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Abstract: Dynamics and control of processes over social networks, such as the evolution of
opinions, social influence and interpersonal appraisals, diffusion of information and misinfor-
mation, emergence and dissociation of communities, are now attracting significant attention
from the broad research community that works on systems, control, identification and learning.
To provide an introduction to this rapidly developing area, a Tutorial Session was included
into the program of IFAC World Congress 2020. This paper provides a brief summary of the
three tutorial lectures, covering the most “mature” directions in analysis of social networks
and dynamics over them: 1) formation of opinions under social influence; 2) identification and
learning for analysis of a network’s structure; 3) dynamics of interpersonal appraisals.

1. INTRODUCTION

Systems, control and learning theories have found nu-
merous applications in natural sciences and engineering.
However, their potentials in social sciences remain almost
undisclosed. Now, the situation is rapidly changing due to
the recent remarkable progress in multi-agent systems and
complex networks that has revealed common behaviors
and principles of functioning in large-scale systems aris-
ing in nature and society (Mesbahi and Egerstedt, 2010;
Easley and Kleinberg, 2010; Strogatz, 2003).

Whereas the classical studies on social networks (Wasser-
man and Faust, 1994) primarily focus on “static” struc-
tural properties of social networks and ties between in-
dividuals, the advanced theory of multi-agent networks
has enabled mathematically rigorous analysis of dynam-
ical processes unfolding over them: formation of opinions
and beliefs, diffusion of information and misinformation,
dynamics of interpersonal appraisals and social influence
etc. The study on such processes and their interplay with
the structural properties is a young and rapidly growing
field of research, which has no commonly adopted name yet
and lies at the crossroads of systems and control, learning
theory, network science and mathematical sociology.

� The names are arranged alphabetically. E-mail:
Brian.Anderson@anu.edu.au, fabrizio.dabbene@ieiit.cnr.it,

anton.p.1982@ieee.org, chiara.ravazzi@ieiit.cnr.it,

mengbin.ye@curtin.edu.au

A broad community of researchers working on systems,
control and learning is playing an important role in the
development of this emerging area. A search with keywords
“social dynamics” returns more than 100 papers published
in Automatica in 2017-2019 and more than 300 papers
published in IEEE journals. A number of surveys on social
dynamics have been published recently (Mastroeni et al.,
2019; Proskurnikov and Tempo, 2017, 2018). Friedkin
(2015) defines the foundational problem of sociology as
coordination and control of social systems. In spite of
this, the novel area of control in social networks is under-
represented on IFAC conferences. In order to fill this gap,
a tutorial session is organized during the IFAC World
Congress 2020. This paper summarizes the three lectures
of this tutorial session and is organized as follows.

Section 2 introduces some preliminary definitions and
notation. Section 3 is devoted to agent-based modeling of
information diffusion and evolution of individual opinions,
attitudes and beliefs under mechanisms of social influence.
Section 4 is concerned with the problems of inference in
dynamic social networks, that is, recovering the network’s
structure from the observed behaviors of individuals.

The “strengths” of social ties are not static and may evolve
due to complex socio-psychological processes, changing
self-appraisals and interpersonal appraisals of individuals.
Section 5 surveys the recent technical results on modeling
the endogenous dynamics of social influence networks
under feedback mechanisms of reflected appraisals.
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2. PRELIMINARIES AND NOTATION

Henceforth 1n = (1, 1, . . . , 1)� ∈ Rn denotes the column of
ones and e1 = (1, 0, . . . , 0)�, . . . , en = (0, 0, . . . , 1)� stand
for the canonical coordinate basis of Rn. The unit simplex
spanned by the basis vectors ei is denoted by

∆n = {ξ ∈ Rn : ξi ≥ 0,
∑n

i=1
ξi = 1}.

The symbol In denotes the identity n × n matrix. Let
diag(λ1, . . . , λn) stand for the diagonal n× n matrix with
diagonal entries λ1, . . . , λn. For a given square matrix A,
we denote diagA = diag(a11, . . . , ann). A nonnegative
square matrix A = (aij) is stochastic if its rows sum to 1,
i.e.,

∑
j aij = 1∀i. Due to the Perron-Frobenius theorem,

a stochastic matrix has a left eigenvector ζ such that

ζ�A = ζ�, ζ ∈ ∆n. (1)

A stochastic matrix is fully regular or SIA (stochastic,

indecomposable, aperiodic) if the limit A∞ = lim
k→∞

Ak

exists and has rank 1. In this case, the Perron-Frobenius
left eigenvector ζ ∈ ∆n is unique and A∞ = 1nζ

�.

Any nonnegative square matrix A defines a (directed)
graph G[A] = (V, E), whose sets of nodes and arcs, or
edges, are V = {1, . . . , n} and E = {(j, i) : aij �= 0},
respectively. Note that in multi-agent systems theory,
aij > 0 typically measures the influence of agent j onto
agent i, which is traditionally depicted as arc j −→ i. A
walk of length d in a graph between nodes i0 and id is
a sequence of arcs (i0, i1), (i1, i2), . . . , (id−1, id) ∈ E . A
path is a walk whose nodes i0, . . . , id are all distinct. If
i0, . . . , id−1 are all distinct yet id = i0, the walk is said
to be a cyclic path, or simply a cycle. A trivial example
of a cycle is self-loop (i, i) ∈ E , corresponding to diagonal
entry aii > 0. A graph is called aperiodic if the exists
no integer number s > 1 that divides the lengths of all
cycles (e.g. if the graph has self-loops). A graph is strongly
connected (or strong) if a (directed) walk exists between
any two nodes (in this case, the corresponding matrix A is
said to be irreducible). A graph that is not strong includes
several strongly connected (or strong) components (SCC).
A SCC is a subgraph, which is strongly connected and
maximal in the sense that no node and no arc can be
added to it without destroying the strong connectivity
(Fig. 1). A graph is said to be (out-branching) rooted (or
to contain an out-branching spanning tree, or to be quasi-
strongly connected) if it has at least one root node, which
is connected to all other nodes by paths (Fig. 1a). The
root nodes, if exist, always constitute a strong component
in the graph, which has no incoming arcs.

(a) Graph with root node 4 (b) Graph is not rooted

Fig. 1. Example: strong components of two graphs

3. OPINION FORMATION AND INFORMATION
SPREAD UNDER SOCIAL INFLUENCE

Interpersonal social influence is a “causal effect of one
actor onto another” (Friedkin, 1998), which can manifest
in changes of the actors’ attitudes and behaviours. Mathe-
matical modeling and quantification of social influence are
long-standing problems in sociology and psychology (Sun
and Tang, 2011). One of the approaches, to a great deal
inspired by Granovetter (1973), relates the ties between
individuals to their positions in the network. Another
approach, broadly used in analysis of complex networks,
measures social ties as statistical correlations between the
attitudes or other values associated to individuals; a social
network is then described by a probabilistic graphical
model (Farasat et al., 2015). These two directions of re-
search mainly deal with static social networks and develop
in the framework of classical Social Network Analysis.

The most interesting, from a systems and control view-
point, approach to social influence considers the influence
as a dynamical mechanism driving the evolution of indi-
vidual opinions and characteristics related to them. These
mechanisms can co-evolve along with the individual’s opin-
ions and behaviours (due to e.g. reflected appraisal mech-
anisms described in Section 5), and give rise to models
of coevolutionary networks (Herrera et al., 2011). The
dynamical systems viewpoint opens up the perspective to
employ well-developed techniques of multi-agent control
for analysis of social systems. This approach gave birth, in
particular, to Social Influence Network Theory (Friedkin
and Johnsen, 2011), inspired by works of French Jr. (1956).

As discussed in Friedkin (2015), the term “opinion forma-
tion” is not very precise, since actually the processes of
interpersonal influence alter individual’s cognitive orien-
tations towards some objects, issues or events. In physical
and engineering literature, the term “opinion” is how-
ever used in a broader sense, denoting some scalar or
multidimensional quantity of interest, associated with a
social actor. Opinions understood in this general sense
can characterize e.g. sets of cultural traits (Axelrod, 1997)
or binary yes/no decisions about participation in a social
movements (Granovetter, 1978). Models of “opinion evo-
lution” under social influence can thus describe processes
of information diffusion, attitude and belief formation, col-
lective behavior etc. Such models can be divided into two
major groups: macroscopic models (referred also as sta-
tistical, Eulerian, continuum-agent, fluid-based, density-
based, kinetic etc.) and microscopic (agent-based).

Macroscopic models describe dynamics of opinion distribu-
tions, paying no attention to alterations in the opinion of a
specific individual. The first models of this kind appeared
in 1930s (Rashevsky, 1939) and stemmed from compart-
mental models used in chemistry and biology (Jacquez,
1985). Such models describe interactions of multiple “com-
partments”, that is, substrates or species (e.g. preys and
predators or susceptible, infected and recovered individu-
als) considered as indecomposable entities. The extension
of this approach to social groups (where a compartment
may represent a fraction of people supporting some can-
didate in a presidential election) naturally leads to socio-
dynamical models in physics (Castellano et al., 2009) and
evolutionary game theory (Maynard Smith, 1982). Macro-



17618	 Brian D.O. Anderson  et al. / IFAC PapersOnLine 53-2 (2020) 17616–17627

scopic models are important, since they give an efficient
computational tool for numerical analysis of large-scale
social groups, where the number of individuals is huge and
the evolution of opinions is nonlinear. Their theoretical
analysis is, however, quite complicated, and only a few
rigorous results on their stability and convergence exist in
the literature, surveyed e.g. in Kolarijani et al. (2021).

