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Abstract— Machine-learning techniques are suitably employed 

for gait-event prediction from only surface electromyographic 

(sEMG) signals in control subjects during walking. Nevertheless, 

a reference approach is not available in cerebral-palsy hemiplegic 

children, likely due to the large variability of foot-floor contacts. 

This study is designed to investigate a machine-learning-based 

approach, specifically developed to binary classify gait events and 

to predict heel-strike (HS) and toe-off (TO) timing from sEMG 

signals in hemiplegic-child walking. To this objective, sEMG 

signals are acquired from five hemiplegic-leg muscles in nearly 

2500 strides from 20 hemiplegic children, acknowledged as 

Winters’ group 1 and 2. sEMG signals, segmented in overlapping 

windows of 600 samples (pace = 5 samples), are used to train a 

multi-layer perceptron model. Intra-subject and inter-subject 

experimental settings are tested. The best-performing intra-

subject approach is able to provide in the hemiplegic population 

a mean classification accuracy (±SD) of 0.97±0.01 and a suitable 

prediction of HS and TO events, in terms of average mean 

absolute error (MAE, 14.8±3.2 ms for HS and 17.6±4.2 ms for 

TO) and F1-score (0.95±0.03 for HS and 0.92±0.07 for TO). 

These results outperform previous sEMG-based attempts in 

cerebral-palsy populations and are comparable with outcomes 

achieved by reference approaches in control populations. In 

conclusion, the findings of the study prove the feasibility of 

neural networks in predicting the two main gait events using 

surface EMG signals, also in condition of high variability of the 

signal to predict as in hemiplegic cerebral palsy. 

 
Index Terms— Cerebral palsy, children, gait-phase 

classification, machine learning, neural networks, surface EMG.   

I. INTRODUCTION 

EREBRAL palsy is the most common motor disability in 

childhood [1]. Pediatric hemiplegia is a form of unilateral 

cerebral palsy. It may cause altered selective motor control, 

weakness, stiffness of the limbs, and consequent balance and 

walking difficulties [2]. Clinical gait analysis (CGA) is the 

main tool to supply different indexes and parameters, suitable 

to quantitatively characterize human locomotion and to stress 

possible impairments of motor function. CGA is used to play a 

relevant part in clinical decision-making when managing child 
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hemiplegia. Typically, CGA is able to provide four types of 

different data: spatial-temporal parameters, kinematics data, 

kinetics data, and electromyographic (EMG) signals. Many 

recent CGA studies focused particularly on the acquisition of 

surface electromyographic (sEMG) signals in cerebral-palsy 

children [3-8], probably due to the increasing availability of 

solutions based on it. The assessment of muscular recruitment 

by means myoelectric-signal analysis is, indeed, strongly 

advised in hemiplegic cerebral palsy, due to the 

neuromuscular involvement of this disorder [6].  

During walking, sEMG signal needs to be synchronized 

with at least one other gait signal, in order to temporally 

characterize the muscular recruitment. The identification of 

the time when stride begins (heel strike, HS) and/or the 

transition time between stance and swing phases (toe-off, TO) 

is usually achieved by means of additional systems or sensors, 

such as cameras, foot-switch sensors, pressure sensing mats, 

and inertial measurement units (IMU). In order to prevent this, 

attempts were proposed to assess gait events by an artificial-

intelligence-based interpretation of only sEMG signals. The 

adoption of sEMG-based approaches seems to be particularly 

suitable for studies focusing on exoskeletons. It was observed, 

indeed, that exoskeletons could benefit from the use of sEMG 

for gait-event detection in various ways, including the 

simultaneous control of assistance timing and intensity [9]. 

EMG signals are directly related to motion intention, thus 

being less sensitive than force sensors to ambiguity derived 

from contact with the environment, and potentially allowing to 

detect movement in advance, possibly reducing delays in 

control. EMG potentials in movement intent detection is also 

confirmed in [10], where EMG-based approach is reported to 

be able to detect gait initiation in transfemoral amputees 

earlier (63 - 138 ms) than inertial sensors. In [11], two groups 

of patients adopted the same powered ankle-foot orthosis, but 

relied on different control schemes: myoelectric controlled and 

footswitch controlled ones. Results showed that the first one 

leads to better gait patterns and lower muscle activation levels. 

Same findings are confirmed by more recent studies [12]. 

Finally, in [13] it was observed that EMG-based techniques 

are more robust to gait-event detection errors, showing better 

error recovery ability. 

