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Precipitation of calcium carbonate from water films
generates fascinating calcite morphologies that
have attracted scientific interest over past centuries.
Nowadays, speleothems are no longer known only
for their beauty but they are also recognized to
be precious records of past climatic conditions,
and research aims to unveil and understand the
mechanisms responsible for their morphological
evolution. In this paper, we focus on crenulations,
a widely observed ripple-like instability of the the
calcite–water interface that develops orthogonally to
the film flow. We expand a previous work providing
new insights about the chemical and physical
mechanisms that drive the formation of crenulations.
In particular, we demonstrate the marginal role
played by carbon dioxide transport in generating
crenulation patterns, which are indeed induced by
the hydrodynamic response of the free surface of
the water film. Furthermore, we investigate the
role of different environmental parameters, such as
temperature, concentration of dissolved ions and wall
slope. We also assess the convective/absolute nature
of the crenulation instability. Finally, the possibility of
using crenulation wavelength as a proxy of past flows
is briefly discussed from a theoretical point of view.

1. Introduction
Water-driven morphological patterns are widespread
in geological fluid mechanics, providing a plethora
of examples, from glaciology [1–3] to river and sea
morphodynamics [4,5] and karst environments [6,7]. One
of the more remarkable cases concerns the deposition
of sinters from free-surface flows and, in particular, the
precipitation of calcite from dripping water [8,9].

2015 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Crenulations in the Lehman caves, Nevada, USA (a) (http://www.nps.gov/grba); in the Jenolan Caves, NSW Australia
(b) (http://www.flickriver.com/photos/nonlin/4760762574/) and in Pamukkale, Turkey (c) (personal source). Flowstone that
exhibits a dune-like instability in the Bossea caves, Italy (d) (personal source). (Online version in colour.)

Depending on many chemical and physical factors, the process of calcium carbonate
deposition generates a wide variety of striking and sometimes weird morphologies, called
speleothems. Remarkable examples are stalactites, stalagmites, draperies, helictites and
flowstones. The current effort in studying and modelling the evolution of the karst environment
is twofold. Firstly, understanding of the fundamental interactions between hydrodynamics and
geochemistry that are capable of shaping mineral surfaces over a wide range of spatial scales
(10−4–102 m) [10] is interesting. Speleothems are some of the most spectacular and interesting
examples of natural beauty, and they are a clear example of the ability of a free surface flow
to interact with chemical transport processes in order to carve a dissoluble substrate. Secondly,
mineral deposition interacts with several industrial processes [11,12] and, more importantly, can
be a precious proof of past climatic conditions. Measurable properties of the speleothems (mineral
composition, calcite crystals type, etc.) can be related to the dripping water chemistry and to
the surrounding environmental conditions in which the deposition occurred [13]. However, as
pointed out by Fairchild et al. [14], speleothem records cannot yet be given a unique climatological
meaning, and new methods for relating currently measurable properties with past conditions are
constantly required.

The focus of this work is crenulations: ripple-like waves (figure 1) that are widely observed
over stalactites and flat vertical surfaces [7,8] and characterized by a wavelength ranging
from centimetres to a tens of centimetres. Despite their pervasive occurrence, crenulations
have received little scientific attention, and only recently two of us [7] have demonstrated
that crenulations are the result of an interfacial morphological instability of the dynamical
system composed of the calcite surface and the water falling film. The aim of this work is
therefore twofold. Firstly, we extend knowledge about the fundamental interactions between
hydrodynamics and geochemistry by unveiling the physical and chemical mechanisms that
induce the formation of crenulations. Secondly, we show that crenulations have a potential for
being used as additional proxies for estimating the chemical composition and rate of past flows,
thus playing an important role in paleo-climatic reconstructions.

The past studies that led to the current knowledge about the water-driven morphological
evolution of calcite surfaces focused on three fundamental issues: (i) the dependence of the
macroscopic calcite precipitation rate on water chemistry, (ii) the role of the hydrodynamic
conditions of the precipitating solution, and (iii) the mathematical modelling of speleothem
shape evolution.

The first issue was addressed using indirect methods: monitoring of the changes in the solution
chemistry during calcite surface growth allowed the growth kinetics to be linked to chemical
and physical parameters such as temperature, supersaturation state and pH. There are three
major categories of models for crystallization: surface complexation models that take into account
the reactions involving surface speciation [15]; summation of the elementary reaction theories
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that describe growth rate as a function of multiple elementary reactions [16]; chemical affinity
models developed in terms of free energy changes of precipitation reactions [17]. In particular, the
precipitation model of Plummer [16] was successfully tested against laboratory experiments [18]
and is now considered to be the most reliable model for assessing the precipitation and deposition
rates of calcite (and thus the corresponding morphological modification of the mineral surface)
[19]. For this reason, the Plummer model is incorporated in the present modelling approach.

The second issue (role of the falling film hydrodynamics) was studied by coupling calcite
precipitation models with chemical diffusion profiles typical of several flow conditions, and
allowed understanding of how calcite precipitation occurs under static, laminar or turbulent
films. [19,20]. More recently, numerical and experimental analysis are exploring the role of
perturbations applied to laminar, free surface flow in developing instabilities that may ultimately
lead to the formation of large-scale morphologies [21].

The third issue (mathematical modelling of speleothems shape evolution) allowed the
mechanisms underling the formation of several speleothems to be elucidated. Calcite terraces
have been widely investigated over the last decades, both from a theoretical [22] and a numerical
[21] point of view, and a robust understanding of the involved processes has been achieved.
Stalactites and stalagmites have also attracted the interest of scientists who have developed
mathematical laws for the growth and the evolution of such speleothems [6,8,23]. At much
lower spatial scales, researchers are also interested in unveiling the mechanisms involved in the
formation and growth of dendrites in free surface flows [11]. The study of the interfacial stability
of a calcite surface and a water film flowing on it has been addressed through an approximated
depth-averaged hydrodynamic model only [24] (i.e. Dressler’s equations), with no success in the
prediction of crenulation formation.

In this work, we focus on the modelling of the interactions between (i) a thin-film containing
a solution of calcium carbonate and flowing over an inclined surface, whose dynamics are
described by the Orr–Sommerfeld equations (i.e. the linearized version of the Navier–Stokes
equations), written for free surface flows, and (ii) a surface of calcite whose morphological
evolution is driven by the geochemistry of the calcium carbonate–water ternary system. In
a previous letter [7], it was demonstrated that crenulations are the result of a morphological
instability of the film-surface interface. In this work, we pursue the following goals: (i) to describe
a number of modelling and mathematical issues that in the preliminary letter were only briefly
introduced. The explanation of the mathematical model and the techniques for its solution can be
useful for the study of other karst morphologies. We also perform a minor algebraic correction to
former results; (ii) to demonstrate the marginal role of carbon dioxide transport in the instability
that leads to the formation of crenulations; (iii) to illustrate the chemo-physical mechanisms that
induce the interface between the calcite surface and the water film to loose its stability, focusing in
particular on the dynamics of the the free surface of the water film; (iv) to investigate the role of the
different chemical and physical parameters on the crenulation dynamics and, in particular, how
modifications of such parameters change the pattern wavelength; and (v) to study the convective
and absolute nature of the crenulation instability.

2. Modelling aspects
The film-induced morphological evolution of a calcite surface is the result of the coupling between
chemical and physical processes. The evolution of the wall morphology is in fact driven by
the calcite deposition. The rate of calcite deposition is given by a number of different chemical
reactions. The rate of such reactions depends on the reagent concentrations at the fluid–solid
interface. Finally, such concentrations are influenced by the film flow field, which, in turn, is
affected by the wall geometry. Therefore, a comprehensive mathematical description of such
interactions requires to model (i) the chemical reactions occurring at the fluid–solid interface
(rate of precipitation of calcite), (ii) the film flow dynamics, (iii) the transport of chemicals in
the fluid film, and (iv) the morphological modifications induced by the deposition of calcite.
In particular, we propose a mathematical model in which (i) the rate of precipitation of
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Figure 2. Sketch of the physical problem. The unperturbed flat bed and free surface (dashed lines) are also indicated.

calcite is evaluated by the celebrated Plummer–Wigley–Parkhurst (PWP) equation [16], (ii) the
laminar Navier–Stokes equations are used for modelling the flow dynamics, (iii) the convection–
diffusion equations describe the transport of chemicals in the fluid, and (iv) the morphological
modifications induced by a calcite flow are evaluated with an Exner–Stefan-like approach [5].

The model will allow us to pursue three fundamental goals. Firstly, we will demonstrate that
crenulations are due to a morphological instability of the film-wall system. Previous studies
gained important insights about the formation of large-scale speleothems, but were unable to
explain crenulations formation due to the approximations in the flow or chemical adopted models
[24]. Secondly, we will describe the physical and chemical mechanisms that drive the formation of
crenulations. Finally, we will show the marginal role of carbon dioxide transport in the formation
of such karst morphologies.

Henceforth, model equations are written in dimensionless form. The longitudinal unperturbed
fluid velocity at the free surface, ũf, and the mean flow depth, D̃, are used to scale lengths,
velocities and times (a tilde denotes dimensional quantities). In karst formations, the Reynolds
number is in the range [10−4–10−1]. Under the assumption of a quasi-flat bottom, the flow is
laminar [25], so that ũf and D̃ can be derived from the Nusselt’s flow solution

ũf =
(

gνR2 sin θ

2

)1/3

and D̃ =
(

2Rν2

g sin θ

)1/3

, (2.1)

where θ is the bed mean slope with respect to the horizon (figure 2), R = ũfD̃/ν is the Reynolds
number, ν is the fluid kinematic viscosity and g is the gravity acceleration. A dimensionless right-
handed Cartesian frame {x, z} indicating the stream-wise and normal-to-the-bed coordinates,
respectively, is adopted. Note that in order to address the fundamental dynamics of the
crenulation instability, the cylindrical symmetry was assumed. The stream is bounded by the
free surface z = H(x, t) and by the water–calcite interface z = η(x, t), where t denotes the time.

The concentration of calcium and bicarbonate will be scaled with the incoming calcium
concentration C = [Ca2+]x=0, where [Xi] denotes dimensional concentration in mol m−3 and
subscript i refers to the ith chemical species. Carbon dioxide concentration will be scaled
with its equilibrium value at the free surface Hpc = [CO2]z=H, where H is the Henry’s
law constant and pc is the partial pressure. Accordingly, the chemical concentrations of the
main species are {[Ca2+], [CO2], [HCO−

3 ]} = C{c1, c2Hpc/C, c3}, where ci are the corresponding
dimensionless concentrations.

