid to issues concerning data collection, notation
and sampling [129]. In the spirit of fostering a broader awareness of data handling,
we provide a reasoned list of issues that may arise during this phase:

i Data Selcetion: the large proliferation of data sets availability on the same
kind of problem to be analyzed, make hard the a priori choice of a given data
set [75];

ii Inadequate sampling methods: most models are trained with data sets that
have been "found" and not subjected to probabilistic sampling methods, lead-
ing to limited or no data control [11];

iii Cost and Time Limit: collecting large amounts of data that present propor-
tional representations of each property with respect to a sensitive attribute
is time consuming and often costly and labor-intensive [33];

iv Data set validation: in the design of a machine learning model, more atten-
tion is paid to the mathematical basis of the classifier, restricting the data
formation process to a black box [78], [76];

v Validation planning: data validation, when applied, is often performed only
after the model has been trained and used, making the feedback cycle ineffi-
cient and often ineffective [87];

vi Lack of statistical rigorousness: the suitability of the data set varies depending
on the task for which the data are prepared. For instance, models based on
linear regression imply assumptions of normality on the measurement error
[75], [200]. This specificity is often absent in the pipeline of machine learning
models.

Miss-dependency Two-dimensional or bivariate statistics is the study of the
degree to which two distinct characters of the same statistical unit are connected.
However, the connection only measures the degree of statistical dependency with-
out inducing a cause-effect relationship or dependency between the variables. For
instance, it can be shown that people with small feet make more spelling mistakes
than people with large feet. However, this statistical dependency does not indi-
cate that having small feet is the cause of spelling mistakes; the greater frequency
of spelling mistakes may in fact be due to the younger age of people with small
feet. In this case there could be a third variable, age, responsible for the cause-
effect relationship. While in a human-centered model - where the human makes
the decisions - this distinction is quite evident, in a machine learning model miss-
dependency is not always deductible. This depends on two reasons: i) the machine
does not recognize the meaning of the instance but looks at the properties of the
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variables; ii) the way in which the data are structured modifies the interpretation
that the machine is having regarding the relation of statistical dependency. This
means that, while in a human-centered model it is the human to verify that the
relationships of statistical dependence detected in the available data are leading to
a cause-effect relationship, in machine learning models the machine is not always
able to recognize a spurious connection, erroneously assigning to two or more vari-
ables a cause relationship. In other words, the structure of the available data is
responsible for the successful or failed relationships established with the protected
attributes (ethnicity, gender, etc.) in the data. In addition, the rapid growth and
spread of current machine learning systems is due in part to the ease of design of
the models themselves, which thanks to modern software allows the construction of
predictive models avoiding the understanding and adoption of rigorous statistical
analysis. The simplicity of design has therefore created a gap between predictive
and analytical-explicative power, favoring misinterpretation between causality and
statistical dependence. The distinction between statistical dependence and causal
dependence in data is therefore a primary issue in machine learning models, espe-
cially to determine the causes of failure, potential biases encoded in the data and
the reliability of application.

4.2 Research Questions
Based on the problems highlighted, our contribution aims to answer the follow-

ing research questions:

RQ1 Is it possible to establish the probability of composition of the training data
from the available data set?

RQ2 Do the available data known to the machine learning community present a
discriminatory future risk based on their structure?

4.3 Background
When machine learning model decisions are based on historical records, they

tend to embed distortions that exist in reality and crystallize them. Prejudices
and human bias therefore become part of the technology itself. This is particu-
larly evident with regard to ethnic discrimination. Over the last years, the rise
of machine learning models in various sectors is leading to a dramatic increase of
discriminatory outcomes for ethnic minorities, across different fields of application.
A striking and well known case is the COMPAS software, used in U.S. court to
estimate the probability of defendants’ recidivism, which has been shown to under-
estimate the risk of recidivism for white defendants and overestimate it for black
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defendants [84]. However, the COMPAS case is not an isolated phenomenon. In
a 2017 experiment conducted on the Airbnb platform, applications from guests
with typically African American names were found to be 16% less likely to be
accepted than identical guests with typically white names [57]. Also in 2017, a
geo-statistical analysis revealed that the design of the popular Pokémon GO game
strengthens existing geographical prejudices, for example by benefiting urban areas
and neighborhoods with smaller minority populations, economically disadvantaging
ethnic minority areas [42]. Several studies have demonstrated the discriminatory
potential of targeting advertising [183], [182], which is only recently receiving in-
terventions to remove the prejudicial content of the model. For example, Facebook
after years of scandals related to ads that exclude people based on race [8] has
finally removed the racial targeting option for ads [109]. In a 2019 study, the com-
mercial algorithm widely used in the U.S. health care system to guide health care
decisions was found to discriminate against black patients [143]. The algorithm
falsely assigned a healthier condition to black patients despite the risk of complica-
tions being the same for white patients, making black people less likely to receive
more financial resources for extra care. Although facial recognition technologies are
now used in several domains, they still present many discriminatory issues related
to differences in margins of error - generally software has a 20% higher margin of
recognition error for black women [152] -. As an example, we report what happened
recently with Google Vision AI, a computer vision service for image labeling [104].
By providing the system with two images of people holding a body temperature
thermometer, it labeled the image containing the white person as an "electronic
device", while in the image containing the black person the device held was labeled
as a "gun". In a later experiment it was shown that it was sufficient to apply a
pink mask on the black person’s hand in order the software labeled the image as
"tool". Racial bias encoded in machine learning systems is likely to spread silently
and like wild fire in everyday technologies. The increasing and ubiquitous spread of
such models also intended to make allocative decisions about people’s lives makes
the problem of prejudice and rational discrimination more urgent than ever. For
this reason and for the historical moment we are experiencing, our work intends to
focus on rational discrimination in data.

4.4 Motivating Example
Given a population composed of 60% Caucasians, 35% black people and 15%

Asian people, the probability of positive outcome for the respective ethnic groups is
70% for Caucasians, 20% for Blacks and 60% for Asians. What is the probability
of failure with respect to the protected attribute Ethnicity?

In this example the probabilities are given rather than the numerosity in order
to simplify the following notation. To offer a better a better understanding of the
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Methodology this data will be used in Section 4.5. The data gives the probability
of success, but the similar reasoning is also valid for cases where the probability
of failure is known. The intent is to verify whether the probabilities of success or
failure of a subgroup are influenced by group membership - and vice versa - and
more specifically how these probabilities affect the composition of the training set.

4.5 Methodology
Our data annotation system is based on four modules:

I Dependence: assesses the degree of connection among the protected at-
tribute - in our study, the ethnicity - and the target variable;

II Diverseness: provides the training diversification probability in respect to
each level of the protected attribute and the target variable;

III Inclusiveness: provides the probability that two properties are simultane-
ously included in the training set;

IV Training Likelihood: provides the occurrence likelihood of the protected
attribute levels given the target variable levels - and vice versa - before the
training set is sampled.

4.5.1 Quantifying Dependence
Excluding some specific domains where the dependence of some protected at-

tributes with the response variable is not considered problematic, but rather it is
fundamental for the understanding of a certain problem (for example the gender
attribute in the medical field in the detection of particular diseases [47]), in the
broad field of machine learning systems the dependence between the protected at-
tribute and the response variable has caused severe consequences [142], [140]. The
dependence between the protected attribute and the response variable is therefore
one of the major causes of discrimination and as such must be rigorously exam-
ined. The first step for a correct bias detection within the data is given by the
dependency analysis between the different modalities of a protected attribute and
the response variable. In statistics, the measurement of the degree of dependence
of two qualitative variables is called contingency; contingency measures the degree
of connection of two categorical variables. To determine the degree of connection,
the marginal frequencies and the combined frequencies of the bivariate table are
used. Given two categorical variables xi and yi, the dependency or independence
is established through the theoretical independence table f ′(xi, yj) once the table
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of the observed real data f ′(xi, yj) is given. The contingency C(xi; yj) is therefore
given by the difference between the observed and theoretical frequencies:

C(xi; yj) = f(xi, yj)− f ′(xi, yj) (4.1)

If the table of the observed real data and the theoretical table of independence
coincide - that is if for each cell the value is null - then the two variables are
independent. Otherwise, it is necessary to measure the degree of connection be-
tween the variables. The degree of connection between two categorical variables
is commonly measured by the Pearson connection index, obtained as the sum of
the relative quadratic contingencies. The index assumes a value of zero in case
of independence in distribution and increases as the degree of connection between
variables increases:

χ2 =
∑︂
i,j

C2(xi; yj)
ni,j

= n
(︃∑︂

i,j

n2
i,j

ni0n0j

)︃
(4.2)

In order to support Pearson’s connection index, the contingency coefficient is adopted
with the purpose of reducing the χ2 in the range [0;1]:

C =
√︄

χ2

χ2 + n
(4.3)

However, the effect size of the degree of connection between two categorical vari-
ables is not always easy to interpret, where by effect size we mean a quantitative
measure of the magnitude of a phenomenon. To offer a better understanding of
the relationship of dependency between two variables, several simplified methods
of interpretation have been proposed, especially to guide social scientists in the in-
terpretation of statistical test results. In the spirit of simplifying the interpretation
of the dependency between the response variable and the protected categories for
a data set user, we introduce the concept of the Effect Size Index w (ES w):

w =
⌜⃓⃓⎷∑︂

i=1

(P1i − P0i)2

P0i

, (4.4)

where p0i and p1i are the value of the ith cells. Notice that unlike the contingency
coefficient, the ES w is not derived from frequencies but from proportions. The
relationship between the Pearson connection index, the contingency coefficient and
the ES Index is given by the following formula:

C =
√︄

χ2

χ2 + n
=
√︄

w2

w2 + 1 (4.5)

Alternatively to the Formula 4.4 it is also possible to calculate the ES w from the
contingency coefficient:

w =
√︄

C2

1− C2 (4.6)
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The size of the ES w between two variables is then evaluated through the use
of Table 4.1, which relates the magnitude of the ES with a nominal label. The

Magnitude Value
SMALL w = 0.1
MEDIUM w = 0.3
LARGE w = 0.5

Table 4.1: Conventional definitions of Effect Size Index w magnitude

advantage of using the conventional conversion table for the user of the data set is
that the magnitude of the dependency is displayed quickly and immediately without
the need for more complex statistical tests.

4.5.2 Estimating Diverseness
Intuitively, the probability of an event represents how likely the event will occur.

According to the classical definition the probability is given by the following ratio:

P = number of favorable cases

number of possible cases
(4.7)

We now apply this elementary theory to the problem of data collection in machine
learning. When the data set is partitioned into training and test sets, a split with a
more or less standard ratio (70/30 or 80/20) is generally performed, i.e. a sampling
is performed on the available data. Let’s consider the case in which the training data
set is generated by random sampling on the original data set without considering
further techniques (stratification or re-sampling) - for example in the case of a non
expert user -. The probability an event occurs turns into the probability that the
training set shows some existing properties contained in the original data set:

P = number of favorable properties

number of possible properties
(4.8)

In our data annotation this ratio is introduced to allow the dataset user to answer
questions like: "If I perform a random sampling on the original dataset, what is the
probability that the training set is mainly composed of positive examples? What is
the probability of belonging to a certain group with respect to the target variable?"

Prior Probabilities The a priori probability of a data property is the degree
of belief of the property in the absence of other information, also known as the
unconditional probability. The degree of belief is the probability of a property to
be true in an uncertain environment. The probability is referred to the belief and
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not to the truth of the fact, as it is not possible for the user to know exactly the
truth, that is if the original data are representative of the real world. Since the user
does not have access to the complete information, several hypotheses on how the
real data is structured have to be drawn, assigning to each of them a probability
of being true. Formally:

P = (Y = y)
P = (A = a)

(4.9)

We estimate the prior probabilities by using the data of the problem introduced
in Section 4.4, where the target variable Y assumes value 1 in case of negative
outcome, otherwise 0. In this specific case, the prior probabilities indicate that

Formula Probability
P (Y = 0) P = 0.48
P (Y = 1) P = 0.52
P (A = white) P = 0.6
P (A = black) P = 0.35
P (A = Asian) P = 0.15

Table 4.2: Example of prior probabilities

the training set has probability 0.48 to be composed by individuals who display a
positive outcome and 0.52 to be composed by individuals who display a negative
outcome; finally, the probabilities that it is formed by individuals of white, black
and Asian ethnicity are respectively 0.6, 0.35 and 0.15 (Table 4.2).

4.5.3 Estimating Inclusiveness
Posterior Probabilities Given two events A and B, the probability P (A|B)
is said posterior probability because it allows to calculate the probability of A,
knowing that B occurred. In our case the posterior probability means to compute
the probability that Y = y, knowing that A = a has occurred (and vice versa). In
other words, the probability that the training set shows the property Y = y, knowing
the property A = a has occurred (and vice versa). We start by estimating the
probability that two events occur simultaneously. From the definition of conditional
probability:

P (A = a ∩ Y = y) = P (A = a)P (Y = y|A = a)
P (Y = y ∩ A = a) = P (Y = y)P (A = a|Y = y)

(4.10)

Since from Compound Probability Theorem [161] P (A = a ∩ Y = y) is equal to
P (Y = y ∩ A = a), i.e. the probability of both properties occurring is the same,
either of the two formulas can be employed indistinctly.
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Formula Probability
P (Y = 0 ∩ A = white) P = 0.42
P (Y = 0 ∩ A = black) P = 0.07
P (Y = 0 ∩ A = Asian) P = 0.09
P (Y = 1 ∩ A = white) P = 0.18
P (Y = 1 ∩ A = black) P = 0.28
P (Y = 1 ∩ A = Asian) P = 0.06

Table 4.3: Example of properties occurring simultaneously

4.5.4 Estimating Training Likelihood
From the definition of conditional probability, we derive the Bayes Theorem for

the properties of the training set:

P (A = a|Y = y) = P (A = a)P (Y = y|A = a)
P (Y = y)

P (Y = y|A = a) = P (Y = y)P (A = a|Y = y)
P (A = a)

(4.11)

In the case of binary classification and in the case of protected attributes we are in
the presence of a certain event partition. This means that the events are disjointed
from each other Yi ∩ Yj = ∅ and Ai ∩ Aj = ∅ if i /= j and that as a whole they are
the only ones possible, i. e., if a certain property occurs, one and only one certainly
appeared. In other words, it is not possible that the training set is composed of
individuals who belong simultaneously to the black and white ethnic group, or who
simultaneously show a positive and negative outcome. The union of the occurrence
of the single properties is therefore the whole set of possible properties. For the
properties outcome and ethnicity the generalization formula are respectively:

Ω : ∪N
i=1Yi = Ω, hence

N∑︂
i=1

P (Yi) = P (∪N
i=1Yi)

Ω : ∪N
i=1Ai = Ω, hence

N∑︂
i=1

P (Ai) = P (∪N
i=1Ai)

(4.12)

By applying Formulas 4.10 and 4.12 the Bayes Theorem can be generalized for each
property of the training set:

P (Y = y|A) = P (Y = y)P (A|Y = y)
P (A) = P (Y = y)P (A|Y = y)∑︁N

i=1 P (A|Yi)P (Yi)

P (A = a|Y ) = P (A = a)P (Y |A = a)
P (Y ) = P (A = a)P (Y |A = a)∑︁N

i=1 P (Y |Ai)P (Ai)

(4.13)
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The first equation in Formula 4.13 derives the probability of the outcome property
given the ethnic property, while the second equation derives the probability of
the ethnic property given the outcome property. In other words, it derives the
probability of composition of the training set based on the posterior probabilities
of the outcome and ethnicity properties. Carried out a random sampling on the
original data, the Formula answers the following questions:

i In the sampled training set what is the probability of belonging to an ethnic
group with respect to the outcome variable?

ii In the sampled training set what is the probability of obtaining a certain
outcome with respect to the ethnic group?

Complementarily, the two equations can be interpreted as the probability of bias
within the training set.

Formula Probability
P (Y = 0|A = white) P = 0.7
P (Y = 0|A = black) P = 0.2
P (Y = 0|A = Asian) P = 0.6
P (Y = 1|A = white) P = 0.3
P (Y = 1|A = black) P = 0.8
P (Y = 1|A = Asian) P = 0.4
P (A = white|Y = 1) P = 0.34
P (A = white|Y = 0) P = 0.87
P (A = black|Y = 1) P = 0.53
P (A = black|Y = 0) P = 0.15
P (A = Asian|Y = 1) P = 0.11
P (A = Asian|Y = 0) P = 0.18

Table 4.4: Example of posterior probabilities

4.6 Case Studies Datasets
COMPAS (Correctional Offender Management Profling for Alternative Sanc-

tions)1 is a popular tool used by U.S. court to estimate the defendants’ probability
of recidivism. This dataset displays the probability of reoffending based on two
year of further studies. The dataset has been shown to underestimate the risk of

1Retrieved from:
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
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recidivism for white defendants and overestimate it for black defendants [84].
Drug Consumption [63], [64] contains information on the consumption of 18
drugs based on personality traits and socio-economic attribute. For simplicity of
analysis we assumed the consumption of Cannabis as target variable but the anno-
tation of the dataset can be made on each target drug.
Adult Dataset [107] The data set contains adult income annual census from the
US Census Bureau. It is commonly employed in forecasting tasks in order to predict
the factors leading to income below or above $50,000.

Property COMPAS Drug Adult
Consumption Dataset

Size 6172x9 1885x31 48842x15
Target 0 → no 0 → non user 0 →> 50K
variable 1 → yes 1 → user 1 →≤ 50K
Levels of Asian Asian AIE a

ethnicity Black Black API b

attribute Caucasian Black/Asian Black
Hispanic Caucasian Caucasian

NAc White/Asian Other
Other White/Black

Other

Table 4.5: Summary of Datasets Prominent Properties
a American-Indian/Eskimo, b Asian-Pac-Islander, c Native American

4.7 Results
We performed the analyses that constitute our data annotation system for each

of the datasets presented in Section 4.6. Sub-sections 4.7.1, 4.7.2, 4.7.3 and 4.7.4 re-
port the analysis for each module - dependency, diverseness, inclusiveness, training
likelihood, respectively - and contain an example graphic module. Figure 4.4 shows
an illustrative example of the graphical visualization for the complete notation.

4.7.1 Dependence
This module aims to analyze the connection relationships between the protected

attribute Ethnicity and the target variable that are established and depend on
the available data. For instance, for the COMPAS dataset the module highlights
the dependency relationships between recidivism and different ethnic minorities.
Summary results for dependence module are shown in Table 4.6.
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COMPAS Drug Adult
Consumption Dataset

Contingency 0.1413 0.1558 0.0994
coefficient
Effect size w 0.1427 0.1578 0.0999
variable
Magnitude of SMALL SMALL VERY
Effect size w SMALL

Table 4.6: Summary of Dependence Prominent Properties

None of the three datasets displays worrying dependency values among the
protected attribute Ethnicity and the target variable, showing the magnitude of
the Effect Size w as small or very small. However, the results of the COMPAS
dataset - which is proven to contain bias - indicate that this module alone is not
sufficient to show a latent bias risk. The degree of bias depends on the sample
size and the value of the contingency coefficient of the target variable and the
protected attribute [216]. Smaller samples lead to more bias and higher variance
[217] and therefore the results of the dependency must be analyzed in relation to the
amount of data available. In order to facilitate the interpretation of the connection
relations, we propose a graphic notation for dependence. Figure 4.1 shows the
graphical representations of the dependency modules based on different connection
magnitude.