Nevertheless, literature reports just a few studies [14-19], 

trying to face the problem of gait-event detection by means of 

machine-learning-based methods (see Section II, Related 

Works, for details). To our knowledge, a recent intra-subject 

approach, introduced by the present group of researchers, is 

Machine-learning-based Prediction of Gait 

Events from EMG in Cerebral Palsy Children  

Christian Morbidoni, Alessandro Cucchiarelli, Valentina Agostini, Member, IEEE, Marco Knaflitz, 

Member, IEEE, Sandro Fioretti, and Francesco Di Nardo. 

C 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076366, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

still reporting the best performance among the EMG-based 

ones proposed in literature, showing a mean absolute error 

(MAE) of 14.4±4.7 ms and 23.7±11.3 ms in predicting HS and 

TO timing, respectively [19]. These encouraging 

performances were achieved considering data acquired during 

able-bodied-subject walking, where the clear majority of the 

strides (around 90%) follows the typical foot-floor-contact 

sequence, known as HFPS [20]: heel contact (0-6% of gait 

cycle, H), flat foot contact (6-38%, F), push-off (38-60%, P), 

and swing (60-100%, S). The possibility of extending the 

generality of these findings beyond control walking would be 

truly valuable, developing novel approaches able to detect and 

classify gait events from sEMG signal also in pathological 

condition, as pediatric hemiplegia. 

Atypical stride, caused by drop foot or equinus deformity of 

the foot, is a frequent issue in ambulant children with spastic 

hemiplegia. The main atypical sequences are 1) PFPS: the first 

contact is with forefoot (P), then the heel landed on the ground 

(F), and standard P and swing (S) phases followed; and 2) PS: 

the first contact is again with forefoot (P), but it is followed 

immediately by swing phase (S), with the heel never getting to 

the floor. Recent studies showed that atypical cycles (PFPS 

and PS sequences) could characterize up to 85% of total 

strides in mild-hemiplegic children [3,5]. In detail, it was 

reported that the initial contact with the ground of the 

hemiplegic foot is with the forefoot (PFPS and PS sequences) 

in 58% of total strides in mild-hemiplegic children [5], 

acknowledged as group 1 in the classification of spastic 

hemiplegia introduced by Winters et al. [21]. In Winters’ 

group 2, PFPS cycles and PS cycles characterized 43% and 

40% of total strides, respectively [3]. Predicting this large 

variability of foot-floor-contact sequences could be very 

challenging for automatic classifiers and the application of 

techniques developed specifically for walking of control 

subjects may not be enough. Thus, the goal of the present 

study is to investigate a machine-learning-based approach 

specifically developed to binary classify gait events and to 

predict HS and TO timing from sEMG signals in mild-

hemiplegic-children walking. Depending on the application 

field, two main experimental settings are proposed: the intra-

subject approach and the inter-subject approach [19]. In the 

first setting, sEMG data collected during walking of a single 

subject are used to train a neural network (NN) to recognize 

different gaits from the same individual. In the latter, gaits 

from a new individual are analyzed by a neural network 

trained on gaits from other individuals. In the present study, 

both approaches are tested. Numerous strides per subject 

(about 150, including only the hemiplegic-limb strides) are 

considered, in order to involve as much variability as possible. 

II. RELATED WORKS 

Gait partitioning and gait event detection are achieved in 

literature using different kind of sensors and resulting data 

[21]. While non-wearable sensors, as opto-electronic systems 

and force platforms, provide the best accuracy in indoor 

environments, wearable sensors are widely investigated as 

they are generally cheaper and enable a wide range of 

applications, e.g., prosthesis and exoskeleton control. 

Footswitches and foot-pressure insoles are considered as gold 

standard and often used as reference to evaluate the 

performances of proposed methods, based on other kind of 

sensors. In this section, the state of the art is reviewed, by first 

covering gait event detection approaches based on kinetic and 

kinematic data in section II-A, and then focusing on existing 

EMG-based approaches in section II-B.  