(a) Hydrodynamic model
Water film dynamics are described by the dimensionless Navier–Stokes and continuity equations
for uncompressible flows

u,t + u · ∇u = −∇P + R−1∇2u + f and ∇ · u = 0, (2.2a,b)
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where u = {u, w} is the velocity vector, the subscript comma denotes partial derivation in all
equations, ∇ = {∂/∂x, ∂/∂z}, P is the pressure and f = 2/R{1, −cotθ} is the body force vector.

The boundary conditions are [26]

H,t + u · nH = 0, nH · T · tH = 0,

nH · T · nH +
[

2

R5 sin2 θ

]1/3 K
Ka

= 0, at z = η(x, t) (2.3a,b,c)

and

u · nη = 0 and u · tη = 0, at z = H(x, t), (2.3d,e)

where the unit vectors tangent and normal to the generic surface S read tS = {1,S,x}/(1 + S2
,x)1/2

and nS = {−S,x, 1}/(1 + S2
,x)1/2, respectively. Subscripts H and η refer to the free surface and the

bottom, respectively, and K= H,xx/(1 + H2
,x)3/2 is the free surface curvature. The dimensionless

Newtonian stress tensor is T = PRI − 2D, where I and D are the identity matrix and the rate of
strain tensor, respectively. Finally, the Kapitza number [27] reads Ka = l2cg2/3ν−4/3, where lc is
the capillary length. Equations (2.3a–c) state (a) the kinematic condition, (b) the null shear stress
and (c) the occurrence of surface tension at the free surface (z = H), while equations (2.3d–e) state
(d) the impermeable surface and (e) the non-slip fluid velocity at the bottom (z = η).

(b) Chemical model
In an open-system with respect to CO2, the chemical reactions responsible for the removal or
deposition of calcite are [28,29]

H2O KW⇐⇒ H+ + OH− and CO2,atm
KH⇐⇒ CO2, (2.4a,b)

CO2 + H2O
k+

1⇐⇒
k−

1

H2CO3
0 K5⇐⇒ H+ + HCO−

3 and CO2 + OH− k+
2⇐⇒

k−
2

HCO−
3 , (2.4c,d)

HCO−
3

K2⇐⇒ H+ + CO2−
3 and CaCO3 + H+ κ1⇐⇒

κ ′
4

Ca2+ + HCO−
3 , (2.4e,f )

CaCO3 + H2CO3
0 κ2⇐⇒

κ ′′
4

Ca2+ + 2HCO−
3 , (2.4g)

CaCO3 + H2O
κ3⇐⇒
κ ′′′

4

Ca2+ + CO2−
3 + H2O (2.4h)

and Ca2+ + CO2−
3 + H2O KW⇐⇒

K2
Ca2+ + HCO−

3 + OH−. (2.4i)

These reactions describe (a) the dissociation of water into hydrogen- and hydroxyl ions, (b) the
physical dissolution of carbon dioxide in water, (c,d) the pH-dependent conversion of carbon
dioxide into hydrogen and bicarbonate, (e) the dissociation of bicarbonate into hydrogen- and
carbonate ions and ( f –i) the dissolution of calcite, also dependent on the solution pH. Notice
that the total amount of available CO2, namely H2CO3

∗, is given by the sum of the carbonic acid
H2CO3

0 and the dissolved carbon dioxide, i.e. H2CO3
∗ = H2CO3

0 + CO2. All the equilibrium
constants are listed in the electronic supplementary material available online. The stoichiometry
of the reactions listed above can be summarized as

CaCO3 + CO2 + H2O ⇐⇒ Ca2+ + 2HCO−
3 . (2.5)

Therefore, for one Ca2+ ion dissolved, one CO2 molecule is taken from the solution and such
molecule is replaced from the carbon dioxide in the atmosphere, as the system is open with respect
to CO2 by the free surface. Note that (2.5) holds true only for typical karst conditions. In fact,
calcite dissolves at low pH, with the production of CO2, and is precipitated at high pH, with
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the consumption of CO2. Charge equilibrium is achieved if the concentrations of the different
chemicals satisfy the following relation

2[Ca2+] + [H+] = [HCO−
3 ] + 2[CO2−

3 ] + [OH−]. (2.6)

In natural karst water 6 < pH < 8; it follows that [OH−] and [CO2−
3 ] are very small compared with

[Ca2+] and [HCO−
3 ], and they are usually neglected [19,28] allowing relation (2.6) to relax to

2[Ca2+] = [HCO−
3 ]. (2.7)

In order to study the interactions between the water solution and the calcite surface, it is
fundamental to refer to the ion activity rather than to ion concentration [16]. To this aim, we
introduce the ionic strength of the solution as I =∑

i z2
i [Xi]/2, where zi is the ionic charge [19]. By

considering the ternary system CaCO3–H2O–CO2 and the relaxed electroneutrality condition, the
ionic strength in natural karst water can be safely assumed as I = 3[Ca2+]. The activity (measured
in mol m−3) of the chemical species, (Xi) = γi[Xi], is defined by the activity coefficient γi. For
karst waters [29] in which I < 10 mol m−3, γi can be evaluated through the extended Debye–
Hückel theory [30] as log γi = −Az2

i

√
I(1 + Bdi

√
I)−1 + ei (coefficients are given in the electronic

supplementary material). Note that activity coefficients are close to unity for I < 10−3, and
decrease to values between 0.6 and 0.9 for I ∼ 10−2, namely the ionic strength of a saturated
solution of calcium carbonate in pure water at 298 K [29].

At the calcite surface, the dissolution or deposition processes are characterized by the three
fundamental reactions (2.4f –h) that macroscopically lead to a flux of calcium ions. Dreybrodt [19]
and Reddy et al. [31] found that a good quantification of both the dissolution and precipitation
processes [32] is given by the Plummer–Wigley–Parkhurst (PWP) equation [16], which relates the
calcium ion flux with the local activities of several chemical species evaluated at the calcite–fluid
interface. The PWP relation reads

f̃ = −κ1(H+)z=η − κ2(H2CO3
0 + CO2)z=η − κ3 + κ4(Ca2+)z=η(HCO−

3 )z=η, (2.8)

where f̃ is the deposition flux rate of calcium ions, subscript z = η indicates that activities are
evaluated at the calcite–fluid interface, κ1 to κ3 are the same rate constants reported in (2.4f –h)
and κ4 is a function of κ ′

4, κ ′′
4 and κ ′′′

4 . To obtain a tractable version of (2.8), one has to relate the
solution pH to the incoming calcium concentration C and the bicarbonate concentration to [Ca2+].
After some algebra, one obtains

f = ρ0 + ρ1c1|z=η + ρ2c2|z=η + ρ3c1|2z=η. (2.9)

The mathematical derivation of (2.9) from (2.8), and the expression for the coefficients ρi are
reported in the electronic supplementary material. We stress that the approximation of relating the
solution pH to the incoming calcium concentration C is necessary for obtaining a tractable version
of (2.8) and, therefore, an analytical dispersion relation. The interpretation of the instability
mechanism shown in §4c will demonstrate the dominant role of the hydrodynamic processes
in the crenulation formation. This allows to disregard some chemical details in the calcite
deposition modelling.

Consider now the morphological alterations induced on the wall by a depositing calcite
flux. The calcite flux modifies the bottom elevation according to the relation η̃,t̃ = 	f̃ , where

	 ∼ 10−4 m3 mol−1 is the molar volume of calcite. Such relation describes the dynamics of the
wall, and plays the same role as the Exner and Stefan equations in other morphodynamic
problems [2,5]. It must be noted that this macroscopic relation is valid only at dimensional scales
larger than approximately 1 mm. Below this scale, the deposition of calcite cannot be longer
considered uniform and does not lead to the formation of a smooth surface. Rather, the calcite
surface consists of small, individual crystals protruding out [21]. Anyway, the fluid flows under
laminar conditions. It follows that as long as the amplitude of the roughness is much smaller the
thickness of the film, then the small protuberances plays no significant role in determining the
flow resistance [33].
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By introducing the scaling f̃ = (ũf/	)f , we obtain the dimensionless equation that relates the
bottom evolution to the calcite flow, namely

ηt − f = 0. (2.10)

(c) Chemical transport model
The transport of the ith chemical dissolved in the laminar water film is described by the
convection–diffusion–reaction equation

ci,t + u · ∇ci = P−1
i ∇2ci + ri, (2.11)

and by the boundary conditions

c1,z|z=H = 0, f = χc1,z|z=η, c2|z=H = 1 and c2,z|z=η = 0, (2.12a,b,c,d)

where ci is the concentration (we recall that subscript 1 and 2 refer to calcium and carbon dioxide,
respectively), Pi = D̃ũf/Di is the Peclet number, Di is the diffusion coefficient, ri is a source or
sink term and χ = 	C/P1 (note that in our previous work [7], equation (2.12b) reported a wrong
sign). If ion-pairing is neglected, calcium does not react with other species and the source–sink
term r1 is zero. At the free surface (z = H), no calcium is leaving or entering in the solution (no-
flux, equation (2.12a)). At the wall (z = η), the flux of calcium is directly proportional to the calcite
flux (2.12b). In particular, when calcium is leaving (entering) the water film—i.e. deposition, f >0
(dissolution, f < 0)—then the calcium concentration increases (decreases) from the water–calcite
interface towards the free surface of the water film.

The dimensionless net production of carbon dioxide can be written as

r2 = −k1c2 + k2(a1c1 + a2). (2.13)

Refer to the electronic supplementary material for the complete derivation of this last formula and
for the expression of coefficients k1 and k2. At the bottom, z = η, the carbon dioxide flux is null, see
equation (2.12d), while at z = H, the concentration of dissolved carbon dioxide is in equilibrium
with the gas partial pressure in the atmosphere (2.12c). The assumption of carbon dioxide in
Henry’s law equilibrium at the free surface is commonly adopted [29], and is acceptable because
if we set a fixed concentration of carbon dioxide at the top layer, then the CO2 flux that exists from
the water to the air is not hampered, as the gradient of the carbon dioxide concentration at the free
surface is different from zero. This non-zero flux corresponds to the carbon dioxide that leaves the
water solution (degassing). We also stress that the carbon dioxide concentration at the top of the
water film is in Henry’s equilibrium with the carbon dioxide partial pressure that occurs close to
the water film. This value can be different from the CO2 concentration far from the free surface.
Anyway, we will demonstrate (by a detailed sensitive analysis that spans orders of magnitude
and reported in §4e) that crenulation formation is practically no sensitive to the external carbon
dioxide partial pressure and, therefore, the assumptions introduced to model the carbon dioxide
flux through the water air surface and its transport in air have a negligible effect on the global
dynamics of the system.