4.7.2 Diverseness
This module aims to analyze the diverseness of the data available by estimating

prior probabilities. They determine the probability that training set will display
an a priori environment based on the original data available, i.e. they show the
probability of training set composition stratified by each of target variable and
protected attribute levels. For example, in our case study the module highlights
the probability that training set will be equally composed by ethnic minorities and
ethnic majorities. Summary results for diverseness module are shown in Table 4.7.
In terms of target variable probabilities, the results show strong distortions for the
Drug Consumption and Adult datasets with a high probability of positive examples
- i.e. showing a negative outcome - while the probabilities of the COMPAS dataset
are quite homogeneous. Regarding the probabilities of the protected attribute
ethnicity, the distortions are even more pronounced than the target variable ones,
revealing a very high probability of composition for the Caucasian ethnicity in the
Drug Consumption and Adult datasets. In the case of the COMPAS dataset the
probabilities are indeed distorted, although still not such as to predict at this point
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Figure 4.1: Example of Dependence graphic visualization

of the analysis more severe future distortions, which is why more in-depth analysis
are required. Figure 4.5.2 shows the graphical representation of the diverseness
module that simplifies the display of prior probabilities. In the example is given
the notation for a dataset where both the levels of the target variable and those of
the protected attribute ethnicity are equiprobable.

4.7.3 Inclusiveness
This module aims to analyze the inclusiveness of the data available by estimat-

ing the simultaneously probabilities. They determine the probability that training
set will simultaneously display two by two the target variable and the protected
attribute properties. For instance, in our case study the module highlights the
probability that in training set the property Asian appears simultaneously with
property success. Summary results for diverseness module are shown in Table 4.8.
The results of this module show that the probability that two properties will occur
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COMPAS Drug Adult
Consumption Dataset

0 0.545 0.329 0.239
1 0.455 0.671 0.761
Caucasian 0.341 0.912 0.855
Black 0.514 0.018 0.096
Asian 0.005 0.014
Hispanic 0.082
Native American 0.002
Other 0.056 0.033 0.008
White/Black 0.011
White/Asian 0.011
Black/Asian 0.002
Amer-Indian-Eskimo 0.010
Asian-Pac-Islander 0.031

Table 4.7: Summary of Diverseness Analysis Results

Figure 4.2: Example of Diverseness graphic visualization

simultaneously is related to the sample size. Evidence of this can be found in the
results of the Drug Consumption and Adult datasets, where the highest probabili-
ties of simultaneous events involve the Caucasian property. The COMPAS dataset
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COMPAS Drug Adult
Consumption Dataset

0∩AIEa 0.0006
0∩Asian 0.0023 0.0019
0∩APIb 0.0041
0∩Black 0.1514 0.0023 0.0057
0∩Black/Asian 0.0000
0∩Caucasian 0.1281 0.0555 0.1061
0∩Hispanic 0.0320
0∩NAc 0.0006
0∩Other 0.0219 0.0013 0.0005
0∩White/Asian 0.0004
0∩White/Black 0.0006
1∩AIE 0.0042
1∩Asian 0.0008 0.0007
1∩API 0.0111
1∩Black 0.1661 0.0010 0.0412
1∩Black/Asian 0.0003
1∩Caucasian 0.0822 0.1165 0.3115
1∩Hispanic 0.0189
1∩NA 0.0005
1∩Other 0.0124 0.0050 0.0036
1∩White/Asian 0.0016
1∩White/Black 0.0014

Table 4.8: Summary of Inclusiveness Analysis Results
a American-Indian/Eskimo, b Asian-Pac-Islander, c Native American

shows quite homogeneous probabilities especially with regard to the Black prop-
erty, while for the Caucasian property the highest probabilities are related to the
simultaneous occurrence with the Non-recidivist property. Since the simultaneous
probabilities depend on the number of examples within the available data and the
sample size, this result alone is not sufficient to establish a priori the certain pres-
ence of serious data distortions, although some evidence can already be seen. Figure
4.3 shows the graphical representation of the inclusiveness module that simplifies
the display of simultaneously probabilities. In the example is given the notation for
a dataset where all the properties of the target variable and those of the protected
attribute ethnicity are equiprobable.
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Figure 4.3: Example of Inclusiveness graphic visualization

4.7.4 Training Likelihood
This module aims to analyze the training likelihood of the data available by

estimating the posterior probabilities. They determine the probability that in the
training set the occurrence of the properties of the protected attribute is given
by the properties of the target variable - and vice versa - . For example, in the
COMPAS dataset they determine the probability that the occurrence of reoffending
is given by the properties of the protected attribute ethnicity. Summary results for
training likelihood module are shown in Table 4.9.

The results of this module show that the posterior probabilities of target variable
and protected attribute ethnicity are quite skewed in all dataset. In the case of the
Adult dataset given as occurred event 1 or event 0, the probability of occurrence
of the Caucasian ethnic group is respectively 0.908 and 0.839, - i.e. very high
for both events - while the probabilities of all other ethnic groups conditioned to
the target variable are all significantly lower; this means that the original data
contain many examples of individuals belonging to the Caucasian ethnic group.
In the case of Drug Consumption, a similar reasoning can be carried out for the
ethnicity probabilities conditioned to the target variable; moreover, notice that
given the property Black/Asian, the probability of occurrence of event 1, i. e. that
the individual is a consumer, is 1 - while the probability of 0 is 0 - which means
that in the available data there are no examples of individuals belonging to the
ethnic group Black/Asian showing a positive outcome - i. e. negative examples -.
Figure 4.4 shows the graphical visualization of our data annotation system for the
COMPAS dataset. The analysis of the COMPAS dataset shows that if an individual
is randomly sampled from the original data for the training set, the probability that
this individual is black knowing that the re-offending property has occurred - i.e.
knowing the outcome of the re-offending event - is 0.591, while the probability
that the individual is white knowing that the re-offending property has occurred
is 0.293. Instead, given as occurred the property Black the probability that the
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COMPAS Drug Adult
Consumption Dataset

0|AIEa 0.117
0|Asian 0.742 0.731
0|APIb 0.269
0|Black 0.477 0.697 0.121
0|Black/Asian 0.000
0|Caucasian 0.609 0.323 0.254
0|Hispanic 0.629
0|NAc 0.545
0|Other 0.638 0.206 0.123
0|White/Asian 0.200
0|White/Black 0.300
1|AIE 0.883
1|Asian 0.258 0.269
1|API 0.731
1|Black 0.523 0.303 0.879
1|Black/Asian 1.000
1|Caucasian 0.391 0.677 0.746
1|Hispanic 0.371
1|NA 0.455
1|Other 0.362 0.794 0.877
1|White/Asian 0.800
1|White/Black 0.700
AIE|0 0.005
AIE|1 0.011
Asian|0 0.007 0.031
Asian|1 0.003 0.006
API|0 0.035
API|1 0.030
Black|0 0.450 0.037 0.048
Black|1 0.591 0.008 0.111
Black/Asian|0 0.000
Black/Asian|1 0.002
Caucasian|0 0.381 0.895 0.908
Caucasian|1 0.293 0.921 0.839
Hispanic|0 0.095
Hispanic|1 0.067
NA|0 0.002
NA|1 0.002
Other|0 0.065 0.021 0.004
Other|1 0.044 0.040 0.010
White/Asian|0 0.006
White/Asian|1 0.013
White/Black|0 0.010
White/Black|1 0.011

Table 4.9: Summary of Training Likelihood Analysis Results
a American-Indian/Eskimo, b Asian-Pac-Islander, c Native American

individual has not reoffended is 0.477, while the probability that the individual
has reoffended is 0.523; given the property Caucasian, the probability that the
individual has not reoffended is 0.609, while the probability that the individual has
reoffended is 0.391, that is significantly lower. This means that in this dataset the
reoffending is related to ethnicity, and that success or failure are determined by the
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Figure 4.4: Data annotation visualization for COMPAS dataset

membership to a specific ethnic group. The differences in probability between the
properties highlight the risk of future bias, and in the case of the COMPAS dataset
they anticipate the underestimation of recidivism for the Caucasian ethnic group
and the overestimation of recidivism for the Black ethnic group proven in recent
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studies [84].

4.7.5 Final Remarks
RQ1: in traditional sampling practices, instead of observing all the units of a pop-

ulation, only a subset of a population is detected, which must show certain
probabilistic characteristics. In machine learning models the training set is
sampled not from the real population but from the available data. While
in classical sampling the empirical knowledge alone is effectively of a sample
nature, in machine learning systems the available data are often of sample na-
ture too, precisely due to the fact that it is not possible to make assumptions
on the real population. Considering a random sampling from the available
data, we have shown that the probability of composition of the training set
can be predicted, highlighting that the structure of the data directly affects
the probability of properties distribution;

RQ2: we analyzed three datasets frequently accessed by machine learning commu-
nity. Of these, all three showed more or less pronounced distortions for the
protected attribute Ethnicity. Although the COMPAS dataset is the sole one
that has been shown to discriminate against black people, the Drug Comp-
suntion and Adult datasets reveal possible future bias in the detriment of
ethnic minorities.

4.8 Relations to Related Work and Limitations

4.8.1 Data Labeling
Although there are a number of papers that for ethical purposes deal with data

annotation they are all very recent, indicating that this field of study is still partially
explored and has only recently received considerable attention. Our contribution
differs from the others because it induces a probabilistic reasoning on the causes
of model discrimination based on sampling problems; our intention is to deepen
the knowledge of data validation analysis, focusing on the meaning of probabilities.
From a graphical point of view, our work has been inspired by the Data Nutrition
Labels [87], a data labeling system mainly based on descriptive data statistics. A
similar approach is addressed in [19], where an operational framework is proposed
to identify the bias risks of automatic decision systems. In [75] the authors propose
a data labeling system based on discursive data sheets. In [37] the authors propose
a collaborative crowdsourcing system to improve the quality of the labels.

Since ethically data annotation represent a quite new field of study, there are
several works that provide different types of labels. We believe that at present the
focus should not be on achieving a unified data annotation system in the short term,
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but rather on the fact that the fair machine learning community is working together
to focus attention on the data collection problem. Especially because awareness of
data issues is often not rooted outside of this community. It is important that this
field and this work inspire greater awareness of the possible causes of discrimination
due to the fundamental ingredient that all users and designers of machine learning
systems (from the most to the least experienced) use, data.

4.8.2 Data Bias and Conditional Probabilities
As Friedler et al. [70] observe, the goal of fairness algorithms is to ensure that

the mapping between the feature space - the input - and the decision space - the
output - is a transparent process and that the points defined between these spaces
are properly measured. To better explain this concept, we will make use of the
definitions of spaces provided by Friedler:

1. Construct Space. The construct Space is a metric space consisting of indi-
viduals and a distance between them. It is assumed that the distance correctly
captures closeness with respect to the task [70]. This space is not always di-
rectly observable, since the desired variable is not always measurable. To
overcome this problem, proxy variables belonging to the Observed Space are
often employed;

2. Observed Space. The Observed Space is a metric space consisting of the
set of features directly measured or observed in the data;

3. Decision Space. The Decision Space is a metric space consisting of the
process of finding a map from the Observed Space to the space of outcomes.

Nowadays, automatic decision-making systems generally use a type of data in which
the constructed space is typically unobservable. On the other hand, traditional sta-
tistical models make use of surveys and sampling that, starting from the Observed
Space, allow to infer the Decision Space - or prediction space - and the margin of
error derived from the observation of the actual population and the observed popu-
lation. Since the data used today rarely make use of these tools, the biggest gap in
predictive systems is characterized precisely by the inability to quantify the infer-
ence error. To provide a better perspective of this problem, consider the following
cases:

1. Case 1: the actual properties differ across groups. In this case, the
distributions of the results correspond with the distribution of the properties
of interest. For example, in college admissions tests, the decision space might
indicate that students under 20 are more likely to complete their studies.
Thus, Case 1 occurs when this prediction coincides with the distribution of
these properties in the real population;
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2. Case 2: the actual properties are different from those observed. In
this case the distribution of the results does not correspond with the distri-
bution of the properties of interest. Following the example above, students
under 20 are found to be more likely to complete their studies but this re-
sult does not match with the actual distribution of the property in the real
population.

The case 2 is the most common case today and is the one that gives rise to the
bias results. This is because the Observed Space is not representative of the real
population and/or does not coincide with the Construct Space; thus the Decision
Space is constructed through erroneous mapping.

Our method estimates the composition probability of the training set from the
Observed Space. In this context, our approach does not directly solve the problem
of Construct Space and Observed Space, but addresses the problem by considering
that since the two cases are indistinguishable from each other, if Case 2 - the worst
case - were true, then the model would incorrectly infer the Construct Space by
providing an incorrect mapping of the Observed Space into the Decision Space. In
this sense, the Bayesian inference is used as a worst-case inference prediction. In
the future, our method could be improved to provide a margin of error for inference
based on a posteriori probabilities. This would mean that, from the Observed Space,
an a posteriori error probability is derived based on the a priori probability that the
Observed Space and the Construct Space coincide. The margin could be constructed
from these two cases and be expressed in continuous form: in the first case, the
spaces are coincident - the limiting case in which the entire population is considered
by the model -, in the second case, the two spaces are completely disjoint. Starting
from the a posteriori probability of the features space derived from the available
dataset, the margin of error would then indicate the maximum margin of error - and
thus the future bias of the Decision Space - if the distance between the Observed
Space and the Construct Space were maximum.

Since the actual population is not known, the distance between the two spaces is
not directly observable. A solution to overcome this problem might be to perform
tests to produce a set of possible populations, in other words, to provide the a
priori probability of the Construct Space. From this perspective, our approach
does not address the removal and mitigation of bias within the data, since it stands
within the literature as a data annotation and labeling system. As part of work
improvement, data resampling techniques - such as oversampling, undersampling,
smooting processes, and non-probabilistic methods - could be used to define margins
of error on the prediction space, particularly on protected attributes.
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4.9 Discussion and Future Work
The purpose of the current study was to detect the potential race discriminatory

risk for future machine learning system by providing a data annotation system based
on Bayesian Inference. Our notation serves as a diagnostic framework to immedi-
ately visualize data appropriateness and potential bias occurring when sampling
the training set from an available dataset. The investigation of the probabilities of
the training set sampling has shown that it is possible to establish a risk of future
bias by observing prior and posterior probabilities of the ethnicity and target vari-
able properties. The empirical findings in this study provide a new perspective on
data annotation practices by showing that Bayesian inferences may reveal the risk
of bias in three different widespread dataset. Furthermore, this study has raised
important questions about the awareness of most widely data sampling practices in
machine learning community. The findings of this investigation complement those
of earlier studies. Our data annotation system is limited to the binary case and
to the analysis of categorical variables for classification tasks. This would be a
fruitful area for further work. Our intent is to expand the work in the following
directions: i) extend the notation to multiple protected attributes - the probabili-
ties of the training set will then be given by the vectors of the protected attribute
combinations - ; ii) extend the notation to the non-binary case - for prediction tasks
involving regression analysis for example - ; iii) extend the probabilistic notation
to non-labeled data.
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Chapter 5

Achieving Fairness in Ranking
Systems

5.1 Introduction
Over the last decade, we have witnessed a large diffusion of increasingly sophisti-

cated predictive models for decision-making, which exploit an ever-growing amount
of personal data for suggesting or directly taking actions [106]. The algorithmic
decisions are the result of massive profiling [169] and classification mechanisms [55]
[83]. Algorithms are involved in a wide range of cases: deciding whether we are re-
liable enough to receive a mortgage or a loan [106]; suggesting whether a convicted
individual is inclined to re-offend [20]; identifying the best candidates for a job [181]
or to attend a particular university [100]; recommending what we should buy next
[145], what music we should listen to [168] or what movie we should watch [92].

There are advantages that can hardly be denied when using algorithmic decision-
making systems: compared to people, algorithms don’t get tired, sick or bored; they
can perform tasks in a shorter time than human beings; they can work with a much
larger amount of information than people can deal with. However, several works
show that, like humans, algorithms are susceptible to biases [18] [14]. In this re-
gard, researchers, practitioners and commentators have raised a number of issues
on the results of automated decision processes, which have been reported to be
discriminatory especially for disadvantaged groups [60] [140]. As a consequence,
research communities are devoting relevant effort to study how to include the no-
tion of fairness in automated-decision-making systems (in particular those based
on machine learning) in order to produce more equitable results and to avoid dis-
crimination [5]. Current ongoing researches formalize the concept of fairness with
different approaches, and a large and diverse range of solutions has been proposed
in different contexts [14].

This type of research on algorithmic fairness is part of a wider debate on how
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software systems implicitly propagates certain political, economic or cultural vi-
sions [119], [19]. With this perspective in mind, we can conceptually organize the
space of current researches in two strands: i) investigating instrumental value of
software systems and wondering what types of discrimination they could create or
worsen [199], and ii) exploring human involvement in shaping the systems, aiming
at modeling neutrality or trying to codify affirmative policies to reduce social in-
equalities [171]. Although several efforts have been made to achieve fairness in both
areas, there are still important gaps. The first one concerns ranking systems, that
are the base of most of today’s automatic decision-making systems, for example in
asset pricing, housing, health care, university admission, job recruitment, just to
mention the most recurring applications. Similarly to other types of systems, also
ranking systems have been found to reflect some of the biases of our society [102]
[39]. Hence, although ranking systems are widely used and suffer of the same issues
of discrimination observed in other types of automated decision-making, fairness in
ranking systems is much less explored than in other fields, as for example supervised
machine learning1. The second gap that we identified in the literature of fairness
in automated decision-making systems regards the fact that most of the studies fo-
cused on providing a definition of equity, rather than giving a solution to inequality.
Many approaches actually provide mechanisms for avoiding a disadvantage to indi-
viduals or minority groups, but they do not provide compensatory mechanisms for
those groups that have suffered an unfair outcome. One of the main causes is due to
the fact that most of the proposed fairness solutions are the result of a restorative
process which aims at removing biases in models that have caused discriminatory
outcomes, instead of compensating for the real causes of biases exacerbated by the
automatic process. However, several theories of justice and economic theories (see
Section 5.4) establish that the disadvantageous circumstances of an individual or
group of individuals should lead to redistribution or compensation by society: in
practice, minimal research is done to integrate distributive justice and equality of
opportunity theories in automatic decision-making systems.

Our research contributes to tackling these two issues identified in the literature:
we focus on fairness in ranking systems by turning into practice the principles of
distributive justice. In particular, we refer to Roemer’s Equality of Opportunity as
the basis for defining fairness and inequality and we design a ranking system based
on the notions of distributive fairness. The purpose of such a ranking procedure is
to re-allocate resources: for this reason other criteria of justice -such as procedural,
interpersonal and informational justice- are not taken into consideration.

In this manuscript we introduce AFteRS, an Automated Fair-Distributive Rank-
ing System that implements three fairness criteria, each one based on a different
dimension of the distributive justice theory, namely equity, equality, and need [43].

1For an overview of fairness in supervised machine learning, see [14]
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Each fairness criterion provides diverse ranking results as well as different effects
on individuals and groups of individuals. We test the system in an hypothetical
scenario of a university selection process in which the decision-maker determines
which students are suitable on the basis of their personal qualifications and achieve-
ments, so as to maximize the institution utility. In such a context, we examine the
expected outcome for groups of individuals in the ranking system before and after
the application of our distributive fairness approach, and we explore the trade-off
between the three different fairness policies in relation to the obtained rankings.
Results of our research doesn’t show an absolute predominance of one fairness cri-
terion over another one, and that it is possible to achieve fairness constraints with
a minimal impact on the general utility of the system.

The manuscript is structured as follows: Section 5.3 provides an overview of
researches on bias and fairness in supervised machine learning, and analyzes lim-
itations and open challenges of the current solutions. In Section 5.4, we provide
a comprehensive background on distributive justice theories (Section 5.4.1) and,
in particular, on the Roemer’s Equality of Opportunity approach (Section 5.4.2).
Section 5.5 introduces our Automated Fair-Distributive Ranking System (AFteRS),
while Section 5.6 introduces a set of new fairness metrics (i.e.„ ranking, inequality,
and distributive justice metrics) to evaluate our approach in a university selection
process (Section 5.6.1) as well as the results of our evaluation (Section 5.6.2). In
Section 5.6.2 we describe a Fair Ranking Policy Simulation scenario that has the
goal of supporting a human decision maker in selecting the criteria of distributive
justice to apply to obtain a fair ranking. Lastly, Section 5.7 provide the discussion
and limitations about our study.