A. Kinetic and kinematic based approaches 

1) Control subjects 

Several studies addressed gait event detection in healthy 

subjects by means of gyroscopes, accelerometers, and other 

kinematic sensors. In [22], seventeen different IMU-based 

algorithms are evaluated on a population of thirty-five healthy 

subjects and respective results, in terms of median time error 

(MED) and 25th–75th percentile error range (DMED), are 

compared. Reported results show a value of MED ranging 

from 60 to 65 ms and DMED from 40 to 111 ms for HS 

detection, while a MED from -25 to 6 ms and a DMED from 

68 to 120 ms are observed for TO detection. The 

accelerometer-based method proposed in [23] has been 

evaluated on the MAREA dataset [24], including eleven 

healthy individuals walking on flat and inclined treadmill and 

on indoor flat ground. In this case, evaluation is measured by 

F1-score and Mean Absolute Error (MAE). F1-score is 

typically adopted to quantify the accuracy of model prediction 

on a dataset, based on the evaluation of true positives 

(correctly identify as positive), false positive (wrongly 

identified as positive), and false negatives (wrongly identified 

as negative). High F1-score values (> 0.90) indicate a good 

accuracy in prediction. Event predictions are accounted as 

correct (true positives) if they fall in a 61 ms interval from the 

ground truth event, and MAE is calculated on true positives 

only. Reported performances on treadmill walking are 0.99 

F1-score and 16.4 ms MAE for HS detection, and 0.96 F1-

score and 39.8 ms MAE for TO detection, while for indoor flat 

walking an F1-score of 0.99 and MAE of 17.8 ms are 

measured for HS detection and F1-score of 0.96, MAE of 27.0 

ms for TO detection. In [25], a continuous-wavelet-transform-

based feature extraction is performed for signals from tri-axial 

accelerometers and HS and TO instants are predicted. The 

algorithms were tested on eight healthy subjects walking on 

flat line and a ramp, a tolerance of 50 ms was used to 

individuate correctly matched event predictions (true 

positives), and a F1 score of 0.92 is obtained with the best 

system configuration (accelerometer positioned on the foot). 
 

2) Patients affected by gait disorders 

Several recent works applied a neural network, called Long 

Short Time Memory (LSTM), to kinematic time series data for 

predicting gait events in children with gait disorders [26,27]. 

In [26], a dataset composed of 9092 trials of children with 
different pathologies including cerebral palsy (the number of 

subjects is not specified) is used to train and evaluate an 

LSTM neural network. Inter-subject evaluation is performed. 

MAE is computed only for those trials where the number of 

predicted gait events equals the number of ground-truth events 
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(99% of the trials form HS and 95% for TO). The average 

MAE reported is 18.3 ms for HS and 12.5 ms for TO. The 

study addresses real-time prediction, even if a peak detection 

algorithm, which makes use of potentially all the trial samples 

predictions, is applied to the output of LSTM network to 
identify gait-event timing. The granularity of the prediction is 

around 8.3 ms. In [27], data collected from 226 children with 

gait disorders are used to train and evaluate the performances 

of a bidirectional LSTM-based neural architecture. Inter-trial, 

but not inter-subject, evaluation is performed and the obtained 

MAE is 5.5 ms for HS and 10.7 ms for TO. In [28], a single 

IMU is adopted to train a thresholding algorithm with the aim 

of predicting HS and TO timing. The method is tested on five 

transfemoral amputee, resulting in an average error of around 

2% of stride duration (computed from HS and TO estimates). 

In [29], two gyroscopes are used to detect seven gait sub-

phases in children with cerebral palsy, reporting mean time 
error of 12.3 ms for HS and of 18.5 ms for TO. 

 

B. EMG-based approaches 

As discussed above, developing techniques to assess main 

gait events from only sEMG signals is of growing interest. 

Despite the potential advantages of EMG-based approaches, 

few efforts have been done in this direction, especially when 

subjects affected by neuro-motor disorders are concerned. In 

the following sections, the related state of the art is reviewed, 

focusing on control subjects and cerebral-palsy patients.   
 

1) Control subjects 

Few works in literature address Machine-Learning-based 

classification of gait phases from only EMG signal. In [14], 

time-domain features have been extracted from EMG signal in 

order to classify stance and swing phases. Evaluation on 

treadmill walking of a single subject reported a maximum 

accuracy of 91.1%. Bilateral EMG features were used in [15] 

to train a support vector classifier. Intra-subject evaluation was 

performed on two subjects during walking on a treadmill at 

different speeds, reporting best accuracy of 96%. In [16], a 

control system for a foot-knee exoskeleton was proposed, 

based on the processing of eight EMG signals. Four time-

domain features were extracted, and Bayesian Information 

Criteria (BIC) was used to predict eight gait events. 