3. Stability analysis
In the previous section, the mathematical model describing the film-induced spatio-temporal
evolution of a calcite surface has been defined. It consists of (i) the Navier–Stokes equations (2.2)
for the modelling of the water film dynamics, flanked by the boundary conditions (2.3); (ii) the
equation (2.9)—which quantifies the flux of calcite at the calcite–liquid interface as a function of
the calcium ions and carbon dioxide concentrations, evaluated at the calcite–liquid interface—and
equation (2.10), which relates the temporal evolution of the bed with a given depositing calcite
flux, and (iii) the transport equations (2.11), with the boundary conditions (2.12a–d), that model
the chemical transport in the water film.
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In the following, the temporal derivatives of all equations, except in equation (2.10), are
disregarded. This hypothesis (so-called quasi-steady approximation) is customary in many
morphological problems [5]. It holds true when the morphological temporal evolution of the
wall is much slower than the temporal dynamics of the fluid. The rigorous justification for this
hypothesis is reported in the electronic supplementary material.

In the real water–calcite karst system, one should also note that the time-averaged calcite
deposition rate is not constant along x. In fact, the deposition of calcite occurring while the film is
flowing causes the average concentration of calcium to be progressively reduced from the initial
concentrations at the source point. However, the film degassing and the loss of calcium occur on
longitudinal scales (greater than 10 cm) much larger than the crenulation scale [7]. Therefore, in
order to study the local stability of the water–calcite interface, these non-parallel effects can be
disregarded [34].

Finally, we perform the transformation of variables ζ = [z − η(x, t)]/D(x, t). In this way, the
domain [η, η + D = H] is mapped in the rectangular domain [0, 1]. This allows a correct setting of
the boundary conditions at the free surface, that is a key point for the detection of the instability,
as it will be shown in the following sections.

In order to study the stability of the flow-calcite interface to an infinitesimal perturbation, the
dynamical system is forced with a harmonic disturbance of the bottom elevation

η = η0(t) + εη̂ ei(αx−ωt), (3.1)

where η0(t) is the uniform growth of the bottom elevation resulting from the uniform calcite
deposition F . The hat denotes the perturbed variable and α is the longitudinal wavenumber.
The complex frequency reads ω = ωR + iωI, where (ωI) and (ωR/α) are the perturbation growth
rate and celerity, respectively. Hereafter, subscript I (R) refers to the imaginary (real) part.

Equation (3.1) states that the deposition of calcite induces an upward translation of the bottom
η0(t). Such translation acts over very long times, i.e. dη0(t)/dt 	 1. It follows that the alteration of
the average bottom elevation does not induce any significant acceleration to the water film. From
a mathematical point of view, the only effect of retaining η0(t) in (3.1) is to consider a rigid upward
translation of the whole system. Therefore, η0(t) can be set to zero without any loss of generality.

The response of the governing equations to the bottom disturbance is then found by the
following normal mode ansatz

{u, w, p, c1, c2, f } = {U(ζ ), 0,P(ζ ), 1, C2(ζ ),F} + ε{û, ŵ, p̂, ĉ1, ĉ2, f̂ } ei(αx−ωt) + c.c. (3.2)

where ‘c.c.’ denotes the complex conjugate, and U , P and C2 are the basic-state vertical-profiles
of the longitudinal velocity, pressure and carbon dioxide concentration, respectively. As we
focus on the very first stages of the morphology inception, perturbation amplitude is very small
(i.e. ε 	 1), and the governing equations can be linearized around the basic state.

The unperturbed basic state can be found by collecting the terms O(ε0), and then solving the
simplified problem. The PWP equation (2.9), then, becomes

F = ρ0 + ρ1 + ρ2C2(0) + 2ρ3 (3.3)

where C2(0) is the carbon dioxide concentration at the bottom. This equation states that, in
unperturbed conditions, the flux of calcite F is uniform along x and over the time. In order
to evaluate C2(0), we have to consider the leading order terms of the carbon dioxide transport
equation (equation (2.11), with i = 2) and its corresponding boundary conditions (2.12c–d),
namely

C′′
2 (ζ ) + k1C2(ζ ) − a1k2 + a2k2 = 0, C2(1) = 1 and C′

2(0) = 0. (3.4a,b,c)

By noticing that the parameter k1 and k2 are much smaller than 1, the solution of the previous
equation can be approximated to

C2(ζ ) = 1 + 1
2 (μ − μζ 2), (3.5)
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which describes the parabolic profile of the carbon dioxide concentration, where μ = k1 − k2(a1 + a2).
We finally recall that from the horizontal (x−) and vertical (ζ−) components of (2.2a) and the
corresponding boundary conditions (2.3), the Nusselt’s profiles for laminar flows U(ζ ) = 2ζ − ζ 2

and P(ζ ) = 2(1 − ζ )/ tan θ are found.
Let us consider now the first order by collecting the terms O(ε1). The PWP equation (2.9)

becomes

f̂ = (ρ1 + 2ρ3)ĉ1(0) + ρ2ĉ2(0), (3.6)

showing that the perturbation of the calcite flow f̂ depends on the perturbations of the calcium
ĉ1(0) and carbon dioxide ĉ2(0) concentrations at the water–wall interface.

In order to find ĉ1(0) and ĉ2(0), the first order of the boundary condition (2.11a) has to be
considered. It reads

ĉ′′
i (ζ ) + [αi + iαPiU(ζ )]ĉi(ζ ) + r̂i = 0, (3.7)

where αi = {α2, α2 − k1}.
Let us consider first the transport of calcium (i.e. i = 1). The linearized reactive term in

the transport equation reads r̂1 = 0 and the linear form of the boundary conditions (2.12a,b) is
ĉ′

1(1) = 0 and χ ĉ′
1(0) = d̂F + f̂ . From a mathematical point of view, the origin of the term d̂F

is due to the adopted domain rectangularization, that transforms the derivatives in the right-
hand side of the latter boundary condition according to d/dz → 1/D(x, t) d/dζ . Implementation
of this boundary condition is a fundamental step, but critical, as it involves also the unknown
calcite flux perturbation f̂ . This difficulty is by-passed by defining the function I(ζ ) such that
ĉ1(ζ ) = (d̂F + f̂ )I(ζ )/χ . In this way, equation (3.7) and its boundary conditions become

I ′′(ζ ) + [α2 + iαP1U(ζ )]I(ζ ) = 0, I ′(0) = 1 and I ′(1) = 0, (3.8a,b,c)

from which I(ζ ) can be evaluated. Finally, the vertical profile of the calcium concentration
perturbation can be evaluated as

ĉ1(ζ ) = I(ζ ) · (d̂F + f̂ )
χ

. (3.9)

Let us consider now carbon dioxide (i.e. i = 2). The reactive term of the transport equation
(2.13a) is linearized to r̂2. The term r̂2 contains the unknown calcite flux perturbation f̂ , a feature
that complicates the solution of (3.7). To this aim, r̂2 is written as the sum of two contributions,
namely, r̂2 = r̂L + f̂ r̂M, being r̂M=χ−1a1k2I(ζ ), and

r̂L
β

= d̂(2−k1) + α2ζ + [(1−d̂)2iP2 + d̂(k1−α2)]ζ 2 + 2i(d̂−1)P2ζ
3 + r̂MF d̂. (3.10)

It follows that ĉ2 has the same structure of r̂2, namely ĉ2(ζ ) =L(ζ ) + f̂M(ζ ). In this way,
equation (3.7) can be recast as the independent boundary-value differential problems

L′′(ζ ) + [α2 − k1 + iαP2U(ζ )]L(ζ ) − r̂L = 0, L(1) = 0 and L′(0) = 0, (3.11a−c)

and

M′′(ζ ) + [α2 − k1 + iαP2U(ζ )]M(ζ ) − r̂M = 0, M(1) = 0 and M′(0) = 0. (3.12a−c)

The vertical profile of the carbon dioxide perturbation is finally given

ĉ2(ζ ) =L(ζ ) + f̂M(ζ ). (3.13)

We now consider the first order approximation of (2.10), namely

f̂ = ω, (3.14)

that equals the perturbation complex frequency with the perturbation of the calcite flow.
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Figure 3. Growth rate as a function of the wavenumber α (bottom axis) and L̃ (upper axis) for benchmark conditions lB and
R= 10−3. The grey zone denotes the wavenumbers for which the model is not able to provide reliable results (L̃< 2 mm).

Finally, we substitute (3.9), (3.13) and (3.14) in the equation (3.6), obtaining the dispersion
relation

D(ω, α) = ω − F d̂(ρ1 + 2ρ3)I(0) − ρ2χL(0)
χ [ρ2M(0) − 1] − I(0)(ρ1 + 2ρ3)

= 0. (3.15)

The dispersion relation D(ω, α) relates the growth rate (ωI) and the celerity (ωR/α) of the
crenulations forming on the water–calcite interface to the wavenumber α. By just observing the
dispersion relation, one recognizes that crenulation dynamics are influenced by (i) the water
chemistry, through the term F , as evaluated through (3.3); (ii) the perturbation of water depth,
d̂, that can be obtained by the solution of the linearized Navier–Stokes equations (2.2a–b) and
depends on the wavenumber to a great extent (the complete procedure for the evaluation of d̂ is
reported in the electronic supplementary material); and (iii) the perturbation of concentrations of
chemical at the interface through the terms I(0), L(0) and M(0). The mathematical procedures
adopted for solving d̂, I(0), L(0) and M(0) by the semi-analytic Frobenius method are reported in
the electronic supplementary material.

