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Abstract 

In the context of the worldwide efforts to reduce energy consumptions and carbon dioxide 

(CO2) emissions related to the building sector, reaching the high performance of a zero energy 

building (ZEB) has been demonstrated to be feasible, especially when the design phase is 

supported by integrated simulation-based optimization methods. It is necessary to pay special 

attention to the transition from building design to building operation and it is hard to find 

examples of real ZEB buildings where the that are optimized considering design and operation 

at the same time. In this context, the Solar Decathlon competition is a unique experimental field 

to advance in research about design, simulation, and optimization of ZEBs. 

This study aims at presenting the energy-related scientific aspects behind and beyond the 

winner building prototype of the Solar Decathlon China 2018 competition. An optimization-

based calibration supported by sensitivity analysis is carried out to calibrate the simulation model 

of the ZEB prototype, based on data collected throughout the design and construction phase. 

Then, an original simulation-based optimization method is tailored to the purpose of maximizing 

the contest score, considering parameters related to both design and operation of the building.  

A high level of model calibration was reached, and the contest score was improved by 15 

points, helping the ZEB prototype to win the competition. Results demonstrated that the applied 

methodological framework was able to drive towards optimized and integrated design and 

operation strategies. 

Keywords: Solar Decathlon; Integrated design; simulation; calibration; optimization; 

TRNSYS; GenOpt, Matlab; sensitivity analysis; simulation-based optimization 
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Nomenclature 

 

Acronyms 

 

BEM  building energy model 

CSM   case study model 

ERV  energy recovery ventilator 

GPS  generalized pattern search 

OSB  oriented strand board 

PSO  particle swarm optimization 

SA  sensitivity analysis 

SBOM  simulation-based optimization method 

TMY  typical metereological year 

VIP  vacuum insulation panel 

VRV  Variable refrigerant volume 

ZEB  Zero Energy Building 

 

 

Variables and quantities used in equations 

 

CO2  carbon dioxide 

Cv(RMSE) coefficient of variation of the root mean square error 

EB  energy balance  

EE  elementary effect 

NMBE   normalized mean bias error 

PCO2,i   contest points related to CO2 in the timestep i 

PEB   contest points related to EB 

PPM2.5,i  contest points related to PM2.5 in the timestep i 

PRH,i   contest points related to RH in the timestep i 

PT,i  contest points related to T in the timestep i 

PM2.5   particulate matter that have diameter equal or less than 2.5 micrometers 

RH  relative humidity  

T  indoor air temperature 

 

μi  mean value 

μi
∗  absolute mean value 

𝜎𝑖  standard deviation 

  total number of evaluated time-steps in the contest period 
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1. Introduction 

In the context of the worldwide efforts to reduce energy consumptions and carbon dioxide 

(CO2) emissions related to the building sector, the concept of zero energy building (ZEB) has 

emerged as the main driver towards these objectives [1]. Whatever are the metrics used to assess 

its performance, it has been proved that reaching the ZEB target can be technically feasible [2], 

especially when the design phase is supported by integrated simulation-based optimization 

methods that are able to predict in details the building energy performance and to optimize it 

within a design space composed of a large amount of design alternatives [3].  

A traditional parametric design approach may lead to spend and waste a lot of time on useless 

design variables. If all the important design variables are not considered and the mutual 

relationship between them is not taken into account, it could lead even non-optimal solution [4]. 

It is recognized that simulation-based methods are powerful tools for effectively solving this kind 

of complex problems while saving time [5]. In fact, they help reduce the high computational cost 

needed to check a great number of design alternatives while ensuring a considerable accuracy in 

finding the optimal design solution [6]. 

In building science, such simulation-based optimization methods have been applied to many 

different problems, like energy consumption reduction [7], increase of the efficiency of systems 

[8], indoor comfort evaluation and optimization [9], and mostly on the cost optimization with a 

life cycle perspective [10][11]. If most of these studies are performed to optimize the building 

design, others focus on the building operation to optimize its control strategies [12][13][14]. It is 

hard to find examples of real ZEBs that are optimized using a simulation-based optimization 

method considering parameters related to design and operation at the same time.  

However, special attention has to be paid to the transition from building design to building 

operation, considering that the availability of reliable energy models has been proved to be 

effective in supporting not only the design phase, but also the building operation phase, thus 

contributing to reduce the “performance gap” [15] often occurring between the predicted 

performance at the design stage and the performance of the building after construction. To do so, 

it is necessary to calibrate the energy model based on monitored data, in order to perform the 

required “tuning” of the model to fit its behavior to the actual building behavior [16]. It is known 

that there are several methods for building model calibration, from manual calibration to 

graphical-based calibration methods, from calibration based on special tests and analysis 

procedures to automated techniques for calibration based on analytical and mathematical 

approaches. Since the first introduction of this classification [17], many studies were published 
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about applications and advancements related to either methods. In the last few years, the 

increasing effectiveness of simulation-based optimization methods (SBOM) tailored for the ZEB 

design process [18] has led to increasing interest in studying the application of the same methods 

to building model calibration. When compared to manual methods for calibration, such 

optimization-based calibration method presents some advantages. In fact, they do not rely on the 

experience of the user to carry on the optimization but on a solid mathematical structure. 

Moreover, the computational time is highly reduced at the same level of exploration of the viable 

solutions [19]. In order that these advantages are fully exploited, the users have to be really 

precise in selecting input parameters and optimization method. The choice could be guided 

through a Sensitivity Analysis (SA). The SA will actively explore the hyperspace of possible 

solutions and rank the parameters accordingly to their influence on the final outcome [20]. 

In view of the above, the use of SBOM within the ZEB design process appears to be promising, 

but their ability to effectively support the ZEB reliable modelling and lead to an optimized 

transition from design to operation still have to be tested. The fact that it is hard to find studies 

dealing with this problem may be due to the difficulties in finding case studies and project 

boundaries that are suitable for this purpose. It is even harder to find opportunities to test and 

validate the most advanced simulation and optimization methods in practice, experimenting their 

ability to follow and support the entire design-construction-management process of a real ZEB.  

In this context, the Solar Decathlon competition is a unique opportunity to advance in research 

in the field of ZEB design. Solar Decathlon is a worldwide engineering and architecture challenge 

in which the different teams, composed of students and advised by researchers from technical 

universities, have to design, build and operate a ZEB [21].  

In fact, the integrated process from design to construction that is carried out for the competition 

purposes, the advanced required monitoring systems, the large amount of collected data and the 

highly interdisciplinary team working together from design to construction constitutes a fertile 

base for research that is hard to find in other contexts.  

Since the first edition, which took place in Washington D.C. in 2002, the main purpose of 

Solar Decathlon is to put together teams of students with architectural and engineering 

backgrounds to give life to a real residential ZEB prototype. The contest is based on ten sub-

contests, where the teams need to achieve the highest possible score to win the competition. The 

total score is 1000 points, divided into 100 points for each sub-contest. Five of them investigates 

the project, the documentation, and the systems (Architecture, Market Appeal, Engineering, 

Communication, Innovation - subjected to a jury review), while the other five focus on measured 

parameters, related to the comfort of occupants, the efficiency of the systems, and the energy 
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production (Comfort Zone, Appliances, Home Life, Commuting, Energy). So, the ZEB is judged 

on a complex system of parameters characterizing its performance and its livability. There are a 

lot of design-related and operation-related involved parameters, each one may impact at the same 

time energy consumption and production, comfort, operation time. 