5.2 Research Questions
A vast majority of previous works in ranking systems has established fairness

constraints by exploiting statistical parity or by assessing equity of exposure accord-
ing to group membership or merit. One of the aims of our work is to show that these
practices don’t necessarily lead to fair outcomes. In this study we face the prob-
lem of assessing fairness in rankings by proposing an Automated Fair-Distributive
Ranking System based on distributive justice and Roemer’s EOp theory (Section
5.5.1). We provide details of the model design (Section 5.5.2) that takes inspiration
from Hothorn 2006 and Brunori et al. 2020 in implementing specific parts of Roe-
mer’s EOp theory (Sections 5.4.2 and 5.4.2). Finally, we introduce three different
policies for rankings (5.5.2).

The present study is based on the three main research questions shown in Table
5.1.
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Research Question Sub-group
RQ1 Are decision-making systems based on the Fairness in

theories of distributive justice and Equality automated
of Opportunity able to provide fairness decision-making
acceptable results while preserving the utility
and the accuracy of the decision?

RQ2 Are ranking systems based on a distributive Fairness in ranking
fairness constraint able to preserve the accuracy systems
of the ranking and the model’s overall utility
by providing a ranking of the best candidates?

RQ3 What are the factors affecting the fairness Model evaluation
utility trade-off in a fairness constrained
ranking system?

Table 5.1: Research questions overview

5.3 Related Work
Recently, a growing attention has been paid to model fairness in automated

decision-making systems, in response of a increasing number of studies and jour-
nalistic investigations showing that those systems can reverberate the same bias and
discrimination occurring in society. However, limited efforts have been made to in-
vestigate the theoretical and moral assumptions underlying the proposed fairness
techniques and definitions. Concerning distributive justice and equality of opportu-
nity theories, scientific communities are still far from making them operational and
they mostly focus on supervised machine learning algorithms. For instance, Hardt’s
definition of equality of opportunity [83] considers the case of binary classification
in machine learning and it states that fairness is satisfied if both groups - minority
and majority - have the same probability of being correctly classified in a positive
way. Although such implementation is correct per se, it lacks all the theoretical
foundation of equality of opportunity theory, where the socio-economic substratum
of individuals is considered in a broader perspective. The attempt to make these
theories operational has led to a hyper simplification, misinterpreting the concept
of opportunity which in distributive theories refers to an intrinsic condition of the
individual - for example, the birth context. In the same spirit, in the ranking sys-
tems domain, distributive and equal opportunities theories are simplified through
the binary codification of some properties, such as relevance, defining as opportu-
nity the probability that groups of users or items are relevant to a certain query.
For instance, Singh et al.[178] define equality of opportunity in ranking systems
as the probability of being seen, i.e., the exposure, which must be similar for all
groups of users or items. Our work substantially differs from the implementations
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proposed so far, providing a more comprehensive encoding of distributive and equal
opportunity theories in ranking systems. Since these theories have not been imple-
mented in a substantial and complete way by recent work or substantial strands of
computer science research, the remaining literature section offers a general overview
of fairness studies in recommendation and ranking systems.

5.3.1 Fairness in Recommendation and Ranking Systems
In the last decade, a growing number of recommendation and ranking systems

is being used in a wide range of areas with an invasive impact on people’s lives. As
a consequence, several studies on fairness in recommendation and ranking systems
have been emerged. In this Section, we provide a review of these approaches,
highlighting their limitations and the open challenges in integrating fairness criteria
in recommendation and ranking systems.

Recommendation Systems. Yao et al. [208] have identified two main types of
biases: (i) observation bias and (ii) bias arising from unbalanced data. The first
type occurs when -due to the feedback mechanism- the model is reinforced with
a given classification and the user receives recommendations that are always very
similar to the previous ones. Therefore, if a user is never exposed to an element, she
will never be able to give an opinion on it in order to re-calibrate the model [61].
This type of problem has been addressed in several works that propose to manage
the observation bias by increasing the diversification of the proposed elements [86],
[193], [132]. However, this type of intervention does not directly address the issue of
fairness: Leonhardt et al. [115] point out that these studies have largely focused on
individual diversity, which deals with diversifying recommendations to users, and
with aggregate diversity, whose objective is to improve the diversity of the items
between users. Although these aspects can be considered as part of the problem
of fairness in recommendation systems, they do not deal with the discrimination
effects of the recommendations on the users.

On the contrary, a strand of recent studies focused more explicitly on fairness,
and in particular on the problem of bias, distinguishing user-related biases from
item-related biases: as a matter of fact, Farnadi et al. [61] use multiple user-user
and item-item similarity measures to assess fairness. Other approaches involve more
dimensions: Burke [31] defines the problem of fairness in recommendation systems
as a multi-sided problem, where the primary need is to recognize the necessity of
differentiation between subjects (i.e.„ users) and objects (i.e.„ items). This work
[31] also highlights that recommendations are often made into multidimensional
platforms, causing problems of multidimensional equity, and distinguishes three
classes of systems which differ in terms of equality issues that arise in relation to
different groups, namely consumers (C-fairness), providers (P-fairness) and both
(CP-fairness). Recently, Edizel et al. [58] propose a post-processing method for
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mitigating bias by predicting it in recommendations connected to a pool of sensitive
attributes.

Further expanding the scope or aspects of fairness, we also mention Yao et
al. [208] that define four types of metrics to measure unfairness and improve eq-
uity among users in collaborative filtering, dealing with prediction errors between
protected and unprotected groups and using the matrix factorization method. A
similar approach is recently adopted by Burke et al. [32], where the opinions of
different users are aggregated with the aim of ensuring a fair representation of the
protected group. Along the same line, Ning et al. [139] address the problem by
using sparse linear methods, while Xiao et al. [205] define the problem as a mul-
tiple objective optimization to maximize user satisfaction among groups. Finally,
Tsintzou et al. [195] study the long-term effects of recommendations to achieve
fairness for items.

Ranking Systems. A variety of studies incorporates the notion of statistical par-
ity [55], establishing that the demographic set of individuals’ attributes, with any
outcome distribution, has to be the same as the demographic set of the population
as a whole [213], [206], [178], [35], [12]. In particular, Yang et al. [206] have treated
the statistical parity measure in ranking by comparing the outcome distributions
of minority and majority groups through averaging the differences in the top-N-
ranking, similarly as in the Normalized Discounted Cumulative Gain2. Although
in a preliminary way, they have formulated the issue of fairness as a multi-objective
programming problem where fairness is achieved while keeping accuracy accept-
able. In contrast, Zehlike et al. [213] and Celis et al. [35] have adopted statistical
parity by the perspective of outcome diversification. Both works have proposed
to apply a fairness constraint while maximizing the positional general utility, i.e.,
positioning more qualified individuals in higher position. Finally, Asudeh et al. [12]
have proposed a class of fair scoring functions in training phase to produce free-bias
rankings.

Another class of studies have faced the fairness issue by the perspective of
equalizing exposure [179], [22], [180]. For example, Singh et al. [179] introduced an
optimal probabilistic ranking to equalize exposure among minority and majority
groups, while Biega et al. [22] investigated exposure allocation by satisfying an
individual fairness constraint and by keeping the general utility. In a more recent
work, et al. [180] advanced their previous study by developing a Learning-to-Rank
algorithm and by optimizing the ranking utility and allocating exposure according
merit.

We conclude this overview by observing that:

2The Normalized Discounted Cumulative Gain is a wide spread measure of ranking quality in
Information Retrieval (see [95] for additional details).
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i Unlike the supervised machine learning domain where scholars are trying to
unify their approaches 2.3, the domain of fairness in ranking systems is still
highly fragmented;

ii Current solutions in machine learning and ranking domains actually focus on
removing bias;

iii Distributive fairness solutions are almost completely unexplored.

Drawing upon the previously described strands of research, our work explores, for
the first time, the usage of distributive justice mechanisms for ranking tasks in order
to provide a more equitable system by compensating individuals’ disadvantageous
circumstances. Therefore, this study makes a major contribution to research on
fairness by assuming the individuals’ score as a transferable resource in order to
equalize the individuals’ opportunities; thus meaning that it can be re-allocated
according to a certain policy.

5.4 Background
The current Section provides a theoretical background of distributive justice

theories (Section 5.4.1) and describes in detail the Roemer’s Equality of Oppor-
tunity (EOp) approach (Section 5.4.2). In addition, we also discuss how notions
from EOp can be integrated with machine learning tools, as shown by the works
of Hothorn et al. [88] and Brunori et al. [30]. The aim of the following Sec-
tion is to provide a comprehensive perspective of the theories that constitutes the
philosophical ground of our work.

5.4.1 Distributive Justice Theories
Historically, distributive justice has been a widely debated topic first by moral

and political philosophers and then by economists. In particular, the way in which
goods should be distributed among individuals gave rise to various egalitarian the-
ories. According to traditional social welfare theories [148], egalitarianism means
equality of well-being or utility. However, since the work of the moral and political
philosopher John Rawls in the 1970s [155], many scholars have argued that this
type of equality is not ethically desirable because individuals are not held respon-
sible for their choices or preferences. Hence, a new approach to egalitarianism has
flourished rapidly, establishing individual responsibility as an important foundation
of distributive justice [155], [157], [156]. For example, Rawls advocated the equality
of primary goods, as income or rights, and recognized the redistribution of these
goods strictly linked to social roles and responsibility. In the 1980s, the Nobel Prize
economist Amartya Sen 1997 introduced the theory of capabilities, arguing that
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equality does not lie in primary goods as defined by Rawls, but rather in functions.
According to Sen equality is achieved when individuals have the same possibility
to realize themselves and their values, i.e., to develop all the capabilities needed to
actively provide for self-improvement. A remarkable progress in distributive justice
theory is due to the jurist and philosopher Ronald Dworkin 1981, who distinguishes
between preferences and resources by arguing that inequalities in outcomes are to
be considered ethically unacceptable and require a distributive policy when they
result from unequal resources, while they should not be redistributed when they are
the result of individual preferences. As a result of Dworkin’s contribution, schol-
ars have begun to explore distributive mechanisms with respect to the individual’s
initial circumstances, one of the fundamentals of Equality of Opportunity (EOp)
theory. Along this line, the first major studies on individual circumstances are
due to the political philosophers Richard Arneson 1989 and Gerald Cohen 1989,
who define equality as the possibility of obtaining a resource if it is sought. Al-
though this definition may seem a nuance in theory, it is actually a significant way
of separating individual responsibility and individual’s circumstances. Both these
two aspects affect the way and the possibility of an individual to achieve a goal or
to obtain a resource. Thereafter, a large part of research has focused on defining
which aspects lie within individual’s circumstances and which ones on individual
responsibility. By way of example, Barry 1991 considers individual choices fully de-
termined by social circumstances, and considers minimal the ability of individuals
to make choices outside of their own circumstances. This more progressive view is
in opposition to a more conservative view that tends to treat individual choices as
entirely belonging to the sphere of responsibility.

In our work, we focus the attention on the above mentioned post-Rawls litera-
ture which has identified Equality of Opportunity, rather than Equality of Outcomes,
as the minimum goal for the egalitarianism. The most prominent formalization of
Equality of Opportunity (EOp) in the economic field is due to John Roemer 1993,
who has radically influenced the economists’ approach to assess inequality. The key
principle of Roemer’s theory is based on the assumption that the resources obtained
by individuals depend on two factors, namely (i) individual choices, which lie within
the sphere of personal responsibility, and (ii) circumstances, which are exogenous
to individual control [160]. Roemer therefore defines inequality of opportunity as
the inequality of opportunity systematically associated with circumstances, and
suggests measuring the degree of inequality through the effort made to achieve a
certain objective.

5.4.2 Roemer’s Formalization of the Equality of Opportu-
nity Theory

The idea of Equality of Opportunity (EOp) formalized by Roemer [159] is based
on the basic principle that the individual’s achievement should depend on choice,

68



5.4 – Background

effort, and ability, and not on the circumstances of birth. Hence, four key principles
characterize this theory: (i) circumstances, (ii) effort, (iii) responsibility and (iv)
reward.

The first assumption that Roemer formulates on the idea of equality is referred
to the so-called principle of compensation. He claims that if inequalities in a group
of individuals are caused by birth circumstances, which include variables such as
gender, race, or familiar socio-economic status, then these are morally unacceptable
and must be compensated by society - reward. The second assumption is based
instead on individual utility, or well-being, in relation to individual responsibility,
also called the principle of responsibility. In fact, Roemer argues that the effort that
individuals invest in achieving the acts they perform and for which they are fully
responsible, in addition to the circumstances of birth, plays a key role. Therefore, a
society that guarantees equal opportunities is a society in which results, well-being,
or utility, are distributed independently to circumstances, and in which individual
responsibility and effort are fully recognized. According to Roemer’s general theory
of EOp, policies should be oriented to equalize the opportunities that different types,
or groups of individuals, categorized in accordance with diverse circumstances, need
to have in order to achieve a given goal. A type is a group of individuals sharing
the same circumstances, while the group of individuals characterised by the same
degree of effort is called a tranche.

It is worth noting that one of the reasons why Equality of Opportunity is of-
ten associated with Roemer is due to the fact that he did not only propose and
clarify its theoretical framework, but he was the first scholar to devise an opera-
tional algorithm that gave rise to an interesting empirical literature to which he
contributed significantly. A first distinction between the various nuances deriving
from the literature concerns the partitioning of individual characteristics into two
categories, effort and circumstances. Explaining the differences in the various the-
ories is beyond the scope of this work; for our purpose it is sufficient to point out
that different partitions correspond to different notions of EOp.

More generally, the statistical approach suggested by Roemer to measure Equal-
ity of Opportunity is valid for any nuance of the theory. He assumes that each
individual outcome y can be expressed as the result of a combination of effort e
(ei ∈ Φ, where Φ is the set of all possible levels of effort) and circumstances c
(ci ∈ Ω, where Ω is the set of all possible circumstances). The individual outcome
is therefore produced by the function g : Ω× Φ⇒ R such that:

yi = g(ci, ei) (5.1)
The model presented is a purely deterministic model in which measurement

errors or random components are neglected, as suggested by several authors [65],
[68], [124], [153]. This problem is due to the fact that effort (e) is not a directly
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observable datum, as well as the g function. To overcome some issues Roemer
supposes that the g function is fixed and identical for each individual and introduces
two basic hypotheses:

Hypothesis 1 (H1). The g function is monotonically increasing in effort (while
subjective utility is commonly considered decreasing in standard notions of effort).

Hypothesis 2 (H2). The distribution of effort is independent of circumstances.

We will resume the treatment of the hypotheses thus formulated in Section 5.4.2.
A second differentiation in the different approaches for the estimation of EOp is
related to the partitioning of individuals into types and tranches.

Mtype,effort = Mi,j =

⎛⎜⎜⎜⎜⎝
m1,1 m1,2 · · · m1,j

m2,1 m2,2 · · · m2,j
... ... . . . ...

mi,1 mi,2 · · · mi,j

⎞⎟⎟⎟⎟⎠
For the ex ante approach, or type-compensation principle, EOp occurs if the set

of opportunities of different individuals is identical, independently from circum-
stances. Roemer states that “it is good to transfer from an advantaged type to a
disadvantaged type, provided that the ranking of types is respected. Suppose that
between two types, one is unambiguously better off than the other, that is, the out-
comes can be ranked unambiguously according to first-order stochastic dominance.
Then a transfer from the dominant type to the dominated type for some effort level,
ceteris paribus, is EOp enhancing"[160]. The type approach focuses on differences
in the perspectives of ex ante outcomes for classes of individuals with identical cir-
cumstances, thus focusing on inequalities between types and being neutral towards
inequalities within types.
For the ex post approach, or tranche-compensation principle, EOp occurs if all
those who spend the same level of effort achieve the same result. Roemer states
that “the closer each column is to a constant vector, the better. If for some effort
(column), the inequality of outcome across types is reduced, and everything else re-
mains unchanged, EOp has been improved"[160]. In contrast to the type approach,
the tranches approach focuses on ex post inequalities in classes of individuals with
the same degree of effort. Consequently, the approach focuses on the distribution
of inequality in outcomes within tranches.
Roemer’s definition of EOp can therefore be summarized in the following model:

Population. Let consider a population of 1, ..., N , individuals i, with an outcome
yi, assigned to a finite set of types t = 1, ..., T ;

Fraction of population. Let f t be the fraction of the population of type t;
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Objective. Let an objective be given, i.e., a threshold set by the decision maker
to reach EOp. The value of the degree to which an individual achieves an
objective is a function of circumstances, effort and social policy θ (θ ∈ Θ,
where Θ is the set of social policies)

ut(ei, θ), (5.2)

where ut is the average achievement of the objective in type t that spend
effort e when the policy is θ.

Effort distribution. Let Gt
θ(ei) be the function of effort distribution in type t

when the policy is θ.

Therefore, with the available set of data T, Gt
θ(e), f t, u, θ we can then rewrite

the equation (5.1) in this way:

yi = Gt
θ(ei) (5.3)

Circumstances and Types

The identification of types and efforts requires society to have at least a similar,
if not unified, view of how to distinguish actions and variables that belong to the
sphere of individual responsibility and circumstances. Roemer’s approach for mea-
suring inequality of opportunity involves considering a situation as unequal if two
individuals, who have both made the same choices and had different birth circum-
stances, have obtained a different outcome. The first step to make Roemer’s method
effective is to identify types, i.e., to identify the combinations of the circumstances’
realization that partition the population into N subsets, in which each individual is
included once and only once. The simplest empirical approach identifies types on
the basis of socio-economic uniform features, such as gender, ethnicity, income, and
then compute the value of opportunities according to the outcomes obtained by the
individuals belonging to each type. Many machine learning systems actually adopt
this methodology to achieve a fairness result, and the definition of discriminating
circumstances is made on the basis of a historical discrimination that has led in-
dividuals belonging to these minority categories to be in a disadvantaged position
[131]. Minority categories are therefore defined by identifying variables or proxy
variables of real discrimination, and these variables, such as gender, ethnicity, place
of birth, are called protected or sensitive attributes [198]. This kind of approach
actually displays several methodological problems in the correct identification of
types. Although straightforward and simple, the described method does not allow
to take into consideration all those variables that contribute to shaping both the
responsibility of the individual and the circumstances of birth. In general, Roemer
does not address the problem of identification of types and circumstances, but over
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the years several important empirical contributions have been provided to trace the
structure of the method. Some of the most relevant are the inferential conditional
trees proposed by Hothorn et al. [88], the non-parametric method by Checchi et al.
[38], and the latent class models by Li Donni et al. [117]. It is beyond the scope of
this work to analyse and discuss the trade-offs between the various methodologies
proposed, therefore we focus only on the Hothorn methodology [88] that we deemed
most effective in determining types. To the best of our knowledge, the sole work
involving the algorithm proposed by Hothorn [88] was applied by Brunori et al.
[30] to study socio-economic differences on panel data. In its general meaning, the
algorithm for the determination of types exploits the permutation test theory de-
veloped by Strasser et al. [187] to generate recurring binary partitions overcoming
the problem of overfitting and variable selection. In fact, recursion takes advan-
tages of the conditional distribution of statistics that measure the correlation or
association between the response variable and its covariates, and performs multi-
ple hypothesis tests to determine the significance of the correlation or association.
If it is not possible to identify a statistically significant correlation or association
between the response variable and any of the covariates, recursion stops. In the
algorithm we have implemented in our approach we use conditional inference trees
to recursively partition the Euclidean space of the variables of the individuals in
convex sets of hyperplanes. The convexity of sets is a fundamental property of this
methodology because it allows us to affirm that individuals belong to one and only
one subset, and therefore to one and only one type. We briefly describe below the
steps of Hothorn’s algorithm for conditional recursive inference trees to perform
the identification of Roemer types (Algorithm 1 - Step 1).
Given a response variable Y and a set of covariates X(x1, ..., xm) we assume that
the conditional distribution of the response variable P (Y |X) given the covariates
is a function f of the covariates such that P (Y |f(X)). At each step the algorithm
tests the partial null hypothesis of independence H0

partial : P (Y |X) = P (Y ) be-
tween the response variable and any of the covariates, and stops if the hypothesis
cannot be rejected at a certain level of α3 previously selected; otherwise, it se-
lects the covariate xM with the highest correlation or association to Y through the
Simple Bonferroni-adjusted P-values4 that indicate the deviation from the partial
hypothesis H0

partial. The test is performed on each covariate to test the global null
hypothesis. At the end of the procedure a set of N types is obtained, i.e., after
multiple independence tests on each circumstance of individuals are executed.