Much better studied are agent-based models of opinion
formation, describing the evolution of opinions of indi-
vidual actors. In the case where the opinions are discrete
(vary in a finite set), the corresponding dynamics are de-
scribed by a deterministic or stochastic finite automaton,
as exemplified e.g. by the voter model (Holley and Liggett,
1975), threshold models (Granovetter, 1978), the model of
cultural polarization (Axelrod, 1997) and models of “phase
transitions” (Sznajd-Weron and Sznajd, 2000). In spite of
recent developments in control of discrete-state systems
(such as e.g. Boolean networks or systems over Galois
fields), models with discrete opinions primarily remain
outside the scope of modern control theory, being studied
by methods of probability theory and statistical physics.

Unlike discrete opinion models, agent-based models with
real-valued opinions are governed by ordinary differential
or difference equations, which enables one to apply the
rich control-theoretic “armamentarium”. Notice that the
continuity of opinions does not imply that social actors
display or communicate real numbers to each other: the
data exchanged by them may be quantized (Frasca et al.,
2019) or, more generally, be restricted to a set of discrete
values, called “actions”; the relevant class of models is re-
ferred as CODA (continuous opinion-discrete action) mod-
els (Martins, 2008). The simplest linear models of opinion
formation, however, ignore these effects and stipulate the
iterative averaging (or weighted convex combination) as
the basic mechanism that drives opinion evolution.

3.1 The principal linear models of opinion formation

The first principal model describing opinion evolution
in a social network is now referred to as the DeGroot
model (DeGroot, 1974); a special case was previously ex-
amined in French Jr. (1956) and Harary (1959). Consider
a group with n individuals, where actor i holds an opinion
xi ∈ R. At each period k = 0, 1, 2, . . ., an actor updates
their opinion with a weighted average of the opinions
displayed by themselves and the others. Mathematically,
these dynamics are governed by the equations

xi(k + 1) =

n∑
j=1

aijxj(k), ∀i = 1, . . . , n (2)

that can be rewritten in the more compact matrix form

x(k + 1) = Ax(k), x(k) = (x1(k), . . . , xn(k))
�. (3)

Here A = (aij) is a stochastic matrix of influence weights.

The most typical behavior of the DeGroot model is the
eventual consensus (unanimity) of the opinions, defined as

lim
k→∞

x(k) = c1n, c = c(x(0)). (4)

Consensus in the DeGroot model is equivalent to the
SIA property of the matrix A; the relevant criterion is
formulated as follows (Proskurnikov and Tempo, 2017).

Theorem 1. For a given stochastic matrix A, the following
conditions are equivalent: (i) consensus (4) is established
for every initial condition; (ii) A is a SIA matrix; (iii) the
graph G[A] is rooted, and the strongly connected compo-
nent constituted by the roots is aperiodic. If conditions
(i)-(iii) hold, then the consensus opinion is c = ζ�x(0),
where ζ is the Perron-Frobenius left eigenvector from (1).

Notice that the Perron-Frobenius eigenvector may be
considered as a distribution of social power between the
individuals. The larger is ζi, the more influence actor i
has on the consensus opinion of the group. In the extreme
case, ζ = ei, which means that the group’s opinion always
coincides with the initial opinion of individual i. This
holds, in particular, if the group has a unique stubborn
(or radical) individual i such that aii = 1 (and hence
xi(k) ≡ xi(0)) and i is the single root of the graph G[A]. If
G[A] is strongly connected (A is irreducible), the classical
Perron-Frobenius theorem implies that ζi > 0 ∀i, so that
every actor contributes to the group’s final opinion.

A consensus criterion similar to condition (iii) in Theo-
rem 1 can be obtained for the continuous-time counterpart
of the DeGroot model, introduced by Abelson (1964)

ẋi(t) =
∑

j
aij(xj(t)− xi(t)) ∀i = 1, . . . , n. (5)

Here the matrix A with non-negative entries aij ≥ 0 need
not be stochastic. Consensus is equivalent to the existence
of a root in the graph G[A] (whereas the aperiodicity con-
dition may be discarded). A detailed analysis of Abelson’s
model is available in (Proskurnikov and Tempo, 2017).

Since social groups often fail to reach consensus in spite of
the connectivity, DeGroot’s model is not “rich” enough to
explain their behaviors. One of the explanations for persis-
tent disagreement between the actors is their “anchorage”
at initial positions. This phenomenon is captured by the
seminal Friedkin-Johnsen (FJ) model (Friedkin, 2015)

xi(k + 1) = λi

∑n

j=1
aijxj(k) + (1− λi)xi(0), ∀i,

x(k) = ΛAx(k) + (In −Λ)x(0).
(6)

Here Λ = diag(λ1, . . . , λn), where λi ∈ [0, 1] is actor
i’s susceptibility to social influence; the maximally sus-
ceptible (λi = 1) individuals obey the usual DeGroot’s
equation (2), whereas totally insusceptible (λi = 0) are
stubborn and “stuck” at the initial opinions xi(k) ≡ xi(0).

In the case of Λ = In, the Friedkin-Johnsen model boils
down to (3). For Λ �= In, the matrix ΛA is typically
Schur stable (with eigenvalues in the open unit disk) and
the opinion vector in (6) converges:

x(k) −−−−→
k→∞

V x(0), V = (In −ΛA)−1(In −Λ). (7)

This convergence takes place, for instance, if G[A] is
strongly connected and Λ �= In. Along with scalar opin-
ions, one may consider multidimensional opinions, conve-
niently represented by rows xi = (xi1, . . . , xim), describing
the i-th actor’s positions on m issues. Stacking these rows
into an n×m matrix X, the FJ model becomes

X(k + 1) = ΛAX(k) + (In −Λ)X(0). (8)

Unlike many other models proposed in the literature, the
FJ model has been validated on numerous experiments
with small and medium-size groups (Friedkin and Johnsen,
2011; Friedkin et al., 2019; Friedkin and Bullo, 2017). A
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scopic models are important, since they give an efficient
computational tool for numerical analysis of large-scale
social groups, where the number of individuals is huge and
the evolution of opinions is nonlinear. Their theoretical
analysis is, however, quite complicated, and only a few
rigorous results on their stability and convergence exist in
the literature, surveyed e.g. in Kolarijani et al. (2021).

Much better studied are agent-based models of opinion
formation, describing the evolution of opinions of indi-
vidual actors. In the case where the opinions are discrete
(vary in a finite set), the corresponding dynamics are de-
scribed by a deterministic or stochastic finite automaton,
as exemplified e.g. by the voter model (Holley and Liggett,
1975), threshold models (Granovetter, 1978), the model of
cultural polarization (Axelrod, 1997) and models of “phase
transitions” (Sznajd-Weron and Sznajd, 2000). In spite of
recent developments in control of discrete-state systems
(such as e.g. Boolean networks or systems over Galois
fields), models with discrete opinions primarily remain
outside the scope of modern control theory, being studied
by methods of probability theory and statistical physics.

Unlike discrete opinion models, agent-based models with
real-valued opinions are governed by ordinary differential
or difference equations, which enables one to apply the
rich control-theoretic “armamentarium”. Notice that the
continuity of opinions does not imply that social actors
display or communicate real numbers to each other: the
data exchanged by them may be quantized (Frasca et al.,
2019) or, more generally, be restricted to a set of discrete
values, called “actions”; the relevant class of models is re-
ferred as CODA (continuous opinion-discrete action) mod-
els (Martins, 2008). The simplest linear models of opinion
formation, however, ignore these effects and stipulate the
iterative averaging (or weighted convex combination) as
the basic mechanism that drives opinion evolution.

3.1 The principal linear models of opinion formation

The first principal model describing opinion evolution
in a social network is now referred to as the DeGroot
model (DeGroot, 1974); a special case was previously ex-
amined in French Jr. (1956) and Harary (1959). Consider
a group with n individuals, where actor i holds an opinion
xi ∈ R. At each period k = 0, 1, 2, . . ., an actor updates
their opinion with a weighted average of the opinions
displayed by themselves and the others. Mathematically,
these dynamics are governed by the equations

xi(k + 1) =

n∑
j=1

aijxj(k), ∀i = 1, . . . , n (2)

that can be rewritten in the more compact matrix form

x(k + 1) = Ax(k), x(k) = (x1(k), . . . , xn(k))
�. (3)

Here A = (aij) is a stochastic matrix of influence weights.

The most typical behavior of the DeGroot model is the
eventual consensus (unanimity) of the opinions, defined as

lim
k→∞

x(k) = c1n, c = c(x(0)). (4)

Consensus in the DeGroot model is equivalent to the
SIA property of the matrix A; the relevant criterion is
formulated as follows (Proskurnikov and Tempo, 2017).

Theorem 1. For a given stochastic matrix A, the following
conditions are equivalent: (i) consensus (4) is established
for every initial condition; (ii) A is a SIA matrix; (iii) the
graph G[A] is rooted, and the strongly connected compo-
nent constituted by the roots is aperiodic. If conditions
(i)-(iii) hold, then the consensus opinion is c = ζ�x(0),
where ζ is the Perron-Frobenius left eigenvector from (1).

Notice that the Perron-Frobenius eigenvector may be
considered as a distribution of social power between the
individuals. The larger is ζi, the more influence actor i
has on the consensus opinion of the group. In the extreme
case, ζ = ei, which means that the group’s opinion always
coincides with the initial opinion of individual i. This
holds, in particular, if the group has a unique stubborn
(or radical) individual i such that aii = 1 (and hence
xi(k) ≡ xi(0)) and i is the single root of the graph G[A]. If
G[A] is strongly connected (A is irreducible), the classical
Perron-Frobenius theorem implies that ζi > 0 ∀i, so that
every actor contributes to the group’s final opinion.