In particular, the measured ones need to be maintained in a certain range in order to lower as 

much as possible the energy consumption while optimizing the stability and the efficiency of the 

systems and ensuring the occupants’ comfort is maximized. Therefore, the design of the ZEB 

prototype can be seen as a complex optimization problem, where the Solar Decathlon final 

contest score may be seen as the objective function to be maximized.  

In August 2018, thanks also to the application of simulation-based optimization methods 

throughout the entire design and construction phases, a team composed of students from 

Politecnico di Torino and the South China University of Technology (SCUT-POLITO team) won 

the Solar Decathlon China competition. We believe it is worth presenting and analyzing in detail 

the scientific approach behind and beyond such a successful experience.  

1.1. Motivation and approach 

Based on the Solar Decathlon context, this work provides insights on the design, modelling 

and optimization of a real residential ZEB prototype. It constitutes an innovative experimental 

study on the use of building simulation and optimization to support a real building design-

construction-operation process, aiming at highlighting strengths and weaknesses of the use of 

such advanced research tools within a real set of time and physical constraints. 

Through the setup of an integrated simulation-based optimization framework, the approach is 

composed of two main steps. 

The first step is the creation of a highly reliable simulation model that is capable to predict the 

behavior of the envelope and consequently simulate the performance of systems in details. This 

offers a unique opportunity to investigate and test innovative research approaches for real model 

calibration. As mentioned, the integrated process from design to construction and operation and 

the easiness of collecting a large amount of data constitutes a fertile base for research that are 

hard to find in other contexts. The first objective is therefore to propose a multi-step optimization-

based calibration of the model of a ZEB prototype that is reached through the following sub-

steps, each constituting a sub-objective: 

 setting up a simulation-based optimization framework able to calibrate the 

performance of a ZEB building; 
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 carrying out a complete SA based on an optimized Morris Method to improve the 

efficiency of the framework; 

 testing the method on the real ZEB prototype; 

 evaluating the impact of the use of this method within and outside the context of the 

Solar Decathlon competition. 

The second step, which constitutes the final objective, is the combination of design and 

operational optimization of the ZEB prototype, based on the previously calibrated Building 

Energy Model (BEM). This is reached through the following sub-steps, each constituting a sub-

objective: 

 Implementation of the Contest Schedules; 

 Definition of the objective function based on the Solar Decathlon competition rules; 

 Setup of a simulation-based optimization framework able to optimize the 

performance of the resulting ZEB building (coupling of TRNSYS, MATLAB, 

GenOpt); 

 Design variation on the base of the results and evaluate the impact of the use of this 

method within the Solar Decathlon competition and for real ZEB design, 

construction and management processes.  

 

The structure of the paper reflects the presented multi-step approach. After a short description 

of the building concept and of the prototype features, both the method and the results are 

organized into two main subsections referring to the optimization-based model calibration and 

to the combined design and operation optimization, respectively. It has to be remarked that, in 

order that the approach is clear to the reader, these two steps are presented following a logical 

order that does not necessarily correspond to a strict chronological order of the work process. 

The fact that in this work simulation and optimization are experimentally used to support a real 

design and construction process is crucial. In fact, in presence of bad results obtained from first 

simulations at the design stage and of new constraints emerging at the construction stage, the 

different steps were performed several times, sometimes iteratively, always supported by a re-

calibrated simulation model, to reshape the building design and its optimized operation strategies. 

In addition to the previous observations, it should also be noted that the construction of the 

building prototype was performed two times in two different locations, one during the contest 

preparation (Guangzhou) and the other in the final contest location (Dezhou). 
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1.2. The LONGPLAN prototype 

In order to deal with the land-take problem, which is dramatically growing in China in the last 

years, the LONG PLAN ZEB prototype (Figure 1) is meant to reach a significantly higher density 

in relation to the traditional one familiar detached houses, which are usually the reference 

typologies in the Solar Decathlon proposals. Thus, it is based on the "narrow house" typology, 

which is very common both in the traditional South China dwellings (Lingnan houses) and in the 

European history (terraced houses) as well as in many other cultures, and which can be 

summarized with the "low rise, high density" concept. The built prototype is just a single unit  

that could be either used as an individual building to infill existing fabrics, or as a reproducible 

model to be replicated and customized in order to generate new neighborhoods for a wider 

market. 

Figure 1: The LONG PLAN house during construction (top) and at the end of construction (bottom) 

 

The building has a modular steel structure with 12 pre-fabricated modules. The walkable area 

of the two floors is about 143 m2. The building plans, reported in Figure 2, can be divided into 

three main sectors: 

 Integrated Wall: The west-side external wall, which contains all the distribution 

pipes for hot water, coolant, DHW and all the electrical and electronic connection. 

This allows limiting the use of space while facilitating maintenance; 
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 Service Belt: A narrow “slice” of the building that includes all the services and 

systems. Here lay the stairs, the three bathrooms, the mechanical room, the 

aquaponic system and the kitchen appliances; 

 Living Belt: This section is composed of the 4 conditioned zones: living room, 

kitchen and the two bedrooms, connected by one corridor for each floor that is 

adjacent to a central patio. This space is delimited by a green wall on the external 

side and an automated window on the roof that are devoted to improving passive 

strategies, such as the reduction of solar gains and the chimney effect. 

 

 

Figure 2: The LONG PLAN plans of ground floor (top) and first floor (bottom) 

 

Transparent envelope (Uw ranging from 0.8 W/m2K to 1.2 W/m2K) is only on North and South 

facades (shortest sides), plus two skylights near the staircase, because the longest walls are 

conceived to be adjacent to the other houses. The opaque envelope is composed of OSB (Oriented 

Strain Board) panels, VIP (Vacuum Insulated Panels), phenolic insulation, water barrier, vapor 

barrier (roof and walls: U=0.095 W/m2K; ground slab: U=0.129 W/m2K). The east and west 

facades are heavily insulated, to simulate the performance of the adjacent house, avoiding extra 

gains, and a ventilated façade is added to limit solar gains.  

 

In the city of Dezhou, Shandong, China, thermal loads at summer and winter design conditions 

were estimated to be 16 kW for cooling and 9 kW for heating. To cover these loads, the HVAC 

system (Figure 3) of the prototype was developed focusing on the modularity and feasibility of 

the project. All the technologies applied for the systems are market-available. The cooling system 
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is composed of a Variable Refrigerant Volume (VRV-Daikin®) Heat Pump connected with four 

internal units with enhanced dehumidification capability. The heating system is composed of a 

4-loop capillary heating system that is fed by the same external heat pump through a high 

efficiency heat exchanger. The four loops are independent, the mats are pre-casted inside the 

concrete of the floor in the main conditioned rooms.  

There is a recycling system for the grey water and condensate from the HVAC system, which 

saves around half of a typical water consumption, and uses the purified water to different 

purposes: plants irrigation, toilet flush, sprinkler system, rain garden. 

