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Abstract We study the performance of vibrational
energy harvesting systems with piezoelectric and mag-
netic inductive transducers, assuming the power of
external disturbance concentrated around a specific fre-
quency. Both linear and nonlinear harvester models are
considered. We use circuit theory and equivalent cir-
cuits to show that a large improvement in both the har-
vested energy and the power efficiency is obtained, for
linear systems, through a proper reactive modification
of the load. For nonlinear systems, we use methods of
nonlinear dynamics to derive analytical formulae for
the output voltage, the harvested energy and the power
efficiency.We show that also for the nonlinear case, the
modified load significantly boosts the performance.
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1 Introduction

Bolstered by the rapid deployment of the Industry 4.0
paradigm, the proliferation of Internet of Things (IoT)
applications is expected to reach 31 billion connected
devices by 2020, and 75 billion devices by 2025 [1].
At the very foundation of IoT lies the idea that a net-
work of devices with embedded electronics, sensors,
actuators and software are connected and interact via
the Internet [2–4]. Among the many challenges posed
by IoT, the problem of how to supply power to this
network of wireless nodes is of paramount importance.
Although the power needed to operate each device is
small, typically in the microwatt to milliwatt range,
their huge number, their often remote and difficult to
access location and their ongoingminiaturizationmake
old fashioned solutions, e.g., batteries, quite rarely a
viable approach. A striking example are wearable sys-
tems, which are both portable and wireless, and thus
where batteries would be an obvious choice. Unfortu-
nately, the progress in energy storage density has, for
the moment, been unable to keep the pace and batteries
remain, with respect to other electronic components,
bulky and heavy [5,6].

A significant literature body, see, e.g., [7–9], sug-
gests that electronic systems capable to wirelessly
exchange not only information but also energy may
represent a valid alternative. Yet another solution is
to design systems capable of self-powering, by scav-
enging energy from the surrounding environment. The
collected power can be used as a direct power source,
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or at least to extend the battery lifespan for those sys-
tems where continuous operation without maintenance
is required. The set of technical solutions exploiting
this idea is referred to as energy harvesting [10–12].

Energy harvesting (EH) technologies exploit differ-
ent physical principles, depending upon the external
power source to be tapped. Irrespective of the work-
ing principle, a common issue of EH apparatuses is the
limited power density of the source. However, although
negligible at the macroscale, energy dispersed in the
environment is significant at the microscale, making
EH technologies a viable solution to powering small
autonomous devices.

Among the many possible sources, kinetic energy
plays a very prominent role, because of its compar-
atively large power density and its widespread avail-
ability. Kinetic energy exists in the form of mechanical
vibrations, regular or random displacements and driv-
ing forces. It can be found in mechanical structures,
due to impacts or periodic motions, in buildings and
bridges, due to traffic and wind, in vehicles, due to
road asperity and engine induced vibrations, as well as
in human body motion [13–16].

Kinetic energy harvesters rely on some kind of oscil-
lating structure to capture vibrations, and on a trans-
ducer that converts kinetic energy into electrical power.
Linear energy harvesters require a fine tuning of the
oscillator’s resonant frequency, to match the spectral
range of environmental vibrations where most of the
energy is concentrated. In many applications, this is
a key limiting factor, due to geometrical and dimen-
sional constraints. In fact, the rule of thumb is that
the smaller is the size of an object, the larger its res-
onant frequency will be. Thus, it is very difficult to
design energy harvesters that are both miniaturized and
that work efficiently at low frequencies, making, for
instance, the realization of wearable electronics that
scavenge energy from human body motion very chal-
lenging. In this respect, it has been suggested that non-
linear oscillators can perform better than linear ones
[17–22]. When compared to their linear counterparts,
nonlinear energy harvesters show a wider steady-state
frequency bandwidth and may exhibit multi-stability
and even chaotic dynamics, thus suggesting that they
can be more efficient especially in random and non-
stationary vibratory environments [23–26].

Oscillators periodically exchange energy between
twodifferent forms.The losses takingplace during each
oscillation cycle, both dissipated by internal resistances

and delivered to the load, can be significantly less than
the total energy involved in the oscillation. For exam-
ple, an LC oscillator characterized by a quality factor
Q loses approximately a fraction 1/Q of its energy per
oscillation cycle. The remaining power bounces back
and forth between the source and the load. It is well
known fromcircuit theory that, in order tomaximize the
power efficiency, it is necessary to minimize the power
that merely flows in the circuit with no useful contri-
bution, a procedure known as power factor correction.

In this paper, we apply circuit theory and nonlin-
ear dynamics methods to improve the efficiency of EH
systems. We study the equivalent circuits (ECs) for
two well-known energy harvesters: piezoelectric and
magnetic inductive. Using circuit theory, we show that
for linear harvesters, a simple modification of the load
inspired by previous works [27–31] allows to improve
themaximumcollected power and the power efficiency.
In the nonlinear case, using nonlinear dynamics meth-
ods we solve the state equations and find analytical
formulae for the harvested power and the power effi-
ciency.We show that, similarly to the linear case, prop-
erly modifying the load increases both the harvested
power and the power efficiency.