4. Results

(a) Morphological instability of the water–calcite interface
For a given set of parameters, the linear dynamics of the fluid–calcite interface in the wavenumber
space can be summarized by three scalar quantities. The first one is the maximum growth
rate of the perturbation, namely ωI,max = max{Im[ω(α)]}. For ωI,max > 0 (ωI,max < 0) the solid–
calcite interface is unstable (stable) and the crenulation pattern will (will not) shape the calcite
surface. The second key quantity is the most unstable wavenumber αmax, i.e. the wavenumber
that maximizes the growth rate of the perturbation (i.e. ωI[αmax] = ωI,max). According to the
linear theory, αmax is the wavenumber that is selected during the evolution of infinitesimal
crenulations. The last quantity is the phase velocity of the most amplified wavenumber, i.e.
the migration velocity of the crenulation ridges. It reads vp,max = −Re[ω(αmax)]/αmax and for
vp,max > 0 (vp,max < 0) the crenulation pattern will migrate downstream (upstream).

In figure 3, the growth rate is plotted as a function of the wavenumber for R = 10−3 and for
a fixed set of benchmark parameters, well representative of the karst environment. We consider
the typical conditions lB = {θB, TB, pc,B, CB} = {π/2, 282 K, 350 ppm, 350 ppm}, where l is the vector
of control parameters and subscript ‘B’ denotes benchmark conditions. By setting θB = π/2, we
firstly focus our analysis on vertical surfaces (e.g. stalactites) where crenulations are very likely to
be observed.

The curve ωI(α) exhibits two maxima, the first one at α � 10−3 and a second one at α � 10−1.
Recalling that the dimensional wavelength and the dimensionless wavenumber are related
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Figure 4. (a) The maximum attained growth rate, (b) the phase velocity of the most unstable wave, (c) the most amplified
wavenumber and (d) the dimensional most amplified wavelength are shown as a function of the film Reynolds number, R, or
of the film unitary flow rate, q. Benchmark conditions lB are considered.

through L̃ = 2D̃π/α, the first maximum selects a pattern with wavelength of the order of 30 mm,
which is the typical crenulation wavelength observed in the karst environment (approx. 10−2 m).
Instead, the second maximum selects a pattern with a wavelength of the order of 0.5 mm, which is
the typical size of calcite dendrites (several tens of micrometres [35]). Such second maximum falls
in a zone where the validity of the proposed model is questionable, and it is here reported only for
completeness. It can be observed, in fact, that the unstable zone on the right arises for wavelength
smaller than approximately 2 mm. As anticipated in §2b, at such longitudinal scales the deposition
of calcite cannot be considered uniform. In fact, the sinter surface consists of a multitude of
small individual crystals protruding out. Therefore, for α > 10−2 (L̃ <∼ 1 mm) one of the main
assumption of the model (i.e. equation (2.10)) is no longer valid, and thus the model results are
not reliable. A more sophisticated theory would be required to model the very complex crystal
and dendrite formation. In particular, the description of the calcite precipitation kinetics as well
as the morphological modifications induced by the sinter deposits should be further improved.
However, these dendrite scales are out of the scope of this study; therefore, we limit the analysis
of ωI,max, αmax and vp,max to α < 10−2, and we will not consider unstable zones occurring for
α > 10−2 to be physically relevant for crenulation dynamics.

In figure 4, the dependence of the crenulation dynamics on the Reynolds number is illustrated.
Reynolds number varies from 10−4 up to 10−1, a range that comprises most of the flow conditions
found in the karst environment. It can be observed (figure 4a) that the maximum growth rate is
always positive (the calcite-flow interface is always unstable to crenulations) and it decreases
when the flow rate (i.e. R) increases. In figure 4b, the dynamics of the crenulation phase velocity
can be observed. In vertical surfaces, crenulations always migrate downstream (vp,max is always
positive), and the migration velocity strongly decreases for increasing R. Figure 4c demonstrates
the very small influence of R in defining the most amplified wavenumber: while R spans three
orders of magnitude (R ∈ [10−4, 10−1]), αmax remains in the very narrow range [9.0, 10.40] × 10−4.
Dimensionally, instead, while the unitary flow q spans in the range [10−4, 10−1] l h−1 m−1,
the pattern wavelength (i.e. the most amplified wavelength L̃max = 2D̃π/αmax) is in the range
[20–220] mm (figure 4d).

These results confirm the ability of the model to capture the typical wavelengths observed
in karst environment. For R ∼ 10−3, it predicts the occurrence of centimetric waves, namely
crenulations, characterized by downstream migration (in vertical surfaces) and a relatively fast
growth rate. For R ∼ 10−1, the model predicts the formation of longer waves (approx. 10−1 m) that
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Table 1. Numerical value of the terms of (3.15), evaluated for benchmark condition adopted in the previous section lB,R= 10−3

andα = 0.95 × 10−3 (the most unstable wavenumber that arises for these parameters). We recall thatχ = 1.8 × 10−4.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F ρ1 ρ2 ρ3

1.7 × 10−5 5.6 × 10−10 5.1 × 10−8 1.7 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d̂ I(0) L(0) M(0)

−5 × 10−7 + 5i × 10−5 −1.2 + 8.4i × 102 1.7 × 10−6 − 1.2i × 10−8 1.3 − 2.1i × 103
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F d̂(ρ1 + 2ρ3)I(0) ρ2χL(0) χ [ρ2M(0) − 1] I(0)(ρ1 + 2ρ3)

(2.4 + 0.028i) × 10−11 (−1.6 + 0.011i) × 10−17 (−1.8 + 0.00019i) × 10−4 (−0.0041 + 2.9i) × 10−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

migrate downstream, and with a growth rate much lower than crenulations. Also these dune-like
long waves (figure 1d) are common morphologies on flowstones (i.e. the inclined side walls of
the caves).

(b) The marginal role of carbon dioxide transport
We now explore the role played by the chemical and physical phenomena responsible of the
morphological instability of the water–calcite interface and of the selection of the most unstable
wavelength. To this aim, we numerically quantify the different terms appearing in the dispersion
relation (3.15).

Let us first compare the numerical value of coefficients ρ1, ρ2 and ρ3, which link the rate
of calcite deposition to the bottom concentrations c1 and c2 by the PWP equation (2.9). By
considering the typical numerical values of these coefficients (table 1), it can be observed that the
term (ρ1 + 2ρ3) � 10−5 exceeds of three orders of magnitude the term ρ2 � 10−8. We now compare
the magnitudes of terms I(0), L(0) and M(0) introduced to evaluate the perturbation of carbon
dioxide and calcium concentration at the bottom, namely ĉ2(0) and ĉ1(0) (see §3). Table 1 shows
that I(0) and M(0) are of the same order of magnitude, while L(0) is significantly lower.

We have now the elements to detect the dominant terms of the dispersion relation (3.15). Let us
first consider the numerator. The real and the imaginary part of F d̂(ρ1 + 2ρ3)I(0) are six orders
of magnitude bigger than ρ2χL(0). This last term can be therefore disregarded. Consider now
the denominator of (3.15) and, in particular, the term χ [ρ2M(0) − 1] where ρ2M(0) ∼ 10−11 can
be disregarded: the real part of χ [ρ2M(0) − 1] equals −χ while its imaginary part is 106 times
smaller than the imaginary part of the other term I(0)(ρ1 + 2ρ3), and thus it is negligible.

Summing up, the terms related to the carbon dioxide transport L(0) and M(0) are comparable
with the term related to calcium transport I(0), but the formers are heavily penalized by the
coefficients ρ2 that is very small, and the dispersion relation can be approximated as

ω = ρ1 + 2ρ3

χ
( f̂ + F d̂)I(0) = (ρ1 + 2ρ3)ĉ1(0) = (ρ1 + 2ρ3)[cf̂ (0) + cd̂(0)], (4.1)

which states (i) crenulation dynamics are driven by the response of the calcium concentration
to the bed perturbation, and (ii) the transport of carbon dioxide does not play any significant
role. In particular, crenulation growth rate (ωI) and celerity (ωR/α) are proportional, through the
coefficient (ρ1 + 2ρ3), to the perturbation of calcium concentration at ζ = 0, ĉ1(0). This latter term
is made up of two components: (i) cf̂ (0) = f̂I(0)/χ that describes the effect of the calcite depositing

flow on the calcium concentration and (ii) cd̂(0) =F d̂I(0)/χ that describes the effect of the water
depth on the calcium concentration.

We finally recall that after using (3.14), equation (4.1) can be rearranged in the final form

ω = F d̂
1 − AI(0)

, (4.2)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 A

pr
il 

20
21

 



13

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150031

...................................................

with A = (ρ1 + 2ρ3)/χ , showing that the growth rate is proportional to the film depth
perturbation d̂.

(c) The key mechanisms driving crenulation formation
Relation (4.1) shows that the formation of crenulations can be understood by investigating how
the film depth perturbation, d̂, and the perturbation of the calcite flow, f̂ , alter the calcium
concentration at the wall. For the sake of clarity, we do not consider the effect of the chemical
advection; that complicates the picture without any gain in the understanding of the main
dynamics. To this aim, the term iαP1U(ζ ) can be discarded in (3.8a).

Preliminary, we have to elucidate how the free surface and, in turn, the water depth respond
to a bottom perturbation. We, therefore, focus on the phase angle, φ, between the flow depth
perturbation induced by a bottom topography and the topography itself. Such angle is linked to
the location of the minimum flow depth (min[d̂], figure 5c) and three cases can occur (i) the most
severe shallowing occurs over the downstream side of a bump (i.e. where η̂ > 0 and ∂η̂/∂x < 0).
In this case, the phase angle between d̂ and η̂ is in the range ]π/2, π [; (ii) min[d̂] takes place over
the upstream side of a bump (η̂ > 0 and ∂η̂/∂x > 0) and φ falls in the range ]π , 3π/2[; and (iii)
min[d̂] occurs over a depression (i.e. η̂ ≤ 0) and the phase angle results in the range [0, π/2] or
[3π/2, 2π ], depending on the sign of ∂η̂/∂x. It can be observed (black bold line in figure 5d) that
for the typical values R = 10−3 and θ = π/2 occurring in karst systems, the phase angle between
d̂ and η̂ is slight larger than π/2, for all the wavenumber considered. Therefore, the most severe
film thinning always occurs over the downstream side of the bumps. The black dotted (black
dashed) line in figure 5d shows that a reduction (increase) of the Reynolds number induces
only a small downward (upward) translation of the phase-wavenumber curves. Also a reduction
of the wall slope (dotted grey line) does not affect significantly the behaviour. Instead, in the
case of overhanging walls, it can be observed (dashed grey line) that for low wavenumbers, the
phase angle switches from values slightly greater than π/2 to values slightly smaller than 3π/2.
Physically, the most severe film shallowing occurs on the upstream side of the protrusions. The
switching of the position of min[d̂] from the downstream to the upstream side of the bumps when
θ exceeds π/2 causes several changes in the macroscopic behaviour of the crenulations pattern
(e.g. the switch of the migration direction) that will be described in the following sections.