 

 

Figure 3: 3-D Schematic of the HVAC system 

 

The ventilation system was designed to reduce the CO2 and PM2.5 concentration in the inside 

air. An Energy Recovery Ventilator was designed to provide a fresh air flow of 350 m3/h. The 

outdoor air is firstly filtered in a coarse filter and then in a finer one, obtaining a filtering 

efficiency to the PM2.5 >99%. The air then passes through a counter flow heat exchanger in 

which it exchanges sensible energy with the exhaust air to reduce the conditioning load on the 

inside. The air is sent directly inside the living belt, in the 4 conditioned rooms, while the 

extraction is located in the corridor of the first floor and next to the top of the aquaponic system 

on the second floor (this position was selected to highly reduce the amount of humidity in the 
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proximity of the green wall). The flow path is ensured by the normal air leakage of the internal 

doors without considerably increasing the pressure drops. 

On the roof, 11 kWp of high-efficiency PV panels are installed on a steel structure. The 

electricity generated is supposed to be used in the building and to charge the battery of an electric 

vehicle. There are also 6 m2 of solar thermal panels to produce domestic hot water, combined 

with an electrical resistance to increase availability and temperature control. 

 

2. Methods 

2.1. Optimization-based calibrated simulation 

The procedure for the calibration set-up is composed of the following steps (Figure 4): 

 Measurement campaign to gather data on the weather conditions and the internal 

temperatures of thermal zones; 

 Creation of the Building Energy Model (BEM), with implementation of the 

measured weather data into the model; 

 Sensitivity analysis on the BEM input parameters to determine the calibration 

parameters; 

 BEM handling to create the coupling with the optimization software; 

 Iterative Optimization to calibrate the model accordingly with the progress of the 

construction site: 

o “free floating” calibration, which calibrates the envelope parameters based on 

measured and simulated indoor air temperatures when the building is running 

in free-floating and HVAC system is in progress of installation or is not 

working properly;  

o “final calibration”, which considers both envelope and system parameters as it 

is performed after the completion of the building construction in the contest 

location; 

 Data Post Processing leading to possibility of active intervention on the final design, 

construction and operation strategies of the building prototype. 
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Figure 4: Optimization-based calibration framework  

 

2.1.1. Measurements: data collection 
 

As mentioned, a large set of measured data is necessary to calibrate a building simulation 

model. The measurement campaign was organized in parallel with the last phase of construction 

of the building. 

The first dataset is related to weather data, which were collected by means of: 

 Davis Vantage Pro2 weather station [22]; 

 Delta Ohm HD2102 Solar Flux Datalogger [23] ; 

 LP Pyra02 Pyranometer [24]. 

The position of the sensors was set to reduce the effect of nearby building or environment and 

maintain the sensors safe from the building site operation [25].The weather station was placed 

on the north-west corner, with the wind probe at the height of 3 meter (first floor). The 

Pyranometer was placed on top of the workers stall to reduce the horizontal interaction with other 

structures and avoid any kind of shading (allowed <5° on the horizontal). 

Another dataset was collected regarding internal temperatures of thermal zones, to proceed 

with the so-called temperature calibration [25]. The analysis of the temperature evolution can 

highlight the accuracy of the simulation and is easily gatherable. Measurements were organized 

dividing the thermometers (HOBO U23-001 [26]) according to their timestep (2 minutes- Therm. 
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A and 5 minutes - Therm. B). Therm. A were placed in couples in the main thermal zones, while 

The Therm. A, used for the actual measurements, were placed at the geometrical centre of the 

zone at a height of 1.5 m as shown in Figure 5. Therm. B were placed at the top of walls in the 

connection zones and were used to check the temperature fluctuation between zones. The 

location of sensors in the building thermal zones (see par. 2.1.2 and Table 1 for thermal zones 

details) is reported in Figure 6. 

At the beginning of the prototype construction phase, which lasted a couple of weeks, the 

activities focused on the measurement architecture, the sensors placement and model updating 

with the actual prototype configuration. This led to carry out measurements for 3 days, allowing 

a level 4 calibration, based on short-term monitoring [16]. 

 

Figure 5: Picture of the placement of temperature sensors 

 

 
Figure 6: Plans of the building: thermal zoning and placement of temperature sensors  
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2.1.2. The simulation model 
 
The simulation model was created in TRNSYS®. In order to increase the model level of detail 

while maintaining the calculation manageable, the overall modelling was split into the Building 

Model (BM), describing the building envelope behavior and the related energy needs, and the 

HVAC System Model (SM).  

The core Type for the BM simulation is the Type-56; it allows a detailed description of the 

envelope and the 16 different zones (Table 1), simulated through a nodal configuration. The 4 

zones reported in bold in Table 1 are directly conditioned. This detailed model zoning allows 

direct control of the conditioned spaces even if they are part of a bigger open space [27]: smaller 

thermal zones implies higher control on the ventilation flow path and higher precision on the 

temperature and humidity values in that particular part of the prototype. These characteristics are 

fundamental to reduce the averaging effect of the temperature in other zones and limit the 

mismatch between the simulated and measured values. 

Table 1: Description of thermal zones defined in the simulation model (ref. Figure 6) 

Code Room/Zone Vol [m
3
] 

F1 Hallway 20.7 

F2 Greenhouse 9.6 

F3 Living Room 39.7 

F4 Corridor 20.3 

F5 D.R.+Kitchen 49.4 

F6 Bathroom 1 6.9 

F7 Aquaponics 13.4 

F8 Mechanical Room 10.6 

S1 Bedroom 1 49.3 

S2 Bedroom 2 44.3 

S3 Bathroom 2 12.0 

S4 Staircase 81.1 

S5 Bathroom 3 12.0 

S6 Leisure Room 14.6 

X1 Patio 61.6 

X2 Cabinet 3.0 

 

The SM includes the cooling, the ventilation and the heating system, although the latter was 

switched off during the contest simulation. In addition to this, the simulation includes the 

management system, and graphical and numerical output.  

The ventilation model considers the infiltration from openings and air flows based on pressure 

and temperature differences between the different zones. It was created through the coupling 
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between TRNSYS and CONTAM Multizone Air Flow, which also allowed simulating the 

chimney effect.  

The Cooling system was simulated using 4 different standard split types. The part load power 

was defined through an equation type that determines the energy needed to reach the setpoint 

based on the room temperatures at each timestep.  

This equation was developed from the COP table in part load provided by the producer through 

a polylinear regression (Figure 7). The resulting goodness-of-fit is as follows:  

 R-square: 0.9964 

 Adjusted R-square: 0.9961 

 RMSE: 0.1329 

The external unit type reads the part load as the sum of all the power used by the internal units 

and the outdoor temperature from the weather file and give the COP as an output to evaluate the 

electrical energy consumption. 

The control of the system set-point temperature was modeled using the TRNSYS type 698 

(Five stages room thermostat for n temperatures), in combination with the detailed CONTAM 

modelling of the convection within and between spaces. This allows modelling the fact that the 

cooling unit is placed at a specific location in the room and it does not add energy evenly to the 

space in the framework of assumptions and simplifications required by energy simulation, 

leading to potential differences between the indoor air temperature registered at the center of the 

thermal zone and the one registered in proximity of the cooling units.  