The paper is organized as follows. In Sect. 2,
we present the harvester models and ECs for both
piezoelectric- and magnetic induction-based devices,
showing how nonlinearities in the mechanical part
(stiffness of the rod and in the springs, respectively)
can be accounted for in the circuit equations. In Sect. 3,
we investigate the linear limit. We apply standard cir-
cuit theory to solve the governing equations, and we
show how the harvested energy and power efficiency
can bemaximized by a proper adaptation of the load. In
Sect. 4, we study the nonlinear case. We show that the
governing equations can be put in a standard form, valid
for both the piezoelectric- and themagnetic inductance-
based harvesters.We use tools of nonlinear dynamics to
solve the state equations, and we derive analytical for-
mulae for the harvested power and power efficiency.We
show that even for the nonlinear harvester, the adapted
load outperforms a purely resistive load. Finally, Sect. 5
is devoted to conclusions.

2 Harvester modeling

An EH device for mechanical vibration scavenging is
composed by an oscillator that captures kinetic energy
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Fig. 1 Schematic representation of a piezoelectric energy har-
vester

from environmental vibrations, and by a transducer,
responsible for the conversion of kinetic energy into
usable electrical power. Transducers may exploit dif-
ferent physical principles for energy conversion includ-
ing piezoelectric, magnetic induction and electrostatic
transduction methods.

2.1 Piezoelectric energy harvester

A schematic representation of a piezoelectric energy
harvester is shown in Fig. 1.

A simple piezoelectric energy harvester is composed
by a cantilever beam, covered by a layer of piezoelec-
tric material, fixed at one end to a moving support with
an inertial mass m at the opposite end to increase the
oscillation amplitude. Vibrations of the support pro-
duce oscillations of the cantilever, inducing mechani-
cal stress and strain in the piezoelectric material that
are converted into electrical currents.

A more sophisticated setup is shown in Fig. 1
[23,32]. A thin beam covered by piezoelectric layers
and with an inertial massm is clamped at both ends. An
external static load can be applied to one end, to tune
the natural frequency of the beam and to introduce a
cubic nonlinearity. Under the influence of an external
dynamic excitation, the beam undergoes oscillations
around a static position defined by the axial load. If
the mass of the cantilever and the effect of gravity are
neglected, the equation of motion for the mechanical
system reads [18,33]

m ẍ = −U ′(x) − γ ẋ − kv v(t) + Fin (1)

where x is the displacement from the vertical equilib-
rium position, U (x) is the elastic potential of the can-

+
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kc i1

C2 +

−
v2

i1
L
oa
d
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Fig. 2 EC for the piezoelectric harvester

tilever beam and the prime denotes the first derivative,
γ is the friction coefficient, kv v(t) describes the action
of the piezoelectric layer onto the mechanical system
(v(t) is the transducer voltage), and Fin is the external
perturbation.

The energy of ambient vibrations is typically spread
over a wide frequency range, suggesting to model per-
turbation as white Gaussian noise. However, such ran-
dom process can be represented as a superposition of
harmonic (sinusoidal) signals with random phases and
frequencies [34]. For the sake of simplicity, we con-
sider here a vibration energy concentrated around a
single frequency, and thus, we model vibrations as a
simple harmonic driving force.

The piezoelectric device is characterized by an inter-
nal capacitanceC2, an internal resistance, here assumed
to be negligible for the sake of simplicity, and a cou-
pling with the mechanical part represented by param-
eter kc.

The EC for the electromechanical system is shown
in Fig. 2, where the parallel branches on the right rep-
resent the piezoelectric device, feeding a generic load.

Applying Kirchhoff voltage law (KVL) to the left
loop yields

q̈1 = − 1

L1
v1(q1) − R1

L1
q̇1 − kv

L1
v2 + 1

L1
vin (2)

where q̇1 = i1(t), and v1(q1) is the voltage–charge
characteristic of the capacitor C1. It is straightfor-
ward to verify that (1) and (2) are equivalent provided
x = q1, m = L1, U ′(x) = v1(q1), γ = R1, Fin = vin
and v = v2.

Application of Kirchhoff current law (KCL) to node
a on the right yields

v̇2 = kc
C2

q̇1 − 1

C2
i2 (3)

Usually, purely resistive loads are considered [18,
33]. However, we will show that both the harvested
power and the harvester efficiency can be significantly
boosted if the load has a reactive component.
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Fig. 3 Schematic representation of an electromagnetic energy
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Fig. 4 EC for the electromagnetic harvester

2.2 Electromagnetic energy harvester

Examples of electromagnetic energy harvesters are
given in [35,36], with the schematic representation
shown in Fig. 3. A small magnet with massm is placed
inside a tube, connected to vibrating supports through
springs, and with a coil wrapped around the tube. An
alternative setup, where the magnet is suspended in the
tube by a magnetic field generated by other magnets,
is described in [19]. Vibrations of the supports produce
oscillations of the suspended magnet, inducing a cur-
rent in the surrounding coil through Faraday’s law. The
equation of motion for the magnet is

m ÿ = −U ′(y) − c ẏ − r1 i(t) + Fin (4)

where y is the displacement, U (y) is the elastic poten-
tial of the springs, c is the friction constant, r1i(t)
describes the interaction with the coil through mag-
netic induction, and Fin is the external perturbation.