3The value of α controls the probability of falsely rejecting H0 at each node, and its use is the
same to conventionally control Type I and Type II errors in hypothesis tests [88].

4Use t tests to make pair comparisons between group means, but check the overall error rate
by setting the error rate of each test to the experimental error rate divided by the total number of
tests. In this way, the level of significance observed is adjusted considering multiple comparisons
are being performed (for further details see [26])
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Circumstances and Effort

To discuss the effort estimate, we resume the assumptions H1 and H2 expressed
in Section 5.4.2. The first hypothesis does not present particular problems, the
second one poses more issues: individuals with more advantageous circumstances
may consequently be more inclined to exert a greater degree of effort. In any
case, it would be difficult to assign to an individual the accountability of her/his
level of outcome if the degree of effort depends on exogenous circumstances. Thus,
from a computational point of view estimating effort is one of the most complex
aspects, as its difficulty in being observed is the result of a process of maximizing
individual preferences. Since we assume that the effort is not directly observable,
it is necessary to deduce its value from observable behaviours, i.e., a proxy measure
is needed to measure and compare the effort of different individuals. The definition
and measurement of effort by Roemer has changed over time. The definition to
which we refer in this manuscript considers the relative individual effort determined
not only by the variable of preference (the degree of effort); on the contrary the
individual effort is determined by all the elements that establish the location of each
individual in the distribution of the advantages that characterize the given type.
Roemer argues that it exists an effort distribution function that characterizes the
entire subgroup within which the location of the individual is set and what is needed
is a measure of effort that is comparable between different types. The hypothesis
at the basis of this assumption is that two individuals belonging to a different
type t who occupy the same position in their respective distribution functions have
exerted the same level of effort - and therefore of responsibility. Since, under
the same circumstances, individuals who make different choices exercise different
degrees of effort and thus achieve a different outcome. The differences in outcome
within the same type are by definition determined by different degrees of effort, and
therefore are not considered in the computation of the EOp. In general, Roemer
states that to estimate effort it is necessary to aggregate individuals according
to their circumstances (see type estimation in Section 5.4.2), to compare outcome
distributions, and to measure the degree of effort an individual has exerted using the
quantile she occupies in her type distribution. Since for H1 the outcome function is
monotonous by definition and for H2 the effort is orthogonal to the circumstances,
it is possible to measure the effort of an individual belonging to a generic type by
the rank or quantile of the effort distribution in which that individual is positioned.
Therefore, all the individuals positioned at the same quantile in the distribution of
the respective type are by assumption characterized by the same level of effort. As
we have highlighted in Section 5.4.2, the ex-ante and ex-post approaches express two
different methods of achieving EOp. Hereafter we will refer to the ex-post approach,
or tranche-compensation principle, which is the methodology we adopted.
Let the tranche vector Yt,λ be the set of outcomes enclosed in a given quantile λ of
a type t: it expresses the different outcome values of individuals who exercised the
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same degree of effort. Since the inequality in outcome within Yt,λ is not explained
by this methodology, several papers propose to apply a smoothing function to
eliminate this unexplained inequality [38], [30]. The standardized distribution of
the outcome of an individual i, belonging to type t and located at quantile λ, is
obtained by scaling each average outcome-tranche until all have the same mean of
the total distribution, and it is expressed by the following equations:

yt(Gt
θ(e)) = yt(λ) ⇒ F t(y) ⊢ yt(λ), (5.4)

where F t(y) is the cumulative distribution of outcomes in type t,

ỹt
i(λ) = yt

i(λ) µ

µλ
⇒ F̃

t(y) ⊢ ỹt
i(λ), (5.5)

where yt(λ) is the outcome of an individual i in type t at given quantile λ, de-
rived from the cumulative distribution of the type-specific cumulative distribution
in Equation 5.4, µ is the mean of population’s outcome, µλ is the mean of individ-
ual’s outcome located at quantile λ over all types t.
In this way, observed inequalities are exclusively due to circumstances or degrees
of effort; therefore, only inequalities resulting from exogenous circumstances are
observed and not those arising from the responsibility of individuals. As Brunori
et al. [30] suggest, for the smoothing process we adopt one of the proposed Bern-
stein’s polynomial approximation applications [114], [215] and thus we obtain the
standardized distribution of tranche vectors Yt,λ. The methodology is described
below.
The outcomes y of individuals can be considered as a sequence of random variables
having a density function f supported by a closed interval [a, b] and a cumulative
distribution function F, where y ∈ [a, b] and y is a positive continuous variable.
The continuous density function f defined on [a, b] can be approximated by a linear
combination of Bernstein’s polynomial bases of degree m, defined by the formula:

f̃m(y) = Bm(y, a, b) =
m∑︂

i=0
f( i

m
)bi,m(y, a, b), a ≤ y ≤ b (5.6)

where bi,m(y, a, b) are binomial probabilities defining the Bernstein basis poly-
nomials in a generalized polynomial space:

bi,m(y, a, b) = 1
(b− a)m

(︄
m

i

)︄
(y − a)i(b− t)m − i, ∀i = 1, ..., m (5.7)

The cumulative smoothed distribution of the outcome for type t F t(y) [Equa-
tion 5.4] with Bernstein’s approximation is simply derived by estimating the density
function for each type t, by approximating each function with Bernstein polynomi-
als, and than by computing the integral function of f̃m(y):
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F t(y) =
∫︂ b

a
f̃

t

m(y) dy (5.8)

To determine the degree of the polynomial that best approximates the function
f̃m(y), we use the degree of the polynomial that maximizes the out-of-sample log
likelihood by ten-fold cross-validation, as suggested by Brunori et al. [30].

5.4.3 Measurement of Inequality of Opportunity
In order to compute inequality of opportunity, an inequality index applied to the

standardized distribution Y derived from the Equation 5.5 must be employed. The
measurement of inequality of opportunity can be treated as a two-stage process:

1. The actual distribution of Y is transformed into a counterfactual distribution
Ỹ which expresses the inequality in Y due to exogenous circumstances, while
all the inequality due to individual responsibilities is removed;

2. Secondly, a measure of inequality is applied to Ỹ , thus obtaining a measure
of the “unfair" inequality due to circumstances.

However, computing the Equation 5.5 means getting an outcome vector Y in which
the only inequality expressed is that within the tranches: an inequality index ap-
plied to this distribution captures exclusively and completely the outcome inequal-
ities resulting from the circumstances, i.e., inequality of opportunity.
For this purpose we use the Gini index, a statistical concentration index that mea-
sures the degree of inequality of a distribution, commonly used to measure the
distribution of income. The index lies in a range between 0 and 1: a low or equal
to zero Gini index indicates the tendency to the equidistribution and expresses
perfect equality; on the contrary, a high or equal to 1 value indicates the highest
concentration and expresses the condition of maximum inequality. The Gini index
calculus is based on the Lorenz curve of the distribution5 (see Figure 5.1).

A

A

B

Figure 5.1: Graphical representation of the Gini index through Lorenz curve

5For further details on Gini index and Lorenz curve calculus see Lorenz [122], Gini [79] and
Gastwirth [74]
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The blue line represents the line of perfect inequality, the green line represents
the line of perfect equality, or line of equidistribution, and the red line is the Lorenz
curve. The area A between the lines of perfect equality and the Lorenz curve is
called the concentration area and represents the deviation from perfect equality;
Gini’s index is the ratio between the area A and the total area:

GiniIndex = A

A + B
(5.9)

The inequality of opportunity through the application of the Gini index is there-
fore expressed by the following equation:

InequalityofOpportunity = GiniIndex(Ỹ ) (5.10)

Inequality in Outcomes

Both Roemer’s methodology and Gini’s index provide a valuable contribution
to the study of the concentration of transferable phenomena. A variable is called
transferable when it can be transferred without fully transferring the unit itself;
examples of non-transferable variables are the weight or height of individuals. The
study of concentration, or study of transferability, is precisely the study of how a
transferable phenomenon is distributed among the units, namely its attitude to con-
centrate in a reduced number of units. The economic-statistical disciplines are the
fields where the study of concentration is most frequently pursued, especially to in-
vestigate the inequality in income and wealth distribution. When the concentration
is high, hence there is an excess of this phenomenon, the condition of distributive
inequality occurs. We draw on this theoretical premise to underline that Roemer’s
method necessarily leads to a reallocation of resources, which, although equitable
for egalitarian theory, differs from the majority of studies in the field of fairness in
machine learning systems. To the best of our knowledge, in this domain this is the
unique study that considers the outcome of individuals as a transferable resource,
in a way that it can be reallocated according to pre-established policies. Moreover,
we specify that although the method necessarily leads to a reallocation of the indi-
vidual outcome, the final goal of the methodology is not to equalize the results but
rather to equalize the individuals’ opportunities.

5.5 AFteRS: the Automated Fair-Distributive Rank-
ing System

5.5.1 Problem Statement
Generally, the most popular measures to assess fairness in ranking systems are

tied to three key concepts of Information Retrieval: (i) utility, (ii) relevance, and
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(iii) exposure. The expected ranking r is the one that maximizes the general utility
under a certain query q:

r = argmaxU(rankingn|q) (5.11)

Utility is commonly expressed as a mapping function β that under a certain query
q maps the relevance of items to each user:

β(Rel(itemn|usern, q)) (5.12)

Exposure is computed after relevance has been established, and it indicates the
probability of attention an item could get according to its relevance for the query
q:

exposure = 1
log2(1 + j) , (5.13)

where j is the position of the item in in the ranking rn. When relevance is blind
towards protected attributes, it is not rare that the average exposure for a minority
group is substantially lower with respect to the majority group, despite differences
in relevance are quite shallow. As highlighted by Singh and Joachims 2018, in a
ranking where female individuals occupy slightly worse positions than men, they
receive a significantly lower average of exposure. In this vein, a large majority of
studies pose a fairness constraint so that average exposure is equally distributed
among groups. Although valuable efforts have been made to establish an ethically
acceptable fairness constraint while maintaining an adequate level of system util-
ity, the most widespread fairness methodologies in ranking systems miss the key
point of ethical programming. As a matter of fact, exposure is computed on the
basis of item’s position, and the positioning is derived by relevance. In order to
obtain a bias-free ranking the way items embedding affects their positioning should
be analyzed. As an example, we consider a ranking of eight potential candidates
for a job, that belong to three different ethnic groups. White candidates have re-
spectively 1, 0.98, 0.95 of relevance, Asian candidates have 0.93, 0.91, 0.88, and
African-American candidates have 0.86, 0.84. A greater value of relevance deter-
mines a higher position in ranking, so that the best top-ranking is the one that
places at first three positions the White candidates, at the middle the Asians, and
at the bottom the African-Americans. As a result, the average aggregate exposure
is 0.71, 0.39, 0.22 for Whites, Asians and African-Americans respectively. Figure
5.2 summarizes a generic exposure re-allocation process under demographic parity
constraint. Given a query - the most qualified candidates - and items embedding
- candidates features -, the best ranking under fairness of exposure constraint gen-
erate a re-allocation such that the average aggregate exposure is almost equalized.
However, this widespread practice does not necessarily remove discrimination. As a
matter of fact, although the exposure has been distributed in a fairly homogeneous
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Figure 5.2: Demographic-Exposure Parity constraint. Item embedding colors define
individuals with different sets of characteristics. The ranking position is determined
by relevance. The top-k-ranking is the ranking achieved with the demographic
parity fairness constraint. Although the aggregated exposure has been equalized,
the ranking positions show that the relevance of the African-American minority
remains lower than the other two groups (yellow: Asian; white: Caucasian; black:
African-American.)

way among classes, the African-American minority group remains in the bottom-
middle ranking positions (Figure 5.2). In fact, if the ranking is systematically
influenced by protected attributes, in this case the ethnicity, the ranking position-
ing will not be affected by exposure re-allocation. The example presented so far
supports the idea that the relevance and the positioning bias may constitute a basis
to improve fairness in ranking systems domain. The methodology we propose aims
at contributing to the debate in the following ways:

1. Exposure fairness constraint is substituted by positioning and relevance fair-
ness constraints;

2. Merit of exposure is substituted by exerted effort, that is a proxy variable
indicating in what extent individuals are responsible for their positioning;

3. Group membership is substituted by type membership, where type is a vector
of the items embedding possible realizations.

5.5.2 Model
Figure 5.3 shows the steps of the Automated Fair Distributive Ranking system.

Since AFteRS is based on Roemer’s EOp theory (Section 5.4.2), before to compute
ranking we need to derive the two dimensional list that fully describes individuals:
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(i) the type vectors by partitioning the whole population, representing the set of
circumstances beyond individual’s control (Step 1, see also Section 5.4.2), and (ii)
the effort vectors by computing quantiles of each type distribution, representing
a list of attributes for which individuals are entirely responsible (Step 2, see also
Section 5.4.2). After these two steps, the model generates the top-Fair-Distributive-
ranking (Step 3) according to a set of policy Θ representing a pool of fairness
constraints.

Figure 5.3: Graphical representation of the Automated Fair Distributive Ranking
System

The Fair Distributive Ranking Gamma is derived by Equations 5.11 and 5.2,
where utility is a function of type vector, effort vector and a policy given a query
q:

Γ = argmaxθ∈Θut(q|ei(λ), θ) (5.14)
As a result, Equation 5.15 describes the fair exposure allocation among types,
denoting the opportunity-equalizing policy under Roemer assumptions. The Γ
ranking exposure is derived by maximizing the area below the lowest function expt,
i.e., the type-exposure:

max
θ∈Θ

∫︂ 1

0
mintexpt(λ, θ) dλ (5.15)

The properties of the Γ ranking are the following:

(i) Type Fairness Constraint: ranking Γ is bounded to exploit the population
partition by detecting a set of non-overlapping types. This process allows to
overcome the a-priori protected attributes assignment and studying a wider
set of individuals’ traits;

(ii) Type-Effort Centered Ranking: ranking Γ is derived by scaling the type-
outcome distribution to tranche mean outcome (Equation 5.5). In this way,
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all the unexplained inequality is removed and a first re-allocation based on
effort-inequalities is computed;

(iii) Ordered-Utility Ranking: ranking Γ is ordered by decreasing utility, i.e., it
selects the best candidates from the whole population under specific policy
constraints.

Policy

While in artificial intelligence and machine learning the terms justice and fair-
ness are often used interchangeably, several other studies [2], [7], [43] define justice
“as the perceived adherence to rules that reflect appropriateness in decision con-
texts" [43], while fairness is defined as “global perception of appropriateness" [43].
Our ranking system aims at following this framework. Generally, there are four cri-
teria for measuring justice: (i) procedural, (ii) distributive, (iii) interpersonal, and
(iv) informational, each of them subdivided into several other sub-criteria. Since
the purpose of our model is to re-allocate the individuals’ outcomes in a ranking,
we focus only on the distributive criterion, which shows the following sub-criteria:

i Equity: “outcomes are allocated according to contributions" [43];

ii Equality: “outcomes are allocated equally" [43];

iii Need: “outcomes are allocated according to need" [43].

Thanks to the separation of circumstances and effort, Roemer’s EOp theory is well
suited to codify this methodological framework. In our model, each distributive
sub-criterion represents a different policy actuation; therefore, each policy exploits
Roemer’s EOp theory to redistribute the outcome in a diverse manner. Table 1
summarizes the different fairness criterion embedded in each policy.

Policy Criterion
Equity Roemer’s EOp Theory
Equality Demographic Parity in Roemer’s EOp Theory
Need Demographic Parity in Supervised Learning

Table 5.2: Policies’ Criteria

Equity. Once circumstances (Section 5.4.2) and effort (Section 5.4.2) are derived,
an analysis of inequity between types is performed. Figure 5.4 and Figure 5.5 show
the Cumulative Distribution functions of outcome for type A and B. For effort
degree 0.8, type A and B get on average approximately 14 and 16 values of outcome
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Figure 5.4: Effort-outcome Cumulative Distributions’ Functions for type A. Exam-
ple illustrating how the effort estimation method works.

Figure 5.5: Effort-outcome Cumulative Distributions’ Functions for type B. Exam-
ple illustrating how the effort estimation method works

respectively. This means there exists inequity between type A and B. To measure
the extent of the inequity, we perform an inequity decomposition of Gini Index by
tranche approaches, as to say we calculate Gini for each type at every degree of
effort. The purpose of the decomposition is to evaluate what are the types and effort
degrees that most affect the Gini value. Once an association has been established,
outcomes are re-allocated among types according to the decomposed Gini Index.
The re-allocation produced a new outcome for all individuals, i.e., a counterfactual
outcome y¬ that indicates the outcome individuals would have gotten if they had
not belonged to their type. The counterfactual outcome is therefore a function of
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a standardized distribution of tranche vectors Yt,λ (Equation 5.5) and decomposed
Gini:

y¬ = f(Yt,λ, Ginit,λ) (5.16)
The Equity policy then reorder individuals in ranking according to counterfac-
tual outcomes. Notice that the method used to develop the counterfactual out-
come allows to evaluate the amount of both individual and aggregate redistributed
outcomes. This procedure is possible when the outcome to be redistributed is a
transferable variable, i.e., when ideally a statistical unit can cede a part or all the
intensity possessed to another statistical unit.

Equality. The policy is derived from the Demographic Parity criterion in super-
vised learning [83]. The main differentiation is that, while the common definition
assess parity among individuals belonging to a protected group (e.g., gender, ethnic-
ity), here Equality Policy assesses parity among individuals belonging to Roemerian
types. Once circumstances and effort have been established, the policy makes use
of the standardized outcome ỹ (Equation 5.5) to reorder individuals in ranking by
satisfying a parity-position constraint (Figure 5.6).

Notice that this policy doesn’t produce a counterfactual outcome as the Equity
one but provides a new ranking order.

Figure 5.6: Example of a reordered ranking after Equality Policy computation

Need. While the Equality policy makes use of Roemerian types to assess the
Demographic Parity criterion, the Need policy implements the original constraint
through the employment of protected attributes. The Need policy process works
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as the Equality one shown in Figure 5.6, with the exception that individuals are
grouped by one or more sensitive attributes. The key difference among the two poli-
cies is that, while the Need one requires to a-priori establish protected attributes to
reorder the ranking, the Equality one takes into account a wider range of attributes
based on their association with the outcome (see Section 5.4.2). Notice that it is
possible to apply Need policy in order to satisfy different multiple-constraints by
changing the grouping attribute. For instance, it is possible grouping the popula-
tion by qualification levels in order to constrain the policy to return the ranking
with the maximum utility for the decision maker. In this way, the Need policy
computes a more relaxed version of the concept of Need as a sub-criterion of dis-
tributive justice, as the sub-criterion is no longer applied to the individuals to be
ranked but to the decision maker.