 

 

Figure 7: Model of the system COP in part load 
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2.1.3. Sensitivity analysis  
 
The described modelling assumptions determine a list of 302 simulation input parameters, but 

only some of them can be actively used for calibration due to their source or the use done in the 

simulation, as highlighted by R. Enriquez at al. [28]. Moreover, the number of calibration 

parameters should be limited to ensure acceptable computational time. A first user selection can 

be performed [29], but then it is necessary to ensure that the selected parameters are those having 

the highest impact on the simulation outcome. This can be done through sensitivity analysis. 

Several Sensitivity Analysis methods could be applied to a model giving different information 

about the input parameters [30]. The Morris method was selected as a compromise between the 

so-called local (high level of information about inputs) and global methods (no information about 

inputs) [31]. This procedure shares some characteristics from both local and global methods [32], 

of which the advantages are as follows: 

 The influence sorting of the parameters is provided; 

 The method does not depend on properties and does not require linearity assumption 

(difficult to make using building energy models); 

 The hyperspace can be explored evenly without defining parameters’ probability 

density functions in advance; 

 Results can be graphically interpreted; 

 The computational time is limited; 

 Its implementation is relatively easy. 

The Morris Method works using “trajectories”: from a first step in the hypercube of possible 

values the coordinates move variating only one parameter at each step. It relies on the evaluation 

of a Sensitivity Index several times for every parameter. Such Index is called Elementary Effect 

and is defined as 

𝐸𝐸𝑖(𝑋
𝑗) =

𝑌(𝑋1
𝑗
,…,𝑋𝑖−1

𝑗
,𝑋𝑖
𝑗
+𝛥,𝑋𝑖−1

𝑗
,…,𝑋𝑘

𝑗
)−𝑌(𝑋𝑗)

𝛥
 (1) 

where Xi is one of the k parameters composing a system and Y represents the system’s output 

before and after the variation of the ith parameter of the quantity Δ. Once the Elementary effect 

is computed for each of the r trajectories j, the mean value 𝜇𝑖  and the standard deviation 𝜎𝑖 are 

evaluated as follows (Equations (2) and (3)), to allow the sorting of the parameters. 

𝜇𝑖 =
𝛴𝑗=1
𝑟 𝐸𝐸𝑖(𝑋

𝑗)

𝑟
     (2) 

𝜎𝑖 = √𝛴𝑗=1
𝑟 [𝐸𝐸𝑖(𝑋

𝑗)−𝜇𝑖]
2

𝑟
    (3) 
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Since the Elementary Effect could assume negative values, to avoid cancellation errors it is 

good practice to also evaluate the absolute mean value of the Elementary Effect as follows 

(Equation (4)).  

𝜇𝑖
∗ =

𝛴𝑗=1
𝑟 |𝐸𝐸𝑖(𝑋

𝑗)|

𝑟
    (4) 

The resulting value of 𝜇𝑖
∗ indicates the overall importance of the parameter i on the simulation 

output, while 𝜎𝑖 indicates non-linear effects and interactions between parameters. It has to be 

remarked that those are qualitative measures, providing indications on how to rank parameters 

in order of importance, but they do not exactly quantify the influence of each parameter on the 

model. In general, parameters related to high values of 𝜇𝑖
∗ and 𝜎𝑖 should be selected as the most 

influential.  

The Morris method was implemented through a MATLAB code after the Optimized Latin 

Hypercube Sampling was performed, based on the so-called Campolongo’s procedure [33], to 

obtain a set of exhaustive trajectories to explore the solution space and limit the risk of leaving 

unexplored large parts of the parameter space. This led to determine 10 different trajectories. 

The parameters were set as variable in the TRNSYS simulation input files with a batch file 

calling a function to write the value of the parameter accordingly to the trajectory at that step. 

The list of 29 selected input parameters and the range for their variation is reported in Table 2.  

In order to ensure their weight is the same within the analysis, 4 steps were defined for each 

variation range. When the reported unit is “%”, it means that the variation of that parameter is 

based on a percentage value that modifies the initial design values of parameters. 

 

Table 2: Input parameters for sensitivity analysis 

# Parameter Min Max Unit 

1 ERV Sensible Effectiveness  -0.1 0.1 % 

2 Internal Convective Heat Transfer Coefficient 5 9 kJ/hm2K 

3 External Convective Heat Transfer Coefficient 55 75 kJ/hm2K 

4 Internal Convective Heat Transfer Coefficient_W 5 9 kJ/hm2K 

5 External Convective Heat Transfer Coefficient_W 55 75 kJ/hm2K 

6 Infiltration flow rate F3 -0.1 0.1 % 

7 Infiltration flow rate F5 -0.1 0.1 % 

8 Infiltration flow rate S1 -0.1 0.1 % 

9 Infiltration flow rate S2 -0.1 0.1 % 

10 Air coupling zones F1-S4 -0.1 0.1 % 

11 Air coupling zones F7-S4 -0.1 0.1 % 

12 Shading Factor Horizontal 0 0.1 - 
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13 Air flow natural ventil. 0 700 m3/h 

14 U-Value Frame Windows type #1 -0.1 0.1 % 

15 Area frame/glass Windows type #1 0.1 0.2 % 

16 U-Value Frame Windows type #2 -0.1 0.1 % 

17 Area frame/glass Windows type #2 0.1 0.2 % 

18 U-Value Frame Windows type #3 -0.1 0.1 % 

19 Area frame/glass Windows type #3 0.1 0.2 % 

20 Zones Capacitance F3/Volume 35 55 kJ/K 

21 Zones Capacitance F5/Volume 50 70 kJ/K 

22 Zones Capacitance S1/Volume 50 70 kJ/K 

23 Zones Capacitance S2/Volume 45 60 kJ/K 

24 Phenolic Conductivity -0.05 0.05 % 

25 VIP Thermal resistance -0.05 0.05 % 

26 Approx. average ground surface temp. 293 303 K 

27 Absorbance Frame Windows type #1 -0.1 0.1 % 

28 Absorbance Frame Windows type #2 -0.1 0.1 % 

29 Absorbance Frame Windows type #3 -0.1 0.1 % 

 

2.1.4. Simulation-based optimization for calibration  
 
As mentioned, the proposed approach involves the coupling of a Building Energy Modelling 

Software, TRNSYS®, with an Optimization program, GenOpt®. To perform such optimization-

based calibration, an optimization cost function should be set, based on the difference between 

the measured and the simulated data set. In this work, the optimization objective function was 

set according to the standards for considering a calibration validated; this was done in order to 

achieve within the same operation both the calibration and its validation. The standard used for 

reference is the ASHRAE Guideline 14 (ASHRAE, 2002). The validation of the calibration is 

based mainly on two statistical indices (S - simulated data; M - measured data): 

 Normalized Mean Bias Error (NMBE) 

𝑁𝑀𝐵𝐸(%) =
𝛴𝑃𝑒𝑟𝑖𝑜𝑑(𝑆−𝑀)𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝛴𝑃𝑒𝑟𝑖𝑜𝑑𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
∙  100%  (5) 

 Coefficient of Variation of the Root Mean Square Error (Cv(RMSE)) 