Evaluation on one single healthy subject revealed low 

repeatability of the method, with a 30% drop in accuracy 

testing on different gait cycles. In [17], a set of temporal 

features were fed to a single-layer neural network to identify 

TO and HS timing on a population of eight healthy adults. The 

study targets inter-subject prediction by testing the network on 

one single unlearned subject (not used in training), however 

no cross validation is performed, and the test is performed on 

a 5-second trial only. No indication is provided regarding 

accuracy of prediction; a mean average error of 35 ms and 49 

ms is reported for HS and TO prediction, respectively. The 

neural network used in this work is a simple single-layer 

network with 10 units and the Levenberg Marquardt algorithm 

was used to train the network. These methods are based on 

hand-crafted features; otherwise, previous studies by authors 

of the present paper adopted a featureless approach, 

employing Multi-Layer Perceptrons to process the envelope of 

sEMG signals [18,19]. One further difference is the 

optimization algorithm: Levenberg Marquardt in [17], Adam 

in [18,19]. Inter-subject evaluation on a population of twenty-

three healthy adults reported overall mean classification 

accuracy (stance vs. swing) of 93.4%. A mean F1-score of 

99.0% and a MAE of 21.6 ms were detected for the prediction 

of HS events and a mean F1-score of 98.4% and a MAE of 

38.1 ms were identified for the prediction of TO events [18]. 

This approach has been numerically outperformed by a 

subsequent study of the same group of researchers based on 

intra-subjects experiments in the same population [19]. 

Average classification accuracy of 96.1±1.9% and mean MAE 

of 14.4±4.7 ms (associated to an F1-score of 99.3%) and 

23.7±11.3 ms (associated to an F1-score of 98.5%) in 

predicting HS and TO timing were provided. To our 

knowledge, intra-subject approach is still reporting the best 

performance among EMG-based ones proposed in literature. 
 

2) Patients affected by cerebral palsy 

As far as we know, only one research attempted to address 

machine-learning-based detection of gait events on cerebral-

palsy children [30]. The algorithm presented in this study is 

based on ANFIS (Adaptive Neuro-Fuzzy Inference System), 

using percutaneous and sEMG signal and its first derivative as 

input and needs to be calibrated on each subject and re-

calibrating each time it is used. Evaluation was made on eight 

subjects (8-18 years old) with diplegia and hemiplegia, 

ambulating with various degrees of assistance ranging from no 

assistance to walking with using an assistive device. Only the 

intra-subject prediction was assessed. The stereo-

photogrammetric system (VICON motion analysis system) 

was used to assess foot-floor-contact signal, adopted as 

reference. The system was impossible to calibrate for one out 

of eight subjects and results are reported for the remaining 

seven subjects. Accuracy, simply computed as ratio between 

the number of predicted events and reference events, was 

around 0.97 and the reported mean prediction error was 30 ms. 

Large values of standard deviation were measured, confirming 

that the characterization of pathological gait is challenging. 

 
Fig. 1.  Experimental set-up. GL is gastrocnemius lateralis, TA is tibialis 

anterior, VM is vastus medialis, RF is rectus femoris, and H is hamstring. 

Heel, 1st MH, and 5th MH mean that the footswitch is applied on the heel, 

1st and 5th metatarsal head, respectively. 
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III. MATERIALS AND METHODS 

A. Subjects 

Foot-floor-contact and sEMG data during hemiplegic 

walking are taken from retrospective studies performed at 

Laboratory of Gait Analysis, Ospedale Santa Croce, 

Moncalieri (TO), Italy [3]. Two raters analyzed independently 

kinematic data and video-recordings from Lab database and 

pick up twenty school-age children with hemiplegic cerebral 

palsy. Ten children are acknowledged as Winters’ group 1 and 

ten children as Winters’ group 2. This classification of spastic 

hemiplegia was introduced by Winters et al. [21], based on 

sagittal joint kinematics. It considers four different classes 

(type 1, 2, 3, and 4), with a progressive distal-proximal 

involvement of the paretic lower limb. Types 1 and 2 are the 

mildest forms and the most observed in cerebral palsy. Type 1 

is characterized by the occurrence of drop foot in swing, while 

type 2 by the equinism persistence all through the gait cycle, 

with a possible knee hyperextension during stance. These 

patient characteristics were stressed to further highlight the 

high variability of foot-floor-contact signal, expected among 

patients. Mean (±SD) children characteristics are: range: 5-15 

years; 11 males/9 females; 10 right/10 left hemiplegia; mean 

age = 9.3±3.2 years; height= 131±18 cm; mass = 32.4±13.0 

kg; Gross Motor Function Classification System level is 

between I and II. Children who underwent lower limb 

orthopedic surgery or botulinum toxin injections in six months 

preceding gait examination are kept out from the study. 

