
Performance and Power Optimization of

Multi-kernel Applications on Multi-FPGA

Platforms

Junnan Shan

March 2021

Applications using Convolutional Neural Networks (CNNs) and other Deep
Neural Networks (DNNs) for Machine Vision and Natural Language Processing
tasks achieved breakthrough results in many challenging domains. To continu-
ously improve these results and approach human abilities in a broad variety of
domains, the complexity of the network (i.e., its depth) increases. Most of these
applications are run on data-center-class servers, for which processing speed
and energy consumption are primary concerns. For those reasons, CPU- and
GPU-based platforms are poorly suited and increase operating costs. ASICs
can provide the best energy efficiency, but the continuous evolution of CNNs
requires flexible ASICs, such as the Google TPU, which are, however, less effi-
cient than theory would predict, for example because they support only a few
numerical data types.

FPGAs are a promising option for CNN and DNN acceleration in data-
centers, offering energy efficiency coupled with full re-programmability and con-
figurability for both data path and memory architecture. This allows one to
tailor the architecture to the application to a much deeper extent than is possi-
ble with either CPU/GPU platforms or relatively rigid domain-specific ASICs,
like the Google TPU. For these reasons, cloud providers like Amazon Web Ser-
vice (AWS), Alibaba, and Microsoft offer Virtual Machines coupled with multi-
FPGA platforms to accelerate data-center applications with GPU-like perfor-
mance, but consuming much less energy.

Since network depth and complexity increase, mapping a network on a sin-
gle FPGA in most of the cases fails to meet performance requirements and
would benefit from a multi-FPGA implementation. The problem that we are
addressing is as follows. We are given an application modeled as an intercon-
nection of tasks, each with various implementation options with varying perfor-
mance, memory bandwidth, energy and resource requirements. We would like
to statically or dynamically allocate resources to these tasks to optimize various
measures of performance, such as throughput, energy per operation, and so on.
Platforms like the CPU and the GPU use various kinds of schedulers (Operating
System scheduler on the SW side, thread and instruction schedulers on the HW

1



side) for this purpose at compile time or at runtime. The goal of this thesis
is to design a compilation-like resource allocator for multi-FPGA acceleration.
We devised and implemented an efficient and accurate optimization framework
for the allocation of task-level pipelined applications (like Convolutional Neural
Networks and Deep Neural Networks) to multiple FPGAs, with the twofold goal
of maximizing the application throughput and minimizing the power consump-
tion, under resource and off-chip memory bandwidth constraints. The target
Multi-FPGA platform consists of AWS F1 instances with up to eight Virtex
Ultrascale+ FPGAs.

First, we implemented in synthesizable C++ and optimized using HLS di-
rectives the computing kernel for each and every layer of large CNNs, such as
AlexNet, VGG, YOLO, ResNet, and large DNNs, such as Transformer variants.
Then, using SDAccel, we implemented individual kernels in hardware using one
Compute Unit (CU) for each layer, and orchestrated their execution on the FP-
GAs by a host code written in OpenCL and executed by the CPU of the AWS
board. This allowed us to profile each kernel and get resource and memory
bandwidth usage, working frequency, and execution time, which later become
the input data of the optimization problem. We provide a model that covers the
whole application execution, and includes: 1) input data transfer time from the
host CPU to FPGA DDR memory (dynamic RAM), 2) data transfer time from
FPGA DDR memory to the FPGA on-chip memory (static RAM), 3) the actual
kernel computation, 4) data transfer time from FPGA on-chip memory to FPGA
DDR memory, and 5) data transfer from the FPGA DDR memory to the host
CPU. This model can be used to mathematically formulate a complex Mixed-
Integer Non-Linear Programming (MINLP) optimization problem, which can
be solved using a commercial MINLP solver. However, using a MINLP solver
is very slow, since the problem is NP-complete. To accelerate the optimization
process, we provide a fast heuristic method using a Geometric Programming
(GP) solver and an allocator. Not only it can return the solution in a matter of
seconds, instead of running several hours or days when using the MINLP solver,
but it also offers better results than those returned by the solver when its run
time is limited for practical reasons.

Second, we developed another optimization framework to find the solution
with minimum power consumption for a given throughput. This model is aimed
at data center applications, where energy and cooling costs are significant. To
optimize the power consumption we provide a power model on top of the perfor-
mance model. This model includes the power consumption in different phases:
1) data transfer between host CPU and FPGA memory, 2) data transfer be-
tween FPGA and DDR, 3) FPGA computation. Given a throughput constraint,
the model will return the best number of parallel number of powered-on FPGAs
and their clock frequency and generates the most power-efficient bitstreams to
program the FPGAs. This model can also lead to the formulation of another
Mixed-Integer Non-Linear optimization problem, which can also be solved using
a MINLP solver. We compared the solution obtained by the solver with one
that simply clock gates the fastest implementation and one that uses frequency
scaling: our method always uses less power. However, a MINLP solver can be

2



very slow especially for design space explorations which need to run the solver
several times. Therefore, we provide two different heuristic methods. One of
them still uses the MINLP solver but in a reduced exploration space; the other
one uses a greedy allocation. Both heuristic methods can be a few orders of
magnitude faster than the MINLP solver.

Also for power optimization, we use AlexNet, VGG and Transformer net-
works to verify our model. The experimental results show that our approach
can find the best solution compared to both 1) applying frequency scaling to op-
timize power under a throughput constraint starting from a fast configuration,
and 2) replicating a slow configuration on multiple FPGAs.

3