 𝐶𝑣(𝑅𝑀𝑆𝐸𝑃𝑒𝑟𝑖𝑜𝑑) =
𝑅𝑀𝑆𝐸𝑃𝑒𝑟𝑖𝑜𝑑

𝐴𝑃𝑒𝑟𝑖𝑜𝑑
 ∙ 100 (6) 

 𝑅𝑀𝑆𝐸𝑃𝑒𝑟𝑖𝑜𝑑 = √
𝛴(𝑆−𝑀)𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

2

𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 (7) 
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 𝐴𝑝𝑒𝑟𝑖𝑜𝑑 =
𝛴𝑃𝑒𝑟𝑖𝑜𝑑𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑙
 (8) 

Therefore, the cost function that the optimization process has to minimize can be expressed as 

follows 

 𝐶𝐹 = 𝑁𝑀𝐵𝐸 ∙ 0.5 + 𝐶𝑣(𝑅𝑀𝑆𝐸) ∙ 0.5 (9) 

where the same statistical weight is assigned to both the NMBE and the Cv(RMSE) and 

constraints are set for both NMBE and Cv(RMSE)so that they are below the threshold limits 

reported in the ASHRAE Guidelines (NMBE: ±10%; Cv(RMSE): 30%).  

For the optimization in GenOpt, a hybrid global optimization algorithm was selected [34]. This 

algorithm starts with a Particle Swarm Optimization (PSO) on a mesh, for a number of 

generations nG defined by the user. Then, it initializes the Generalized Pattern Search (GPS) 

algorithm for the continuous independent variables, while discrete variables are fixed at the value 

of the particle with the lowest cost function value. Thus, the hybrid algorithm combines the global 

features of the PSO algorithm with the provable convergence properties of the GPS algorithm, 

thus ensuring higher accuracy while limiting the risk of being attracted by local minima.  

Being the algorithm already pre-loaded in the GenOpt scripts, it only needs some simple 

commands to perform the optimization. It is required to write the GenOpt configuration file, 

containing indication about the simulation program to call, and the command file, where the 

optimization parameters are defined and the and algorithm settings are reported.  

Moreover, the simulation should be prepared to ensure that the TRNSYS input file is ready to 

be called iteratively by GenOpt and evaluate the cost function according to the calibration 

objectives.  

First of all, a user-defined weather file was created based on the data collected from the weather 

station. The TRNSYS Type 109-Userdefined was used to input the so-created weather file to the 

model.  

Then the temperatures measured in the zones have to be read by the simulation to evaluate the 

deviation of the calculated data from the real ones. The format used is the simple Type9a: this 

type allows to create a simple tab with interpolating features and user-defined time interval.  

Then, at each simulation run, a MATLAB script called within the TRNSYS simulation allows 

evaluating the cost function on hourly-averaged values provided by a TRNSYS output file. The 

script handles the temperatures, measured and simulated ones, of all the 4 different zones 

separately, and proceeds with the calculation of the cost function using the worst condition (the 

data set that are on average on the biggest distance).  
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As a last step, the coupling between TRNSYS and GenOpt should be finalized by editing the 

TRNSYS input files. The editing entails creating two template files where GenOpt is able to 

write different values of optimization parameters driven by the algorithm, thus creating different 

simulation input files at each iteration.  

 

2.2. Combined design and operation ZEB optimization 

The second step of the work, related to the combined design and operation optimization of the 

building, relies on the simulation-based optimization framework that was previously described, 

with some adjustments. As shown in Figure 8, the complete framework relies on the use of 

TRNSYS, supported by CONTAM, to perform detailed energy simulations using the previously 

calibrated building model. The TMY weather file referring to Raoyan, a city close to the contest 

location, was selected for simulations carried out in this step. MATLAB was used to manage 

simulation outputs and calculate the new objective function, while GenOpt was used to set up 

optimization variables and drive the optimization process.  

 

 
Figure 8: Optimization framework and used tools 

 

2.2.1. The contest score optimization objective 
 
As mentioned, the objective of the optimization study is to maximize the contest score. For 

this purpose, this objective has to be translated into a dedicated cost function that is computed by 

the involved tools. Therefore, the set of objective criteria related to zone variables that can be 

monitored, simulated and therefore optimized to maximize their contribution to the final score 

are included in the so-created objective function (Equation 10). Non-objective criteria have been 

excluded from the computation as they are subject to the jury’s judgements and cannot be 

simulated nor optimized. 
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The formulation of the objective function is as follows: 

𝑃𝑇𝑂𝑇 = ∑ (𝑃𝑇,𝑖 + 𝑃𝑅𝐻,𝑖 + 𝑃𝐶𝑂2,𝑖 + 𝑃𝑃𝑀,𝑖) + 𝑃𝐸𝐵
𝜏
𝑖=1   (10) 

where  

 i is the time-step for score calculation, which the Solar Decathlon rules set to 744 set to 

15 minutes for the evaluated variables included in this function; 

  is the total number of evaluated time-steps in the contest period, which the Solar 

Decathlon rules set to 744 for the evaluated variables included in this function - it has to 

be noted that these time-steps may not be consecutive and occur either during the day or 

the night of different contest days; 

 PT,i are the points related to the indoor air temperature Ti [°C], calculated at the time-step 

i according to Equation (11) - the maximum achievable value for PT,i over  is 40 points; 

 𝑃𝑇,𝑖 =

{
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𝜏
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𝜏
∙
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40
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   (11) 

 

 PRH,i are the points related to the indoor relative humidity RHi [%], calculated at the time-

step i according to Equation (12) - the maximum achievable value for PRH,i over  is 20 

points; 

 𝑃𝑅𝐻,𝑖 =

{
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20

𝜏
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   (12) 

 

 PCO2,i are the points related to the CO2 level [ppm], calculated at the time-step i according 

to Equation (13) - the maximum achievable value for PCO2,i over  is 20 points; 
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 𝑃𝐶𝑂2,𝑖 =

{
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𝜏
0 ≤ 𝐶𝑂2𝑖 ≤ 1000

20

𝜏
∙
𝐶𝑂2𝑖−1000

2000−1000
1000 < 𝐶𝑂2𝑖 ≤ 2000 

0 𝑖𝑛 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

  (13) 

 

 PPM2.5,i are the points related to the PM2.5 level [µg/m3], calculated at the time-step I 

according to Equation (14) - the maximum achievable value for PPM2.5,i over  is 20 points; 

𝑃𝑃𝑀2.5,𝑖 =

{
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𝜏
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20

𝜏
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0 𝑖𝑛 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

  (14) 

 

 PEB are the points related to the energy balance EB [kWh/m2], calculated as the difference 

between production and consumption over the entire contest period, according to 

Equation (15) - the maximum achievable value for PEB is 80 points. 

𝑃𝐸𝐵 =

{
 
 

 
 

80 𝐸𝐵 ≥ 0

80 ∙
𝐸𝐵

50
−50 ≤ 𝐸𝐵 < 0

0 𝑖𝑛 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

    (15) 

The above-listed criteria are related to a maximum of 180 points out of 1000. Such points may 

be decisive for final ranking, considering that usually the Solar Decathlon teams compete for the 

first positions with tiny differences of points. 