We now investigate how the calcium concentration at the film bottom is altered by a
water depth perturbation, d̂. Figure 5f reports the spatial behaviour over one wavelength
of the perturbed water depth d̂ and the corresponding perturbation induced in the calcium
concentration at the wall, namely cd̂(0): it can be observed that at the location where the water
depth is minimum, the calcium concentration is maximum. Let us investigate the physics behind
this behaviour. When the film depth reduces (figure 5e, right part), the corresponding calcium
profile (black line) becomes more steep with respect to the unperturbed profile (grey line, see
also figure 5a). The consequence of a steeper calcium profile (see dashed black and grey lines
in figure 5e) is that more calcium ions are pumped through diffusion from the film towards the
wall. This high flux of calcium ions, in turn, rises the calcium concentration at the wall. It follows
that the calcite flow rate results increased (see linearized PWP equation (3.6) and also the bottom
elevation growth rate increases (see the bottom evolution equation (2.9)). The opposite happens
if an increase of the water depth occurs (d̂ > 0, shown in figure 5e, left part): the calcium profile
becomes less steep than the unperturbed calcium profile and the concentration cd̂(0) at the bottom

decreases. Accordingly, the calcite flow rate f̂ and the bottom elevation growth rate η̂,t diminish.
At the beginning of this section, we have shown that the minimum water depth always

occurs over a bump (η̂ > 0). We have then demonstrated that the highest increment of calcite
deposition (max[f̂ ]) occurs at the location in which min[d̂] takes place. It follows that max[f̂ ]
occurs in zones where η̂ is already larger than zero, while min[ f̂ ] takes place in zones where
η̂ < 0. Physically, the deposition of calcite is promoted over protrusions and inhibited over
depressions. This mechanism accelerates the deposition over bumps and slows the precipitation
over depressions. Therefore, the unevenness of the surfaces is increased and a crenulation pattern
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Figure 5. (a,b) Uniform deposition in the time interval �t: the bed elevation increases of �η and the film translates
accordingly. (c) Example of a phase lag φ = π between the bottom and the water depth. (d) Phase lag excess with
respect to π/2 (i.e. φ − π/2) versus wavenumber α evaluated for θ = π/2, T = 282 K and R= 10−3 (full line);
R= 10−4 (dashed) and R= 10−2 (dotted); grey dotted and dashed lines refer to θ = 0.95π/2 and θ = 1.05π/2,
respectively, and (R= 10−3, T = 282 K). (e) Conceptual scheme of the dilutionmechanism (the unperturbed calcium profile is
reported in grey). (f ) Behaviour of d̂ along one wavelength and the corresponding response of the calcium concentration cd̂(0).
(g) Conceptual schemeof the diffusionmechanism (the grey scale indicates calcium concentration). (h) Behaviour of f̂ along one
wavelength and the corresponding response of the calciumconcentration cf̂ (0). (i) Overall spatial behaviour of the perturbations
along one wavelength. (f ,h,i) {R, θ , T , pc,C} = {10−3, 1.1π/2, 282 K, 1000 ppm, 190 ppm} and α = 1.01 × 10−3

(the most unstable wavenumber). (Online version in colour.)

emerges. This process that induces the morphological instability of the system will be hereafter
referred as concentration mechanism, in order to underline the concentration of calcium at the
bottom induced by the film thinning. We recall that hydrodynamically induced alterations of
the chemical gradients were demonstrated to play a key role in the generation of other calcite
morphologies [21].

Consider now the feedback of the calcite flux on the calcium concentration. In figure 5h, the
spatial behaviour over one wavelength of the calcite flux, f̂ , and the perturbation induced in the
calcium concentration at the wall, cf̂ (0), are shown: it can be observed that when the calcite flux
reaches its maximum, the calcium concentration is minimum. Namely, a higher rate of calcite
precipitation induces a higher rate of consumption (and thus removal) of calcium in all the film
depth (figure 5g) and, in particular, near the wall. According to equations (3.6) and (2.9), also the
calcite flow rate and the bottom elevation growth rate are reduced. The opposite happens if a
lower rate of calcite deposition occurs ( f̂ < 0, figure 5g, left): the calcium concentration increases
and, in turn, also the calcite flow rate f̂ increases. This process alone, that in the following will be
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Figure 6. Conceptual scheme describing the morphological evolution of a calcite wall. (Online version in colour.)

referred as depletion mechanism, plays a stabilizing role. In fact, at the locations in which an excess
of calcite precipitation occurs, a reduction of the calcium concentration is induced. Such reduction
of calcium concentration, in turn, halts the calcite deposition excess.

Examine now the full response of the system to perturbations d̂ and f̂ , with the help of figures 5i
and 6. The film responds to an initial bottom perturbation (I) with a film depth perturbation
(II). Recall (figure 5d,i) that the maximum film thinning (i.e. min[d̂]) occurs over protrusions
(η̂ > 0). As a consequence of the concentration mechanism, an increase of calcium concentration
occurs where the film shallows (III). According to the PWP equation, at the locations in which an
increment of calcium concentration occurs, also an increment of the calcite flow takes place (IV).
The effect of this increment of the calcite flux is twofold. On one side, it induces an increment
of the bottom elevation and, since the highest calcite deposition flux, max[ f̂ ], takes place over
wall protrusions (η̂ > 0), these protuberances grow. The growth of bumps amplitude (V) induces,
in turn, the increment of the amplitude of all the other perturbations, giving rise to a positive
feedback and to the instability that generates the pattern of crenulations. On the other side, the
increment of calcite deposition induces (by means of the depletion mechanism) a reduction of the
calcium concentration (VI). This depletion-induced reduction of calcium is in competition with
the increment of calcium driven by the concentration mechanism. We stress that the depletion
mechanism is a stabilizing feedback process that damps the calcite flow perturbations induced by
the concentration mechanism.

The same mechanisms are also found if the convection of chemicals is restored. In such case, we
observe only a slight downstream phase lag between the water depth perturbation and the calcite
perturbed flow. Anyway, the key processes inducing the instability—concentration mechanism
and competition with the depletion mechanisms—remain the same.

(d) The key role of the wall slope
In the previous section, we have demonstrated the crucial role of the film fluid dynamics in
determining the stability of the calcite-flow interface. It follows that, being the flow characteristics
(in particular, the response of the film depth to a bottom perturbation) influenced to a great extent
by the Reynolds number and by the wall average slope, these quantities impact the dynamics of
crenulations. In figure 7a, the marginal stability curves (i.e. points where the growth rate ωI,max
is null) are reported in the θ − R plane. It can be observed that for relatively high Reynolds
numbers (R > 10−2) crenulation formation is only possible on walls almost vertical, or steeper
(θ > 0.9π/2) while for progressively lower values of R the instability occurs even for significantly
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Figure 7. (a) Marginal stability curves. (b) Upstream–downstream migration regions (lines correspond to vp,max = 0).
Benchmark conditions (solid) but: C = 1000 ppm (dotted), T = 303 K (dashed), pc = 10000 (dotted-dashed) ppm. In the
lower row, the dependence of rω , rα and rvp on θ is shown. The vertical arrowmarks θ = π/2.

lower slope, so that crenulations can appear when the wall average slope is as low as π/4. With a
further reduction of R, the system becomes stable to crenulations and, for a given θ , the marginal
stability curves exhibit a threshold value Rc that separates the zone of stability (R < Rc) from the
zone of instability (R > Rc). Note that the critical Reynolds number, Rc, above which crenulations
form is highly dependent on temperature and water chemistry, as shown by the different lines of
figure 7a–b, evaluated by changing some parameters from the benchmark condition.

In figure 7b, the locus of the points that have a null phase velocity, namely vp,max = 0, is
reported. Depending on the parameters, crenulations can therefore migrate either downstream
(vp,max > 0) or upstream (vp,max < 0). In particular, this latter case is only observed for
overhanging walls (θ > π/2), a very common condition found in stalactites. This confirms the
result obtained by Camporeale & Ridolfi [7], whereas the downstream migration for θ < π/2 is
instead a novel finding.

The effect of slope is now investigated by the ratios rω = ωI,max(θ )/ωI,max(π/2), rα = αmax(θ )/
αmax(π/2) and rvp = vp,max(θ )/vp,max(π/2) that quantify the extent of the alteration of the pattern
characteristics (i.e. growth rate, most amplified wavenumber and phase velocity) if the wall slope
is changed from θ = π/2. Such ratios are evaluated for different Reynolds numbers and only for
unstable conditions (i.e. ωI,max > 0).

It can be observed (figure 7c) that lowering the mean slope of the calcite wall induces a strong
reduction of the growth rate that eventually becomes negative. On the contrary, in overhanging
slopes the growth rate is amplified of more than one order of magnitude. This feature is more
pronounced for high Reynolds numbers. The wall slope plays a strong influence also in selecting
the most unstable wavelength (figure 7d): for low Reynolds numbers (R < 10−3) the pattern
wavelength increases up to five times by reducing the slope below π/2, while weaker changes
are observed if θ is increased above π/2. For higher Reynolds numbers (R > 10−2) the pattern
wavelength is weakly influenced by a reduction of the slope below π/2, while it reduces up to
one-fourth by increasing θ above π/2.

Finally, the wall slope affects the crenulation phase velocity (figure 7e). We have previously
demonstrated (figure 7b) that the crossing of the wall slope threshold θ = π/2 induces a switch in
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Figure 8. Dependence of rω , rα and rvp onC, pc, T ,ΥI andΥγ . The vertical arrowmarks the benchmark condition.

the direction of migration of crenulation. Figure 7f shows that high Reynolds numbers (R ∼ 10−1)
induce a dramatic increment in the absolute value of the phase velocity.