Informed consent is received from all subjects. The present 

research was undertaken following ethical principles of 

Helsinki Declaration and approved by local ethical committee. 

 

B. Signal acquisition 

Foot-switch and sEMG signals are captured (sampling rate: 

2 kHz; resolution: 12 bit) by the multichannel recording 
system Step32 (Medical Technology, Italy). 16 amplifier 

chains (one for each sensor) constitute the detection unit that 

collects signals coming from up to 16 different sensors. Each 

amplifier chain has its own sample-and-hold. The sample-and-

hold circuits sample the 16 signals contemporarily, and then a 

single ADC converts the output of each S/H in sequence. 

Thus, digitally converted data correspond to analog signals 

collected at the same time instant.  

sEMG signals are acquired by single differential probes 

placed in the hemiplegic limb over the five muscles mainly 

involved in walking task (Fig. 1): gastrocnemius lateralis 

(GL), tibialis anterior (TA), vastus medialis (VM), rectus 

femoris (RF), and hamstring (H). Winter’s guidelines for 

sensor positioning were respected [31]. Sensor characteristics 

are: manufacture Ag-disks; diameter 4 mm; inter-electrode 

distance 12 mm; gain 1000; high-pass filter 10Hz, 2 poles. 

Foot-floor-contact signals are measured by three foot-switches 

affixed under: 1) the heel; 2) the first metatarsal head of the 

foot; and 3) the fifth metatarsal head of the foot (Fig. 1). Foot-

switches characteristics are: activation force 3 N; dimension 

10x10 mm; thickness 0.5 mm.  

Each child walked barefoot, without using any assistive 

device, back and forth over a 10-m straight walkway for 

around 180 seconds. Cadence and speed were self-selected by 

each child. Possible crosstalk from surrounding muscles is 

inspected by visual inspection. Crosstalk is hypothesized when 

two muscles of the same anatomical region displayed 

concomitant activity with comparable amplitude modulation. 

To handle this issue, the procedure for reducing the possibility 

of crosstalk contamination with the use of Double Differential 

(DD) probes, instead of Single Differential (SD) ones, has 

been followed [32]. Specifically, double-differential sEMG 

sensors are adopted to further improve spatial selectivity. 

Sensor characteristics of these three-bar probes are: bar 

diameter 1 mm; bar length 10 mm; interelectrode distance 10 

mm. Gain and filtering properties remain the same of single-

differential ones. Single-differential and double-differential 

signals are then compared. When the amplitude of the double-

differential signal is significantly lower, crosstalk is confirmed 

and the signal is rejected. In the present work, this happened in 

a very limited number of cases, not significantly undermining 

the numerosity of population. 

 

C. Signal pre-processing 

Foot-switch signals are processed for providing the 

segmentation of the foot-floor signal in the single gait cycles 

and then for identifying gait phases, following the 

acknowledged procedure introduced in [33]. Briefly, H-phase 

is identified when only the switch under the heel is closed. F-

phase corresponds to the condition when the heel switch is 

closed, and at least one of the switches under the forefoot is 

closed too. P-phase is characterized by the condition when the 

switch under the heel is open, and at least one of the switches 

under the forefoot is closed. When all the switches are open, 

S-phase is acknowledged. HS is the first sample when only the 

switch under the heel is closed. TO is the first sample when 

both switches under the forefoot are simultaneously open. 

sEMG signals are band-pass filtered (linear-phase FIR filter, 

cut-off frequency: 20 - 450 Hz) for removing high-frequency 

noise and motion artefacts. The full-wave rectification of the 

filtered signal is performed. Afterward, linear envelope is 

computed by low-pass filtering the rectified signal (2nd-order 

Butterworth filter, cut-off frequency 5 Hz). 

 

 

 
Fig. 2.  Signal segmentation and labelling. Signals are segmented into 

overlapping sliding windows. Each window is then labelled according to the 

basographic signal corresponding to the last samples (the detection window). 

As shown in the case of Tm, each instant and the corresponding signal sample 

are included in multiple windows, thus providing multiple predictions for the 

same sample. 
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D. Data preparation 

Data from the pathological leg only are included in the 

experiments. Signals are segmented in overlapping sliding 

windows (Fig. 2), where each window is shifted of a number 

of samples (pace) with respect to the preceding window. Each 

EMG-signal window is then labelled as stance (0) or swing (1) 

according to the value of the basographic signal corresponding 

to the samples in the detection window, in cases where these 

values are homogeneous (all values are 0 or all values are 1).  