A consensus criterion similar to condition (iii) in Theo-
rem 1 can be obtained for the continuous-time counterpart
of the DeGroot model, introduced by Abelson (1964)

ẋi(t) =
∑

j
aij(xj(t)− xi(t)) ∀i = 1, . . . , n. (5)

Here the matrix A with non-negative entries aij ≥ 0 need
not be stochastic. Consensus is equivalent to the existence
of a root in the graph G[A] (whereas the aperiodicity con-
dition may be discarded). A detailed analysis of Abelson’s
model is available in (Proskurnikov and Tempo, 2017).

Since social groups often fail to reach consensus in spite of
the connectivity, DeGroot’s model is not “rich” enough to
explain their behaviors. One of the explanations for persis-
tent disagreement between the actors is their “anchorage”
at initial positions. This phenomenon is captured by the
seminal Friedkin-Johnsen (FJ) model (Friedkin, 2015)

xi(k + 1) = λi

∑n

j=1
aijxj(k) + (1− λi)xi(0), ∀i,

x(k) = ΛAx(k) + (In −Λ)x(0).
(6)

Here Λ = diag(λ1, . . . , λn), where λi ∈ [0, 1] is actor
i’s susceptibility to social influence; the maximally sus-
ceptible (λi = 1) individuals obey the usual DeGroot’s
equation (2), whereas totally insusceptible (λi = 0) are
stubborn and “stuck” at the initial opinions xi(k) ≡ xi(0).

In the case of Λ = In, the Friedkin-Johnsen model boils
down to (3). For Λ �= In, the matrix ΛA is typically
Schur stable (with eigenvalues in the open unit disk) and
the opinion vector in (6) converges:

x(k) −−−−→
k→∞

V x(0), V = (In −ΛA)−1(In −Λ). (7)

This convergence takes place, for instance, if G[A] is
strongly connected and Λ �= In. Along with scalar opin-
ions, one may consider multidimensional opinions, conve-
niently represented by rows xi = (xi1, . . . , xim), describing
the i-th actor’s positions on m issues. Stacking these rows
into an n×m matrix X, the FJ model becomes

X(k + 1) = ΛAX(k) + (In −Λ)X(0). (8)

Unlike many other models proposed in the literature, the
FJ model has been validated on numerous experiments
with small and medium-size groups (Friedkin and Johnsen,
2011; Friedkin et al., 2019; Friedkin and Bullo, 2017). A

continuous-time counterpart of the FJ model was proposed
earlier by Taylor (1968). The FJ and Taylor models
have been recently extended to describe dynamics of
belief systems that can be considered as multidimensional
opinions on several logically related topics (Friedkin et al.,
2016a; Parsegov et al., 2017; Ye et al., 2020).

3.2 Further development: nonlinear and stochastic dynamics

Whereas the aforementioned linear models of opinion
formation may seem too simplistic, many advanced models
studied in the literature essentially stem from them and
partially inherit their structures. Due to limited space,
we outline here only several classes of advanced models,
more details are available in (Mastroeni et al., 2019;
Proskurnikov and Tempo, 2018).

Gossip-based interactions. A principal limitation of the
DeGroot and the Friedkin-Johnsen models is the assump-
tion of simultaneous opinion update, which can apply only
to face-to-face interactions in a small group. The standard
way to take the spontaneity of social interactions into
account is to assume that these interactions are gossip-
based, that is, at each stage only one pair (or a few
pairs) of randomly chosen individuals interact, whereas
the opinions of the remaining individuals are unaltered.
Randomized gossip-based counterparts of the DeGroot
model (2) (with A(k) random) inherit its basic properties,
in particular, convergence of the opinions to a consensus
value under appropriate connectivity assumptions (Fag-
nani and Zampieri, 2008). Gossip-based versions of the
FJ model (Parsegov et al., 2017) exhibit more sophisti-
cated dynamics: the opinions do not converge but oscillate
persistently, whereas the convergence property (7) can be
proved only for their expected or time-averaged values.

Dynamic influence weights. Another serious limita-
tion is the assumption of time-invariant distribution of
influence between individuals: each actor i assigns to self
and other actors j some static weight aij . In reality, the
interrelations between individuals evolve due to numerous
endogenous and exogenous processes. One such process,
modeled as reflected appraisal dynamics, is discussed in
Section 5. Many dynamic effects are caused by the phe-
nomena of homophily and social selection: people wish to
interact with like-minded individuals and assimilate their
opinions more readily than dissimilar ones.

The idea of homophily naturally leads to a plethora of
bounded confidence models, obtained from the DeGroot (2)
and Abelson (5) models by introducing distance-dependent
influence weights aij . The idea of using nonlinear coupling
functions in models of attitude change in order to explain
the opinion disagreement appears in Abelson (1964); how-
ever, the first bounded confidence model was proposed
in Krause (2000) and is now referred to as the Hegselmann-
Krause (HK) model (Hegselmann and Krause, 2002). The
HK model is a nonlinear modification of (2), where

aij(k) =




1

|Ni(k)|
, |xj(k)− xi(k)| ≤ Ri,

0, |xj(k)− xi(k)| > Ri.

Here |Ni(k)| denotes the cardinality of the set Ni(k) =
{j : |xj(k)− xi(k)| ≤ Ri}. In other words, each individual
assimilates only the opinions falling into his/her confidence

interval (paying equal attention to them), whereas the
opinions beyond this interval are ignored. Even if the ini-
tial graph G[A(0)] is strongly connected, the connectivity
can be broken as the opinions evolve. For this reason, un-
like the time-invariant DeGroot’s model, HK model admits
both consensus and clustering of the terminal opinions.

The HK model has been thoroughly studied in the homo-
geneous case (where all confidence bounds are equal R1 =
. . . = Rn = R). In particular, it is known the homogeneous
model always terminates in at most O(n3) steps. Even in
this situation, however, there many open questions related
to the structure of emerging opinions clusters, such as e.g.
the so-called “2R-conjecture” (Kolarijani et al., 2021). The
behavior of opinions in the heterogeneous case remains
an open problem except for special situations (Chazelle
and Wang, 2017). Although the convergence of opinions
is observed in extensive numerical simulations, its mathe-
matical proof, to the best of the authors’ knowledge, is still
elusive. A gossip-based version of the HK model is known
as the Deffuant-Weisbuch model (Deffuant et al., 2001).
For a survey of recent results on dynamics of bounded
confidence models, the reader is referred to (Proskurnikov
and Tempo, 2018; Kolarijani et al., 2021).

Negative ties and structural balance. Abelson (1964)
suggested that one of the reasons for disagreement can
be “boomerang” (reactance, anticonformity) effect: an at-
tempt to convince other people can cause them to adopt an
opposing position. Hence, the convex-combination mecha-
nisms (2) and (5) have to be generalized to allow repulsion
between the opinions. Although presence of negative ties
in opinion formation models has not been secured experi-
mentally and is questioned in some recent works (Takács
et al., 2016), “coopetitive” (cooperative and competitive)
networks arise in abundance in biology and economics.

Natural extensions of the French-DeGroot and the Abel-
son models have been proposed by Altafini (2012). For
instance, the discrete-time Altafini model (Liu et al., 2017)
obeys equation (2), where aij can be positive and negative,
however, the matrix of absolute values (|aij |) is stochastic.
The behavior of such a model is determined by an im-
portant property, termed the structural balance (Heider,
1946), that is, the possibility of dividing the network into
two opposing factions, such that the members within a
single faction positively influence each other, whereas the
relations between members of different factions is negative.
It appears that a structurally balanced and strongly con-
nected graph induces bimodal polarization (or “bipartite
consensus”) of the opinions: the actors in the two opposing
factions converge on the two opposite opinions x∗ and
(−x∗), where x∗ depends on the initial opinion distribu-
tion. An imbalanced strongly connected network exhibits
a degenerate behavior where all opinions converge to 0.
More sophisticated dynamic models (Shi et al., 2019) that
are capable to explain clustering of opinions over some
imbalanced signed graphs. Dynamical mechanisms that
render a signed graph structurally balanced constitute a
self-standing important area of research, a survey of recent
results is available in Cisneros-Velarde et al. (2021). A
recent work by Jia et al. (2016) establishes the relation
between dynamics of structural balance and reflected ap-
praisal mechanisms (Section 5).
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4. INTERPERSONAL INFLUENCE LEARNING

As discussed in the previous sections, the analysis of
opinion dynamics in social networks is a rapidly expanding
research field, and the theoretical results are reaching a
good level of maturity. On the other hand, it should be
noted that most literature on the topic adopts the implicit
assumption that the underlying influence graph is known.

However, while this premise is indeed well justified in
several graph-theoretical control problems, such as dis-
tributed or cooperative control over networks or dis-
tributed decision-making, it becomes less reasonable when
dealing with social networks. If we consider for instance the
celebrated Friedkin-Johnsen model discussed in Section 3,
it is clear that for studying the model’s behavior one needs
to quantify the social ties between the individuals (that is
the numerical value of the entries aij of the influence ma-
trix). We note that in their experiments with small groups
of individuals, Friedkin and Johnsen (2011) were able to
quantify these values by means of an ad-hoc “measuring
procedure” : in the post-discussion people were asked to
distribute “chips” between the individuals they interacted
with, and the chip-count was taken as a subjective measure
of influence exercised by other group members. Clearly,
such a special procedure is hardly replicable in large-
scale social networks, such as those arising in online so-
cial networks (OSN). The massive data in OSN consist
of linked data describing the communications between
any two entities, in the form of text, images, audio, and
video.Efficient analytic tools and algorithms to reconstruct
influence mechanisms are therefore required.