The cost function was implemented in MATLAB and linked to the input variables simulated 

in the TRNSYS model, considering the complex schedules of the contest. In fact, the formulation 

of this objective function accurately reflects the score calculation that was planned for each day 

of the contest period, having different schedules for the monitoring periods (in which the above 

listed environmental parameters are measured and evaluated) and for the tasks performing 

periods (tasks include domestic energy-consuming activities like doing the laundry, preparing 

meals, or inviting friends for a party). The energy balance is calculated at the end of the simulated 

contest period, to reproduce the score calculation planned for the contest. 
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2.2.2. Optimization variables  
 
Once the optimization objective and the energy model were defined, the design variables 

impacting the created cost function were identified. Twenty-four variables were selected, some 

related to the building envelope and others related to the system design and operation, as reported 

in Table 3. 

The set of optimization variables represents the set of design variables that could be controlled 

by the simulation model and could be checked and optimized during the construction and the 

pre-contest test phases. Their selection was performed according to real feasibility criteria, but it 

has to be noted that other measures related to other design variables could potentially lead to 

better performance in terms of energy saving and improved comfort. 

The selected design-related variables refer to the tilt angle of the PV panel and the thickness 

of the massive and light layers of envelope (OSB and phenolic insulation). Some of them are set 

for different orientations, to evaluate their influence on the performance and thus on the contest 

score. The operation-related variables refer to the cooling setpoint, the ERV operation schedules, 

the shading fraction and the related time schedules.  

The range of variation and the step length of the selected set of optimization variables is 

reported in Table 3. They were set as discrete variables in order to reflect their variation 

possibilities in the reality. This was done according to market availability criteria for design-

related variables (e.g. the available OSB panels are 12 mm thick), while operation-related 

variables were set according to feasibility and easiness-of-use criteria (e.g. a fraction of 0.62 for 

the shading devices is not smart because not practically useful).  

This lead to define a search space composed of 3.851016 possible combinations of 

design/operation options.  

 

Table 3: Settings of optimization variables. 

Name Description Unit Min Max Step 

length 

T_VRV Setpoint Temperature °C 20 25 1 

ERV_on1 ERV turn on time day 1 hour 16 18 0.5 

ERV_on2 ERV turn on time day 2 hour 19.5 21.5 0.5 

ERV_off1 ERV turn off time day 1 hour 19.5 21.5 0.5 

ERV_off2 ERV turn off time day 2 hour 22 24 0.5 

PV_angle Array Slope ° 0 25 5 

Sh_N Shading North Fraction 0 1 0.5 
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Sh_S Shading South Fraction 0 1 0.5 

Sh_H Shading Horizontal Fraction 0 1 0.5 

Sh_N_on Shading Time ON North hour 7 12 1 

Sh_S_on Shading Time ON South hour 7 12 1 

Sh_H_on Shading Time ON Horizontal hour 7 12 1 

Sh_N_off Shading Time OFF North hour 17 22 1 

Sh_S_off Shading Time OFF South hour 17 22 1 

Sh_H_off Shading Time OFF Horizontal hour 17 22 1 

OSB_N OSB thickness, North wall mm 0.012 0.036 0.012 

OSB_S OSB thickness, South wall mm 0.012 0.036 0.012 

OSB_Roof OSB thickness, Roof mm 0.012 0.036 0.012 

OSB OSB thickness, Other surfaces mm 0.012 0.036 0.012 

INS_N Phenolic Insulation thickness, North mm 0.10 0.24 0.02 

INS_S Phenolic Insulation thickness, South mm 0.10 0.24 0.02 

INS_H Phenolic Insulation thickness, Roof mm 0.10 0.24 0.02 

INS Phenolic Insulation thickness, Other mm 0.10 0.24 0.02 

INS_int Phenolic Insulation thickness,Int. Walls mm 0.10 0.24 0.02 

 

2.2.3. Optimization settings and runs 
 
As described, the optimization problem is characterized by discrete variables. The Particle 

Swarm Optimization (PSO)[35][36] was selected because it does not depend on the nature of the 

objective function, it limits the risk of getting stuck in local optima and it leads to a great number 

of cost function evaluations, for a deep exploration of the search space [37]. In particular, the 

binary PSO implementation of the generic optimization program GenOpt® was used, because of 

its ability in dealing with discrete variables and its demonstrated ability to deal with building-

related problems [38][39].  

The coupling between TRNSYS, GenOpt and MATLAB was performed similarly to what is 

described in paragraph 2.1.4 for optimization-based calibration. A new MATLAB script was 

created to handle the simulation outputs in relation to the points gained for the contest purpose 

at each iteration of the optimization process. 

The time required for one iteration (corresponding to one simulation run) is around two 

minutes, in a computer equipped with a processor Intel Core I7-6700HQ (2.6 GHz) and 8 GB 

RAM. The time for the optimization, obviously, grows as the number of generations and particles 

grows. Therefore, in order to limit the computation time, it is very important to determine how 
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many iterations are required to reach the optimum, that is the maximization of the cost function, 

and how much it varies according to the number of iterations and the other algorithm settings. 

Therefore, several optimization runs were performed to check the efficiency of the algorithm 

and the effectiveness of the tool and adjust their settings. In particular, according to the approach 

followed in [38], different numbers of iterations were tested, varying the number of particles, the 

number of generations, and also different combinations of the PSO algorithm social and cognitive 

accelerations. It has to be noted that, because the global optimum is known (it corresponds to the 

180 points for the contest score), this constitutes also a test for the ability of PSO algorithm in 

dealing with building optimization problems. 

 

3. Results and discussion 

3.1. Model calibration 

3.1.1. Results of the sensitivity analysis 
 
The sensitivity analysis was launched with the aim of creating two sets of parameters to be 

used for the two different steps of calibration: one regarding the envelope calibrated simulation, 

here called “free floating” calibration, and the other for the final calibration including also the 

system performance. The resulting set of selected parameters, in relation with the two indices 

𝜇 and 𝜎 (indicating mean and standard deviation of elementary effects – Eq.(1) over trajectories) 

are shown in Figure 9. The orange round-shaped points represent the set of 7 parameters used for 

the free-floating calibration, violet square-shaped represent the set of 10 parameters used for final 

calibration, while the red cross-shaped points are the discarded parameters. The selected 

parameters are also reported in Table 4. Refer to Table 2 for numbering and description of 

parameters. 
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Figure 9: Parameter selection from sensitivity analysis 

 

Table 4: Set of parameters selected for calibration 

Free Floating Calibration Final Calibration 

# *[kWh] [kWh] # *[kWh] [kWh] 

13 2.0583 0.0177 6 0.1672 0.0441 

15 0.2539 0.0568 19 0.2335 0.1240 

21 0.2020 0.0773 8 0.2568 0.1211 

22 0.2207 0.0726 24 0.5109 0.0652 

20 1.1619 0.2946 3 0.2683 0.0752 

23 0.1288 0.0196 4 0.2509 0.0576 

5 0.1711 0.0444 2 0.3137 0.0534 

   11 0.2181 0.1089 

   9 0.2095 0.0557 

   10 0.1851 0.0803 

 

 

 

3.1.2. Free Floating Calibration 
 
For the free-floating calibration, the simulation was rearranged to speed up the runs removing 

the components related to systems that, due to the building site operation, were not used. The 

resulting reduced simulation maintains the infiltration handlers, the air coupling simulation in 

CONTAM. Within the optimization process, the simulation was iteratively launched for a 72 h 

range with a 1 minute timestep. The related weather file was defined, based on the collected data 

from the weather station.  
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Here are reported the results related to the free-floating calibration of the model that was 

performed during the finalization of the first prototype construction, happened in May 2019 in 

Guangzhou. The minimization of the cost function (Equation (9)) during the optimization process 

is shown in Figure 10, where all the evaluated solutions are ordered with respect to the calibration 

cost function value. 