Figure 4 shows the EC for the electromagnetic har-
vester, where the loop on the right describes the mag-
netic induced current in the coil, providing power to
the load.

Applying KVL to the loop on the left gives

q̈1 = − 1

L1
v1(q1) − R1

L1
q̇1 − r1

L1
i2 + 1

L1
vin (5)

which maps onto (4) provided y = q1, m = L1,
U ′(y) = v1(q1), c = R1, i = i2 and Fin = vin

Applying KVL to the loop on the right yields

i̇2 = r2
L2

q̇1 − 1

L2
v2 (6)

We notice that (2)–(3) and (5)–(6) are completely
analogous.

3 Small signal analysis

We begin to study the small signal limit, where it can
be assumed that all one-port components have linear
characteristics.

3.1 Piezoelectric energy harvester

Consider the EC in Fig. 2. At steady state in the phasor
domain,1 denoting by Y2 the load admittance, the state
equations read

[
R1 + j X1 kv

−kc G2 + j B2

] [
I1
V2

]
=

[
Vin
0

]
(7)

where X1 is the reactance of the left loop

X1 = ωL1 − 1

ωC1
(8)

ω and Vin are the angular frequency and amplitude of
the external forcing term, respectively, while G2 =
Re{Y2} is the conductance of the load, and B2 =
ωC2 + Im{Y2} is the susceptance of the right part.

The relevant transfer functions are

Yin(ω) = I1
Vin

= G2 + j B2

(R1 + j X1)(G2 + j B2) + kv kc
(9)

H(ω) = V2
Vin

= kc
(R1 + j X1)(G2 + j B2) + kv kc

(10)

Assuming that the resonator on the left works at the
resonance frequency ω0 = 1/

√
L1C1 and that ω0 = ω

1 Derivation of the state equations in the mechanical–electrical
domains for both the piezoelectric and the electromagnetic
energy harvesters is given in “Appendix”.
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to maximize energy collection, using phasors and (10),
the average power delivered to the load is

Pout =1

2
Re[V2 I ∗

2 ] = 1

2
G2 |V2|2 = 1

2
G2 |H |2 |Vin|2

=1

2

G2k2c
K 2 + R2

1B
2
2

|Vin|2 (11)

where K = R1G2 + kvkc. Conversely, using (9) the
average power injected by the voltage source is

Pin =1

2
Re[Vin I ∗

1 ] = 1

2
Re[Y ∗

in] |Vin|2

=1

2

G2K + R1B2
2

K 2 + R2
1B

2
2

|Vin|2 (12)

so that the power efficiency reads

ηpz = Pout
Pin

= G2k2c
G2K + R1B2

2

(13)

As a result, both the average dissipated power Pout
and the power efficiency ηpz are maximized when
the susceptance B2 is null.2 This condition cannot be
attained by a resistive load, as customarily assumed [20,
33,35–37]. Conversely, maximum dissipated power
and efficiency are achieved if the load is composed
by a resistor R2 = 1/G2 connected in parallel with
an inductor L2 with inductance L2 = 1/(ω2

0C2) =
L1C1/C2, as shown in Fig. 8 b. In this case, the circuit
in Fig. 2 is composed by two resonators with the same
resonant frequency connected through the controlled
sources.

A realistic transducer model must represent a pas-
sive element, so that it does not supply energy to the rest
of the circuit. According to the passive sign convention
[38], the average power dissipated by the controlled
sources is

Pkv + Pkc = 1

2
(kv − kc)Re{V2 I ∗

1 }

= 1

2
(kv − kc)Re{H(ω) Y ∗

in(ω)}|Vin|2 (14)

2 We do not consider here the case R1 → 0 Ω . For R1 → 0,
R2 would be the only resistive load in the circuit, and all active
power supplied by the sourcewould be delivered to the load, with
100% efficiency irrespective of the values of parameters L1, C1,
C2 and R2.

In particular, at the resonance frequency

Pkv + Pkc = 1

2
(kv − kc)

G2 kc
(R1 G2 + kvkc)2

|Vin|2 (15)

Equation (15) implies that the transducer is passive if
and only if kv ≥ kc. Considering that dissipation is
accounted for by R1, it can be assumed that the trans-
ducer’s energy balance is null for all frequencies, thus
implying kv = kc. For this reason, in many models
one parameter only is used to describe the transducer
[23,31,39].

Maximumaverage dissipated power is obtainedwith
the load conductance

G2 = k2v
R1

(16)

corresponding to a maximum average absorbed power

Pmax
out = |Vin|2

8R1
(17)

and to the expected 50% efficiency [38].
Efficiencyhigher than50%canobviously be attained,

either decreasing R1 (G2 being kept fixed) or vice
versa increasing R2 (R1 being kept fixed). In fact,
from (13) with B2 = 0 S we have ∂ηpz/∂R1 < 0
and ∂ηpz/∂G2 < 0. In particular, in the limit G2 �
kckv/R1, we have K ≈ kvkc and ηpz → 1. However,
higher efficiency can be attained only giving up the
maximum power transfer to the load, as from (11) we
find that ∂Pout/∂G2 	= 0 for G2 	= kckv/R1.

Figure 5 shows the Bode diagram for the magnitude
of transfer functions Yin(ω) and H(ω) for the cases of
a resistive and of a resistive–inductive load. Parameter
values have been normalized (including time) so that
ω0 = 1 rad/s.