This motivates the line of work that we briefly review
in this section, which we refer to as “network influence
inference”. In this section, we briefly review some recent
techniques proposed in the literature to efficiently tackle
this challenging problem. We specially focus on modern
methodologies that explicitly take into consideration dy-
namics over networks (Wai et al., 2016; Ravazzi et al.,
2018), and leverage the technical background and mathe-
matical foundations introduced in Section 3.

We first observe that the problem discussed in this session
represents a special instance of the general problem of
reconstructing the graph topology from data measured
on the nodes (Wainwright and Jordan, 2008; Koller and
Friedman, 2009). This problem, which goes under the
name of graph learning or network inference, has seen
an increasing interest in the past years: we refer the
reader to Dong et al. (2019) for an excellent survey of
these techniques. Here, we briefly recall two classes of
models, which have gained popularity in literature. Both
approaches start from the collection of (in general scalar)
measurements xi(1), ..., xi(N) at each node i ∈ V.
Probabilistic graphical models (Jordan, 2004; Koller and
Friedman, 2009), stem from the assumption that the ob-
served data are realizations of random independent vari-
ables whose joint probability distribution depends on the
topology of the graph G. Hence, data are interpreted as
outcomes of random experiments, and a graphical model is
introduced to capture the conditional dependence between
random variables. For undirected graphs and continuous
variables, the most adopted models are Markov random

fields (MRF) (Rue and Held, 2005) and Gaussian graphical
models (Wainwright and Jordan, 2008). Markov random
fields require that the random variables at the differ-
ent nodes satisfy a series of local Markov properties. In
particular, these models assume that the values at two
nodes should be conditionally independent, given all other
variables, whenever these nodes are not connected by an
edge (pairwise Markov property). A commonly employed
assumption in probabilistic graphical models is that the
observations are realizations of a multivariate Gaussian
distribution. In this case, the network inference problem
translates into the estimation of the covariance matrix
from observed data. This is usually done by constructing
the Maximum-Likelihood (ML) estimator as in the Graph-
ical Lasso algorithms (Mazumder and Hastie, 2012).

A class of models for describing signals on a graph that
is gaining increasing popularity in the signal processing
community is represented by Graph Signal Processing
(GSP)(Shuman et al., 2013). GSP, generalizing classical
signal processing concepts and tools, enables the process-
ing and analysis of data that take values on the ver-
tices of a graphs. The “spatial dynamics” of such signals
are assumed to be governed by the underlying graph.
While the main directions of research in GSP focus on
the development of methods for analyzing signals defined
over given known graphs, re-defining concepts as such
as Fourier transform, filtering and frequency response for
data residing on graphs, an interest is arising in studying
the dual problem of learning the graph topology from
measurements of the signals on the graph, under specific
assumptions on the characteristics of its graph Fourier
transform. In particular, the most common approach for
GSP-based graph topology reconstruction is based on the
assumption that the underlying graph signal is smooth on
the graph. That is, the links in the graph should be chosen
in such a way that signals on neighboring nodes are close to
each other. As a measure of smoothness of the signal on the
graph, the so-called Laplacian quadratic form is usually
adopted, see Dong et al. (2016) and references therein.

We remark however that the large majority of techniques
discussed in this literature consider graphs with non-
dynamical (static) variables, and undirected links. The few
available extensions to dynamically varying variables and
directed topologies usually turn out to be rather complex.

4.1 Sparsity in social networks

One of the key aspects of opinion networks is that usually
each individual carries social ties, and interacts, with a
small subset of the total set of the considered individ-
uals. This is in accordance with the general observation
that many real world networks exhibit power-law degree
distributions, that is the fraction of nodes with degree k
follows a distribution that decreases as k−γ , with γ > 1.
This kind of rapid decrease in the node degree distribution
has also been confirmed in social networks. For instance,
the empirical degree distribution of the focal nodes of
the Facebook Ego-Networks, retrieved from the Stanford
Network Database (Leskovec and Krevl, 2014) are well
approximated by a power-law with γ ∈ [1.2, 3].
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4. INTERPERSONAL INFLUENCE LEARNING

As discussed in the previous sections, the analysis of
opinion dynamics in social networks is a rapidly expanding
research field, and the theoretical results are reaching a
good level of maturity. On the other hand, it should be
noted that most literature on the topic adopts the implicit
assumption that the underlying influence graph is known.

However, while this premise is indeed well justified in
several graph-theoretical control problems, such as dis-
tributed or cooperative control over networks or dis-
tributed decision-making, it becomes less reasonable when
dealing with social networks. If we consider for instance the
celebrated Friedkin-Johnsen model discussed in Section 3,
it is clear that for studying the model’s behavior one needs
to quantify the social ties between the individuals (that is
the numerical value of the entries aij of the influence ma-
trix). We note that in their experiments with small groups
of individuals, Friedkin and Johnsen (2011) were able to
quantify these values by means of an ad-hoc “measuring
procedure” : in the post-discussion people were asked to
distribute “chips” between the individuals they interacted
with, and the chip-count was taken as a subjective measure
of influence exercised by other group members. Clearly,
such a special procedure is hardly replicable in large-
scale social networks, such as those arising in online so-
cial networks (OSN). The massive data in OSN consist
of linked data describing the communications between
any two entities, in the form of text, images, audio, and
video.Efficient analytic tools and algorithms to reconstruct
influence mechanisms are therefore required.

This motivates the line of work that we briefly review
in this section, which we refer to as “network influence
inference”. In this section, we briefly review some recent
techniques proposed in the literature to efficiently tackle
this challenging problem. We specially focus on modern
methodologies that explicitly take into consideration dy-
namics over networks (Wai et al., 2016; Ravazzi et al.,
2018), and leverage the technical background and mathe-
matical foundations introduced in Section 3.

We first observe that the problem discussed in this session
represents a special instance of the general problem of
reconstructing the graph topology from data measured
on the nodes (Wainwright and Jordan, 2008; Koller and
Friedman, 2009). This problem, which goes under the
name of graph learning or network inference, has seen
an increasing interest in the past years: we refer the
reader to Dong et al. (2019) for an excellent survey of
these techniques. Here, we briefly recall two classes of
models, which have gained popularity in literature. Both
approaches start from the collection of (in general scalar)
measurements xi(1), ..., xi(N) at each node i ∈ V.
Probabilistic graphical models (Jordan, 2004; Koller and
Friedman, 2009), stem from the assumption that the ob-
served data are realizations of random independent vari-
ables whose joint probability distribution depends on the
topology of the graph G. Hence, data are interpreted as
outcomes of random experiments, and a graphical model is
introduced to capture the conditional dependence between
random variables. For undirected graphs and continuous
variables, the most adopted models are Markov random

fields (MRF) (Rue and Held, 2005) and Gaussian graphical
models (Wainwright and Jordan, 2008). Markov random
fields require that the random variables at the differ-
ent nodes satisfy a series of local Markov properties. In
particular, these models assume that the values at two
nodes should be conditionally independent, given all other
variables, whenever these nodes are not connected by an
edge (pairwise Markov property). A commonly employed
assumption in probabilistic graphical models is that the
observations are realizations of a multivariate Gaussian
distribution. In this case, the network inference problem
translates into the estimation of the covariance matrix
from observed data. This is usually done by constructing
the Maximum-Likelihood (ML) estimator as in the Graph-
ical Lasso algorithms (Mazumder and Hastie, 2012).

A class of models for describing signals on a graph that
is gaining increasing popularity in the signal processing
community is represented by Graph Signal Processing
(GSP)(Shuman et al., 2013). GSP, generalizing classical
signal processing concepts and tools, enables the process-
ing and analysis of data that take values on the ver-
tices of a graphs. The “spatial dynamics” of such signals
are assumed to be governed by the underlying graph.
While the main directions of research in GSP focus on
the development of methods for analyzing signals defined
over given known graphs, re-defining concepts as such
as Fourier transform, filtering and frequency response for
data residing on graphs, an interest is arising in studying
the dual problem of learning the graph topology from
measurements of the signals on the graph, under specific
assumptions on the characteristics of its graph Fourier
transform. In particular, the most common approach for
GSP-based graph topology reconstruction is based on the
assumption that the underlying graph signal is smooth on
the graph. That is, the links in the graph should be chosen
in such a way that signals on neighboring nodes are close to
each other. As a measure of smoothness of the signal on the
graph, the so-called Laplacian quadratic form is usually
adopted, see Dong et al. (2016) and references therein.

We remark however that the large majority of techniques
discussed in this literature consider graphs with non-
dynamical (static) variables, and undirected links. The few
available extensions to dynamically varying variables and
directed topologies usually turn out to be rather complex.

4.1 Sparsity in social networks

One of the key aspects of opinion networks is that usually
each individual carries social ties, and interacts, with a
small subset of the total set of the considered individ-
uals. This is in accordance with the general observation
that many real world networks exhibit power-law degree
distributions, that is the fraction of nodes with degree k
follows a distribution that decreases as k−γ , with γ > 1.
This kind of rapid decrease in the node degree distribution
has also been confirmed in social networks. For instance,
the empirical degree distribution of the focal nodes of
the Facebook Ego-Networks, retrieved from the Stanford
Network Database (Leskovec and Krevl, 2014) are well
approximated by a power-law with γ ∈ [1.2, 3].

4.2 Model-based social network inference

As previously discussed, most available approaches to
network inference do not consider signals evolving in a
dynamical way. On the other hand, we have now precise
models that describe the opinion evolution on a network.
This consideration motivates the necessity of designing
inference schemes that start from the assumption that
the dynamical model of opinion dynamics is available (as
described in Section 3), and address the following question:
Given measurements of the evolution of the opinions, and
a model of the opinion evolution, how can one estimate the
interaction graph and the strength of the connections?