The resulting optimal set of parameter values is reported in Table 5, while the goodness of fit 

according to the ASHRAE thresholds is reported in Table 6. As shown, the model resulted to be 

well calibrated. 

The graphs in Figure 11 report the simulated indoor temperature (red) of the worst-performing 

zone (F3 – living room) with respect to the measurements (black) and the outdoor temperature 

profile (grey) in a sample day. The first graph in Fig. 11 shows the pre-calibration conditions. In 

the second graph, reporting the conditions after the free-floating calibration, it is shown that the 

deviation during daytime is almost totally reduced and differences in the behavior during nigh 

time appear just in presence of sudden change in outdoor conditions.  

This calibrated model was used to start running optimizations for supporting the finalization 

of design strategies to maximize the contest score, before the beginning of the final prototype 

construction in the contest location.  

 

Table 5: Optimized parameters values-free floating calibration 

# Parameter Description Value Unit 

13 AC_od Air Flow Natural Ventilation 25 m3/h 

15 Rat_fr_fac Ratio Frame/Glass 0.2 % 

20 Cap_f3 

Capacitance of thermal zone/Volume 

51 

kJ/K 
21 Cap_f5 69 

22 Cap_s1 69 

23 Cap_s2 58 

5 HW_out External Convective Heat Transfer Coefficient_Windows 59 kJ/hm2K 

 

 

Table 6: Result validation – free floating calibration 

 Value Threshold Validated 

NMBE (%) +4.27 ±10 x 

Cv(RMSE) +4.88 30 x 
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Figure 10: Cost function minimization 

 

 

Figure 11: F3 (living room) zone temperatures pre and post calibration in a sample day 
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3.1.3. Final Calibration 
 
The final construction of the prototype in the building location (Dezhou) was performed in 

strict relation with simulation. Based on the previously calibrated model, the purpose of the final 

calibration was to provide a reliable simulation model of the entire building (envelope and 

systems) to support the definition of the last design and operational strategies before the 

competition.  

Figure 12 refers to the comparison between simulations (pre-calibration in dotted red, post-

calibration in red) and measurements (black) performed in the pre-competition days, after the 

second building construction. At that time the HVAC wasn’t working properly, and the HVAC 

testing was running during the night (this is the reason why the data collected at night were not 

considered). Therefore, the dataset was useful to assess the “free-floating” model reliability after 

the second building construction, and the fact that the calibrated simulation follows the 

measurement profile when the HVAC system is turned off testifies the goodness of the previously 

performed calibration of the building envelope model.  

 
Figure 12: Measured versus simulated data during contest preparation in zone F3 (living room) 

 

For the purpose of final calibration, due to the building site’s operational status, it was possible 

to collect usable data only in short night time periods and proceed with a daily-based trial and 

error calibration to further adjust the performance of the previously optimization-based calibrated 

model. The fact that the most influencing parameters had already been identified through the 

performed sensitivity analysis facilitated the process of manually varying the values of 

parameters to match the behavior of the systems.  

Table 7 reports the comparison between the measured and simulated data on hourly basis for 

indoor temperatures in the four monitored thermal zones in the last pre-competition night. Except 
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for the first hour, where measurements were affected by unexpected occupation in the building, 

the deviation between simulated and calibrated temperatures is in the range ±1 and the reported 

calibration indexes demonstrates that a good level of calibration was reached and that simulation 

could be used for short term planning during the competition. 

In fact, further than leading to the final optimization runs for maximizing the contest score, 

with the aim of providing a benchmark on the operational mode to be maintained in the building 

throughout the competition (see section 3.2), the calibrated simulation became a predictive tool 

with a 5-8 hours timespan. Before the start of each competition monitoring period (usually 

occurring at night in the range 6 PM-8AM), a simulation with the expected fluctuation in the 

temperature was launched to validate the planned operational strategies.  

 

Table 7: Final calibration dataset and validation 

 

Time 
T F3 

Simul. 

T F3 

Meas. 

T F5 

Simul. 

T F5 

Meas. 

T S1 

Simul. 

T S1 

Meas. 

T S2 

Simul. 

T S2 

Meas. 

18:00 22.97 24.46 23.77 27.78 23.23 28.96 23.47 25.96 

19:00 23.07 23.51 23.21 26.20 23.22 27.53 23.16 24.50 

20:00 24.73 23.28 24.13 25.31 23.42 26.55 23.67 23.54 

21:00 24.78 23.04 24.19 24.82 23.45 24.30 23.66 23.45 

22:00 25.18 22.89 25.13 24.50 24.43 23.87 24.69 23.58 

23:00 24.39 24.16 24.11 24.57 23.90 23.33 24.45 23.65 

0:00 24.78 23.66 24.78 24.52 24.70 23.31 24.87 23.62 

1:00 24.74 23.28 24.83 24.34 24.75 23.26 24.19 23.40 

2:00 24.49 23.69 24.58 24.33 24.56 23.45 24.47 23.50 

3:00 24.31 23.93 24.47 24.43 24.50 23.59 24.43 23.64 

4:00 23.99 23.84 24.10 24.31 24.13 23.51 24.10 23.46 

5:00 23.81 24.38 23.97 24.38 24.03 23.67 24.04 23.66 

6:00 24.16 23.84 24.07 24.30 23.68 23.68 24.06 23.63 

7:00 23.02 23.71 23.89 24.24 22.88 23.72 23.96 23.66 

NMBE 
(threshold: ±10) 

3.96 3.48 6.39 3.49 

Cv(RMSE) 
(threshold: 30) 

4.78 5.7 9.13 4.27 

Calibrated? Yes Yes Yes Yes 

 

3.2. Design and operational optimization 

The diagrams in Figures 13 and 14 reports the obtained contest points (out of 180) in different 

optimization runs, performed at different stages of the process after each new model calibration. 

In particular, Figure 13 reports the starting point (initial design and operation settings) and the 

percentage improvement of the score after optimization runs, which ranges between 7% and 9%. 
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The starting score with the project data is 162.43. Each optimization shows an improvement 

of the solution, the maximum is around the value of 176.50 points.  

In the final contest score optimization run, the maximum achieved is equal to 176.94. Because 

a lot of combinations of design variables leading to similar high scores were found, the last cycle 

of optimization runs was performed with algorithm settings tailored for a better exploration of 

the space of solutions. Therefore, the number of particles was increased up to 60, and the number 

of generations up to 30, allowing 1920 iterations. As shown in Figure 14, the last generations are 

reaching higher scores, up to the maximum of 176.94 points out of 180. The points related to the 

different categories composing the final contest score in the initial and the optimal solutions are 

reported in Figure 15. As shown, with respect to the initial design solution (INI), the optimization 

leads to improve the points related to the temperature (+6 points in the optimal solutions) and the 

relative humidity (+9 points in the optimal solution) parameters.  