Algorithms 1 and 2 provide an overview of the entire process.
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Algorithm 1 Automated Fair Distributive Ranking – Step 1-2 (Figure 5.3)
The algorithm partitions the population in n types (Section 5.4.2), derives effort
(Section 5.4.2), and computes the Standardized Distribution (Equation 5.5)

Step 1
input: dataset D
output: non-overlapping subsets of D =⇒ population partitioned in Tk types

1: for all Xi∈ D do
2: Test the null hypothesis of independence between Y and all Xi

3: if H0
partial : P (Y |X) = P (Y ) couldn’t be rejected then

4: Stop
5: else
6: 1. select Xi with the strongest association to Y (smallest adj p-value)
7: 2. find the splitting point C∗ for Xi such that
8: Sxi

n ⊂ χi are all the possible disjoint sets of the sample space χi

9: end if
10: end for
11: return Tk vectors ⊂ D

Step 2
input: Tk vectors ⊂ D
output: Standardized Outcome ỹt

i(λ)
1: partition each Tk in 10 sets Ψn, such that Ψk,n ⊂ Tk

2: training set 1st − 9th Tk sets
3: test set 10th Tk set
4: for all Ψk,n ⊂ Tk do
5: 1. perform the Bernstein polynomials log-likelihood on the training set to estimate
6: the best type-distribution approximation LLB(pm = ∑︁n

i=1 logfB(xj, pm))
7: 2. predict the CDF of Tk on the test set
8: end for
9: estimate the Standardize Distribution = yt

i(λ) µ
µλ

10: return ỹt
i(λ)
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Algorithm 2 Automated Fair Distributive Ranking – Step 3 (Figure 5.3)
The algorithm computes the Γ ranking based on policies Equity, Equality and Need
Step 3
input: Standardized Outcome ỹt

i(λ)
output: ranking Γ constrained by a policy θ ∈ Θ

1: if θ = equity then
2: for all Ỹ t,λ∈ D do
3: compute the counterfactual outcome from stnd. outcome and decomposed Gini
4: Γ← ranking ordered by counterfactual outcome
5: end for
6:
7: if θ = equality then
8: for all Tk∈ D do
9: sortedTk

← type-ranking ordered by decreasing stnd. outcome
10: end for
11: for all ( j) ∈ sortedTk

do
12: rown ← j element of sortedTk

13: array[j] ← rown ordered by decreasing std. outcome
14: end for
15: Γ← merge all j array
16:
17: if θ = need then
18: Gk ← n subsets ∈ D grouped by protected attribute A
19: for all ( z) ∈ sortedGk

do
20: rown ← z element of sortedGk

21: array[z] ← rown ordered by decreasing std. outcome
22: end for
23: Γ← merge all z array
24:
25: return Ranking Γ
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5.6 Evaluating AFteRS
To evaluate our Ranking System we draw an experimental design that consists

in implementing a set of rankings based on the policy set Θ (Section 5.5.2) and
a benchmark ranking α without fairness constraints. We compare the entire set
of rankings through diverse metrics (Section 5.6.2) to evaluate the performance of
each policy in all the top-N-ranking.

Data. To develop our Fair Distributive Ranking, we use the Student Performance
DataSet6 [45] that consists of a single-year performance scores of students belonging
to two Portuguese schools. The dataset contains 649 instances and 33 attributes.

5.6.1 Metrics
The ranking system evaluation is carried out through various metrics. Since

our approach is built on a set of theories across several fields of study, we employ
three types of metrics from different domains for a more comprehensive analysis:
i) ranking domain metrics, ii) inequality domain metrics, and iii) a set of metrics
we propose to study our fairness constraints. All metrics formulas are summarized
in Table 5.3.

Ranking metrics. We employ three metrics from ranking domain: (i) expected
ranking, (ii) relevance, and (iii) exposure. As shown in Section 5.5.2, after policy
computation the general definitions of expected ranking and exposure are shaped
as in Equations 5.14 and 5.15 respectively. The metric relevance is mostly involved
in computing the overall utility, where utility denotes the system’s capability to
generate a relevant ranking with respect to a query q.

Inequality metrics. We compute six inequality metrics: (i) Gini index [79], (ii)
Theil index [192], Richness, (iii) Margalef Index [128], (iv) Shannon-Wiener index
[173], and (v) Simpson Index [177]. As shown in Section 5.4.3, Gini is a statistical
concentration index used to measure the level of inequality in a distribution; it
ranges from 0 to 1. We apply Gini in two different circumstances. First, Gini
evaluates the degree of inequality in both original and final distribution. Then, we
apply a decomposition on Gini index to compute the counterfactual score in equity
policy (Section 5.5.2). Theil index is an entropy measure commonly widespread
in statistical economics to study segregation, where a zero Theil value indicates
perfect equality. We apply Richness, Margalef index, Shannon-Wiener index and
Simpson index to perform the diversity analysis in types. Richness and Margalef

6url: https://archive.ics.uci.edu/ml/datasets/Student+Performance. Last access: 2020-05-04
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Metric Formula Input
Expected ranking r = argmaxU(rankingn|q) ScDistr.
Exposure 1

log(1+j) Original Distribution
Relevance β(Rel(itemn|usern, q)) ScDistr., adj ScDistr.
Expected ranking-policy Γ = argmaxθ∈Θut(q|ei(λ), θ) Adj ScDistr.
Exposure-policy max

θ∈Θ

∫︁ 1
0 mintexpt(λ, θ) dλ Adj ScDistr.

Gini Index 1− 1
µ

∫︁∞
0 (1− F(y))2dy All distributions

Decomposed Gini Ginit
λ Stand. ScDistr.

Richness nt Types diversity
Margalef T−1

lnN
Types diversity

Shannon-Wiener Index H = ∑︁R
i=1 pi ln pi Types diversity

Simpson 1−∑︁ nt(nt−1)
N(N−1) Types diversity

Theil Index 1
N

∑︁N
i=1 ln( µ

yi
) All Distributions

Opportunity-Types Profile min/max(yt − µ(y)) ScDistr.
Opportunity-Types Rate yt − µ(y) ScDistr
Opportunity-L/G Profile min/max(yt

λ − µ(yλ)) StndDistr.
Opportunity-L/G Rate yt

λ − µ(yλ) StndDistr.
Unexplained Inequality Rate 1

N

∑︁
yi − ỹi ScDistr, StndDistr.

Reward Profile min/max(j(yt
λ)− j(adj(ỹt

λ))) ScDistr, adj ScDistr.
Reward Rate j(yt

λ)− j(adj(ỹt
λ)) ScDistr, adj ScDistr.

Table 5.3: Summary of metrics employed. Notation: F(y)= cumulative distribution
function of the score, µ = mean score; R = number of types, pi = frequency of types;
yt

λ = score distribution aggregated by type and quantile; ỹi= standardized score;
adj(ỹt

λ)= adjusted mean-type score at each effort degree (after policy); j = ranking
position

index are simple diversity measures we apply to record the number of individuals
and to measure abundance in each Roemerian type. Shannon-Wiener is a statistical
diversity index indicating abundance or lack of species in a given population; in our
case is employed to study diversity in Roemerian types. Simpson index is a measure
of dominance of the most common species. In our case, it indicates the Roemer
types’ dominance.

Distributive Fairness Metrics. We propose a set of new metrics to evaluate
fairness in automated distributive systems. The Distributive Fairness metrics are
shaped to specifically measure various dimensions of inequality in our model by ex-
ploiting the notions of Roemerian types and of distributive re-allocation. They can
be easily adopted in more general contexts by replacing the notion of types with
that of groups. The Opportunity-Types Rate and the Opportunity-Types Profile
are employed to study inequality in types. They indicate respectively which score
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each type reaches on average and which types are most and less advantaged based
on mean score distribution. The Opportunity-Loss/Gain Set and the Opportunity-
Loss/Gain Profile act in a similar way by computing the mean-types score on a
standardized score distribution (Equation 5.5) at each effort degrees (Step 2 in
Figure 5.3). As a result, the effective inequality in the original distribution can be
assessed after the fair inequality has been removed, in other words, after remov-
ing inequality due to individuals’ responsibility. The Unexplained Inequality Rate
computes the amount of the total fair inequality removed. The Reward Profile and
the Reward Rate are applied to final distributions to evaluate the extent of policies
re-allocation (Step Outcome, Figure 5.3). They respectively calculate the most
and less advantaged types by the scores re-allocation - i.e., after applying fairness
constraints - and the average re-allocation of the scores for each type.

Purpose of Metrics for Research Questions. The great abundance in metrics
we employ arises from the necessity to measure different interdisciplinary aspects
of our approach. In order to offer a clearer comprehension of their use, we show
their connection with research questions in Table 5.1.

Research Question Sub-group Metric domain
RQ1 Fairness in Inequality metrics

automated Distributive Fairness metrics
decision-making

RQ2 Fairness in ranking Ranking metrics

RQ3 Model evaluation Ranking metrics
Inequality metrics

Distributive Fairness metrics

Table 5.4: Metrics and Research questions overview

5.6.2 Results
To provide a clearer understanding of the results in relation to the research ques-

tions (Tables 5.1 and 5.4), a schematic summary of each Subsection’s contribution
to answering the research questions is given below.

i RQ1 Subsection 5.6.2 provides an in-depth perspective on the results of ap-
plying a distributive justice and equal opportunities perspective in an auto-
matic decision-making system. The Subsection follows Algorithm 1 (Step 1
and 2) by applying the conditional inferential tree Hothorn’s algorithm to
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solve the effort estimation dilemma in Roemer’s theory, and provides a de-
tailed description of the difference resulting from applying a fair distributive
algorithm compared to applying an algorithm that does not have this type
of constraint. The fourth row of Table 5.8 shows a minimum deviation in
the outcome of the two algorithms, a sign that the distributive justice algo-
rithm does not substantially affect the quality of the results. This Subsection
represents the convergence of the three research questions formulated in Ta-
ble 5.1. In Subsection 5.6.2 the results of the simulation of the automatic
decision-making system indicate that the trade-off between fairness and de-
cision quality is subject to the type of policy that is employed and not to the
distributive fairness constraint per se.

ii RQ2 The assumptions of good quality of the results of a distributive fair
ranking algorithm are verified alongside those of RQ1 in Subsection 5.6.2.
Further detailed analysis for the case of ranking systems is provided in subsec-
tion 5.6.2. Figure 5.8a shows a substantial decrease of the Gini Index in the
distribution derived from the application of Algorithm 1, indicating that the
distributive fair ranking algorithm improves the conditions of inequality. In
Figure 5.8b the results of the algorithm show that the Opportunity Loss/Gain
Rate after redistribution for each type is not high, suggesting distributive ac-
ceptable results in individual terms. In Figure 5.9 the tests on fairness utility
trade-off show positive results especially for Equity and Equality policies.
The assumptions of better and fair exposure results are confirmed as shown
in Figure 5.10.

iii RQ3 The evaluation of the factors that affect the trade-off is investigated
in two steps. The first step consists of the preliminary analysis (Subsection
5.6.2) of the data and how the types’ outcome is distributed; the second
step involves the analysis of the trade-off with respect to the applied policies
(Subsection 5.6.2.) The results show that the composition of the data is
crucial in the redistribution process, suggesting that the more inequality exists
in the initial data, the greater the trade-off between utility and fairness (Table
5.5). Moreover, the kind of applied distributive justice criterion (in our case,
the policy) is also significant in the trade-off (Figure 5.9). More specifically,
the trade-off between fairness and utility is lower in the Need policy, where
the results are worse, while it is higher in Equity and Equality policies where
both utility and fairness achieve better results.

Preliminary Analysis of Types

We perform a preliminary analysis of Roemerian types in order to both study
types’ composition and evaluate type-specific inequality. First, we compute the
conditional inference tree (Section 5.4.2) to extract Roemerian types. The result of
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the process is shown in Figure 5.7. A complete description of types’ composition is

Figure 5.7: Conditional inference tree resulting from Step 1 of Algorithm 1

provided in the following list:

• Type A: consists of individuals with no failures in past class, that want
to take higher education, belonging to the school “GP" and who need extra
educational support.

• Type B: consists of individuals with no failures in past class, that want to
take higher education, belonging to the school “GP", who do not need extra
educational support and study more than 2 hours.

• Type C: consists of individuals who have no failures in past class, want
to take higher education, belonging to the school “GP", do not need extra
educational support, study less than 2 hours and have a father with secondary
or higher education.

• Type D: consists of individuals with 1 or more failures in past class.

• Type E: consists of individuals who have no failures in past class, want
to take higher education, belonging to the school “GP", do not need extra
educational support, study less than 1 hour and have father with education
between 5th and 9th grade, or primary education, or none.
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• Type F: consists of individuals who have no failures in past class, do not
want to take higher education.

• Type G: consists of individuals with no failures in past class, that want to
take higher education, belonging to the school “MS".

Secondly, we perform an analysis of inequality through the set of metrics described
in Section 5.6.1. Table 5.5 briefly summarizes the results of the preliminary analysis.
This preliminary analysis on dataset shows that B and C types achieve on average a

Metric Results
Types Overall

A B C D E F G
µ outcome 11.58 13.59 13.22 8.6 11.63 9.89 11.76 11.9
Exposure 0.32 0.37 0.35 0.28 0.32 0.29 0.34 0.34
Relevance 0.61 0.72 0.7 0.45 0.61 0.52 0.62 0.63
Gini Index 0.0764 0.0935 0.0891 0.1860 0.0893 0.0961 0.1590 0.145
Shannon-W. 0 0.754 0.325 0.089 0.079 0.201 1 -
Theil Index 0.0097 0.0137 0.0125 0.0239 0.0153 0.0152 0.0242 0.025
Opp.-TR 0.1966 1 0.8506 -1 0.2146 -0.4808 0.2665 -

Table 5.5: Main results of preliminary analysis

higher outcome with respect to other types, while D and F achieve on average less.
At first glance, it seems that a low outcome is associated with the willingness of the
students to take higher education, while higher outcomes do not show a prevailing
association. We set the query as “best score" and compute the ranking according
to q to study exposure and initial relevance. Since the exposure (Equation 5.13)
is expressed as position bias and is used on a logarithmic scale, a slight deviation
of the value actually indicates a big change in the true exposure of individuals in
the ranking. The Gini index decomposition highlights the residual inequality for
each type, where a value tending to zero indicates perfect equality - in other words,
outcomes are distributed equally inside types. At this early stage of the analysis,
the above metrics are not very effective in estimating actual inequality, while they
become robust when compared to the standardised distribution results. We employ
Richness, Simpson, Margalef and Shannon-Wiener indexes to perform the diversity
analysis of types. Results of diversity analysis are shown in Table 5.6. We use
Richness and Margalef metrics to indicate the diversity of outcomes in each type.
Richness is built by counting the number of different outcomes in each type, while
Margalef considers also the density of each outcome. Types with more diversity
of outcomes are considered more complex and therefore richer. By considering
solely these two metrics, D and G result the more diversified types. Simpson’s and
Shannon’s indices are more complex measures than Richness and Margalef metrics
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Richness Margalef ShannonW Simpson
A 8 1.81 0.00 0.23
B 12 2.01 0.75 0.90
C 8 1.88 0.33 0.66
D 13 2.61 0.09 0.00
E 10 2.53 0.08 0.04
F 9 2.23 0.20 0.37
G 14 2.58 1.00 1.00

Table 5.6: Results of diversity analysis

that indicate how many levels of outcome are present in the types, considering
both the Richness of the outcome and the dominance of one outcome over another
within each type. The Shannon-Wiener index is more oriented to measure diversity,
while the Simpson index to measure dominance. Specifically, the Simpson’s index
weighs the abundance of the most common outcomes within types, indicating the
probability that two outcomes randomly extracted from the population belong to
different types. Higher index values indicate greater diversity. We consider types
A and C to show the joint interpretation of the indexes (Table 5.6). In this case
both types show the same Richness value and a very similar Margalef value, i.e.,
they show the same richness of outcome. Type C, however, has a lesser dominance
of outcome, i.e., the outcome is more evenly distributed within the type and this
means that type C has a greater diversity. In this way, we see that D is actually
the type with the least diversity, since it shows higher Richness values than the
other types but very low diversity indexes. This means that within the type there
is a strong dominance of some outcomes over others. Both diversity indices are
expressed in a range between 0 and 1 to facilitate comparative analysis.

Effort and Standardized Distribution Analysis

We perform Bernstein-Likelihood polynomials in order to find the distributions
that best approximate types (Section 5.4.2) and then we set 10 quantiles to exploit
10 levels of population efforts (Section 5.4.2). Each quantile is populated as reported
in Table 5.7.

As highlighted by Brunori et al. 2020, a number of true quantiles doesn’t ex-
ist, and thus they suggest performing the Bernstein polynomials and the Hothorn
algorithm in order to find the best approximation of the unknown continuous dis-
tribution functions. The standardized distribution is derived from the cumulative
distribution functions of each type. Table 5.8 shows the impact of the standard-
ization process by reporting differences in type-effort outcome distributions. As
a result of standardization the individual’s outcome undergoes a transformation;
in fact, unexplained inequality - i.e.„ inequality due to individual responsibility
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1 2 3 4 5 6 7 8 9 10
A 4 8 11 0 0 10 0 11 3 1
B 37 36 3 26 16 26 9 23 29 31
C 4 5 0 7 0 7 0 0 7 11
D 10 1 4 4 18 12 32 12 2 5
E 1 1 6 0 12 6 5 0 2 2
F 3 5 6 0 4 4 0 9 3 2
G 6 9 35 28 15 0 19 10 19 12

Table 5.7: Effort-Types frequency table

- is removed. The effect of the process is therefore to reduce the degree of in-
equality, which means carrying out a preliminary distributive treatment (Figure
5.8a). By analyzing the process results, it appears that standardization does not
substantially affect one type specifically, but acts homogeneously on the tranches
(type-effort vectors). The Unexplained Inequality Rate -0.128 is in fact quite small
- computed by applying the formula listed in Table 5.3. Figure 5.8 reports the com-
parison among the original and the standardized distribution. The standardization
process reduces the degree of inequality both in the overall and in the type distri-
butions. Since distributive processes mitigate inequality by reallocating resources,
we calculate the Opportunity-Loss/Gain rate to evaluate the reallocation effects on
each type. Figure 5.8b shows the main analyses of the preliminary redistribution
effects. The first two outputs indicate the type outcome’s deviation from the pop-
ulation mean, which is decreased after standardization, as can be observed. The
Opportunity-Loss/Gain rate measures the extent of the preliminary redistribution
showing the average advantage and disadvantage per type. Analyses report that
D is the only type that exhibits a positive difference in outcome after the process,
although minimal. This result is due to two factors: first, the standardization pro-
cess is more effective in more densely populated subgroups; and second, the process
tends to overestimate the outcome in less diverse subgroups. Since the latter factor
is actually the result of an intermediate step in our model, we do not bother to
balance it at this system stage. The balancing of this factor is discussed in Section
5.6.2.