This research question has generated a recent line of re-
search, which we aim to briefly overview in this tutorial.
First, we point out that two different strategies to estimate
the interactions in the network can be considered, that
we refer to as persistent measurement and sporadic mea-
surement identification procedures. In the experiments of
the first kind, the opinions are observed during T rounds
of conversation and the influence matrix is estimated as
the matrix best fitting the dynamics for 0, . . . , T − 1. In
such cases, the problem becomes a “classical” system iden-
tification problem, and available results on parsimonious
systems identification can be used. However, this approach
would require knowing the discrete-time indices for the
observations made and to store a sufficiently long subse-
quence of opinions. Moreover, the system could be updated
with an unknown interaction rate and the interaction times
between agents may be not observable in most practical
scenarios (Timme, 2007). These considerations render the
persistent measurement approach not applicable to most
practical situations, as also discussed in Wai et al. (2016).

To circumvent these issues, a second class of approaches
has recently arisen, which only use sporadic data. In
particular, we review here two approaches: in the first one,
whose general philosophy was introduced in Wai et al.
(2016), the agents interact until their opinions stabilize,
and the identification problem considers only the initial
and the final opinions. In the second one, it is only assumed
that one has access to random measurements of the agents’
opinions, and statistics of the measurement process are
used to estimate the structure of the social network that
generated the measurements. We briefly review these two
approaches in the next subsections.

4.3 Infinite horizon approach to influence estimation

We consider the problem of reconstructing the inference
matrix A starting from observations of the opinion on n
individuals, who simultaneously discuss m different (and
unrelated) topics S = {0, 1, 2, . . . ,m− 1}. First, denoting
the opinion of individual i on topic s at time k as xi(k, s),
we can introduce the following opinion matrix at time k

X(k) = [x(k, 0) · · · x(k,m− 1)]

=



x1(k, 0) · · · x1(k,m− 1)

...
...

xn(k, 0) · · · xn(k,m− 1)


 ∈ Rn×m

which collects the opinions of all individuals (rows) on all
topics (columns).

We assume that the opinions evolve according to the
multidimensional Friedkin-Johnsen (8). The problem we
aim at studying is the following: Given the prejudices X(0)
and final opinions X(∞) = limk→∞ X(k), estimate the
influence matrix A from this data. As will be clarified later,
for simplicity of exposition, we also assume the knowledge
of the susceptibility matrix Λ.

First, it should be noted that some assumptions are
necessary in order to render the problem well posed. In
particular, we assume here that: i) the initial opinions of
the individuals are sufficiently different: for all � ∈ [m]
there exist i, j ∈ V such that xi(0, �) �= xj(0, �), ii) at least
one individual is not completely open-minded: Λ �= In,
iii) there are no totally stubborn individuals: λi > 0 for
all i ∈ V, and iv) dynamics are stable: for any node v ∈ V
there exists a path from v to a node m such that λm < 1.

We note that all these assumptions are necessary to
guarantee that the identification problem admits a unique
solution. In particular, regarding i), it is immediately
observed that if the initial opinions are at consensus, then
also the final opinions will still be at consensus (with the
same value): in this case any stochastic matrix A would be
consistent with the data. Assumption iii) and iv) guarantee
that all agents’ opinions converge to a common value,
which is a convex combination of the initial opinions with
weights being a function of A. Under these assumptions,
recovering A amounts at solving the following equations{

(In −ΛA)X(∞) = (In −Λ)X(0),

A1 = 1, A ≥ 0,Λ ≥ 0.
(9)

As discussed in Ravazzi et al. (2018), assumptions i)-iv)
are not sufficient to guarantee uniqueness of the solution,
due to the ambiguity introduced by the product ΛA in
(8); see (Ravazzi et al., 2018, Proposition 1). To avoid this
ambiguity, for the sake of simplicity, we assume that Λ is
known. Clearly, whenever m ≥ n (and the system in (9) is
full rank) the equations (9) admit a unique solution, which
can be found by linear programming.

In Ravazzi et al. (2018) it is shown that when the number
of topics m < n the sparsity of the network can be ex-
ploited to design an algorithm that finds a solution starting
from a number of topics that increases only logarithmically
with the network size. This is briefly reviewed next.

4.4 Sparse identification

We start from the observation that a social network
is typically sparse, in the sense that the interactions
among the agents are few when compared to the network
dimension. Given Λ, X(0), and X(∞), this leads us
to estimate the social influence networks by solving a
sparsity problem. Then, determining the sparsest network
that is compatible with the available information can
be formulated as the following �1-minimization problem
Candès et al. (2006)

min
A∈Rn×n

‖A‖1, s.t.

{
HA� = b�,

A1 = 1
(10)

with H
.
= X(∞)� = X(0)�(In − Λ)(In − ΛA)−� and

b
.
= Λ−1[X(∞) − (In − Λ)X(0)]. It can be noticed

that this problem is separable into n subproblems, and
hence each row of A can be learned independently from
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the others; see again Ravazzi et al. (2018) for details.
This type of problem has been extensively studied in the
Compressed Sensing (CS) literature (Eldar and Kutyniok,
2012). Several reconstruction algorithms are developed in
literature to solve this optimization including iterative
algorithms based on convex/nonconvex relaxation with
global linear (Daubechies et al., 2010) or local superlinear
convergence (Daubechies et al., 2010; Ravazzi and Magli,
2015). Moreover, it is well known that under certain
conditions on the matrix H, the number of measurements
m, and the sparsity of A, the exact solution can be
obtained (Candès et al., 2006). However, here the sensing
matrixH is not fixed, but it depends on the unknowns and
is dictated by the evolution of the opinions. This makes it
highly nontrivial to apply standard proof techniques from
the CS literature 1 .

In (Ravazzi et al., 2018, Theorem 1) it is shown that if the
initial opinions are independent and have a Gaussian-like
distribution and the number of considered topics satisfies
the following condition

m ≥ 4c
(1 + λmax)

2(1− λmin)
2

(1− λmax)4
dmax log n (11)

then the solution to (10) provides an exact solution with

probability at least 1 − c′ e−c′′m, where c, c′ and c′′ are
positive constants, dmax and λmax are the maximum degree
of the network and the maximum susceptibility of the
agents, respectively.

This result is important because it shows that exact re-
covery can be generally obtained considering a number
of topics that increases only logarithmically with the di-
mension of the network. Moreover, it provides an explicit
dependence of the difficulty of the network reconstruction
problem on some characteristic parameters of the network:
i) the agents’ susceptibility to other opinions cannot be
too high: if λmax → 1 then the number of measurements
needed for recovery diverges to infinity, ii) it provides
insight on the influence of the degree distribution in the so-
cial network. For more details and numerical experiments
the reader can refer to (Ravazzi et al., 2018).

4.5 Random opinion measurement approach

Recent works (Hojjatinia et al., 2020) propose an approach
to the network influence estimation problem based on the
availability of measurements of the opinions at random
times instants. These techniques assume that the opinions
evolve according to gossip-based interactions (see Section
3). In particular, we consider a model proposed in Frasca
et al. (2013), in which at each interaction time a subset
of nodes is randomly selected from a uniform distribution
over V. If the node i is active at time k, agent i interacts
with a randomly chosen neighbor j and updates its belief
according to a convex combination of its previous belief,
the belief of j, and its initial belief.

Given this gossip opinion evolution model, in Hojjatinia
et al. (2020) techniques are presented to identify the
influence matrix A starting from partial observations

z(k) = P (k)x(k) (12)

1 In particular, it can be shown that the sensing matrix H does not
satisfy the so-called Restricted Isometry Property (Candes, 2008) yet
satisfies the Restricted Eigenvalue Condition (Ravazzi et al., 2018).

where P (k) is a random measurement matrix defined by

P (k) = diag(p(k))

and p(k) ∈ {0, 1}V is a random selection vector with
known distribution. This setting is rather general, and it
captures the following observation schemes:

Intermittent observations. This model captures situations
in which the actual rates at which the interactions occur
is not perfectly known, and thus sampling time is different
from interaction time. This can be obtained setting

p(k) =

{
1 w.p. ρ ∈ (0, 1)

0 otherwise.

That is, at step k > 0 all observations are available with
probability ρ.

Independent random sampling This model captures situa-
tions in which only a subset of individuals can be contacted
(e.g. random interviews). In this case, the selection vector
at time k has components pi(k) distributed according to a
Bernoulli distribution with parameters ρi for all individu-
als i, that is the opinions are observed independently with
probability ρi ∈ [0, 1]. When all observations probabilities
are equal, i.e. ρi = ρ for all i we have independent and
homogeneous sampling.

The identification problem hence becomes the following:
Given the sequence of observations {z(k)}tk=1 find an

estimate Ât of the matrix A. In particular, in Hojjatinia
et al. (2020) theoretical conditions are given on the number
of samples guaranteeing an error not larger than a fixed
tolerance ε with high probability.

The techniques developed in Hojjatinia et al. (2020) follow
an identification approach inspired by the results in Rao
et al. (2017) to reconstruct the influence matrix. Under the
same conditions i)-iv) outlined above (9), the dynamics
converge almost surely and a sort of Yule-Walker relation
used for parameter estimation in autoregressive processes
holds. More precisely, it can be shown that

E
[
x(k)x(k + 1)�

]
= E

[
x(k)x(k)�

]
f(A,Λ)+E[(∞)]g(Λ).

(13)
where f(A,Λ), g(Λ) are linear in A and Λ.

Based on the collection of partial observations z(k), an ap-
proximation of matrices E

[
x(k)x(k)�

]
, E

[
x(k)x(k + 1)�

]
and E

[
x(k)x(k)�

]
leveraging the Birkhoff ergodic theo-

rem and the information on influence matrix is retrieved
exploiting relation (13).