In cases where basographic signal assumes different values 

within the detection window, the most frequent value is used 
to label the window. This could happen when the window 

covers a transition between stance and swing or vice versa. 

Illustrations of raw sEMG data from the five muscles and 

phase-transition timings from the basographic signal are 

reported in Fig. 3. The underlying idea is that the current state 

(gait phase), can be better predicted by looking at past 

segment of the signal, reflecting muscle activations that lead 

to that specific state. Foot-switch signal is used as ground-

truth since force-based event detection is still considered as 

the reference method for assessing the accuracy of gait-event 

detection in different systems [34]. Moreover, foot-switches 
directly attached to the barefoot sole provide a direct 

measurement of foot-floor contact events and allow 

overcoming the limitation of collecting only a few gait cycles, 

typical of force plate and motion capture systems.  

 

E. Tuning the classifier 

To choose a suitable gait phase classifier, preliminary 

experiments are performed, evaluating four different well-

known Machine-Learning methods: Support Vector Machine 

(SVM), Random Forest (RF), K-Nearest Neighbors (KNN), 

and Multi-Layer Perceptron (MLP). Dataset for such 

experiments is created, by adopting a pace of 100 samples and 

a detection window of 20 samples (10 ms). Different windows 

lengths are considered. A 5-fold evaluation is performed. In 

each fold, the training set is composed of the signal windows 

from sixteen patients, while the remaining four patients are 

used for testing. For each classifier, different parameters 

settings are tested. The resulting best settings are: SVM with 

linear kernel and C parameter set to 1, RF using 50 classifiers 

and maximum depth set to 10, KNN with K parameter set to 3. 

About MLP, the five models adopted in [18] are tested. They 

provided very comparable results, but the best ones are the 

single-layer model with 32 units (MLP1) and the three-layer 

model with 128, 64 and 32 units (MLP2). The average 
classification accuracy corresponding to different window 

lengths is reported in Fig. 4. The best results, almost identical, 

are achieved by MLP1 and MLP2, for all the tested window 

lengths. In particular, the higher accuracy corresponds to 600-

sample (300 ms) window. Thus, this setting is adopted in the 

rest of the experiments. Apart from classification accuracy, 

MLPs are used in the full experiments as they provide faster 

predictions. Time to process a single 600-sample window 

under our experimental conditions is 0.25 ms for MLP1 and 

0.55 ms for MLP2. Such a time rises up to 0.90 ms for RF and 

more than 1 s for SVM and KNN, making the latter two not 

suitable for real-time applications. Processing time is further 
debated in Discussion (Section C). In full experiments, 

described in detail in the following sections, window length is 

set to 600 samples, detection window is 20-sample long, and 

pace is set to 5 samples. In other words, the classifier is 

trained to predict the gait phase corresponding to a 20-sample 

interval (10 ms), based on EMG signals recorded during the 

previous 580 samples. The system uses sliding windows and 

outputs a prediction for each 2.5-ms segment, thus the 

prediction tolerance is 1.25 ms. 

 

 
Fig. 4. Results of the preliminary experiments with different classifiers and 

different windows length. 

 

 
Fig. 3.  Basographic signal (upper panel), raw sEMG data from the five muscles, and phase-transition timings from the basographic signals (HS and TO) from 

four strides of a representative hemiplegic children. 
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F. Training the classifier 

Two different experimental settings are addressed in the 

present study: the intra-subject (Fig. 5) and the inter-subject 

approach (Fig. 6). In the intra-subject setting, the gait signals 

for each subject are split into a training set (90%) and a testing 

set (10%). The process is then repeated, each time changing 

the testing set to cover the entire signal, following a 10-fold 

cross validation strategy. Thus, 20 different classifiers are 

trained, each one to learn the gait patterns of a single 

individual (i.e., 20 subjects = 20 classifiers). In the inter-

subject setting, the training set is composed by gait signals of 
19 subjects. The gait signal of the remaining subject is used as 

testing set. The process is repeated changing, at each time, the 

subject included in the testing set, following a 20-fold cross 

validation strategy. The goal of this experiment is to assess the 

capability of a neural classifier to predict the gait phases of an 

unseen subject based on the learned gait patterns from other 

previously-recorded subjects. As done in the preliminary 

experiments (Section III-E), different MLPs are evaluated, 

varying the number of layers and the units in each layer, as in 

[18]. In the intra-subject experiment, the best-performing 

model is MLP1 (single layer - 32 units), while in the inter-
subject experiment the best-performing model results MLP2 

(three layers - 128, 64, 32 units). To train the networks, the 

Adam optimization algorithm is adopted with a learning rate 

of 0.001 and a batch size of 32 data items. To decide the 

number of training epochs, we use an early stop technique, 

stopping the training if accuracy on the validation set (10% of 

the training set) does not increase for 10 consecutive epochs.  