Figure 6 shows the average dissipated (output)
power Pout and the power efficiency ηpz as a function
of the external forcing term frequency. For the resistive
load case, the average dissipated power is maximized
by a proper matching of the resonance frequency to
the forcing term. This can be done, for instance, by
an appropriate choice of the inertial mass m. However,
power efficiency is maximum at zero frequency and
decreases rapidly as the forcing frequency increases.
On the contrary, the resistive–reactive load not only has
higher average dissipated power but, more importantly,
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(above), and H(ω) (below), for a resistive (red) and a resistive–
reactive load (blue). Parameter values are L1 = 0.4 H; C1 =
2.5 F; L2 = 0.2 H; C2 = 5 F; R1 = 0.04 Ω; G2 = 1.5625 S;
kv = kc = 0.25 . (Color figure online)

both dissipated power and efficiency are maximum at
the same frequency, provided that the mechanical and
the electrical parts are tuned to the same resonance fre-
quency. These findings are in agreement with previous
works [31,39].

Finally, 7 shows the averaged power delivered to the
load and the power efficiency, as functions of the induc-
tance L2 for the resistive–reactive load in Fig. 8 b. It
can be seen that both Pout and ηpz are maximum for
L2 = L1C1/C2 = 0.2 S, so that B2 = 0 S. It can also
be seen that both the output power and the efficiency
converge to constant values for large L2, corresponding
to the values of a purely resistive load. (For L2 → +∞,
the inductor is equivalent to an open circuit.)
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Fig. 6 Output average power (above) and power efficiency
(below) for a resistive load (red) and a resistive–reactive load
(blue) versus the frequency of the external forcing. Parameter
values are the same used in Fig. 5. Output average power (above)
is calculated assuming Vin = 1V . (Color figure online)

3.2 Electromagnetic energy harvester

The analysis of the electromagnetic energy harvester
is completely analogous. Consider the EC shown in
Fig. 4. Denoting as Z2 the load impedance, at steady
state in the phasor domain the state equations read

[
R1 + j X1 r1

−r2 R2 + j X2

] [
I1
I2

]
=

[
Vin
0

]
(18)

where X1 and X2 are the reactances of the left and right
loops, respectively

X1 = ωL1 − 1

ωC1
(19)

X2 = ωL2 + Im{Z2} (20)
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and R2 = Re{Z2}.
The relevant transfer functions are

Yin(ω) = I1
Vin

= R2 + j X2

(R1 + j X1)(R2 + j X2) + r1 r2
(21)

Yout(ω) = I2
Vin

= r2
(R1 + j X1)(R2 + j X2) + r1 r2

(22)

Assuming that the resonator on the left works at the
resonance frequency and denoting by R2 = R1R2 +
r1r2, the average power delivered to the load is

Pout = 1

2

R2r22
R4 + R1X2

2

|Vin|2, (23)

whereas the average injected power is

Pin = 1

2

R2R2 + R1X2
2

R4 + R2
1X

2
2

|Vin|2 (24)

with power efficiency

ηem = R2r22
R2R2 + R1X2

2

(25)

Similarly to the piezoelectric energy harvester case, to
maximize the average dissipated power and the power
efficiency, the reactance X2 must vanish. This can
be obtained connecting a capacitor with capacitance
C2 = 1/(ω2

0L2) = C1L1/L2, in series with the resis-
tor, as shown in Fig. 8 c. In this way, the EC in Fig. 4
is composed of two resonators, connected through the
controlled sources, characterized by the same reso-
nance frequency ω0.

For the magnetic induction energy harvester, the
average power dissipated by the transducer is

Pr1 + Pr2 = 1

2

(
r1Re{I2 I ∗

1 } − r2Re{I1 I ∗
2 })

= 1

2

(
r1 Re{Yout(ω) Y ∗

in(ω)}
− r2 Re{Yin(ω) Y ∗

out(ω)}) |Vin|2 (26)

At the resonance frequency

Pr1 + Pr2 = 1

2
(r1 − r2)

R2 r2
(R1 R2 + r1 r2)

|Vin|2 (27)

thus the transducer is passive for all frequencies if and
only if r1 ≥ r2.

Assuming r1 = r2, themaximum average dissipated
power is obtained if the load has resistance

R2 = r21
R1

(28)

so that

Pmax
out = |Vin|2

8R1
(29)
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(a) (b) (c)

Fig. 8 Loads for the cases under consideration. a Resistive load
considered in previous works. bMatched RL load for the piezo-
electric energy harvester. cMatched RC load for the electromag-
netic energy harvester

and the efficiency reaches the theoretical maximum of
50%.

4 Nonlinear energy harvester analysis

The main drawback of linear energy harvesters is
the limited working bandwidth. Linear resonators are
designed towork efficiently at a specific, resonance fre-
quency ω0. The amplitude response decreases quickly
away from ω0, dropping dramatically outside the pass-
band. Several works [17–22] suggest that nonlinear
resonator-based harvesters may overcome this limi-
tation. Exploiting the hysteretic amplitude response
of a nonlinear resonator, it is in principle possible to
increase the collected power, trading off the efficiency
at a specific frequency against a larger bandwidth.