Ongoing research focuses on extensions of the inference
method to nonlinear opinion dynamics models, working
on real data and combining the use of modern machine
learning tools and statistical inference models (Longo
et al., 2019).

5. DYNAMICS OF REFLECTED SELF–APPRAISAL

The previous two sections explored a number of works
stemming from the fundamental DeGroot and FJ models.
In this section, we narrow the focus to a specific and much
more recent extension of the DeGroot model, termed the
DeGroot–Friedkin model (Jia et al., 2015).

It is common to observe that, over the course of discussion
on a sequence of topics within a social network, an individ-
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the others; see again Ravazzi et al. (2018) for details.
This type of problem has been extensively studied in the
Compressed Sensing (CS) literature (Eldar and Kutyniok,
2012). Several reconstruction algorithms are developed in
literature to solve this optimization including iterative
algorithms based on convex/nonconvex relaxation with
global linear (Daubechies et al., 2010) or local superlinear
convergence (Daubechies et al., 2010; Ravazzi and Magli,
2015). Moreover, it is well known that under certain
conditions on the matrix H, the number of measurements
m, and the sparsity of A, the exact solution can be
obtained (Candès et al., 2006). However, here the sensing
matrixH is not fixed, but it depends on the unknowns and
is dictated by the evolution of the opinions. This makes it
highly nontrivial to apply standard proof techniques from
the CS literature 1 .

In (Ravazzi et al., 2018, Theorem 1) it is shown that if the
initial opinions are independent and have a Gaussian-like
distribution and the number of considered topics satisfies
the following condition

m ≥ 4c
(1 + λmax)

2(1− λmin)
2

(1− λmax)4
dmax log n (11)

then the solution to (10) provides an exact solution with

probability at least 1 − c′ e−c′′m, where c, c′ and c′′ are
positive constants, dmax and λmax are the maximum degree
of the network and the maximum susceptibility of the
agents, respectively.

This result is important because it shows that exact re-
covery can be generally obtained considering a number
of topics that increases only logarithmically with the di-
mension of the network. Moreover, it provides an explicit
dependence of the difficulty of the network reconstruction
problem on some characteristic parameters of the network:
i) the agents’ susceptibility to other opinions cannot be
too high: if λmax → 1 then the number of measurements
needed for recovery diverges to infinity, ii) it provides
insight on the influence of the degree distribution in the so-
cial network. For more details and numerical experiments
the reader can refer to (Ravazzi et al., 2018).

4.5 Random opinion measurement approach

Recent works (Hojjatinia et al., 2020) propose an approach
to the network influence estimation problem based on the
availability of measurements of the opinions at random
times instants. These techniques assume that the opinions
evolve according to gossip-based interactions (see Section
3). In particular, we consider a model proposed in Frasca
et al. (2013), in which at each interaction time a subset
of nodes is randomly selected from a uniform distribution
over V. If the node i is active at time k, agent i interacts
with a randomly chosen neighbor j and updates its belief
according to a convex combination of its previous belief,
the belief of j, and its initial belief.

Given this gossip opinion evolution model, in Hojjatinia
et al. (2020) techniques are presented to identify the
influence matrix A starting from partial observations

z(k) = P (k)x(k) (12)

1 In particular, it can be shown that the sensing matrix H does not
satisfy the so-called Restricted Isometry Property (Candes, 2008) yet
satisfies the Restricted Eigenvalue Condition (Ravazzi et al., 2018).

where P (k) is a random measurement matrix defined by

P (k) = diag(p(k))

and p(k) ∈ {0, 1}V is a random selection vector with
known distribution. This setting is rather general, and it
captures the following observation schemes:

Intermittent observations. This model captures situations
in which the actual rates at which the interactions occur
is not perfectly known, and thus sampling time is different
from interaction time. This can be obtained setting

p(k) =

{
1 w.p. ρ ∈ (0, 1)

0 otherwise.

That is, at step k > 0 all observations are available with
probability ρ.

Independent random sampling This model captures situa-
tions in which only a subset of individuals can be contacted
(e.g. random interviews). In this case, the selection vector
at time k has components pi(k) distributed according to a
Bernoulli distribution with parameters ρi for all individu-
als i, that is the opinions are observed independently with
probability ρi ∈ [0, 1]. When all observations probabilities
are equal, i.e. ρi = ρ for all i we have independent and
homogeneous sampling.

The identification problem hence becomes the following:
Given the sequence of observations {z(k)}tk=1 find an

estimate Ât of the matrix A. In particular, in Hojjatinia
et al. (2020) theoretical conditions are given on the number
of samples guaranteeing an error not larger than a fixed
tolerance ε with high probability.

The techniques developed in Hojjatinia et al. (2020) follow
an identification approach inspired by the results in Rao
et al. (2017) to reconstruct the influence matrix. Under the
same conditions i)-iv) outlined above (9), the dynamics
converge almost surely and a sort of Yule-Walker relation
used for parameter estimation in autoregressive processes
holds. More precisely, it can be shown that

E
[
x(k)x(k + 1)�

]
= E

[
x(k)x(k)�

]
f(A,Λ)+E[(∞)]g(Λ).

(13)
where f(A,Λ), g(Λ) are linear in A and Λ.

Based on the collection of partial observations z(k), an ap-
proximation of matrices E

[
x(k)x(k)�

]
, E

[
x(k)x(k + 1)�

]
and E

[
x(k)x(k)�

]
leveraging the Birkhoff ergodic theo-

rem and the information on influence matrix is retrieved
exploiting relation (13).

Ongoing research focuses on extensions of the inference
method to nonlinear opinion dynamics models, working
on real data and combining the use of modern machine
learning tools and statistical inference models (Longo
et al., 2019).

5. DYNAMICS OF REFLECTED SELF–APPRAISAL

The previous two sections explored a number of works
stemming from the fundamental DeGroot and FJ models.
In this section, we narrow the focus to a specific and much
more recent extension of the DeGroot model, termed the
DeGroot–Friedkin model (Jia et al., 2015).

It is common to observe that, over the course of discussion
on a sequence of topics within a social network, an individ-

ual may become increasingly (or decreasingly) confident in
their own opinion as a consequence of observing that they
are exerting more and more (or less and less) influence
on the outcome of the discussion. This is an example of
a feedback mechanism in social networks, termed reflected
self-appraisal (Cooley, 1992; Shrauger and Schoeneman,
1979). The DeGroot–Friedkin model aims to capture this
phenomenon, and is consequently highly nonlinear; we
elect to provide somewhat more details to help elucidate
the modeling and analysis, for the benefit of readers who
are interested in how system and control theoretic methods
can be applied to expand existing models.

Suppose that individuals in a strongly connected influence
network are participating in discussions covering differ-
ent topics sequentially, with the topics indexed a topic
sequence S = {0, 1, 2, . . . }. We stress that in this sec-
tion, the network sequentially discusses a single topic at
a time, unlike Section 4 which assumed the simultaneous
discussion of all topics. It is assumed that each topic is dis-
cussed through to consensus (which is possible under the
assumptions of Theorem 1), and then after each individual
undergoes the appraisal process, the network moves on to
discuss the next topic in the sequence.

We aim to understand a person’s influence on a discus-
sion outcome, and how the resultant updating of their
self-confidence (which depends on their influence) affects
discussion on the next topic.

The discussion of each single topic occurs according to
the DeGroot model (2), and we define aii ≥ 0 in (2) as
individual i’s self-confidence. Since aii may depend on the
topic, we write it as aii(s) and for topic s ∈ S, the opinion
xi(k, s) of individual i evolves for k = 0, 1, . . . as

xi(k + 1, s) = aii(s)xi(k, s) + (1− aii(s))

n∑
j �=i

cijxj(k, s),

(14)

with aij(s) � (1 − aii(s))cij . Here, cij ≥ 0 is assumed to
be independent of s (though we will relax this assumption
in the sequel) and it captures the relative trust individual
i accords to individual j �= i. With cii = 0, we also require
that

∑n
j=1 cij = 1 for all i ∈ {1, . . . , n}. Then it is evident

that as aii(s) evolves along the topic sequence s = 0, 1, . . .
(in a manner described in detail below), there continues
to hold

∑n
j=1 aij(s) = 1 for all i ∈ {1, . . . , n} and for all

s ∈ S, as per the DeGroot model in (2). In summary, the
opinion discussion updates for each topic s ∈ S via

x(k + 1, s) = A(s)x(k, s), (15)

with

A(s) = diag(aii(s)) + (In − diag(aii(s)))C (16)

row-stochastic, while evidently the matrixC = (cij) is also
row-stochastic. The DeGroot–Friedkin model aims to for-
mulate a dynamics for aii(s) that captures the mechanism
of reflected self-appraisal, which we now address.