Top-N-Ranking Under Fairness Constraints

We perform three different policies belonging to three distributive justice sub-
criteria. The goal is to test the response of a ranking system to different distribu-
tive fairness theories. We test the policies on all top-N-ranking at 50 intervals, i.e.„
top-50-ranking, top-100-ranking, and so on. Figure 5.9 shows the inequality-utility
trade-off for all ranking policies. Results show that Equity constraint performs bet-
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t 1 2 3 4 5 6 7 8 9 10
A 0.40 0.49 0.55 0.49 0.50 0.53 0.57
A 0.03 0.00 0.04 -0.00 0.00 0.03 0.05
A 0.76 0.65 0.67 0.56 0.67 0.70 0.81
A -0.36 -0.15 -0.13 -0.07 -0.18 -0.18 -0.25
B 0.62 0.51 0.43 0.51 0.47 0.51 0.47 0.51 0.50 0.49
B 0.25 0.01 -0.07 0.01 -0.04 0.02 -0.02 0.01 0.00 -0.02
B 0.89 0.75 0.59 0.87 0.78 0.80 0.85 0.94 0.99 1.00
B -0.27 -0.24 -0.16 -0.36 -0.31 -0.29 -0.37 -0.43 -0.49 -0.51
C 0.49 0.50 0.49 0.51 0.46 0.50
C 0.12 0.01 -0.01 0.01 -0.04 -0.02
C 0.84 0.72 0.90 0.69 0.75 0.99
C -0.35 -0.22 -0.42 -0.18 -0.29 -0.49
D 0.37 0.53 0.53 0.47 0.50 0.49 0.50 0.50 0.49 0.48
D 0.00 0.03 0.03 -0.02 -0.01 -0.01 0.01 0.00 -0.01 -0.03
D 0.47 0.59 0.24 0.16 0.41 0.59 0.32 0.14 0.00 0.01
D -0.10 -0.07 0.29 0.31 0.09 -0.11 0.18 0.36 0.49 0.47
E 0.11 0.48 0.48 0.47 0.48 0.52 0.50 0.52
E -0.26 -0.02 -0.02 -0.03 -0.01 0.02 -0.00 0.01
E 0.70 0.70 0.76 0.58 0.74 0.66 0.49 0.81
E -0.59 -0.22 -0.28 -0.10 -0.25 -0.14 0.01 -0.29
F 0.43 0.48 0.54 0.56 0.48 0.49 0.53 0.53
F 0.06 -0.02 0.03 0.06 -0.01 -0.00 0.03 0.02
F 0.45 0.38 0.52 0.57 0.51 0.43 0.45 0.59
F -0.02 0.10 0.01 -0.01 -0.03 0.07 0.07 -0.06
G 0.15 0.47 0.48 0.50 0.53 0.49 0.48 0.50 0.50
G -0.21 -0.02 -0.02 0.01 0.02 -0.00 -0.02 0.00 -0.01
G 0.78 0.51 0.73 0.59 0.75 0.56 0.75 0.77 0.69
G -0.62 -0.04 -0.24 -0.09 -0.22 -0.07 -0.27 -0.26 -0.18

Table 5.8: Standardized outcome descriptive statistics. Columns represent different
levels of effort. For each type (row) a different result is displayed. First row:
standardized outcome. Second row: deviation of type-effort standardized outcomes
from the mean. Third row: original outcome. Fourth row: difference between
standardized and original outcome. Missing values denotes non-populated tranches.

ter in keeping low levels of inequality but sacrificing general utility in the first top-
N-ranking. On the contrary, Equality constraint performs better in keeping general
utility but shows a higher degree of inequality for almost all the top-N-ranking with
respect to Equity constraint. Finally, Need constraint, despite displaying almost

94



5.6 – Evaluating AFteRS

(a) Gini Index (b) Opportunity-Loss/Gain Rate

Figure 5.8: Comparison of Gini Index and analysis of Opportunity-Loss/Gain rate
before and after the standardization process

uniform inequality and utility levels (especially for top-n-ranking with lower den-
sity), shows overall worse performance rates than the other fairness constraints. In
this case, Need policy has been applied in order to fill an hypothetical gender gap.
In this way, the generated ranking must comply with the demographic parity crite-
rion by exhibiting an equal number of female and male individuals - the examined
dataset presents gender as a binary variable. Results of the ranking system show
that in all three policies the exposure levels of the types are generally lower than
those shown by the ranking built on the original distribution. More specifically,
they show that the deviations of the mean types’ exposure from the exposure of
the population mean are more similar and lower, a sign that the redistribution has
acted on this value by reallocating the exposure among types. As shown in Figure
5.10, type exposure means display more uniform distributions in the ranking under
Equality constraint. This result is crucial as it indicates that the ranking system
under this specific fairness constraint is able to keep a high level of general util-
ity and a low level of inequality by simultaneously satisfying the required fairness
constraint on the exposure metric. The type exposure means of remaining fairness
constraints confirm their non-optimality with these specific data. As discussed in
Section 5.4, distributive justice theories, and more specifically EOp theories, have
as a fundamental moral premise that the reward, i.e.„ the redistribution rate, must
be susceptible only to the effort that individuals exert to achieve a result. There-
fore, in the theoretical vision of these methods, individuals’ merit in achieving a
specific result is solely commensurate with the effort they have spent. Given this
premise, the theories of distributive justice therefore assume a broader meaning in
which equality is not the primary objective. In our model rewards are distributed
in diverse ways according to the given policy (Section 5.5.2). The Equity policy
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Figure 5.9: Inequality-Utility Trade-off for rankings under fairness constraints. Red
line: inequality. Blue line: utility. Y-axis: utility and inequality values ranging from
0 to 1.

(a) Equity (b) Equality (c) Need

Figure 5.10: Comparison of type-exposure by ranking policy for all top-N-rankings

is inspired by the utilitarian-approach proposed by Fleurbaey 2013, and it aims to
redistribute outcome among individuals by considering the contribution that each
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effort-type vector give to the overall inequality. In this way, the subgroups outcome
overestimation is controlled and balanced (Section 5.6.2). Note that the Equity
policy is the sole one that balances this aspect through the realization of a counter-
factual outcome; the reward is consequently calculated on the basis of this value. In
Equality and Need policies, on the other hand, where no intermediate outcomes are
produced, the reward is represented by a reallocation of the positions in the ranking
according to the principle of demographic parity (Section 5.5.2). Since our ranking
system provides for a reallocation of resources - in our case, the ranking position
- we assess the disadvantages and benefits that each fairness constraint entails for
types. We measure the Reward Rate that represents the extent and the magnitude
of each distributive policy (Figure 5.11). The Reward Rate therefore represents the

(a) Equity (b) Equality (c) Need

Figure 5.11: Comparison of type-reward-rate by ranking policy for all top-N-
rankings

loss or gain that each type has suffered as a result of the redistribution process but
does not represent a metric of goodness of the policy. In other words, its negative
or positive fluctuation is not an indicator of goodness, but rather an indicator of
how much the groups receive based on their effort and how much they receive after
reallocation. Since the results are not uniform for any of the metrics used along all
the top-N-ranking but are subject to variation due to the density of the ranking,
we develop a policy simulation scenario to understand which is the best constraint
for those parameters.

Simulating a Fair-Distributive Decision-making Process with AFteRS

AFteRS provides rankings based on three principles of distributive justice. The
output of the model is subject to fairness constraints that act differently according
to the principle to which they are inspired. The fairness criteria that we implement
are not better a-priori and there is no predominance of one over the other. This
happens for two reasons: first, the system is closely linked to data to the extent that
the greater the situation of inequality, the greater the magnitude of redistribution;
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second, the policies we implement are not a-priori good for each context because
they emphasize diverse dimensions of inequality removal. For example, one policy
may emphasize individual fairness by keeping general utility levels lower than av-
erage, while another may emphasize the fairness of a given protected group while
keeping a high level of general utility. For this reason, we build a policy simulation
scenario with the goal of supporting the decision-maker in selecting which principle
of distributive justice to apply in order to obtain a fair ranking.

Simulation Scenario and Results. We shape an hypothetical scenario in which
a set of students compete to get access to the same university. The decision-maker
can adopt a set of policies Θ to decide the best top-N-ranking. In its default version
the simulation receives in input the number of individuals desired for the construc-
tion of the ranking and performs a max-min optimization of utility, inequality and
exposure parameters, returning as output the ranking bound with the policy that
performs the best parameters optimization. In the advanced version of the simula-
tion, the decision-maker can instead select which aspect s/he prefer by emphasizing
one of the three parameters listed above. The simulation performs a more relaxed
version of the max-min optimization function, in order to satisfy the fairness con-
straints and queries simultaneously. Figure 5.12 summarizes the two simulation
settings.

Given that the decision-maker can adopt one and only one ranking at a given

Figure 5.12: Simulations scenarios with AFteRS

time, we perform the experiment with different settings to simulate:
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(i) The decision maker’s choice to obtain an optimal ranking for all three param-
eters (default setting);

(ii) The decision maker’s choice to maximize only one parameter (single query
advanced setting);

(iii) The decision maker’s choice to maximize two parameters (double query ad-
vanced setting).

Default Setting Advanced Setting
Single query Double query

Policy Overall Utility Inequality Exposure E/I U/E U/I
equity 0.53 0.88 0.12 0.34 0.50 0.88 0.66
equality 0.22 0.09 0.88 0.31 0.09 0.03 0.09
need 0.25 0.03 0.00 0.34 0.41 0.09 0.25

Table 5.9: Results of AFteRS simulations

Table 5.9 summarizes the main results of simulating a fair-distributive decision-
making process with AFteRS. The simulation is performed for each setting and for
all top-N-ranking at intervals of 20. The results shown in the table indicate the
percentage of success of every policy for each setting and query type. Equity policy
generally exhibits the highest success rate. However, as shown in Figure 5.9, the
optimization values are not very far apart for the policies, so although the table
displays a clear prevalence of the Equity policy, the difference in goodness from
other policies is often very small.

5.7 Discussion, Relations to Related Work and
Limitations

The present study was designed to determine the effect of distributive fairness
on ranking systems. An interdisciplinary methodology was followed combining ma-
chine learning tools and Roemer’s Equality of Opportunity theory. The major aim
of this work was to design a ranking system based on ranking score re-allocation,
in order to compensate individuals for unfair circumstances and to provide more
equitable results. A case-study approach in university access was adopted to gain
a detailed understanding of distributive justice theory applied to the ranking sys-
tem domain and to evaluate the effectiveness of our distributive fairness ranking
mechanisms. The most interesting finding was that our approach does not suffer
fairness constraints and is able to preserve the system’s utility by providing the best
candidates to attend university on the basis of their actual score. The integration
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of distributive justice theory into ranking systems, and more generally into au-
tomated decision-making systems, was successfully demonstrated by the evidence
emerging from inequality-utility trade-offs, that with respect to previous studies
have shown a greater transparency of the design’s moral assumptions combined
to the results of the ranking system (RQ1, Table 5.1). Our study has introduced
an important novelty: fairness has not been merely treated as a debias operation,
unlike in previous studies, but has redistributed the ranking score of individuals
based on circumstances - features - and individual effort, thus compensating un-
fairness scenarios (RQ2, Table 5.1). Subsequently, three types of policies have been
applied, corresponding to three sub-domains of distributive justice theory. The
Equity policy has produced a counterfactual score that indicates the outcome in-
dividuals would have gotten if they had not belonged to their type. The Equality
policy has acted according to the criterion of demographic parity, assigning equally
to each sub-group of individuals classified by circumstances - attributes - the po-
sitions in the ranking. Finally, the Need policy has always acted according to the
criteria of demographic parity with the difference that the re-distribution of the
ranking positions has occurred on the basis of the gender sensitive attribute. The
purpose of applying three different policies lies in the fact that, although sharing
the same substratum of moral assumptions, different criteria produce different re-
sults in the model in terms of both fairness and utility. One interesting finding was
that Equity policy offers the best results for numerous rankings, i.e., with more
individuals, both in terms of utility and fairness, while on less dense rankings the
Equality policy is the best choice. The Need policy, on the other hand, provides
lower performance for all rankings in terms of both fairness and utility. These re-
sults have two important implications. First, the selection of the distributive justice
sub-criterion, and more generally the selection of moral assumptions, is determined
by the context. This means that the decision-maker must prefer the policy or
criterion that offers the best fairness-utility trade-off, in order to simultaneously
preserve the fairness and accuracy of the model. The design of our policy simula-
tion scenario (5.6.2) is based on this assumption. Second, the demographic parity
criterion traditionally adopted in supervised learning [14], despite being applied
alongside distributive justice criteria, is outperformed in terms of performance by
other sub-criteria, especially when based on a single sensitive attribute. Another
important novelty, compared to other fairness studies both in the field of ranking
and automatic decision-making systems, was the division of individuals into types
on the basis of circumstances, which represent the combination of the attributes’
realizations. This partitioning has allowed to overcome the traditional approach in
the field of fairness that exclusively associates inequality to sensitive attributes, in
favor of a broader view in which inequalities and individuals’ merits are recognized
on the basis of a broader assessment of their attributes. These results have shown
how this division is actually more effective in achieving equality and are consistent
with the preliminary analysis of individuals’ circumstances (RQ3, Table 5.1).
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This work is significantly different from those that aim to codify equality of
opportunity in computer systems. In our model the outcome of individuals is read-
justed through a series of procedures to produce a counterfactual outcome, i.e., the
outcome that individuals would show if they had a different set of circumstances.
This procedure implements a compensatory mechanism very different from the one
used for example by Hardt et al. [83]. While in Hardt’s definition the compensation
is achieved during the post-processing phase, in our model the compensation takes
place both in pre-processing and post-processing. The computation of a counter-
factual outcome implies that our procedure uses all the individuals features to find
similarities or differences in data in terms of Roemerian circumstances. The out-
come is therefore redistributed on the basis of the circumstances-effort mechanism
proposed by Roemer, by clearly differentiating it from the outcome redistribution
methods already existing. In fact, the redistribution in our model is based on the
opportunities of individuals consisting of a vector of attributes, rather than a single
protected attribute as occurs in several other works (e.g., [83], [178]). In addition,
this type of compensation differs from the methods of exposure redistribution in
ranking systems because it re-establishes the relevance of the individuals on the
basis of the counterfactual outcome. In this way the exposure is indirectly adjusted
on the basis of the relevance of the individuals that has already been reassessed
through a compensatory mechanism. While redistribution of exposure does not
necessarily improves the average conditions and the relevance of a protected group,
redistribution in our model improves the relevance of groups on the basis of the
circumstances/effort variables and acts indirectly on the group’ exposure, which
may not necessarily be modified.

While the methodology of AFteRS is generalizable to any automatic task in-
volving the attribution of a score to a group of individuals - as well as the designed
metrics (5.6.1), the generalization of the results achieved in the analyzed dataset
is subject to certain limitations. For instance, the specificity of the fairness-utility
trade-off results is affected by data variation. Furthermore, since the study was
limited to a labeled dataset, it was not possible to apply AFteRS on unsuper-
vised tasks. Secondly, the major limitation of this study was the dependence on
the specific dataset used. In fact, this type of approach works better when more
socio-demographic characteristics of individuals are present in the dataset, since the
theoretical assumption underlying the model is to compensate individuals for situa-
tions of iniquity through effort and circumstances. As a consequence, the outcome
of AFteRS is based on observable assumptions only. There may be unobserved
confounders within types, exogenous to the individual, that may influence the in-
dividual’s effort: for example, differences within types in parental health-status or
socio-economic background can have a strong impact on effort towards university
applications. As a consequence, the model’s outcome is influenced only by the
circumstances actually observed in data, which is a further limitation.
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Chapter 6

A Decision Support System for
Long-term Fairness

6.1 Introduction
As the diffusion of artificial intelligence (AI) and Machine Learning (ML) sys-

tems spreads to a wide range of applications, algorithmic fairness has become a
prominent open research issue [55], [83], [106]. With the rise of machine learn-
ing technologies, such as neural networks and deep learning, more and more gov-
ernment agencies are beginning to consider using these technologies to improve
decision-making. As a result, many questions of an ethical nature such as fairness
and justice of decisions have been shifted to a sphere of technical formalizations,
which while rich cannot fully capture the variety of nuances belonging to the moral
sphere [60], [140]. The fundamental part of the ethical-technical analysis of auto-
matic decision-making systems is represented by ensuring non-discriminatory re-
sults for the population, above all for minorities and disadvantaged groups [18].
In particular, a crucial aspect is the evaluation of the impacts that these deci-
sions will have on society [5]. Automated decision systems, especially data-driven
machine learning systems, have received considerable attention in this respect in
recent times [14]. Traditionally, machine learning systems consider the population
at a fixed instant of time; however, the decisions of an automated decision system
change the population and the way individuals approach institutions in a variety of
ways over time [20], [181], [100], [145], [168], [92]. For instance, loan and mortgage
decisions can change the profile of applicants over time and lead to a more unequal
or fairer distribution of wealth; the use of automated systems to assess recidivism
can affect societies’ perceptions of institutions and of weaker segments of the pop-
ulation; school-education predictions can change the propensity to pursue higher
education and the systems employed to assess educational institutions can deter-
mine the distribution of resources. Although these systems may therefore lead to
unexpected impacts over time, the study of long-term effects is still an unexplored
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field of research.
This study set out to investigate the impact of long-term fairness of automatic

decision-making systems on the population by proposing a theoretical model of a
Decision Support System. In the spirit of promoting fairer and more effective au-
tomated decision systems, the role of individual dynamics in automated decision-
making is explored. We consider individual dynamics as a stage of the automated
decision-making process. The overall purpose of this work is to illustrate a research
strategy that examines the possibility that individual decision-making dynamics
in response to a certain policy can affect the effectiveness of a policy itself. Our
Decision Support System offer a new way to observe predictive policies by integrat-
ing individual dynamics in the model pipeline, which can be used to predict the
policy effectiveness. As such, we provide a comprehensive picture - based on the
individual response to a certain policy - and provide it as a model for developing
and applying theoretical studies on individuals capability to make decisions and on
the role of this phase in automated decision-making systems.

In this vein, a Decision Support System that aims to ensure long-term fairness is
proposed. Our methodology extends decision theory to automated decision-making
systems by introducing a theoretical model to apply fairness to a binary partition
of the target population. Specifically, according to our model fairness is achieved in
a long-term horizon if both the majority and minority group show an equal amount
of fairness in time. We introduce the notion of positive behavior as a baseline of
our theoretical model, assuming that in a set of similar policies the best policy
is the one that induces equally both majority and minority group to perform a
positive behavior, for instance, by improving the qualification profile. As a second
constraint, the best policy is the one that induces the majority of individuals to
perform a positive behavior. In order to offer a best understanding of our theoretical
model, we set a simulation scenario of a university selection process, in which an
institutional decision-maker has to select in a set of policies, the policy to be adopted
in order to maximize the long-term selection.

6.2 Research Questions
The following research questions are currently partially answered by the scien-

tific community, and hence our contribution aims to explored them here:

RQ1 How do decisions resulting from an automated decision making process affect
the underlying population?

RQ2 Do the fairness constraints keep their validity for as long as they act?

RQ3 How do individual dynamics in the long run affect system decisions?
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6.3 Related Work
A large and growing body of literature has investigated statistical discrimination

and unfairness in machine learning domain. However, prior work examines fairness
constraints in a static way [14]. Studies dealing with changes in the population
belong for the majority to economic and game theory studies (e.g., [89], [105], [90]).
Recently, a growing amount of literature have been focusing on the changing in
individual dynamics caused by algorithmic decisions, which have been found strictly
related [36], [73]. Starting from this assumption, a strand of works has started to
study the effects of imposing some fairness constraints on groups’ population. For
instance, [105] and [120] propose two-stage models at one-step impact to study the
effects of fairness constraints on the underlying population. Kannan et al. [99] study
which rules have to be applied in college admissions and hiring in order to achieve
Equality of Opportunity in a one step-model. However, only in recent years have
studies directly started to address how to ensure fairness in a long-term horizon.
D’Amour et al. [48] consider effects of fairness constraints through a simulation
study of evolving system’s dynamics, proposing a framework to fairness-focused
simulation studies. Zhang et al. consider the evolution of qualification profile and
impact of long-term fairness through Markov decision problem setting. A significant
analysis and discussion on the subject was presented by Mouzannar at al. [136]
and Liu et al. citeLiu:2020, where the qualification profiles at each time step are
assumed to be known by the decision-maker, that receives an increase amount of
utility based on the goodness of predictions (aka, fairness). Furthermore, there is
a relatively small body of literature that is concerned with long-term impacts of
decisions on qualification profiles by analyzing system dynamics [90], [136], [121],
[204]. The current study constitutes an intersection of the aforementioned works,
by investigating the impacts and effectiveness of policies in the long run through
the study of individual dynamics in response to system decisions.