 

G. Gait-event identification 

Once a trained model is available, the next step consists in 

employing it to detect the gait-event timing, that is to assess 

the instant when the transition between swing and stance, HS, 

(and vice versa, TO) occurs. To do so, for each fold, the EMG 

signals included in the testing set and segmented into sliding 

windows as described earlier are provided as input to the 

model previously trained on the corresponding training set. 

The model output was used to form the predicted basographic 

signal. As illustrated in Fig. 2 for the instant Tm, the model 
may produce multiple predictions for a single data sample, 

depending on window length, pace, and detection window 

setting. In this case, the predicted signal is built simply taking 

the more frequent predicted label. Following this procedure, 

the predicted basographic signal is achieved, made up of 

sequences of 0 (stance phase) alternating with sequences of 1 

(swing phase). This signal is chronologically scanned to 

identify the transitions between gait phases: the transition 

from 0 to 1 identifies TO event and the following transition 

from 1 to 0 detects HS event. 

Additionally, a post-processing procedure is performed to 

remove possible erroneously-predicted samples in the 

predicted basographic signal. It consists in cleaning the signal 
by identifying and then discarding those sequences of samples 

that are too brief to be physiologically plausible. Those 

sequences of samples are likely to be ascribed to classification 

errors and need to be removed. To do so, the following 

approach is adopted. Starting from the first HS, the next 300 

samples (150 ms) are scanned to detect and remove those 

samples with a value = 1. Then, the next HS is identified, the 

procedure is performed again, and so on until the last HS 

event. Likewise, the first TO is identified and the next 300 

samples are scanned to discard the samples with a value = 0. 

Then, successive TO is detected, procedure is run again, and 

so on until the last TO event. Finally, cleaned signal is scanned 
again in chronological order to identify the definitive HS and 

TO events.  

 

H. Evaluation strategy  

To assess system performances, the following evaluation 
strategy is adopted. First, the signal-window classification task 

is evaluated measuring the overall classification accuracy. 

Next, the procedure used in the related literature is adopted 

[24], in order to evaluate the capability of predicting gait-

event timing. Specifically, the first stage consists in setting a 

time tolerance T. Then, each predicted gait event (HS or TO) 

occurring at time tp has been marked as true positive when an 

event of the same type (HS or TO) occurs in the ground-truth 

signal at time tg, so that |tg - tp| < T. Otherwise, the predicted 

event is identified as false positive. Prediction accuracy is 

quantified by means of precision, recall and F1-score. 

Eventually, prediction error is quantified by means of mean 
average error (MAE) and time delay (TD). TD is computed as 

the relative value (with sign) of the same time distance. Signs 

“–” and “+” are adopted to indicate that the predicted event 

occurs earlier and later than the corresponding value in the 

ground-truth signal, respectively. 

 

I. Validation  

First of all, the performances of intra and inter-subject 

approaches are compared. The best-performing approach (the 

intra-subject one, as reported in “Results”) is then validated by 

a direct comparison in the present population with a reference 

approach A recent machine-learning approach [19], introduced 
 

 
 

Fig. 6.  Illustration of the experimental setting for the inter-subject approach.  

 

 
 

Fig. 5.  Illustration of the experimental setting for the intra-subject approach.  
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by the present group of researchers, is chosen as the reference, 

since it is still reporting the best performance in predicting gait 

events in control subjects, among the EMG-based approaches 
proposed in literature.  

 

J. Statistics 

Statistical difference of data distributions (accuracy, 

precision, recall, F1-score, and MAE) is evaluated. Firstly, 

Shapiro-Wilk test is adopted to appraise the normality of each 
data distribution. Next, two-tailed, non-paired Student’s t-test 

is applied to verify the significance of the difference between 

normally-distributed samples. Likewise, Kruskal-Wallis test is 

applied to verify the significance of the difference between 

non-normally-distributed samples. Pearson’s product-moment 

correlation coefficient and Spearman's rank correlation 
coefficient are adopted for computing correlation in normally 

and not normally distributed populations, respectively. 