5.1 Evolution by Reflected Self-Appraisal

Consider a topic s ∈ S and let G[C] be strongly connected.
If (case 1) aii(s) < 1 ∀ i and ∃j : ajj(s) > 0, then
G[A(s)], with A(s) given by (16), is strongly connected
and aperiodic (Jia et al., 2015; Ye et al., 2018). If instead

(case 2) ∃k : ajj(s) = 1 and aii(s) < 1 ∀ i �= j, then
G[A(s)] is rooted, with root node vj (Jia et al., 2015; Ye
et al., 2018). For typical, and virtually generic initial aii(0),
these two cases are the only outcomes for all s ∈ S. We
can then assert that

lim
k→∞

x(k, s) = ζ�(s)x(0, s)1n =

n∑
i=1

ζi(s)xi(0, s)1n. (17)

Here, ζ�(s) is the left Perron-Frobenius eigenvector of the
SIA matrix A(s) from (1); in case 1, ζi(s) > 0 ∀ i, and
in case 2, ζ�(s) = ej . Section 3 explained that the i-th
entry ζi(s) is the relative contribution, or social power, of
individual i in forming the consensus value of topic s. The
DeGroot–Friedkin model posits on the conclusion of each
topic’s discussion, the reflected self-appraisal mechanism
drives each individual i to update their self-confidence for
the next topic to be the social power of the current topic:

aii(s+ 1) = ζi(s). (18)

Of course, for the following topic s+1, the influence matrix
A(s + 1) is obtained from (16) but with s + 1 replacing
s. We have so far assumed that C does not depend on s,
i.e. that the relative strength of the interactions between
individuals, taking no account of self-weighting, is constant
with s. If individual 1 treats individual 2 twice as reliable
as individual 3 for topic 0, that same proportionality
will be maintained over all topics. Importantly, what
changes is the overall weight individual 1 gives to all
opinions other than his or her own. This is because in
adjusting the self-weight to ensure aii(s + 1) = ζi(s), a
countervailing adjustment for the weighting is placed on
all others’ opinions; setting aij(s+ 1) = (1− ζi(s))cij(s)
ensures that there holds

∑n
j=1 aij(s + 1) = 1 as required

in the DeGroot model.

One key task is to determine the behavior of ζi(s) in
progression through the sequence of topics s = 0, 1, 2, . . ..
To do this, let us first impose the following assumption.

Assumption 1. The graph G[C] of the relative interaction
matrix C is strongly connected, with n ≥ 3 nodes. The
initial conditions 2 satisfy (i) ∃j : ajj(0) > 0 and aii(0) <
1, ∀ i or (ii) ∃i : aii(0) = 1 and ajj(0) < 1, ∀ j �= i,

The work (Jia et al., 2015) showed that under Assump-
tion 1, one can derive that

ζ(s+ 1) = F (ζ(s)) (19)

where

F (ζ) =




ei if ζi = 1 for any i

1∑n
i=1

γi

1−ζi




γ1
1− ζ1

...
γn

1− ζn


 otherwise

(20)

with γi > 0 being the ith entry of the dominant left
eigenvector γ� of C. Ye et al. (2018) show that on ∆n

the map F : ∆n �→ ∆n is smooth, with ζ(s) ∈ ∆n for all
s > 0 under Assumption 1. Much of the subsequent work

2 The work (Jia et al., 2015) first derived F for restricted initial
conditions satisfying

∑n

i=1
aii(0) = 1. The paper Ye et al. (2018)

showed F can be defined for the more general case stated here.
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on the DeGroot–Friedkin model has focused on analysing
(19). We next cover some of the fundamental results.

5.2 Analysis of the DeGroot–Friedkin Model

We summarise a number of results from the papers (Jia
et al., 2015; Ye et al., 2018), but first define a topology
class giving rise to distinctive convergence outcomes in the
DeGroot–Friedkin model.

Definition 1. (Star Graph). A strongly connected graph
G[C] is termed a star graph if and only if there exists
a unique node vi, the ‘centre’ node, such that every edge
in G[C] is either outgoing or incoming with respect to vi.

Theorem 2. Consider the system in (19), with n ≥ 3,
under Assumption 1. If ∃j : ajj(0) = 1 and aii(0) <
1, ∀ i �= j, then ζ(s) = ej , ∀ s > 0. Let ∃i : aii(0) > 0 and
ajj(0) < 1, ∀ j. The following convergence results hold:

(1) If G[C] is a star graph with centre node designated
as v1 (without loss of generality), then lims→∞ ζ(s) =
e1. Convergence is asymptotic but not exponentially
fast. The remaining fixed points of F are given by
ej , j �= 1, and are unstable.

(2) If G[C] is not a star graph, then lims→∞ ζ(s) = ζ∗

exponentially fast, where ζ∗ ∈ int(∆n) is the unique
fixed point of the map F in ∆n \ {ej , j = 1, . . . , n}.
All other fixed points F are given by ej , j = 1, . . . , n,
and are unstable.

The convergence proof in (Jia et al., 2015) used LaSalle’s
Invariance Principle to demonstrate asymptotic conver-
gence for both star and non-star G[C], after a separate
proof of uniqueness of ζ∗. Exponential convergence for the
non-star case was first established in (Ye et al., 2018) using
nonlinear contraction analysis relying on the specific func-
tional form of F in (20), and the method simultaneously
proved uniqueness of ζ∗. Further, exponential convergence
for star graphs was disproved. An alternative proof for
(local) exponential convergence was provided in (Anderson
and Ye, 2018), relying on a generalization of the Lefschetz–
Hopf Theorem of differential topology that at the same
time established uniqueness of ζ∗. The approach did not
use the specific functional form of (19), but only drew on
certain topological properties of the updating map in (20).

Analysis of Final Social Power: One aspect of particu-
lar interest is evaluating the limiting social power vector ζ∗

for non-star G[C], which also describes for each individual
the limiting self-confidence (social power). Since (20) is
a highly nonlinear mapping, it is generally speaking not
possible to obtain an explicit expression for the fixed point
ζ∗. Nonetheless, several conclusions can be obtained.

First, for any i, j ∈ {1, . . . , n}, there holds ζ∗j > ζ∗i if and
only if γj > γi, and ζ∗j = ζ∗i if and only if γj = γi (Jia et al.,
2015). Unsurprisingly, the ordering of the γi (often termed
eigenvector centrality in other network science literature),
also reflects the ordering of the final social powers.

Second, Ye et al. (2018) showed that there holds

ζ∗i ≤ γi
1− γi

, ∀ i ∈ {1, . . . , n}. (21)

Thus, there exists an upper bound on the final social power
of all individuals in the network. For G[C] with γi ≤ 1/3

for all i, a bound on the rate of convergence rate of (19)
to ζ∗ can also be obtained (Ye et al., 2018, Lemma 3).

Dynamic Relative Interaction Topology: Amajor ex-
tension arises from two intuitive observations that in many
social networks, (i) individuals may form new friendships,
eliminate old ones, or adjust the level of interactions, and
(ii) one individual will have different expertise for different
topics, which will affect the respect accorded to him or
her by other members of the network. This drives us to
consider G[C(s)] = G[Cσ(s)], where σ(s) is a switching
signal capturing the topic-specific nature of the relative
interaction matrix C(s). It is assumed that σ(s) is inde-
pendent of ζ(s), s ≥ 0. Coping with such time-variation,
including importantly periodic time-variation (such as oc-
curs when a committee meets regularly to cycle through
at each meeting a standard set of topics), is difficult, but
not impossible. The system becomes

ζ(s+ 1) = F σ(s)(ζ(s)) (22)

with F σ(s) defined similarly to that in (20) though γi(s) =
γi,σ(s) replaces γi, for all i ∈ {1, . . . , n}. We now have
a nonlinear switched discrete-time system in (22); while
the LaSalle-based approach of (Jia et al., 2015) no longer
applies, the nonlinear contraction analysis advanced by Ye
et al. (2018) for the original dynamics (19) does. For the
system (22) and taking G[C(s)] to be a strongly connected
non-star graph for all s and initial conditions satisfying
∃j : ajj(0) > 0 and aii(0) < 1, ∀ i, there holds

lim
s→∞

ζ(s) = ζ∗(s) (23)

exponentially fast. One can term ζ∗(s), s ≥ 0 as the
“unique limiting trajectory” of (22) determined uniquely
by the sequence of switching Cσ(s). Periodic switching is
a special case, and in such instances, ζ∗(s) is a periodic
trajectory. The ordering result detailed above has yet to
be established for dynamic topology systems. However,
and perhaps surprisingly, the upper bound in (21) and
convergence rate result detailed below (21), can be estab-
lished for networks with dynamic topology, with obvious
adjustments because convergence occurs to the unique
limiting trajectory ζ∗(s) as opposed to a fixed point ζ∗.

The key conclusion from examining dynamically changing
relative interaction topologies is that sequential opinion
discussion removes initial social power/self-confidence ex-
ponentially fast, and self-confidence/social power evolving
via reflected self-appraisal eventually depends only on the
sequence of topology structures, i.e. the distinct agent-
to-agent interactions. We illustrate with a simulation ex-
ample; Fig. 2 depicts 6 individuals discussing topics over
a periodically-varying network. Keeping the network un-
changed, we initialize the system with two different sets
of initial conditions, â and ã, satisfying Assumption 1,
and with âii(0) �= ãii(0) for every i ∈ {1, . . . , n}. For
individual i, the social power trajectory ζi(s) converges
exponentially fast (by about the 8th topic) to the unique,
periodic trajectory ζ∗i (s), s ≥ 0 independently of the initial
self-confidence (dotted line for âii(0), solid line for ãii(0)).

Behavior in Self-Appraisal Dynamics: The DeGroot-
Friedkin model hypothesizes that reflected self-appraisal
leads to the update (18), in which an individual’s self-
confidence for topic s+1, viz. aii(s+1), is precisely their so-
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on the DeGroot–Friedkin model has focused on analysing
(19). We next cover some of the fundamental results.

5.2 Analysis of the DeGroot–Friedkin Model

We summarise a number of results from the papers (Jia
et al., 2015; Ye et al., 2018), but first define a topology
class giving rise to distinctive convergence outcomes in the
DeGroot–Friedkin model.

Definition 1. (Star Graph). A strongly connected graph
G[C] is termed a star graph if and only if there exists
a unique node vi, the ‘centre’ node, such that every edge
in G[C] is either outgoing or incoming with respect to vi.