(e) Impact of water chemistry on crenulation dynamics
The effect of water chemistry and temperature is here investigated systematically. To this aim,
we follow the same approach used in the previous section by focusing on the ratios rω =
ωI,max(l)/ωI,max(lB), rα = αmax(l)/αmax(lB) and rvp = vp,max(l)/vp,max(lB) that quantify the extent of
the alteration on the pattern characteristics if a control parameter is changed from the benchmark
value, lB, to the new value, l. The ratios are evaluated by changing the parameters of the
benchmark set one by one. The analysis has been repeated for different Reynolds numbers, but
no appreciable differences were observed, and all the curves evaluated for different R collapse on
the same line.

Figure 8a shows that an increase in the concentration of calcium, C, of the order of 102 leads
to an increment of the maximum growth rate, ωI,max, up to three order of magnitudes. On the
contrary, when carbon dioxide partial pressure pc increases, the maximum growth rate ωI,max
reduces up to two order of magnitudes (figure 8b). From a physical point of view, the higher is the
degree of over-saturation of the solution, the faster crenulations form and it can also be observed
(line rα) that the most amplified wavenumber undergoes significantly changes (the ratio rα is
in the range [0.5, 1.6]). It follows that the chemical composition of the incoming water has an
appreciable effect in selecting the dominant wavelength. Finally, the phase velocity of the most
unstable wavenumber has a behaviour very similar to the growth rate; in fact, vp,max undergoes a
strong increase when the calcium concentration C increases, while it decreases for high values of
carbon dioxide partial pressure.

Let us examine now the role of thermal changes. The temperature modifies a number
of physical and chemical parameters of the system (water density, viscosity, surface tension,
equilibrium constants of the chemical reactions, solubility products, etc.), but the main effects are a
change in the solubility of calcite (that decreases with temperature) and in the solubility of carbon
dioxide (decreasing with the temperature, as film degassing is promoted). The final result is
therefore an increment of the growth rate of the instability with temperature. From a quantitative
point of view, variations of temperature of a few tens of degrees cause changes of the maximum
growth rate and of the phase velocity up to two order of magnitudes, while the selection of the
most amplified wavenumber is less influenced (rα remains in the range [0.9, 1.5], figure 8c). Such
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response of the system to changes of the water chemistry and temperature is not surprising. In
§4c, we have in fact demonstrated that the dilution mechanism is the ultimate responsible of
the destabilization of the film–calcite interface. In §4b, we have also shown that the strength of
dilution mechanism is proportional to (ρ1 + 2ρ3)F d̂I(0)/χ (see equation (4.1)). It follows that
the higher the term F , the higher the destabilizing strength of the dilution mechanism. The
calcite precipitation rate, F , that occurs in unperturbed conditions only depends on the calcium
concentration C, carbon dioxide partial pressure pc and temperature T.

It is now instructive to investigate the role of the water chemistry activity in the crenulation
dynamics. In particular, we consider the introduction of other chemical species in the
Ca2+ − HCO−

3 − H2O ternary solution. This is common in underground waters where other
cations and anions can be found. We recall (see §2b) that the introduction of new ions alters
the solution total activity I. In particular, the addition of the chemical i induces in the solution
activity an increment z2

i [Xi]/2. It follows that small concentrations [Xi] of ions that have high
ionic charge (e.g. zi = 3 − 7) can significantly increase the solution activity and reduce the activity
of the single different chemicals. In order to quantify the role of additional ions, we introduce
a coefficient ΥI ≥ 1 that multiplies the solution activity I = 3[Ca2+] adopted in the previous
analysis. In this way, we model an increment of the solution activity caused by the presence
in the water of generic elements other than calcium- and bicarbonate ions and water. It can
be observed (figure 8d, bold line) that an increment of solution activity (increasing ΥI) has a
moderate influence on the maximum growth rate ωI,max and on the phase velocity vp,max. The
effects of an increase of the solution activity resemble those caused by the increase of the carbon
dioxide partial pressure (figure 8b). Physically, the increment of the solution activity causes the
reduction of the activity coefficients γi and, despite the concentrations [Xi] are unaffected, the
activity (Xi) of the chemicals involved in calcite deposition is reduced. In turn, the unperturbed
calcite deposition rate F and the crenulation growth rate diminish (we already demonstrated
that the growth rate is proportional to F ). Quantitatively speaking, variations of I cause changes
of ωI,max and of vp,max that are lower than one order of magnitude (figure 8d). Also the most
amplified wavenumber (figure 8d, dashed line) results poorly affected by the solution activity,
being rα in the range [0.75, 1].

Finally, the effect of the alteration of the liquid surface tension is explored. This point is not
practically relevant, since a reduction of water surface tension is only possible through the action
of a surfactant. Nevertheless, this analysis is theoretically instructive as it further clarifies the
significance of the film flow dynamics on the crenulation development. To this aim, we introduce
the coefficient 10−1 ≤ Υγ ≤ 101 that multiplies the surface tension γ (accordingly, the capillary
length lc is multiplied by Υ

1/2
γ ). It turns out that variations of the surface tension have notable

effects on the crenulation growth rate (figure 8e, bold line) as well as a relevant impact on the
selection of the most amplified wavenumber (figure 8e, dashed line). This is a further proof that
film flow dynamics, and in particular, the free surface response to a bottom topography, plays a
key role also in selecting both wavenumber of the pattern (a common feature in many free surface
flow-induced morphologies [36]) and the pattern growth rate.

5. Convective/absolute nature of the crenulation instability
The assessment of the convective/absolute nature of an instability is a key information in unstable
open flow hydrodynamic systems [34], as well as in morphodynamic problems [37,38]. A system
is convectively unstable if the response to an impulsive perturbation increases in time but
migrates and decays to zero at all the spatial locations, and it is absolutely unstable if the response
grows exponentially in time at all spatial locations. Convectively unstable systems behave as
‘noise amplifiers’, displaying extrinsic dynamics, as in the absence of continuous forcing the
response decays back to zero, whereas absolutely unstable systems are characterized by intrinsic
dynamics and behave as ‘oscillators’ [39,40]. From a practical point of view, the knowledge of
the type of instability is fundamental for correctly understanding field observations and for an
appropriate set up of numerical simulations and experiments.
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In order to discriminate between these two kinds of instabilities, one needs to determine
if the wave with the zero group velocity is growing (absolute case) or decaying (convective
case). This is an easy task only in a limited number of cases, where the dispersion relation is
provided analytically. Unfortunately, this is not the case for crenulations, which require a refined
modelling of the flow field along the non-homogeneous vertical direction. In order to circumvent
this difficulty, we will apply the so-called cusp map method [38,41] to the present problem.

By definition, the complex absolute wavenumber α0 characterizes the long time behaviour of
equation (3.15) at x fixed, and it corresponds to the solution of the saddle point condition,
D(ω, α) = ω,α(α) = 0, provided that the causality principle is satisfied, i.e. that α0 is a pinch point.
Moreover, ω0I = Im[ω(α0)] is the associated absolute growth rate. If only real wavenumbers are
considered, equation ωI,α = 0 is satisfied by the wavenumber αmax which displays the maximum
temporal growth rate ωI,max = ωI(αmax). The instability is convective if ωI(αmax) > 0 and ω0I < 0;
on the contrary, the flow is absolutely unstable if ωI(αmax) > 0 and ω0I > 0. Recalling that the jth
spatial branch of the dispersion relation αj(ω̄I) associated with the growth rate ω̄I is the locus of
complex wave numbers in which ωI(α) = ω̄I, it can be demonstrated that points where ω,α = 0
are pinch points only if at least two spatial branches αm(ω0I) and αn(ω0I) pinching in α0 are well
confined within opposite αI half-planes when ωI is increased [40].

The pinch point criterion usually requires a mapping from the complex frequency plane to the
complex wavenumber plane, thus the dispersion relation has to be solved for α as a function of ω.
Unfortunately, in many physically relevant cases (e.g. the water–calcite interface evolution herein
investigated), the dispersion relation is a transcendental function of α while it is polynomial only
in ω. In order to circumvent this difficulty, Kupfer et al. [41] refined a work by Derfler [42] and
developed a technique—called cusp map method—for the assessment of the convective/absolute
nature of the instability requiring only a α → ω mapping.

The cusp map method basically follows two conceptual steps (i) to detect the points that
have null group velocity in the complex ω-plane and (ii) to determine whether these zero group
velocity complex frequencies are actually pinch points in the complex wavenumber plane or
not. The former task is accomplished recalling that (in the frequency plane) a point ω0 that
satisfies D(ω0, α) = D,α(ω0, α) = 0 (the saddle point condition) and D,αα(ω0, α) �= 0, has a local map
(ω − ω0) ∼ (α − α0)2. From a topological point of view, this implies that when a curve lying in
the complex α-plane and passing trough α0 is mapped into the complex ω-plane, it displays a
cusp-like singular point at the branch point ω0. Kupfer [41] suggested to map the contour αI = α∗

I ,
progressively lowering α∗

I from zero. The mapping of all the contour points with αI = α∗
I generates

in the complex frequency plane the curve Ω(α∗
I ). A branch point is obtained when Ω(α∗

I ) displays
a cusp-like singularity (occurring at ω0), and this occurs exactly when α∗

I = Im(α0). Finally, the
check for the pinch point condition is performed by considering the relative position of ω0 with
respect to ω̃F, the latter being the mapping of α∗

I = 0 into the the ω-plane (i.e. the usual temporal
branch). It can be demonstrated that branch points ω0 that are ‘covered’ an odd number of times
by ω̃F are pinch points [41].

The results obtained by the application of the cusp-map method to the crenulation instability
are provided in figure 9 for different values of R and θ . The curve ω̃F and some others curves
Ω(α∗

I ) are reported in the ω-plane, with α∗
I progressively lowering from zero. Left panel refers to

the case θ = π/2 while the central panel refers to (θ = 1.1 · π/2).
For θ = π/2, lowering α∗

I from 0 causes a progressive lowering of the contours until the whole
curve Ω(α∗

I ) lies in the half plane ωI < 0. Even though α∗
I is progressively reduced, no singular

points (clue of a zero-group-velocity wave) can be found. It follows that for θ = π/2 there are no
unstable waves (instability would require Ω(α∗

I ) to lie in the half plane ωI > 0) that exhibit null
group velocity. Therefore, the calcite-flow interface is convectively unstable.