The idea is illustrated in Fig. 9, where the typi-
cal frequency response (amplitude versus frequency
of the forcing term) of linear (black line) and nonlin-
ear (blue and red lines) oscillators is compared. For
similar values of the parameters, a linear oscillator
in general exhibits an higher amplitude response than
the nonlinear counterpart, but the amplitude decreases
quickly out of a frequency interval, the passband width
BL. Conversely, a nonlinear oscillator is in general
characterized by a lower maximum amplitude, and
by a wider passband width BN where the amplitude
response remains significant.

4.1 Nonlinear piezoelectric energy harvester

Consider the piezoelectric energy harvester, modeled
by the EC shown in Fig. 2, with the resistive–inductive
load in Fig. 8 b. Nonlinearity in the stiffness of the

A
m
pl
it
u
d
e

F requency

BL

BN

Fig. 9 Qualitative representation of the amplitude vs frequency
response for a linear (black) and a nonlinear (blue-red) peri-
odically driven resonator. Blue lines represent stable periodic
responses, whereas the red line is an unstable response. BL and
BN denote the passband width for the linear and the nonlinear
resonator, respectively . (Color figure online)

beam is taken into account considering a capacitor with
nonlinear voltage–charge characteristic. We assume a
Duffing-type cubic stiffness term, describing the hard-
ening spring effect observed in many mechanical sys-
tems [40]

v1(q1) = 1

C1
q1 + 1

C̃1
q31 (30)

Similarly, the inductor in the load is assumed to have
a nonlinear current–flux characteristic, matching the
nonlinearity of the capacitor

iL2 = 1

L2
φ2 + 1

L̃2
φ3
2 (31)

Applying KVL to the left loop, KCL to node a, and
rearranging the terms, we obtain the dynamic equations

q̈1 + 1

L1C1
q1 = 1

L1
vin − R1

L1
q̇1 − 1

L1C̃1
q31 − kv

L1
φ̇2

(32)

φ̈2 + 1

L2C2
φ2 = −G2

C2
φ̇2 − 1

L̃2C2
φ3
2 + kc

C2
q̇1 (33)
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Making the substitution x1 = q1, x2 = φ2, assum-
ing vin(t)/L1 = εA cos(ω t) and introducing the new
parameters3:

1√
L1C1

= ω1
1√
L2C2

= ω2
R1

L1
= εγ1

G2

C2
= εγ2

1

L1C̃1
= εδ1

1

L̃2C2
= εδ2

kv

L1
= εσ1

kc
C2

= εσ2

equations (32) and (33) become

ẍ1 + ω2
1 x1 = ε

(
A cos(ω t) − γ1 ẋ1 − δ1x

3
1 − σ1 ẋ2

)
(34)

ẍ2 + ω2
2 x2 = ε

(
−γ2 ẋ2 − δ2x

3
2 + σ2 ẋ1

)
(35)

4.2 Nonlinear electromagnetic energy harvester

Consider the electromagnetic energy harvester and its
EC shown in Fig. 4, with the resistive–capacitive load
in Fig. 8 c. In full analogy with the previous case, non-
linearity in the spring stiffness is accounted for by the
nonlinear voltage–charge characteristic of the capacitor
(30). We also assume that capacitor C2 in the matched
load has a similar characteristic

v2(q2) = 1

C2
q2 + 1

C̃2
q32 (36)

Applying KVL to both loops, and rearranging the
terms, we obtain the equations

q̈1 + 1

L1C1
q1 = 1

L1
vin − R1

L1
q̇1 − 1

L1C̃1
q31 − r1

L1
q̇2

(37)

q̈2 + 1

L2C2
q2 = − R2

L2
q̇2 − 1

L2C̃2
q32 + r2

L2
q̇1 (38)

Assuming again vin(t)/L1 = εA cos(ω t), making the
substitution xi = qi and introducing the new parame-
ters

1√
LiCi

= ωi
Ri

Li
= εγi

1

Li C̃i
= εδi

ri
Li

= εσi

3 It is worth mentioning that introducing the parameter ε is not
strictly required. We use it to cast the following equations in the
standard form adopted when averaging techniques are applied.

for i = 1, 2, we obtain, again, equations (34) and
(35), although with a different meaning of variables
and parameters.

Therefore, we can use the same dynamical system
to study both the piezoelectric and the electromagnetic
energy harvester.

4.3 Analysis

We shall find an approximate solution to equations
(34)-(35) exploiting a perturbativemethod [40] adapted
to the case under study. Let’s rewrite the equations in
the form

ẍi + ω2
i xi = ε

(
Ai cos(ωt) − γi ẋi − δi x

3
i − σi ẋ j

)
(39)

with i = 1, 2, j 	= i and

Ai =
{
A for i = 1
0 for i = 2

σi =
{

σ1 for i = 1
−σ2 for i = 2

(40)

We introduce the invertible coordinate transformation4

(
ui
vi

)
=

⎛
⎜⎝

cos(ωt) − 1

ω
sin(ωt)

− sin(ωt) − 1

ω
cos(ωt)

⎞
⎟⎠

(
xi
ẋi

)
(41)