Theorem 2. Consider the system in (19), with n ≥ 3,
under Assumption 1. If ∃j : ajj(0) = 1 and aii(0) <
1, ∀ i �= j, then ζ(s) = ej , ∀ s > 0. Let ∃i : aii(0) > 0 and
ajj(0) < 1, ∀ j. The following convergence results hold:

(1) If G[C] is a star graph with centre node designated
as v1 (without loss of generality), then lims→∞ ζ(s) =
e1. Convergence is asymptotic but not exponentially
fast. The remaining fixed points of F are given by
ej , j �= 1, and are unstable.

(2) If G[C] is not a star graph, then lims→∞ ζ(s) = ζ∗

exponentially fast, where ζ∗ ∈ int(∆n) is the unique
fixed point of the map F in ∆n \ {ej , j = 1, . . . , n}.
All other fixed points F are given by ej , j = 1, . . . , n,
and are unstable.

The convergence proof in (Jia et al., 2015) used LaSalle’s
Invariance Principle to demonstrate asymptotic conver-
gence for both star and non-star G[C], after a separate
proof of uniqueness of ζ∗. Exponential convergence for the
non-star case was first established in (Ye et al., 2018) using
nonlinear contraction analysis relying on the specific func-
tional form of F in (20), and the method simultaneously
proved uniqueness of ζ∗. Further, exponential convergence
for star graphs was disproved. An alternative proof for
(local) exponential convergence was provided in (Anderson
and Ye, 2018), relying on a generalization of the Lefschetz–
Hopf Theorem of differential topology that at the same
time established uniqueness of ζ∗. The approach did not
use the specific functional form of (19), but only drew on
certain topological properties of the updating map in (20).

Analysis of Final Social Power: One aspect of particu-
lar interest is evaluating the limiting social power vector ζ∗

for non-star G[C], which also describes for each individual
the limiting self-confidence (social power). Since (20) is
a highly nonlinear mapping, it is generally speaking not
possible to obtain an explicit expression for the fixed point
ζ∗. Nonetheless, several conclusions can be obtained.

First, for any i, j ∈ {1, . . . , n}, there holds ζ∗j > ζ∗i if and
only if γj > γi, and ζ∗j = ζ∗i if and only if γj = γi (Jia et al.,
2015). Unsurprisingly, the ordering of the γi (often termed
eigenvector centrality in other network science literature),
also reflects the ordering of the final social powers.

Second, Ye et al. (2018) showed that there holds

ζ∗i ≤ γi
1− γi

, ∀ i ∈ {1, . . . , n}. (21)

Thus, there exists an upper bound on the final social power
of all individuals in the network. For G[C] with γi ≤ 1/3

for all i, a bound on the rate of convergence rate of (19)
to ζ∗ can also be obtained (Ye et al., 2018, Lemma 3).

Dynamic Relative Interaction Topology: Amajor ex-
tension arises from two intuitive observations that in many
social networks, (i) individuals may form new friendships,
eliminate old ones, or adjust the level of interactions, and
(ii) one individual will have different expertise for different
topics, which will affect the respect accorded to him or
her by other members of the network. This drives us to
consider G[C(s)] = G[Cσ(s)], where σ(s) is a switching
signal capturing the topic-specific nature of the relative
interaction matrix C(s). It is assumed that σ(s) is inde-
pendent of ζ(s), s ≥ 0. Coping with such time-variation,
including importantly periodic time-variation (such as oc-
curs when a committee meets regularly to cycle through
at each meeting a standard set of topics), is difficult, but
not impossible. The system becomes

ζ(s+ 1) = F σ(s)(ζ(s)) (22)

with F σ(s) defined similarly to that in (20) though γi(s) =
γi,σ(s) replaces γi, for all i ∈ {1, . . . , n}. We now have
a nonlinear switched discrete-time system in (22); while
the LaSalle-based approach of (Jia et al., 2015) no longer
applies, the nonlinear contraction analysis advanced by Ye
et al. (2018) for the original dynamics (19) does. For the
system (22) and taking G[C(s)] to be a strongly connected
non-star graph for all s and initial conditions satisfying
∃j : ajj(0) > 0 and aii(0) < 1, ∀ i, there holds

lim
s→∞

ζ(s) = ζ∗(s) (23)

exponentially fast. One can term ζ∗(s), s ≥ 0 as the
“unique limiting trajectory” of (22) determined uniquely
by the sequence of switching Cσ(s). Periodic switching is
a special case, and in such instances, ζ∗(s) is a periodic
trajectory. The ordering result detailed above has yet to
be established for dynamic topology systems. However,
and perhaps surprisingly, the upper bound in (21) and
convergence rate result detailed below (21), can be estab-
lished for networks with dynamic topology, with obvious
adjustments because convergence occurs to the unique
limiting trajectory ζ∗(s) as opposed to a fixed point ζ∗.

The key conclusion from examining dynamically changing
relative interaction topologies is that sequential opinion
discussion removes initial social power/self-confidence ex-
ponentially fast, and self-confidence/social power evolving
via reflected self-appraisal eventually depends only on the
sequence of topology structures, i.e. the distinct agent-
to-agent interactions. We illustrate with a simulation ex-
ample; Fig. 2 depicts 6 individuals discussing topics over
a periodically-varying network. Keeping the network un-
changed, we initialize the system with two different sets
of initial conditions, â and ã, satisfying Assumption 1,
and with âii(0) �= ãii(0) for every i ∈ {1, . . . , n}. For
individual i, the social power trajectory ζi(s) converges
exponentially fast (by about the 8th topic) to the unique,
periodic trajectory ζ∗i (s), s ≥ 0 independently of the initial
self-confidence (dotted line for âii(0), solid line for ãii(0)).

Behavior in Self-Appraisal Dynamics: The DeGroot-
Friedkin model hypothesizes that reflected self-appraisal
leads to the update (18), in which an individual’s self-
confidence for topic s+1, viz. aii(s+1), is precisely their so-
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Fig. 2. Evolution of social powers over a sequence of topics
for a network of 6 individuals, with periodically-
varying network structure. For i = 1, 3, 6, we set
âii(0) �= ãii(0). For any individual i, their social power
trajectories from different initial conditions (dotted
line for âii(0) and solid line for ãii(0)) converge to
the same unique trajectory ζ∗i (s), s ≥ 0 (Figure from
Anderson and Ye (2019)).

cial power in topic s, viz. ζi(s). However, some individuals
are under-confident, other individuals are overconfident,
and other individuals again may over-react, either posi-
tively or negatively depending on the discussion outcome.
It is interesting to examine the inclusion of such behaviors
using a modification of the basic model, as was done by
Ye and Anderson (2019), and as we now describe.

The behavioral aspects are incorporated using a function
φi(ζ) with the following properties.

Assumption 2. For every i ∈ {1, . . . , n}, φi(x) : [0, 1] →
[0, 1] is a smooth, surjective, and monotonically increasing
function satisfying φi = 0 ⇔ x = 0 and φi = 1 ⇔ x = 1.

For each individual i ∈ {1, . . . , n}, the self-appraisal
dynamics are proposed to be

aii(s+ 1) = φi(ζi(s)). (24)

An individual i who is humble has φi(ζi) < ζi on (0, 1); an
arrogant individual has φi(ζi) > ζ on (0, 1); an emotional
individual has φi(ζi) < ζi on (0, a) for some a ∈ (0, 1),
φi(a) = a and φi(ζi) > ζi on (a, 1); an unreactive
individual has φi(ζi) > ζi on (0, a) for some a ∈ (0, 1),
φi(a) = a and φi(ζi) < ζi on (a, 1); finally, a well-adjusted
individual might have φi(ζi) = ζi (i.e. the original model in
(18)). Examples of each type of individual are depicted in
Fig. 3. This change requires an adjustment of the mapping
F in (19), which is replaced with F̄ = F ◦Φ:

F̄ : ζ(s) → ζ(s+1) =
1∑n

j=1
γj

1−φj(ζj(s))




γ1
1− φ1(ζ1(s))

...
γn

1− φn(ζn(s))




Now it is the properties of this mapping F̄ that need
to be analysed. Some preliminary results for networks
with humble, unreactive or well-adjusted individuals are
reported in Ye and Anderson (2019). However, compre-
hensive convergence results are missing except for net-
works of just just humble or well-adjusted individuals;
then, Theorem 2 applies with some obvious adjustments.
Interestingly, simulations reveal that multiple attractive

equilibria can exist, and that it is also possible for a single
individual (either arrogant or emotional) to end up with
all the limiting social power in a network, even when G[C]
is not a star graph.

5.3 Future possible developments

Apart from further study of the dynamics with behavior
included, we now briefly touch upon two other directions,
as candidates for future work. The first direction is to
relax the constraint that self-confidence is updated only
when each topic has been fully discussed. Such a model
was first alluded to in (Jia et al., 2015), and the work
(Jia et al., 2019) recently presented a more complete
analysis. The second is to replace the DeGroot update in
(14) with an equivalent of the FJ model, via adjustment
of (6) by inclusion of the topic index s. For the case
of constant C, limited preliminary results can be found
in Mirtabatabaei et al. (2014); extensive simulations and
empirical validation are reported in Friedkin et al. (2016b);
Friedkin and Bullo (2017).

It is worth noting that most works on the DeGroot–
Friedkin model focus on modelling. In terms of control,
strategies for increasing or limiting individual social power
are of interest, but are yet to be explored. If an individual
could optimise the order in which topics in a periodic
agenda were addressed, they may be able to acquire
more social power. If two or more individuals formed a
coalition to mutually support each other’s opinion, they
may individually acquire more social power. A committee
chair could call out arrogant behavior of an individual, to
limit their acquisition of social power.
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