6.4 Problem Formulation

6.4.1 Society: Groups, Positive Behavior
We consider the case in which the total population is divided into two groups

A and B, where gA and gB : 1 − gA constitutes the fractions of the population
1. We assume θ ∈ Θ is the set of the individual’s attributes that determine the
maximization of the decision-maker’s utility. For instance, in a job recruitment

1Binary partitions of the population are also explored in other similar work to reduce the
complexity the model (e.g, [120] and [136]). It refers to privileged and unprivileged subgroups of
the population.
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scenario gA(θ) and gB(θ) represent the average qualifications of the candidates per
group. In this work we assume there already exists a set of fair policies ϕ ∈ Φ
previously selected that maximizes the decision-maker’s utility, such that:

UI =
∑︂

gA(θ) · gB(θ) (6.1)

We study the case in which the decision maker has to select in a set of policies, which
at time t0 produce a similar effect, the policy to be adopted in order to maximize the
long-term selection. To make the policy selection model effective, we additionally
include the behavior of individuals in groups. The addition of this term serves
to study individual dynamics over time and in relation to group membership, and
to determine how they affect the long-term selection model. We therefore assume
there exists a function of individual dynamics λ : Φ→ R that leads individuals to
assume a certain type of behavior λ ∈ Λ in response to an institution’s decision, i.e.
the policy ϕ. To give an example of behavior in response to an institution’s decision,
consider the case of the university selection process. Depending on the results of
the admission test, individuals may decide to try the test again the following year.
The long-term decision maker’s utility is thus determined as well by individual
dynamics, which is a factor that generally does not receive particular attention in
fairness and computer science ground. It is described by the following equation:

UI =
∑︂

λAgA(θ) · λBgB(θ) (6.2)

We assume that the decision-maker’s utility is given by changes in the population in
terms of qualification profiles and behavior in response to a policy. This constitutes
a more consistent analysis of the real evolutionary conditions.

6.4.2 Individual Dynamics
Novel to this work, individual dynamics are a crucial part of the policy selec-

tion process. In fact, they determine the success or failure of a policy over time.
An individual dynamic is the decision-making process - or problem - that indi-
viduals carry out, in our case in response to a policy [67]. It is defined by the
sixfold P (X, Ω, F, f, D, Π), which are respectively the alternatives, the scenarios,
the impacts, the utility function, the deciders and the function of the preferences
[4]. Given the deciders’ preferences among a set of possible impacts, the aim is to
identify an x∗ solution or a subset of X∗ solutions among the possible alternatives
X that the deciders consider satisfactory. In other words, the aim is to identify
what kind of behavior is being promoted by a certain policy.

Alternatives X

X is the set of possible alternatives x, or admissible solutions, representing the
events falling under the deciders’ control, i.e. all the possible deciders’ choices. An
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example of possible alternative to the university selection ground is to apply again
the following year if the first time the application failed. To avoid confusion, we
refer to the institutional decision-maker as decision-maker, while the terms deciders,
actors or individuals are used when referring to individual dynamics. The set of
the alternatives is assumed to be described by a finite vector of n real numbers,
such that X ⊆ Rn. Representing the alternatives as a finite set is convenient,
but partially restricting since it doesn’t allow to consider the alternatives as a set
of infinite possible choices. Since a large number of problems in machine-learning
decision-making systems are coded as binary problems, for instance applying or not
applying, we decide to restrict the set of alternatives to the finite case.

Scenarios Ω

Ω is the set of possible scenario or outcomes ω, representing the events beyond
the deciders’ control but having a substantial effect on the system. The set of the
scenarios is assumed to be described by a finite vector of n real numbers, such
that Ω ⊆ Rn. The scenarios embed the uncertainty on the system behavior in
the temporal horizon affecting the decider. In the case of university selection, one
source of uncertainty may be not knowing the qualifications of candidates who
will want to apply in the future. As for alternatives, this formalization excludes
scenarios with infinite dimensions.

Impacts F and Utility Function f

F is the set of possible impacts, representing all the relevant information nec-
essary in order to make a decision. For instance, if a candidate after a first failed
university application has to choose whether to reapply, s/he can decide whether
to retry the application at the same university (alternative) knowing that it will
depend on how many candidates apply each year (scenario), but what matters for
the decision is the outcome of the application. That constitutes the impact and de-
pends on both the alternatives and the scenarios. The set of the impacts is assumed
to be described by a finite vector of n real numbers, such that F ⊆ Rn. Every im-
pact depend on both the alternatives x and the scenarios ω and is described by the
utility function f(x, ω).

Deciders D and Preference Function Π

D is the set of deciders whereas Π : D → 2F×F is the function the associates
to every deciders d a subset Πd of ordered pairs of impacts. The function Π serves
to establish an oriented relation among the pairs of impact, such that for every
decider there exist a vector Pd describing the decider’ preferences: ∀d ∈ D∃Pd.
For instance, given two possible alternatives for a candidate d - applying or not
applying - leading to two distinct impacts f and f ′, where (f, f ′) ∈ Πd, if the
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decider prefers the first impact over the second the preference is represented by the
following relationship: f ⪯ f ′. If the second impact is preferred, the representation
becomes the following: f ′ ⪯ f .

Assumption of Rationality In this work it is assumed that individuals act
in conditions of rationality. This means that deciders are assumed to evaluate
the best possible strategy to maximize their personal utility. Although there are
theories pertaining to the economic field that identify the rationality of individuals
as limited by various cognitive and contextual factors, it is beyond the scope of this
work to address this debate. The assumption of rationality we assume perfectly
fits the current definitions in decision theory, we point out that there exist other
theories on this topic.

6.4.3 Policy selection
Dominance of Solutions

The selection of a policy is conditioned by changes in the population and the
individuals’ behavior. Specifically, we set that policy eligibility criteria require
population to is induced to perform a positive behavior. To provide a better un-
derstanding of what we mean by positive behavior, we introduce an example that
will be discussed in more detail in Section 6.5. In the case of university selection, a
rejected candidate in the first round has a number of possible alternatives. In this
case, the positive behavior is represented by a positive change in the candidate’s
qualification profile, which corresponds to the candidate’s decision to improve their
exam scores in order to pass the university selection the following year. We estab-
lish that the best policy is that which positively affects the population by inducing
an improvement in the candidate’s qualification profile at time t + 1. Given two
behaviors γ1 and γ2, where γ1 is the positive behavior, which in this example cor-
responds to an improvement in the qualification profile, we set the γ1 solution as
dominant on γ2. This means that the policy to select is the one where γ1 solution is
dominant in the target population. The behaviors in the population are named as
γ ∈ Γ, but a closer look reveals that they are closely related to the deciders’ alter-
natives. For instance, an alternative x1 is represented by the choice to re-apply by
improving the qualification profile - positive behavior - while a second alternative
x2 is represented by re-applying without improvement - other type of behavior -.
As we will see in Section 6.5, the deciders’ alternatives do not necessarily fall in
these two cases solely. The reason why we assign a different notation to behavior
is that the qualification profile improvement - or any positive behavior - is the sole
discriminating factor in policy selection. As a result, the behavior is limited to
the binary form: the positive behavior γ1 and any other behavior γ2 that does not
induce an improvement.
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Maximizing Dominance

The criterion of the behavior dominance γ1 is applied to groups gA and gB. This
means that in order a policy is selected, it must induce a positive behavior in both
groups.

max
∫︂ ∞

0
γ1(gA) + γ1(gB) (6.3)

Through Equation 6.3 the policy that induces the maximum number of individuals
to adopt a positive behavior is selected. The evolution of qualification profiles is
evaluated in the total time span and not in each single time variation. The reason
is that it is not possible to assume a linear trend of the behaviors. In addition,
the trend over time is evaluated by the sum of the profiles and not by the speed of
convergence of the curves. In this latter case it would be required to assume the
functions as monotonically increasing, which would force the variation of behavior
in groups by altering the individual dynamics.

Minimization of Dominance between Groups

The condition of dominance maximization does not guarantee by itself that
dominance is similar in both groups. We therefore set an additional condition
to the dominance that guarantees its minimization in both groups. Without this
condition it is impossible to assess whether the contribution to the dominance of
the groups is equal.

min |
∫︂ ∞

0
γ1(gA)− γ1(gB) | (6.4)

Equation 6.4 corresponds to selecting the policy that minimizes the dominance
difference between the two groups, i.e. it chooses the policy where both groups have
a similar rate of qualification profile improvement. This specification prevents the
condition in which a policy is evaluated as better since it shows a higher dominance
rate, although only one group performs a positive behavior. Ideally, a policy should
have an equal rate of improvement in both groups:

|
∫︂ ∞

0
γ1(gA)− γ1(gB) |= 0, (6.5)

but in reality it is hard for this to happen.

6.5 Example of Application
We study the case of university selection process in which the decision maker

has to select in a set of policies, the policy to be adopted in order to maximize
the long-term selection, i.e. to select the best candidates. As we define in Section
6.4, fairness constraints are shaped in the form of inducing a positive behavior in
the population, that in this case means inducing an improvement of candidates
qualification at time t + 1.
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6.5.1 Data
For the purpose of this study, the following key data were synthesized from

Goodman et al. [80]. The source contains a report on retaking SAT statistics.
The data generated consist of 5 attributes, GPA score, SAT score, GRE score, age
and sex. Each row represents an observation, i.e. a candidate. Data synthesis
was implemented as follows: i) previous biases in the data were removed so that
both privileged and unprivileged groups were equally represented for negative and
positive scores; ii) statistics regarding scores inherent in qualifications were pre-
served, thus the synthesized data retained the same statistical properties regarding
variables concerning qualification.

Stochasticity Reduction

For simplicity of study, we assume that candidates can only improve the SAT
score. In this way, the policy selection is based on the ability of the policy to induce
a positive behavior in the candidates so that they improve their SAT score. In order
to reduce the stochasticity of individual dynamics, each candidate is assigned an
average improvement score based on SAT retaking statistics [80]. In our application
this value serves to establish the maximum score that each candidate could obtain
if s/he decided to retake the SAT and to reduce the randomness that inevitably
arises when unknown individual dynamics are encoded.

6.5.2 Policy
In this case, policies are represented by different classification algorithms that

aim to predict students future performances on the basis of their past qualifications:
Gradient Boosting Machine, Generalized Linear Model, k-Nearest Neighbour, Naive
Bayes Classifier, Support Vector Machine.

6.5.3 Alternatives
Candidates are assumed to have a set of finite and discrete alternatives x ∈ X:

x1 : applying with qualification;

x2 : applying without qualification;

x3 : do not apply.

Since the choice to improve the qualification profile and not to apply is an alter-
native that would not be directly observable in the model, only the choice of not
applying is considered as an alternative. In addition, taking the option not ap-
plying with the qualification as a possible alternative, implies assuming that the
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policy has an effect on a population that will no longer be observed by the model
itself. Assumption as well as hardly susceptible to validation, also not consistent
to reality. To facilitate the reader, henceforth we refer to the specific alternatives
with the acronyms x1 = Q, x2 = NQ, x3 = N , such that X = [Q, NQ, N ]

6.5.4 Scenarios
Scenarios are assumed to be finite. In this case, the utility function f can

be represented with an evaluation matrix, in which the rows are associated with
alternatives x and the columns with the scenarios ω) (Table 6.1). In the case in

f(x, ω) ω1 ω2 ω3
x1 ... ... ...
x2 ... ... ...
x3 ... ... ...

Table 6.1: Example of evaluation matrix with three alternatives and three scenarios

which the state of nature is influenced by the decision variables, the probabilities of
the scenarios do not constitute anymore a vector of absolute values, but a matrix
of values conditioned by the selected alternative.

Scenarios Types

In the case of selection university process we assume individual dynamics are
computed with a set of three possible scenarios: optimistic, pessimistic and agnos-
tic scenario. Scenarios represent the probability that the future set of applicants is
constituted by individuals showing respectively an average SAT score equal to the
mean SAT score of non accepted applicants, i.e., the worst candidates; an average
SAT score equal to the mean SAT score of accepted applicants, i.e., the best can-
didates; an average SAT score equal to the mean SAT score of the overall previous
set of applicants (time t − 1). As a consequence, the state of nature, i.e., the set
of next generation applicants (time t + 1), is influenced by the decision variables,
i.e., the qualification profile of the set of applicants at time t + 1. Hence, the
probability of the optimistic, pessimistic and agnostic scenarios is constituted by
a matrix of values π(ω|x) conditioned by the alternatives x ∈ X (Section 6.5.3).
Table 6.2 provides an example of the scenario probability matrix conditioned by
the alternatives Q, NQ, N (Section 6.5.3), i.e., applying with improvement of SAT
score, applying without improvement of SAT score, not applying. In Table 6.2,
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π(ω|x) Q NQ N
optimistic 0.75 | 0.86 0.75 | 0.76 0.75 | 0.76
pessimistic 0.85 | 0.86 0.85 | 0.76 0.85 | 0.76

agnostic 0.8 | 0.86 0.8 | 0.76 0.8 | 0.76

Table 6.2: Example of scenario probability matrix conditioned by alternatives Q,
NQ, N

a scenario probability matrix for a candidate c having SAT score of 0.76 is com-
puted2. The columns represent the alternatives of the candidate; in this case, the
candidate could improve his/her SAT score by 0.1 points, so that if s/he decided
to improve his/her qualification profile, the SAT score would be 0.86 (column Q).
In the other two cases NQ and N the SAT score doesn’t change as the candidate
do not improve the qualification profile. The rows represent the possible scenario.
In the optimistic scenario, candidates shown an average SAT score of 0.75, i.e., the
mean SAT score of the worst candidates at the time the candidate c is rejected; in
the pessimistic scenario, candidates shown an average SAT score of 0.85, i.e., the
mean SAT score of the best candidates at the time the candidate c is rejected; in
the agnostic scenario, candidates shown an average SAT score of 0.8, i.e., the mean
SAT score of the overall set of candidates at the time the candidate c is rejected.

6.5.5 Impacts F and Utility Function f
The evaluation matrix is therefore constituted by the expected outcome derived

from the scenario probability matrix (Table 6.2). The values in Table 6.3 represent

f(x, ω) Q NQ N
optimistic 0.9 1 -1
pessimistic 0.9 0 0

agnostic 0.9 0 0

Table 6.3: Example of evaluation matrix for candidate c (Section 6.5.4)

the expected outcome derived from the comparison of the mean of the candidates for
each alternative in each scenario - expressed in a binary form, 1 positive outcome,
i.e., passing the university selection, otherwise 0 - plus the cost of the decision. For
the alternative Q, the utility of f(Q, ω) is computed by subtracting to the expected
outcome 1 - the candidate in each if the three scenario would have a favorable
outcome by comparing the improved SAT score with the average SAT score of

2The original SAT score attribute is ranged from 600 to 2400 points. To compute individual
dynamics the score is normalized between 0 and 1.
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applicants in each scenario - the cost of the SAT score improvement 0.1. The utility
function f(NQ, optimistic) is 1, as if the candidate c decides to apply without
improving the SAT score, s/he would obtain a favorable outcome without extra
costs. The value -1 of the utility function f(N, optimistic) expresses the expected
losses in case of wrong decision. In fact, in this scenario if the candidate c chose to
not apply s/he would be taking the wrong decision as his/her average SAT score
exceeds the average SAT score of the overall candidates (Table 6.2. The remainder
of the utility functions assume value 0 since the candidate average SAT score is
lower than the mean of the set of candidates in the respective scenarios. As can be
noticed, utility functions can assume specific values based on the configurations of
the alternatives x and the scenarios ω and the costs associated with the decision.

6.5.6 Preferences and Laplace Criterion
Once the evaluation matrix is derived the candidate preferences are optimized.

This means that for each alternative the possible outcomes conditional on the sce-
narios and the costs of the decision are assessed. Since candidates do not have
knowledge on the true state of nature, i.e., they do not know the real set of future
candidates, but calculate their utilities based on a belief about the future state, the
scenarios are considered equiprobables. For preferences optimization the Laplace
criterion is applied (Equation 6.6):

maxx∈XLaplace(x) = maxx∈X

∑︁
ω∈Ω f(x, ω)
|Ω| (6.6)

Lacking information on the scenarios’ likelihood, for each candidate the Laplace
criterion combines their impacts by applying the same weight to all of them. The

f(x, ω) Q NQ N
optimistic 0.9 1 -1
pessimistic 0.9 0 0

agnostic 0.9 0 0
Laplace(x) 0.9 0.33 -0.33

Table 6.4: Example of Laplace optimization on the evaluation matrix for candidate
c

resulting preferences order is Q ≺ NQ ≺ N , meaning that candidate c maximizes
his/her preferences through the choice of alternative x1 = Q.
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6.5.7 Time Treatment
Non-evolving Preferences

The several choices that constitute the preference relation are assumed to be
time-independent, i.e., established once and for all. Although a decision often
consists of several elementary choices carried out at different instants, employing a
highly complex preference model would imply a high degree of complexity, which
is undesirable since the purpose of the model is to support decisions. We therefore
fix that the decider does not change his or her preferences over time to simplify
preference modeling. This assumption implies that a candidate might decide to
apply indefinitely, or continue to qualify over time. This variable’s modeling might
be different since preferences can change over time, e.g. a candidate might become
discouraged after an unknown number of applications, but setting it up would
involve making strong assumptions about the deciders’ true propensities. Therefore
it would not be possible if not through a parametrization according to an unknown
function.

Data at time t+1

At each time t of the model, the data is updated. The new dataset is composed
of two parts. One part is synthesized from the original data, meaning that a dataset
with the same statistical characteristics at time t = 0 is reprocessed. The second
part of the new dataset is the output of the model at time t - 1; this means that
a portion of the data derived from applying individual dynamics is added to the
synthesized data. The new dataset constitutes the input of the model at time t +
1 and contains the individuals who at time t - 1 chose the alternatives x1 = Q and
x2 = NQ.

Knowledge on the State of Nature

At each time instant t, the decider does not update the knowledge about the
state of nature but uses the knowledge about the previous state of nature to opti-
mize its outcome probabilistically. The reason why this knowledge is not used as a
variable to determine the strategy is caused by the fact that otherwise the model
would be deterministic. This is because the next state of nature is constituted
by a set of data (scenario w3). If the decider used this information to evaluate
the strategy, s/he would not evaluate the other scenarios (w1 and w2), using it as
deterministic knowledge even though s/he has no real knowledge of future events,
i.e., s/he does not know what the future candidates will actually be.
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Time and Policy Selection

As we define in Section 6.4.3, policies are evaluated through Dominance max-
imization (Equation 6.3) and Dominance minimization between groups (Equation
6.4). The Equations domain is adapted according to the needs of the study:

max
∫︂ 10

0
γ1(gA) + γ1(gB) (6.7)

min |
∫︂ 10

0
γ1(gA)− γ1(gB) | (6.8)

For this case we assume that the long-term fairness observation has a duration of
10 years (t = [0, 10]). In fact, it would not be efficient for this type of projection
to have a study of longer duration, first because the forecasting tools as well as the
available data may be subject to change over time; secondly, because we believe
that a decision support system must be considered over a reasonable period of time
to allow for its effectiveness, although a study of longer than 10 years is feasible.

6.5.8 System’s Pipeline
Figure 6.1 schematically shows and summarizes the system pipeline. During

the preparation phase, the five models (aka, policies) are trained with a starting
synthetic dataset (aka, original data), tested on a portion of it and then evalu-
ated for learning performance and audited for fairness. During time t + 1 phase,
the system receives as input from the preparation phase the learning models and
the original data, which are synthesized to create a dataset with similar statistical
properties (aka, new data). At each time step, the system computes average im-
provement (Section 6.5.1), makes predictions and figures out individual dynamics
for each candidates. Once these operations are completed, the system updates the
data. The new data at time t + 1 will consist for a part of the data that have
statistically similar characteristics to the original data, and for the remainder of
the candidates that at time t chose the alternatives x1 = Q and x2 = NQ, i.e., that
decided to reapply.