In the new rotating reference frame, the unforced sys-
tem is stationary. Taking time derivatives

u̇i = − 1

ω

(
ẍi + ω2xi

)
sin(ωt) (42)

v̇i = − 1

ω

(
ẍi + ω2xi

)
cos(ωt) (43)

introducing Ωi = (ω2
i − ω2)/ε, and using (39) we

obtain

u̇i = − ε

ω

(
Ai cos(ωt) − γi ẋi − δi x

3
i − Ωi xi − σi ẋ j

)

× sin(ωt) (44)

v̇i = − ε

ω

(
Ai cos(ωt) − γi ẋi − δi x

3
i − Ωi xi + σi ẋ j

)

× cos(ωt) (45)

4 Variables vi used here should not be confused with voltages in
the ECs.
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Inverting (41) and substituting into (44)–(45), we
obtain a system of non-autonomous ordinary differen-
tial equations in the unknowns ui and vi .

For small value of ε, Eqs. (44) and (45) can be aver-
aged introducing a limited error. Integrating each func-
tionwith respect to t from0 toT = 2π/ωwhile holding
ui and vi constant, we obtain the autonomous system5

u̇i = − ε

2ω

(
γi ω ui + 3

4
δi (u

2
i + v2i )vi + Ωivi + σi ω u j

)

(46)

v̇i = − ε

2ω

(
Ai + γi ω vi − 3

4
δi (u

2
i + v2i )ui − Ωi ui

+σi ω v j
)

(47)

Introducing polar coordinates

ui = ai cosϕi vi = ai sin ϕi , (48)

a straightforward calculation gives

ȧi = − ε

2ω

(
Ai sin ϕi + γi ω ai + σi ω a j cos(ϕi − ϕ j )

)
(49)

ϕ̇i = − ε

2ω

(
Ωi − Ai

ai
cosϕi + 3

4
δi a

2
i

+ σiω
a j

ai
sin(ϕi − ϕ j )

)
(50)

The equilibrium points of equations (49) and (50)
correspond to oscillations of constant amplitude in the
original equations. They are found solving the system
(ψ = ϕ2 − ϕ1)

A sin ϕ1 + γ1ω a1 + σ1ω a2 cosψ = 0 (51)

γ2ω a2 − σ2ω a1 cosψ = 0 (52)

− A cosϕ1 + 3

4
δ1 a

3
1 + Ω1a1 − σ1ω a2 sinψ = 0

(53)

3

4
δ2 a

3
2 + Ω2a2 − σ2ω a1 sinψ = 0 (54)

Equations (52) and (54) imply

cosψ = γ2

σ2

a2
a1

(55)

5 With some abuse of notation, we use the same symbols ui and
vi to denote also the averaged quantities.

sinψ =
3
4δ2a

3
2 + Ω2 a2
σ2ωa1

(56)

Squaring and summing, we obtain the first equation for
the steady-state amplitudes

γ 2
2 ω2a22 +

(
3

4
δ2a

3
2 + Ω2a2

)2

− σ 2
2 ω2a21 = 0 (57)

Substituting (55) and (56) into (51) and (53), respec-
tively, rearranging the terms, squaring and summing,
we find the second amplitude equation

− A2a21 +
(

γ1ωa
2
1 + γ2ω

σ1

σ2
a22

)2

+

+
(
3

4
δ1a

4
1 + Ω1a

2
1 − σ1

σ2
a2

(
3

4
δ2a

3
2 + Ω2a2

))2

= 0

(58)

The nonlinear algebraic system (57)–(58) can be solved
numerically, finding the steady-state amplitudes a1 and
a2. These, in turn, allow to compute the phase shifts ϕ1

andϕ2 through (55)–(56), and finally the state variables

i1(t) = ẋ1(t) = −ωa1 sin(ωt + ϕ1) (59)

v2(t)
i2(t)

}
= ẋ2(t) = −ωa2 sin(ωt + ϕ2)

{
for pz
for em

(60)

The average injected power for both the piezoelec-
tric and the electromagnetic energy harvester is

Pin = 1

T

∫ T

0
vin(t) q̇1(t)dt

= − εA L1ωa1
T

∫ T

0
sin(ωt + ϕ1) cos(ωt)dt

= − εAL1ω a1
2

sin ϕ1 = εL1ω
2

2σ2

(
γ1σ2a

2
1 + γ2σ1a

2
2

)
(61)

where the inverse of (41) has been used, together with
(51) and (55).

The average dissipated power for the piezoelectric
harvester is

Ppz
out = 1

T

∫ T

0

v2(t)2

R2
dt

= ω2a22
T R2

∫ T

0
sin2(ωt + ϕ2)dt = ω2a22

2R2
(62)
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Fig. 10 Input current amplitude for the nonlinear coupled res-
onators. Lines derive from the theoretical analysis, while sym-
bols result from numerical simulations: Blue circles refer to the
resistive–inductive load. Parameters are δ1 = 0.1, δ2 = 0.5,
Vin = 1 V, and other parameters are the same as in Fig. 5 . (Color
figure online)

with power efficiency

ηpz = σ2 G2 a22
εL1

(
γ1σ2a21 + γ2σ1a22

) (63)

For the electromagnetic energy harvester, the aver-
age dissipated power is

Pem
out = 1

T

∫ T

0
R2 q̇2(t)

2dt = ω2R2a22
2

(64)

with power efficiency

ηem = σ2 R2 a22
εL1

(
γ1σ2a21 + γ2σ1a22

) (65)

To confirm our theoretical prediction, we have per-
formed extensive numerical simulations. The following
results refer to the case of the piezoelectric EH model.
Based on the analogy shown at the beginning of this
section, the results can be easily adapted to the case of
electromagnetic energy harvester.