For θ = 1.1 · π/2, lowering α∗
I from zero causes a progressive sharpening of the contours Ω(α∗

I )
that ultimately leads to the occurrence of a singular point at ω0. In order to show more clearly the
selected cusp, an enlarged view of the zone where the cusp is forming (white box in the central
part surrounding the branch point ω0) is reported in the right part of each panel. Once the branch
point is detected, its position is compared with respect to ω̃F and it turns out that ω0 is ‘covered’
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Figure 9. Cusp maps in theω-plane for θ = π/2 (left panels), θ = 1.1 · π/2 (central and right panels) and two different
Reynolds numbers. The right panels are a zoom in of the white box reported in the central panels. Thick solid lines describe ω̃F,
the other lines refer toΩ (α∗

I ). The exact values of the adoptedα
∗
I , are reported in table 2. The coordinates in theω-planeof the

branch points are:ω0 = 6.2 × 10−8 + 2.3i × 10−11 (for R= 10−1) andω0 = 3.5 × 10−7 + 4.3i × 10−12 (for R= 10−3).
Other parameters are {T , pc,C} = {TB, pc,B,CB}.

Table 2. Values ofα∗
I for different R and corresponding to different line style in figure 9. The first value refers to θ = 1.1 · π/2

while the second value within brackets refers to θ = π/2.

line style R= 10−1 R= 10−3

dotted −8 × 10−5(−2 × 10−5) −1 × 10−6(−1 × 10−6)

dashed −16 × 10−5(−4 × 10−5) −2 × 10−6(−2 × 10−6)

dotted-dashed −24 × 10−5(−6 × 10−5) −3 × 10−6(−3 × 10−6)

thin solid −32 × 10−5(−8 × 10−5) −4 × 10−6(−4 × 10−6)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

only once by ω̃F. The branch points in the ω-plane therefore correspond to pinching points in the
α-plane. It follows that, being ω0I > 0, the calcite-flow interface is absolutely unstable for any R
here considered.

The dependence of the nature of the instability on θ has been thoroughly scrutinized, revealing
that θ = π/2 is a critical value for any value of the other control parameters: for θ > π/2
crenulations are absolutely unstable while for for θ ≤ π/2 the instability is convective.

This is a key result. From the definition of convective instability and from the behaviour of
other convectively unstable systems [43], it is in fact known that exists a critical length Lc of the
domain below which the macroscopic detection of the instability is not possible. Moreover, the
lower is the perturbation growth rate, the higher becomes this critical length Lc. We also recall
that variations of the chemo-physical control parametrs (e.g. a wall slope reduction, figure 7c)
can cause dramatic reductions of the growth rate of crenulations. It follows that in some cases
(e.g. wall slope below π/2, little over-saturation of the water), the critical length Lc is very large.
In particular, Lc can exceed the speleothem size. As a consequence, the pattern of crenulations
cannot be macroscopically detected. This justifies the difficulty of observing crenulations in
some caves (little over-saturation of the water) or in some specific speleothems (wall slope
below π/2).
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Table 3. Effect of the increment of the parameter reported in the top row. ‘⇑ / ⇓’ strong increment/decrement, ‘↑ / ↓’ weak
increment/decrement.

parameter R C pc T θ

growth rate ⇓ ⇑ ⇓ ⇑ ↑ / ⇑
wavelength ⇑ ↓ ↑ ↓ ⇓
phase velocity ⇓ ⇑ ⇓ ⇑ ↓ / ⇓

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider now the emblematic case of one stalactite (wall slope above π/2) hanging over its
associated stalagmite (θ < π/2): the total flow rates of the films dripping on both speleothems are
equal. Moreover, stalagmites usually have a radius much larger than the associated stalactite. It
follows that stalagmites, in principle, exhibit smaller values of Reynolds number than stalactites.
These conditions lead the stalagmites to fall either in the stable region of figure 7a or, at most,
in the convectively unstable regime but with a very low growth rate (θ < π/2), both cases being
unfavourable to pattern detection. However, provided a sufficient length, the pattern detection
remains possible, as testified by the occurrence of regular dune-like patterns on long flowstones.

6. Discussion and concluding remarks
In this work, we have presented the results of a detailed physical- and chemical-based
mathematical model that predicts the formation of crenulations as the result of a morphological
instability of the water film-calcite interface. We have firstly demonstrated that carbon dioxide
transport can be neglected, and that only the concentration of calcium at the wall plays a
relevant role in determining the stability of the system, namely the occurrence or not of
crenulations. This aspect allows the development of future simplified modelling approaches
that only focus on calcium transport, even though the complete set of geochemical reactions
is fundamental for obtaining the basic state solutions. The possibility of disregarding the
carbon dioxide transport allowed us to develop a simplified dispersion relation that shows
the physiochemical processes involved in the crenulations instability. In particular, we have
distinguished two main processes that affect the calcium concentration at the wall: the depletion
and the concentration mechanisms. The former is related to the consumption of calcium ions near
the wall, as a result of calcite deposition, and is showed to be stabilizing. The latter is instead
destabilizing, and it is related to the alteration of the calcium concentration depth-profile induced
by the free surface dynamics. Similar mechanism where also found in the analysis of the formation
of ripples over icicles [2,44], where the heat flux is the key process driving the morphological
evolution of the ice wall. We also suspect that the ripple-like patterns that often shape silica
sinters [45] are induced by the fluid free surface, but a rigorous analysis that explains how the
film dynamics interact with the cooling processes responsible of the sinters formation [46] is
still lacking.

We have then investigated the role of many physical (e.g. Reynolds number, average slope)
and chemical (e.g. calcium ion concentration, carbon dioxide partial pressure and temperature)
parameters involved in the crenulation dynamics, demonstrating that their variations in realistic
ranges cause very significant changes in some key control features. A synthesis of the key results
is reported in table 3, where the effect of the increment of a given parameter (top row) on the
growth rate, phase velocity and most unstable wavenumber is reported. It is a key point to
note that the wavelength of the instability (that is easily measurable and stored in speleothems
stratigraphy) is influenced especially by the Reynolds number and by the wall slope. Such strong
dependence of the pattern wavelength on R and θ opens the possibility to associate a particular
wavelength to past flow conditions that occurred at the time of the calcite deposition. Differently,
many parameters affects the growth rate. In particular, we observe high growth rate only for
very over-saturated water. It should therefore not be surprising that in several caves where
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water over-saturation is weak, crenulations are not visible: the film-calcite interface is unstable,
but the amplitude of the crenulation pattern grows so slowly that cannot be detected. Anyway,
nonlinear analysis are required for gaining further insights about the temporal evolution of the
crenulation amplitude.

The convective/absolute nature of the instability has finally been assessed: crenulations
are invariably absolutely unstable for θ > π/2 (typical wall slope in stalactites) while they
are convectively unstable for θ ≤ π/2. The evaluation of the convective/absolute nature of
the instability allows the assessment of the robustness of the results obtained from these
palaeo-hydraulic reconstructions. In particular, the use of convectively unstable crenulations’
features requires some caution, because they can result from the amplification of some external
disturbance rather than the mirror of an intrinsic dynamics that can be well associated to some
flow or environmental characteristics [39]. Differently, the reconstructions of palaeo-flows well
fit with the case of absolutely unstable crenulations. Anyway, the actual use of crenulation
wavelength for the interpretation and estimation of palaeo-flows requires further experimental
efforts to validate the theoretical outcomes here presented.

Data accessibility. This manuscript does not contain primary data and as a result has no supporting material
associated with the results presented.
Author contributions. All the authors equally contributed in developing the the mathematical model, performing
the analysis, interpreting the results and writing the paper. All authors gave final approval for publication.
Funding statement. This work was supported by the Politecnico di Torino.
Conflict of interests. The authors have no competing interests.

References
1. Fowler A. 2011 Mathematical geoscience, 1st edn. Berlin, Germany: Springer.
2. Camporeale C, Ridolfi L. 2012 Ice ripple formation at large Reynolds numbers. J. Fluid Mech.

694, 225–251. (doi:10.1017/jfm.2011.540)
3. Ueno K. 2007 Characteristics of the wavelength of ripples on icicles. Phys. Fluids 19, 093602.

(doi:10.1063/1.2775484)
4. Blondeaux P. 2001 Mechanics of coastal forms. Annu. Rev. Fluid Mech. 33, 339–370.

(doi:10.1146/annurev.fluid.33.1.339)
5. Seminara G. 2010 Fluvial sedimentary patterns. Annu. Rev. Fluid Mech. 42, 43–66.

(doi:10.1146/annurev-fluid-121108-145612)
6. Short MB, Baygents JC, Beck JW, Stone DA, Toomey RS, Goldstein RE. 2005 Stalactite growth

as a free-boundary problem: a geometric law and its platonic ideal. Phys. Rev. Lett. 94, 018501.
(doi:10.1103/PhysRevLett.94.018501)

7. Camporeale C, Ridolfi L. 2012 Hydrodynamic-driven stability analysis of morphological
patterns on stalactites and implications for cave paleoflow reconstructions. Phys. Rev. Lett.
108, 238501. (doi:10.1103/PhysRevLett.108.238501)

8. Short M, Baygents J, Goldstein R. 2005 Stalactite growth as a free-boundary problem. Phys.
Fluids 17, 018501. (doi:10.1103/PhysRevLett.94.018501)

9. Hill C, Forti P. 1997 Cave minerals of the world. Huntsville, AL: National Speleological Society.
10. Meakin P, Jamtveit B. 2010 Geological pattern formation by growth and dissolution in

aqueous systems. Proc. R. Soc. A 466, 659–694. (doi:10.1098/rspa.2009.0189)
11. Hawkins C, Angheluta L, Hammer O, Jamtveit B. 2013 Precipitation dendrites in channel

flow. Europhys. Lett. 102, 00000. (doi:10.1209/0295-5075/102/1/00000)
12. Nesic S. 2007 Key issues related to modelling of internal corrosion of oil and gas pipelines—a

review. Corros. Sci. 49, 4308–4338. (doi:10.1016/j.corsci.2007.06.006)
13. McDermott F, Mattey D, Hawkesworth C. 2001 Centennial-scale holocene climate variability

revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 294, 1328–
1331. (doi:10.1126/science.1063678)

14. Fairchild I, Smith C, Baker A, Fuller L, Spotl C, Mattey D, McDermott F, EIMP. 2006
Modification and preservation of environmental signals in speleothems. Earth Sci. Rev. 75,
105–153. (doi:10.1016/j.earscirev.2005.08.003)

15. Nilsson O, Sternbeck J. 1999 A mechanistic model for calcite crystal growth using surface
speciation. Geochim. Cosmochim. Acta 63, 217–225. (doi:10.1016/S0016-7037(99)00026-5)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 A

pr
il 

20
21

 

http://dx.doi.org/doi:10.1017/jfm.2011.540
http://dx.doi.org/doi:10.1063/1.2775484
http://dx.doi.org/doi:10.1146/annurev.fluid.33.1.339
http://dx.doi.org/doi:10.1146/annurev-fluid-121108-145612
http://dx.doi.org/doi:10.1103/PhysRevLett.94.018501
http://dx.doi.org/doi:10.1103/PhysRevLett.108.238501
http://dx.doi.org/doi:10.1103/PhysRevLett.94.018501
http://dx.doi.org/doi:10.1098/rspa.2009.0189
http://dx.doi.org/doi:10.1209/0295-5075/102/1/00000
http://dx.doi.org/doi:10.1016/j.corsci.2007.06.006
http://dx.doi.org/doi:10.1126/science.1063678
http://dx.doi.org/doi:10.1016/j.earscirev.2005.08.003
http://dx.doi.org/doi:10.1016/S0016-7037(99)00026-5


23

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150031

...................................................