 

 

Figure 13: Contest score maximized after 

optimization. 

 

 

Figure 14: Solutions above 176 points. 

 

 

Figure 15: Splitting the contest score in the initial (INI) and optimal (OPT) solutions.  

 

The detailed analysis of the score related to the temperature (PT, calculated according to 

equation 11) and relative humidity (PRH, calculated according to equation 12) is provided in 
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Figure 16. In particular, the relative frequency of occurrence of the different values in each time-

step within the contest period is reported along with the score functions (expressed in equations 

11 and 12).  

 

Figure 16: Relative frequency of the temperature and relative humidity values within the entire contest period in 

the initial and the final optimization solution.  

 

The optimal set of parameter values, related to the maximized context score, are reported in 

Table 8. They were defined based on the most frequent values obtained in the neighborhood of 

the optimum (the set of solutions obtaining score above 176 points).  

 

Table 8: Initial and optimal values of optimization variables. 

Name Unit Initial value Optimal value 

T_VRV °C 24 21 

ERV_on1 hour 17:00 16:30 

ERV_on2 hour 20:30 19:30 

ERV_off1 hour 20:30 19:30 

ERV_off2 hour 23:00 22:00 

PV_angle ° 2 25 

Sh_N Fraction 0 0 

Sh_S Fraction 0 0.5 

Sh_H Fraction 0 0.5 

Sh_N_on hour 11:00 12:00 

Sh_S_on hour 11:00 12:00 

Sh_H_on hour 11:00 7:00 

Sh_N_off hour 19:00 20:00 

Sh_S_off hour 19:00 19:00 

Sh_H_off hour 19:00 22:00 

OSB_N mm 0.012 0.036 

OSB_S mm 0.012 0.036 

OSB_Roof mm 0.012 0.036 
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OSB mm 0.012 0.024 

INS_N mm 0.20 0.12 

INS_S mm 0.20 0.12 

INS_H mm 0.20 0.14 

INS mm 0.20 0.10 

INS_int mm 0.12 0.18 

 

As shown in Table 8, the optimization led to modify almost all the involved design and 

operation variables. Such modifications can be summarized and discussed as follows: 

 In order to ensure high air quality score, ERV had to be turned on earlier than expected. 

However, to limit energy consumptions while maintaining high scores in other 

categories, the operation time range should be reduced by anticipating the turning off 

hour; 

 The temperature setpoint of the VRV had to be set to 21°C, because the solar radiation 

and the heat stored during the day contributed to the fast rise of internal temperature; 

 PV panels’ tilt angle had to be higher to increase the theoretical production of the given 

PV area. However, tilted panels on a flat roof required a certain space between them to 

avoid mutual shadings, leading to reduce the available roof area; 

 As expected, the shadings on the north façade do not affect the overall performance, 

however shadings on the other orientations (south and horizontal), had to be used at 

half of their capability for a larger time range than expected; 

 A higher mass had to be put in the opaque envelope, as expressed through higher OSB 

thickness in all related variables, while insulation had to be reduced. 

It has to be noted that, despite the initial purposes, there was no time to implement the resulting 

optimal design of the opaque envelope, due to delays in the construction phase. However, this is 

not so problematic in the north and south façades, because of the little areas of the opaque walls 

and the limited impact of such measures in the final results. This becomes important for 

controlling the solar radiation on the opaque roof, which is connected to the optimization 

outcomes related to shadings. With this in mind, the resulting optimal strategies related to 

shadings were carefully implemented, with the model providing an objective feedback for the 

last-minute decisions during the contest. 

Another critical aspect, that is worth to be discussed, is related to the weather data. The typical 

meteorological year that was used for initial simulations at the design phase resulted to be distant 

from the real weather conditions during the contest season. In fact, the real weather was hotter, 

more humid, and the sky was more covered (2 raining days) than simulated and therefore the 
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power needed for the cooling was higher, with higher consumption too, and the electricity 

production less than expected. 

The monitored weather data implemented in the final simulations with the calibrated model, 

as well as the safety range considered for the sizing and the performance assessment of the 

cooling system, resulted to be good strategies to keep the model close to the reality, thus 

confirming the strength of the optimization. 

4. Conclusion 

This work presents an effective transition from theoretical simulation and optimization 

methods to their experimental applications in reality and back. It has been demonstrated that 

simulation-based optimization approaches, which are currently being developed and mainly used 

for research purpose, can successfully support the entire process and add significant value to the 

resulting ZEB. In fact, despite the highlighted difficulties in the transition from theory to practice 

and from design to operation, mainly due to time constraints, they greatly helped optimize the 

performance of the ZEB prototype and win the Solar Decathlon China 2018 competition, 

demonstrating their applicability and scalability to real contexts. 

This multi-step approach may be replicated to optimize the role of simulation-based 

optimization in a real building design, construction and management process. In fact, the 

optimization-aided calibration offered a good range of available codes for performing the final 

simulation, giving the opportunity to pick the one that better suits the simulation and to tailor it 

to the specifics of the wanted calibration. The results have given a substantial help to the 

monitoring and planning system and have shown the flexibility of the calibration procedure in 

reshaping itself according to the building site and operational needs.  

The multi-stage calibration approach has been used to ensure the simulation model reflects the 

different steps of the building construction phase and the building behavior. It has resulted to be 

effective in reaching good results while maintaining the model physically realistic and 

manageable. We believe this approach can be useful to be replicated on other buildings, provided 

a sensitivity analysis is performed to select a proper set of calibration parameters.  

Concerning the final combined design and operational optimization approach, the achieved 

time saving with respect to the manual comparison of different combination of variables is 

important, considering that the number of analyzed design and operation alternatives is huge and 

that unexpected design solution may emerge from the automated process. 

Further, most of the resulting optimal design parameters were implemented in the construction 

of the house, while others were used to drive the prototype monitoring and management. In this 
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way, it has been possible to have the best overall analysis, both for the design and management 

phases, and win the competition. The optimization work led to improve the contest score by more 

than 15 points with respect to the estimated score pre-optimization. This adds even more value 

to the work itself, in a context where a single point can change the outcome of the competition 

and the competition was won with a deviation less than 12 points with respect to the second team. 

As a general conclusion, it has emerged that the accuracy of the model has a great influence 

on the results and therefore on the effectiveness of the approach. In particular, the iterative model 

calibration and optimization is fundamental to reach high performance levels. The test of the 

building behavior by means of the calibrated model was useful to prevent unexpected errors in 

the contest measurements and to predict the future building behavior. Also, a tailored sensitivity 

analysis can help refine the variables mesh of variation and prioritize the correct implementation 

of the resulting optimal strategies if external constraints (e.g. time, budget, ..) occur and will be 

investigated in future work. 

The presented method can be applied to other prototypes, to building fine-testing, to support 

commissioning. It can be further applied for other competitions or for supporting the transition 

to market of the Solar Decathlon prototypes.  
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