Figures 10 and 11 show the amplitude response for
the current i1(t) and the voltage v2(t), respectively, as
a function of the voltage source angular frequency ω,
for the piezoelectric nonlinear energy harvester.

As expected, both curves show the hysteretic behav-
ior due to the nonlinear stiffness. Stability and bifurca-
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1.4

(rad/s)

A
m

pl
itu

de
 (V

)

0.2

0.4

0.6

0.8

Fig. 11 Output voltage amplitude comparison for a nonlin-
ear resonator-based energy harvester: Resistive load versus
resistive–inductive load. Black diamonds refer to the resistive
load. Parameters are the same as in Fig. 10

tion analysis for the averaged system are determined
computing the eigenvalues of the Jacobian matrix of
system (49)–(50). For small values of the forcing fre-
quency, there is only one solution, which is a stable
equilibrium point of the averaged system and corre-
sponds to stable periodic oscillations of i1(t) and v2(t)
(increasing full black line), with the same period of
the forcing term. At the critical value ωSN1 � 1.31,
a saddle node bifurcation, identified by a null eigen-
value, occurs. Two new, initially coincident, equilib-
rium points emerge that separate and become distinct
whenω is further increased. The smaller amplitude cor-
responds to a stable equilibrium point (decreasing full
line), while the larger amplitude is a saddle (dashed
line). At the critical value ωSN2 � 1.57 rad/s, the
unstable saddle collides with the larger, stable equi-
librium point, and they vanish through a second sad-
dle node bifurcation. The small, stable equilibrium
point ultimately survives as the only solution. The-
oretical predictions of our perturbation approach are
compared with the results obtained from the numerical
integration of equations (32)-(33) (symbols). Numer-
ical solutions were obtained applying a continuation
method, using the solution for a certain value of the
forcing frequency as the initial condition for the follow-
ing value of this parameter. Obviously, the saddle-type
limit cycle cannot be detected neither through forward
nor backward time integration.Moreover, as the param-
eter ω approaches the critical value ωSN2 , it becomes
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increasingly difficult to follow the large stable solu-
tion, because its basin of attraction becomes smaller
(this solution and the unstable saddle-type limit cycle
get closer to each other), and trajectories are attracted
toward the small stable limit cycle.

For comparison purposes, Fig. 11 also shows the
output voltage for the resistive load case. This value
has been calculated solving numerically the ODE sys-
tem (2)-(3) for the resistive load. The output voltage
curve shows a clear resemblance to the linear case,
though with a high, long right tale. This behavior is due
to the resonance between the output voltage v2(t) and
the nonlinear hysteretic behavior of the current i1(t).
The maximum amplitude is also shifted toward higher
frequency values. More importantly, the matched RL
load case clearly outperforms the resistive load case in
a wide frequency interval.

Figure 12 shows the output average power as a func-
tion of the forcing frequency, for both the resistive–
reactive and the purely resistive load. For the RL load,
we have calculated the output power for both the stable
(full line) and the unstable (dashed line) limit cycles,
althoughonly stable solutions are accessible for the sys-
tem. The theoretical result given by (62) is compared
with the numerical values obtained evaluating

Pout = 1

T

∫ T

0
G2 φ̇2

2(t) dt (66)

where T = 2π/ω is the period of the oscillation, and
φ̇2(t) is calculated through numerical integration of the
state equations (32)–(33) (symbols). It is worth notic-
ing that the nonlinearity introduces a double peak in
the average output power.

In the nonlinear case, the optimal value of the load
resistance R2 maximizing the average dissipated power
cannot be found analytically. In fact, R2 influences the
value of a2, which is found numerically and that, in
turns, determines the output power. The dependence
of the average output power and power efficiency on
the output conductance is shown in Figs. 13 and 14,
respectively, for a fixed value of the input frequency ω.
Both the cases of resistive–reactive and purely resis-
tive load are considered. Again, the RL load solution
determines a larger average output power together with
a better efficiency over the whole range of values con-
sidered for G2. Notice also that maximum power and
power efficiency are obtained at a lower conductance
with respect to the linear case.
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Fig. 12 Output average power as a function of forcing frequency,
for both the resistive–reactive RL load, and the resistive R load.
Parameters are the same as in Fig. 10
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Fig. 13 Output average power as a function of the load conduc-
tance G2 for ω = 1. Solid line (theoretical result from (62)) and
circles (numerical simulations) refer to the resistive–inductive
load, and red diamonds refer to the resistive load (numerical
simulations only). Parameters are the same as in Fig. 10