16. Plummer LN, Wigley TML, Parkhurst DL. 1978 Kinetics of calcite dissolution in CO2-water
systems at 5◦C to 60◦C and 0.0 to 1.0 atm CO2. Am. J. Sci. 278, 179–216. (doi:10.2475/ajs.
278.2.179)

17. Reddy M. 1977 Crystallization of calcium-carbonate in presence of trace concentrations
of phosphorus-containing anions. J. Cryst. Growth 41, 287–295. (doi:10.1016/0022-0248(77)
90057-4)

18. House W. 1981 Kinetics of crystallization of calcite from calcium bicarbonate solutions.
J. Chem. Soc. Faraday Trans. 77, 341–359. (doi:10.1039/f19817700341)

19. Dreybrodt W. 1988 Processes in karst systems: physics, chemistry, and geology. Berlin, Germany:
Springer.

20. Dreybrodt W, Buhmann D. 1991 A mass-transfer model for dissolution and precipitation
of calcite from solutions in turbulent motion. Chem. Geol. 90, 107–122. (doi:10.1016/0009-
2541(91)90037-R)

21. Hammer O, Dysthe DK, Lelu B, Lund H, Meakin P, Jamtveit B. 2008 Calcite precipitation
instability under laminar, open-channel flow. Geochim. Cosmochim. Acta 72, 5009–5021.
(doi:10.1016/j.gca.2008.07.028)

22. Wooding R. 1991 Growth of natural dams by deposition from steady supersaturated shallow
flow. J. Geophys. Res. 96, 667–682. (doi:10.1029/90JB01944)

23. Kaufmann G. 2003 Stalagmite growth and palaeo-climate: the numerical perspective. Earth
Planet. Sci. Lett. 214, 251–266. (doi:10.1016/S0012-821X(03)00369-8)

24. Chan PY, Goldenfeld N. 2007 Steady states and linear stability analysis of precipitation pattern
formation at geothermal hot springs. Phys. Rev. E 76, 046104. (doi:10.1103/PhysRevE.76.
046104)

25. Wierschem A, Scholle M, Aksel N. 2003 Vortices in film flow over strongly undulated bottom
profiles at low Reynolds numbers. Phys. Fluids 15, 426–435. (doi:10.1063/1.1533075)

26. Chang H-C, Demekhin E. 2002 Complex wave dynamics on thin films. Amsterdam, The
Netherlands: Elsevier.

27. Kapitsa P, Kapitsa S. 1949 Wave flow of thin liquid layers. Zh. Eksp. Teor. Fiz 19, 105–120.
28. Buhmann D, Dreybrodt W. 1985 The kinetics of calcite dissolution and precipitation in

geologically relevant situations of karst areas. 1. Open system. Chem. Geol. 48, 189–211. (doi:10.
1016/0009-2541(85)90046-4)

29. Kaufmann G, Dreybrodt W. 2007 Calcite dissolution kinetics in the system CaCO3-
H2O-CO2 at high undersaturation. Geochim. Cosmochim. Acta 71, 1398–1410. (doi:10.1016/
j.gca.2006.10.024)

30. Robinson R, Stokes R. 2002 Electrolyte solutions. New York, NY: Dover Publications.
31. Reddy MM, Plummer LN, Busenberg E. 1981 Crystal-growth of calcite from calcium

bicarbonate solutions at constant PCO2 and 25◦C a test of a calcite dissolution model. Geochim.
Cosmochim. Acta 45, 1281–1289. (doi:10.1016/0016-7037(81)90222-2)

32. Pentecost A. 2005 Travertine. Berlin, Germany: Springer.
33. Gloss D, Herwig H. 2010 Wall roughness effects in laminar flows: an often ignored though

significant issue. Exp. Fluids 49, 461–470. (doi:10.1007/s00348-009-0811-6)
34. Huerre P, Monkevitz. PA. 1990 Local and global instabilities in spatially developing flows.

Annu. Rev. Fluid Mech. 22, 473–537. (doi:10.1146/annurev.fl.22.010190.002353)
35. Jones B, Renaut R, Owen R, Torfason H. 2005 Growth patterns and implications of complex

dendrites in calcite travertines from Lysuholl, Sn ae fellsnes, Iceland. Sedimentology 52, 1277–
1301. (doi:10.1111/j.1365-3091.2005.00742.x)

36. Vesipa R, Camporeale C, Ridolfi L. 2012 A shallow-water theory of river bedforms in
supercritical conditions. Phys. Fluids 24, 094104. (doi:10.1063/1.4753943)

37. Camporeale C, Ridolfi L. 2006 Convective nature of the planimetric instability in meandering
river dynamics. Phys. Rev. E 73, 026311. (doi:10.1103/PhysRevE.73.026311)

38. Vesipa R, Camporeale C, Ridolfi L, Chomaz J. 2014 On the convective-absolute nature of river
bedform instabilities. Phys. Fluids 26, 124104. (doi:10.1063/1.4902901)

39. Huerre P, Rossi M 2000 Hydrodynamic instabilities in open flows. In Hydrodynamic and
instabilities (eds C Goldreche, P Manneville), pp. 159–229. Cambridge, UK: Cambridge
University Press.

40. Bers A 1983 Space–time evolution of plasma instabilities—absolute and convective. In
Handbook of plasma physics (eds M Rosenbluth, R Sagdeev), pp. 159–229. Amsterdam, The
Netherlands: North Holland.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 A

pr
il 

20
21

 

http://dx.doi.org/doi:10.2475/ajs.278.2.179
http://dx.doi.org/doi:10.2475/ajs.278.2.179
http://dx.doi.org/doi:10.1016/0022-0248(77)90057-4
http://dx.doi.org/doi:10.1016/0022-0248(77)90057-4
http://dx.doi.org/doi:10.1039/f19817700341
http://dx.doi.org/doi:10.1016/0009-2541(91)90037-R
http://dx.doi.org/doi:10.1016/0009-2541(91)90037-R
http://dx.doi.org/doi:10.1016/j.gca.2008.07.028
http://dx.doi.org/doi:10.1029/90JB01944
http://dx.doi.org/doi:10.1016/S0012-821X(03)00369-8
http://dx.doi.org/doi:10.1103/PhysRevE.76.046104
http://dx.doi.org/doi:10.1103/PhysRevE.76.046104
http://dx.doi.org/doi:10.1063/1.1533075
http://dx.doi.org/doi:10.1016/0009-2541(85)90046-4
http://dx.doi.org/doi:10.1016/0009-2541(85)90046-4
http://dx.doi.org/doi:10.1016/j.gca.2006.10.024
http://dx.doi.org/doi:10.1016/j.gca.2006.10.024
http://dx.doi.org/doi:10.1016/0016-7037(81)90222-2
http://dx.doi.org/doi:10.1007/s00348-009-0811-6
http://dx.doi.org/doi:10.1146/annurev.fl.22.010190.002353
http://dx.doi.org/doi:10.1111/j.1365-3091.2005.00742.x
http://dx.doi.org/doi:10.1063/1.4753943
http://dx.doi.org/doi:10.1103/PhysRevE.73.026311
http://dx.doi.org/doi:10.1063/1.4902901


24

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150031

...................................................

41. Kupfer K, Bers A, Ram AK. 1987 The cusp map in the complex-frequency plane for absolute
instabilities. Phys. Fluids 30, 3075–3082. (doi:10.1063/1.866483)

42. Derfler H. 1970 Frequency cusp, a means for discriminating between convective and
nonconvectibe instability. Phys. Rev. A 1, 1467–1471. (doi:10.1103/PhysRevA.1.1467)

43. Di Cristo C, Iervolino M, Vacca A, Zanuttigh B. 2008 Minimum channel length for roll-wave
generation. J. Hydraul. Res. 46, 73–79. (doi:10.1080/00221686.2008.9521844)

44. Ueno K. 2004 Pattern formation in crystal growth under parabolic shear flow. II. Phys. Rev. E
69, 051604. (doi:10.1103/PhysRevE.69.051604)

45. Herdianita N, Browne P, Rodgers K, Campbell K. 2000 Mineralogical and textural changes
accompanying ageing of silica sinter. Miner. Depos. 35, 48–62. (doi:10.1007/s001260050005)

46. Mountain B, Benning L, Boerema J. 2003 Experimental studies on New Zealand hot
spring sinters: rates of growth and textural development. Can. J. Earth Sci. 40, 1643–1667.
(doi:10.1139/e03-068)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 A

pr
il 

20
21

 

http://dx.doi.org/doi:10.1063/1.866483
http://dx.doi.org/doi:10.1103/PhysRevA.1.1467
http://dx.doi.org/doi:10.1080/00221686.2008.9521844
http://dx.doi.org/doi:10.1103/PhysRevE.69.051604
http://dx.doi.org/doi:10.1007/s001260050005
http://dx.doi.org/doi:10.1139/e03-068

	Introduction
	Modelling aspects
	Hydrodynamic model
	Chemical model
	Chemical transport model

	Stability analysis
	Results
	Morphological instability of the water--calcite interface
	The marginal role of carbon dioxide transport
	The key mechanisms driving crenulation formation
	The key role of the wall slope
	Impact of water chemistry on crenulation dynamics

	Convective/absolute nature of the crenulation instability
	Discussion and concluding remarks
	References