6.6 Results

6.6.1 Classifiers Model Performance Evaluation
For the purposes of this study, five classification models were trained to represent

the policies available to the decision maker. The models were trained on a portion
of the original data (70%), and then used on new synthetic data with statistical
characteristics similar to the original data. Models were validated via 10-fold cross-
validation on the remaining portion of the original data (30%). Good classification
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Figure 6.1: Overall System pipeline

performance was achieved for all cases. Figure 6.2 shows the confusion matrices
and key performance metrics for each of the five models, and Figure 6.3 displays
the ROC curves. As can be seen from the validation, the models show quite similar
levels of performance. Therefore, at this step it is not useful or possible to pick or
discard models a priori.
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Figure 6.2: Confusion Matrices and Metrics
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Figure 6.3: ROC curves. x axis: False Positive Rates. y axis: True Positive Rates

6.6.2 Fairness Evaluation
Once validated, the models undergo a second control phase represented by the

fairness assessment. This step is necessary to ensure that the models do not gener-
ate discriminatory results for subgroups. In our case study, the protected attribute
is represented by the binary variable sex ; the fairness assessment is therefore per-
formed in order to verify that each of the models presents an equal or at least similar
degree of performance for each of the levels of the protected attribute. Table 6.5
displays the fairness results for the five models. The results are shown according to
relative performance with respect to the male group. This means that the sex =
male attribute was considered as the base group for computing the metrics. In case
of parity, the metrics are equal to 1 in both groups, which means that the fairness
in each group is the same as the base group. Parity greater than one indicates that
the fairness in the observed group is relatively higher, while lower parity implies a
lower level of fairness. Observing a large variation in fairness performance indicates
that the model is not performing as well for the different sensitive groups. As can
be seen from the Table 6.5, the overall fairness results across the five models show
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Male (0) Female (1)
Gradient Boosting Machine

Sensitivity 1.00 1.00
Accuracy Parity 1.00 1.07
Predictive Rate Parity 1.00 1.07

k-Nearest Neighbour
Sensitivity 0.00 0.00
Accuracy Parity 1.00 0.76
Predictive Rate Parity 1.00 0.78

Naive Bayes Classifier
Sensitivity 1.00 1.00
Accuracy Parity 1.00 1.05
Predictive Rate Parity 1.00 1.02

Support Vector Machine
Sensitivity 1.00 1.00
Accuracy Parity 1.00 1.06
Predictive Rate Parity 1.00 1.03

Generalized Linear Model
Sensitivity 1.00 1.00
Accuracy Parity 1.00 1.04
Predictive Rate Parity 1.00 1.07

Table 6.5: Fairness results for main classification metrics

good performance. In general, there is a tendency for the female group to perform
slightly better, but the difference should not be considered significant. In contrast,
the k-Nearest Neighbour model shows a slightly lower level of fairness for the female
group for both metrics, but the difference is not substantial in any case. Further
details on fairness in the different models are illustrated in Figure 6.4, which shows
the ROC curves for both groups. The results confirm what has already been high-
lighted by the metrics in Table 6.5, i.e., that fairness parity across groups is met
for all five models.

6.6.3 Policy Selection and Individual Dynamics
As shown in section 6.4.3, the policy selection is conditioned by individual dy-

namics. In this case, the best policy is the one that induces the greatest number
of individuals to perform a positive behavior, i.e., to improve their qualification
in the SAT score, and that simultaneously minimizes the difference in qualification
profiles across groups. This means that the best policy, in our case the classification
algorithm, is the one that induces an almost similar improvement in qualification
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(a) Gradient Boosting Machine (b) Generalized Linear Model

(c) k-Nearest Neighbour (d) Naive Bayes Classifier

(e) Support Vector Machine

Figure 6.4: ROC curves for groups. 0: Male Group; 1: Female Group

profiles in both male and female levels of the gender sensitive attribute. The first
set of analyses examined the impact of long-term policies in the overall improve-
ment of qualification profiles. Figure 6.5 compares the results obtained from the
analysis of the profile qualification evolution in time t = [0, 10] for each policy. It
is apparent from this figure that a linear evolution of overall qualification profile in
time doesn’t exist. This result is in part due to the lack of information on actual
possible improvements in individual qualification profiles, which as noted in Sec-
tions 6.5.1 and 6.5.4 are partially replaced by a stochastic process. Despite this,
Figure 6.5 highlights a significant positive trend in increasing overall qualification
profiles, an indication that fair classifiers can induce improvements in qualification
profiles. The second set of analyses examined the impact of long-term policies in
the improvement of qualification profiles in each group. Figure 6.6 visually dis-
plays the evolution in time of the qualification profiles for each policy. Since at
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Figure 6.5: Dynamics of profile qualification evolution in time

each time instant t in the model the numerosity of the dataset differs from that
at the previous time t, the amount of individuals choosing the x1 = Q alternative
(Section 6.5.3) is shown as a percentage (Figure 6.5 and Figure 6.6). The results

Figure 6.6: Dynamics of profile qualification evolution in time per Groups

in the figure confirm the positive trend shown in Figure 6.5 for overall improve-
ment in qualification profiles and specify that the positive trend is accepted for
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both groups. As a final step, the fairness criteria we establish in Section 6.4.3 are
implemented. Table 6.6 illustrates fairness criteria developed in Equations 6.3 and
6.4; the column 1 provides the results of Dominance Maximization and the col-
umn 2 provides the results of Dominance Minimization between groups. The best

∫︁ 10
0 γ1(gA) + γ1(gB)

∫︁ 10
0 γ1(gA)− γ1(gB)

Gradient Boosting Machine 242.31 3.48
k-Nearest Neighbour 253.33 15.83

Naive Bayes Classifier 223.82 9.02
Support Vector Machine 225.95 17.83

Generalized Linear Model 254.06 25.19

Table 6.6: Policy evaluation. First column: Dominance Maximization (Equation
6.3). Second column: Dominance Minimization between Groups (Equation 6.4).

results for the first fairness constraint are produced under the Generalized Linear
Model. This means that this policy leads the greatest number of individuals to
improve their SAT score comparing to the other policies. However, for the second
fairness constraint the observed policy produces the worst results, showing a sub-
stantial difference in the evolution of qualification profiles between the two groups
in comparison with the other policies. This means that this policy induces positive
behavior predominantly in one of the two groups. The best results for the second
fairness constraint are produced under the Gradient Boosting Machine. This result
leads to two important considerations: first, for this case study both constraints
cannot be simultaneously satisfied; second, in case of constraints’ incompatibili-
ties the policy that satisfies the Dominance Minimization constraint between the
groups must be chosen. While in fact the first constraint is necessary to estab-
lish no involution of the qualification profiles, the second constraint is essential for
achieving equal fairness in both groups, which is why a fair modeling is employed.
Together these results provide important insights into long-term fairness, highlight-
ing the study of individual dynamics contributes positively to the achievement of
an enduring fair policy.

6.7 Discussion, Relations to Related Work and
Limitations

The present study was designed to determine the effectiveness of a set of policies
in the long run. Specifically, a Decision Support System to determine the effects of
automated decision systems on the underlying population and achieving long-term
fairness was supplied. An interdisciplinary methodology was followed combining
machine learning models and Decision Theory. The major aim of this work was to
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propose a theoretical formalization based on the evolution of individual dynamics,
in order to assess the validity and the effectiveness of some fairness constraints on
a long-time horizon. Two fairness constraints have been proposed to assess fairness
in the long run. A case-study approach in university access was adopted to test the
Decision Support System. The most relevant finding on the case-study was that
our system is efficient in analyzing the long-term effects of policies by providing the
evolution of qualification profiles for both groups in which the underlying population
was partitioned (aka, males and females). Our theoretical formulation allows us
to study how automated system decisions affect the population and groups; results
on the case study indicate that learning models (aka, policy) although showing
similar performance have different influences on groups in a non-one-step model
(RQ1, Section 6.2). In fact, the qualification profile shows substantial differences
across groups over the time period analyzed. These findings suggest important
considerations. Over time, the qualification profile is being modified based on
system decisions and on individual dynamics. This means that a time-dependent
analysis highlights fairness is not consistent over time, revealing critical issues in
applying static fairness constraints. In fact, if these same constraints were evaluated
in a static model, the results would be different, lacking the insight to distinguish
the goodness of models and criteria in the long term. In our case study, fairness
at time t = 0 is almost similar for the five policies, thus making the preference
of one model over another indistinguishable; in the long run, however, policies
act differently on groups, in some cases clearly markedly different impacts on the
population. As a result, fairness constraints do not necessarily keep their validity for
as long as they act (RQ2, Section 6.2). As part of this result, individual dynamics
assume a key role. In fact, they act as an individual component in a model that
aims to achieve group fairness by shaping the individuals’ response to implemented
policies. In this sense, individual dynamics largely affect system outcomes, showing
that the individual discernment component, albeit rationally modeled in our case-
study, affects system decisions and the validity of fairness constraints in the long
run (RQ3, Section 6.2).

Our study is close to some of the prior work in the existing literature with some
key differences. For instance, Liu et al. [121] assume that individuals can observe
current policy to make strategic decisions and change the qualification profile in or-
der to improve their outcome. Although this study provides important insights, it
lacks a study of equity constraints and how they are affected by individual dynam-
ics. In contrast, in our model the study of individual dynamics underlies fairness
constraints. Moreover, in our system individuals are not aware of the policy and
the state of nature but act strategically based on the probability of receiving a pos-
itive outcome. In Mouzannar et al. [136] it is assumed that the evolution dynamics
of the qualification profiles are the same in both groups and that the evolution is
qualified by the policy and qualification profiles at the previous state of the system.
Our system assumes that individual dynamics are agnostic to group membership;
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in fact, we find it more realistic to assume that decision-making dynamics are more
likely to be differentiated on an individual basis than on a group basis.

By imposing a selection constraint among several policies and selecting the best
one in terms of fairness for both subgroups, our system is classifier type agnostic,
i.e., it is applicable to both classifiers previously made fair and classifiers not subject
to fairness constraints. In addition, the system can also be extended to non-binary
partitions of the population. Although our theoretical formulation is fully gener-
alizable, this aspect presents some limitations for the applicative setting. In fact,
the results of the case study are case and data sensitive and cannot be extended
in their specificity to other cases. Moreover, model validation is time sensitive and
thus a study over a longer period of time could vary the fairness results obtained
for our case study. However, we believe that only in part these limitations can be
considered as such. In this domain, in fact, it is necessary to consider fairness as a
case-sensitive constraint related to the study context.
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Chapter 7

Conclusions and Future Directions

It is now widely acknowledged that algorithms reproduce and reinforce human
prejudices that have historically led to discriminatory practices, especially against
disadvantaged groups. Evidence of such discrimination has been collected and re-
ported in numerous studies. As a result, deciding which standards of fairness and
values should be embodied by algorithms poses significant ethical and political chal-
lenges to those responsible. Some solutions have been introduced to mitigate the
impact of automated decisions systems that focus on metrics that measure algo-
rithms equality or differing notions of fairness, such as gender equality. Algorithms
should also explicitly encode certain values such as equity criteria. As a result,
fairness requires a more broader planning with respect to the standard engineering
process that meets some mathematical and statistical properties. A large number
of fairness measurements in the literature are due to these efforts, although it may
be mathematically impossible to simultaneously achieve different fairness measures
except in limited special cases. As the focus has shifted from purely technical re-
quirements to a multi-layered problem, choosing a fairness metric often involves
deciding which models should have which conditions, and which conditions are
to be borrowed from moral and political philosophy. Several recent studies have
drawn attention to the importance of ethical considerations in measuring fairness
in machine learning systems. These studies show that fairness should be seen as a
trade-off process, with the priorities of the system as the backdrop. Indeed, since
the beginning of the first machine learning fairness studies, the biggest challenge
has been to define what fairness means.

In this manuscript, the issue of fairness and bias in automated data-driven de-
cision systems has been addressed. First, a general overview of the context, func-
tioning, and problem issues has been provided; second, analyses and case studies
on fairness and bias in ADMs in specific application contexts have been supplied.
The development of this thesis and the case studies was particularly inspired by
the Research Problems highlighted in Section 1.1 and the advocated need to treat
fairness in these systems as a multifaceted problem. Indeed, the study of fairness in
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ADMs requires the use of specific programming, i.e., that metrics, constraints, and
models be designed for the specific context. Obviously, because engineering human
aspects means including in the modeling a complexity that is often not controllable
and not necessarily known by the programmer, the development of ethical systems
is still partly limited. As a result, fairness in automated systems stands in contrast
to the generalization tendency of automated models, which aim to learn a pattern
and reuse it, since they are guided by optimization principles. These considera-
tions have driven the above manuscript and represent one of the probably most
important challenges for ethical programming.

Main Contributions Firstly, we have studied and analyzed the role of rational
actors in mainstream AI definition, which are currently driving the development of
most AI systems. We underscore the importance of socially responsible AI actors
by stating the limitations of the current definition of AI based on rational actors
choosing their planned actions and generating expected benefits from the environ-
ment in which they operate. We give examples of the problem of distortions in the
data used by AI, and we observe that measuring distortions in data sets is sufficient
to identify potential risks of discrimination when data is used for rational AI agents.
Using these examples, we present general ethical principles and discuss other open
questions related to rational AI actors. This study adds a new perspective to the
analysis of the common definitions of AI that have emerged from the work of many
experts in the field of artificial intelligence (AI) research and development.

Secondly, we have developed a data annotation system that serves as a diagnos-
tic framework containing immediate information about the data appropriateness,
in order to more accurately assess the quality of the available data used in training
models. The data annotation system follows a Bayesian statistical inference that
aims to warn of the risk of discriminatory results of a given data set. In particu-
lar, the method aims to deepen the statistical knowledge related to the information
contained in the available data, and to promote awareness of the sampling practices
used to create the training set, highlighting that the probability of a discriminatory
result is strongly influenced by the structure of the available data. This research is
grounded in evidence showing that the process of data collection and the way data
are recorded have a strong relation with ethics and transparency of data-driven
systems. As a consequence, practices related to data collection, data transparency
and data explainability become even more relevant and urgent. In fact, although
the process of rigorous data collection and analysis is fundamental to the design of
the model, this step is still largely overlooked by the machine learning community.
The data annotation system has been tested on three different data sets that are
well known in the fair machine learning community. In particular, the system test
was particularly effective on the COMPAS dataset, used to predict the risk of re-
cidivism in the American justice system. The dataset has been taken as a standard
model by the fair machine learning community due to the presence of a high rate
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of bias. Results have highlighted that in the COMPAS dataset the reoffending is
related to ethnicity, and that success or failure are determined by the membership
to a specific ethnic group. In general, the data annotation system has brought to
light the risk of future bias in diverse magnitudes for all dataset tested. Further-
more, in the case of the COMPAS dataset it anticipated the underestimation of
recidivism for the Caucasian ethnic group and the overestimation of recidivism for
the Black ethnic group proven in recent studies.

Thirdly, a decision-making model to mitigate potential discriminatory effects
of ranking systems has been implemented. We have proposed AFteRS, an Auto-
mated Fair-Distributive Ranking System, that has the objective of determining the
best top-N-ranking in a set of candidates while simultaneously satisfying fairness
constraints and preserving the general utility of the system. The approach takes
inspiration from Roemer’s Equality of Opportunity theory and from the distribu-
tive fairness notion that have been adopted as the basis for defining fairness and
inequality. The ranking system implements three fairness criteria, each one based
on a different dimension of the distributive justice theory, namely equity, equality,
and need. Each fairness criterion provides diverse ranking results as well as different
effects on individuals and groups of individuals. The system has been tested in an
hypothetical scenario of a university selection process in which the decision-maker
determines which students are suitable on the basis of their personal qualifications
and achievements, so as to maximize the institution’s utility. In such a context,
we have examined the expected outcome for groups of individuals in the ranking
system before and after the application of our distributive fairness approach, and
we have explored the trade-off between the three different fairness policies in rela-
tion to the obtained rankings. Furthermore, a set of metrics to evaluate fairness
in combination with traditional valuation metrics of ranking systems has been pro-
posed. Results do not show an absolute predominance of one fairness criterion over
another one, and that it is possible to achieve fairness constraints with a minimal
impact on the general utility of the system.

Fourth and last, we have contributed to the literature in the long-term fairness
domain by proposing a Decision Support System. We have studied the case in which
the decision maker has to select in a set of policies, which at time t = 0 produce a
similar effect, the policy to be adopted in order to maximize the long-term selection.
To make the policy selection model effective, the behavior of individuals in groups
has been additionally included. The addition of this term serves to study individual
dynamics over time and in relation to group membership, and to determine how
they affect the long-term selection model. Therefore, it has been assumed that there
exists a function of individual dynamics that leads individuals to assume a certain
type of behavior in response to an institution’s decision, i.e. the policy. The long-
term decision maker’s utility is thus determined as well by individual dynamics,
which is a factor that generally does not receive particular attention in fairness
and computer science ground. The most relevant finding was that our system is
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efficient in analyzing the long-term effects of policies by providing the evolution
of qualification profiles for both groups in which the underlying population was
partitioned (i.e. males and females). Our theoretical formulation allows us to study
how algorithmic system decisions affect the population and the groups. Moreover,
the results indicate that different learning models (i.e. policies) although showing
similar performance have different influences on groups in a non-one-step model.

Challenges and New Trajectories for Future Research Data scientists and
AI scholars agree that fairness and transparency are principles that need to be
addressed as a matter of urgency. Unfortunately the road to fairness in machine
learning and AI is littered with obstacles that are not all easy to overcome. The
challenge for scholars and scientists to address this task requires defining certain
statistical fairness qualities, properly normalizing various data sets, optimizing and
testing algorithms to ensure fair (or at least fairer) results. This means keeping
an eye on data types such as age, gender, age group, ethnicity, educational level
and other relevant factors. With the list of course, some techniques will find value
in the data when faced with a mix of demographic data, but not all [134]. As a
consequence, several questions still remain to be answered. In the light of the issues
raised by this manuscript, some insights and new trajectories for future research
have been drawn:

NT1. Cross-Disciplinary Validation: due to the high interdisciplinary nature,
validation is one of the most tricky aspects of research in this field of studies.
In general, it has been observed that the combination of validation methods
from different disciplines is the most appropriate choice for the evaluation of
fair engineering systems. Despite the premises, this domain is still far from
having a unified hybrid approach to validation. However, recently tools and
programming libraries have been made open-source to verify and validate fair-
ness and bias in machine learning systems [17, 71, 202, 108]. These tools are
certainly a good start, but the road to fairness requires that cross-disciplinary
validation methods be systematically incorporated into model pipelines;

NT2. Multi-High-Interpretability: in this specific domain, interpretability and
explainability are two properties that are often confusingly interchanged [137].
While explainability is defined as the "knowledge of what one node represents
and how important it is to the model’s performance" [97], the interpretability
is related to the model’s ability to create a meaningful definition around the
discovered relationships. It means that "the cause and effect can be deter-
mined" [97]. Models that show discriminatory results often exhibit a strong
lack of the latter property, misinterpreting the causal relationship between
two or more variables. Although this property is desirable for all machine
learning and AI models, we invoke a greater focus on data-driven automated
decision-making systems and the need to set relatively higher thresholds since
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these systems often impact people’s daily lives. In addition, an extra level of
interpretability based on ethical criteria needs to be established in order for
systems to be able to discern a discriminatory outcome;

NT3. Systematic Ground Encoding: as pointed out in several places in the
manuscript, fairness is not only a technical problem but a multifaceted one
that concerns the codification of moral principles. Automated decision-making
systems should therefore systematically integrate ethical principles that should
not be based on the perception of programmers but on a systematic model-
ing of fairness theories [82]. Otherwise, the problem continues to be buffered
without a solid moral theoretical basis.

There are limits to how much we can and should trust automated decisions in
human decision-making. All decision-makers should be aware of the issues involved
and the decisions and assumptions developed by ML and AI scientists. To avoid
perpetuating harmful prejudices against marginalized communities, algorithms de-
signed to make decisions for others have a responsibility to identify bias points and
rethink the standards used to determine when human decisions are fair and when
they reflect problematic prejudices. Business and organizational leaders must en-
sure that their use of AI systems meets ethical standards, and they have a duty to
promote research and standards that reduce prejudice in AI. Successful manage-
ment of these problems will encourage the development of more efficient, effective
and human-friendly machines.
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