In Fig. 15, we show the power efficiency as a func-
tion of the source angular frequencyω, here represented
for the optimal value ofG2 valid for the linear harvester,
i.e., G2 = kvkc/R1 = 1.56 S. Even for the nonlinear
case, the efficiency reaches an upper limit of about 50%
at the resonance frequency, showing a very good agree-
ment between the theoretical prediction from (63) and
the results of the numerical simulations. It is worth
noticing that although the average output power shows
a double peak in Fig. 12, the efficiency is single peaked,
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Fig. 14 Power efficiency comparison as a function of the load
conductance G2 for ω = 1. Solid line (theoretical result from
(62)) and circles (numerical simulations) refer to the resistive–
inductive load, and black diamonds refer to the resistive load
(numerical simulations only). Parameters are the same as in
Fig. 10
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Fig. 15 Power efficiency comparison as a function of the forcing
frequency. Solid line (theoretical result from (63)) and circles
(numerical simulations) refer to the resistive–inductive load, and
red diamonds refer to the resistive load (numerical simulations
only). Parameters are the same as in Fig. 10

because the average input power is strictly increasing
up to the bifurcation frequency ωSN2 .

For comparison, we also show the result of the
numerical simulations for the purely resistive load,
which is almost identical to the linear case, being the
system only weakly nonlinear.

Finally, Fig. 16 shows the average power delivered
to the load (above), and the power efficiency (below),
as functions of the load inductance L2, for the nonlin-
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Fig. 16 Average power delivered to the load (above) and power
efficiency (below) as functions of the load inductance L2, for
ω = 1. Solid lines are theoretical result from (62) and (63),
respectively. Blue circles refer to numerical simulations. Param-
eters are the same as in Fig. 10

ear piezoelectric harvester. Theoretical predictions are
obtained solving (57) and (58), and then, Pout and η

are computed from (62) and (63), respectively. Results
show a good agreement with the numerical experi-
ments. Because the system is weakly nonlinear, the
curves show a clear resemblance with the correspond-
ing curves for the linear harvester. It can be seen that
both Pout and η reach a maximum for L2 close to
the optimal value for linear systems L2 = L1C1/C2.
Moreover, both the average power and efficiency con-
verge to constant values for large values of L2. As
explained for the linear system, this is due to the fact
that the inductor becomes equivalent to an open circuit
for L2 → +∞.

123



380 M. Bonnin et al.

5 Conclusions

We have analyzed vibrational energy harvesting sys-
tems with piezoelectric and magnetic inductive trans-
ducers, assuming the power of external disturbance
concentrated around a specific frequency.

Typically, energy harvesters are modeled as oscil-
lators, either linear or nonlinear, coupled to first-order
systems that describe the transducer’s dynamics. For
linear harvester, we used circuit theory to show that the
harvested energy can be maximized by a proper match-
ing of the load, usually assumed to be a simple resistor.
Analogously to the power factor correction procedure,
a reactive passive component can be added that max-
imizes the average power delivered to the load. As a
result, the energy harvester is modeled by two coupled
oscillators that must be designed to have the same res-
onance frequency. This solution allows for maximum
power collection by the non-degenerate resistive load
in the presence of finite losses of the harvester. More-
over, the maximum 50% efficiency under maximum
power transfer condition can be achieved at the same
resonant frequency.

For the nonlinear system, we used nonlinear dynam-
ics methods to derive analytical formulae for the out-
put, the harvested energy and the power efficiency. In
full analogy with the linear case, modifying the load
increases the harvested energy and power efficiency.
As opposed to the linear case, however, the efficiency
can reach values above 50%, again assuming realistic
values for both the load and the harvester losses.
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Appendix: State equations for the electrical domain

In this “Appendix,” we derive the state equations
for both the mechanical and electrical domains of
the piezoelectric and the electromagnetic energy har-
vesters.

For the piezoelectric energy harvester, the state
equations for the electromechanical system are (1), (3)
that we rewrite in the form

ẍ = − U ′(x)
m

− γ

m
ẋ − kv

m
v2 + 1

m
Fin (67a)

v̇2 = kc
C2

ẋ − 1

C2
i2 (67b)

For the resistive load in Fig. 8 a, i2 = G2v2, thus
obtaining the electromechanical model equations in
[18,33]. For the RL load in Fig. 8 b, applying KCL
yields i2 = G2v + iL2 . Using the constitutive relation
for the inductor φ2 = L2iL2 , and the flux–voltage rela-
tionship φ̇2 = v, equations (67) become

ẍ = − U ′(x)
m

− γ

m
ẋ − kv

m
φ̇2 + 1

m
Fin (68a)

φ̈2 = kc
C2

ẋ − 1

L2C2
φ2 − G2

C2
φ̇2 (68b)

For the electromagnetic energy harvester, the elec-
tromechanical equations are (4) and (6) that we rewrite
in the form

ÿ = − U ′(y)
m

− c

m
ẏ − r1

m
i2 + Fin

m
(69a)

i̇2 = r2
L2

ẏ − v2

L2
(69b)

For the resistive load in Fig. 8 a, v2 = R2i2.
For the RC load in Fig. 8 c, applying KVL yields

v2 = R2i2 + vC2 . Using the constitutive relation for
the capacitor q2 = C2vC2 , and the current–charge rela-
tionship q̇2 = i2, equation (69) becomes

ÿ = − U ′(y)
m

− c

m
ẏ − r1

m
q̇2 + Fin

m
(70a)

q̈2 = r2
L2

ẏ − 1

L2C2
q2 − R2

L2
q̇2 (70b)
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