Statistical significance is established at 5%. 

IV. RESULTS  

Percentage of strides characterized by the different foot-

floor-contact sequences is reported in Table I for each 

hemiplegic child, together with the total number of strides 

measured in the hemiplegic limb. Winters’ group each subject 
belongs to is also indicated. Mean classification accuracies (± 

standard deviation, SD) achieved by the present approach over 

20 folds in the testing set are 0.97±0.01 for intra-subject and 

0.91±0.03 for inter-subject approach. A significant (p = 

0.70×10-7) higher mean classification accuracy is detected in 

intra-subject approach. Average performances in identifying 

HS and TO timing in testing set are expressed in Table II by 

MAE, TD, precision, recall, and F1-score. No post-processing 

error correction was adopted in the computation of these 

performances. A 20% smaller mean MAE value is supplied by 

the intra-subject assessment of HS (p = 0.01), compared with 
inter-subject one. Likewise, a 22% smaller mean MAE is 

detected in TO prediction (p = 0.004). TD was computed to 

quantify the distribution of the assessment error between 

positive e negative values. Thus, statistical analysis was not 

performed on TD. Significantly higher values of F1-score are 

provided by the intra-subject approach for both HS (p = 0.049) 

TABLE I 

PERCENTAGE OF FOOT-FLOOR-CONTACT SEQUENCES  

subject group 
gait 

cycles 

HFPS 

(%) 

PFPS 

(%)  

PS 

(%) 

other 

(%) 
       

1 1 134 78.4 14.9 3.0 3.7 

2 1 120 75.8 17.5 0.8 5.8 

3 1 129 0 1.6 0 98.4 

4 1 136 0 94.9 0 5.1 

5 1 150 0 90.0 0 10.0 

6 1 118 14.4 67.8 0 17.8 

7 1 114 4.4 48.2 36.8 10.5 

8 1 167 53.3 32.9 0.6 13.2 

9 1 93 75.3 17.2 0 7.5 

10 1 119 89.1 7.6 0 3.4 

11 2 110 0 78.2 19.1 2.7 

12 2 152 0 57.9 5.9 36.2 

13 2 167 0 0 99.4 0.6 

14 2 173 0 79.2 3.5 17.3 

15 2 130 0 12.3 78.5 9.2 

16 2 77 0 10.4 89.6 0.0 

17 2 93 0 76.3 8.6 15.1 

18 2 99 11.1 74.7 3.0 11.1 

19 2 85 0 67.1 4.7 28.2 

20 2 89 1.1 75.3 22.5 1.1 
       

Mean  

±SD 
 

123 

29 

20.1 

32.9 

46.2 

33.1 

18.8 

31.9 

14.9 

21.7 

 

 

 
Fig. 7.  Mean MAE computed in each subject for the intra-subject (upper 

panel) and inter-subject approaches (lower panel). Data are reported for HS 

with blue bars for W1 patients and red bars for W2 patients and for TO with 

yellow bars for W1 patients and orange bars for W2 patients. 

 
Fig. 8.  Mean Time Delay (TD) computed in each subject for  intra-subject 

(upper panel) and inter-subject approach (lower panel). Data are reported for 

HS with blue bars for W1 patients and red bars for W2 patients and for TO 

with yellow bars for W1vpatients and orange bars for W2 patients.  

TABLE II 

MEAN PREDICTION PERFORMANCES 

HS MAE (ms) TD (ms) Precision Recall F1-score 
      

intra 14.8±3.2* -1.5±3.7 0.94±0.04 0.96±0.02* 0.95±0.03* 

inter 18.3±4.6 5.2±10.6 0.88±0.17 0.91±0.16 0.89±0.16 
      

TO MAE (ms) TD (ms) Precision Recall F1-score 
      

intra 17.6±4.2* -2.4±4.0 0.91±0.07* 0.93±0.06* 0.92±0.07* 

inter 22.5±5.6 0.4±14.3 0.81±0.14 0.84±0.13 0.82±0.14 
      

* means that the considered parameter value is significantly different 

between intra-subject and inter-subject experiments. 
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and TO (p = 0.015).  Detailed prediction errors for HS and TO 

are depicted in terms of MAE (Fig. 7) and TD (Fig. 8). 

Detailed prediction accuracy for HS and TO detection is 

reported in terms of precision, recall, and F1-score in 

supplementary material. An example of predictions of foot-
floor-contact signal provided by intra-subject approach in a 

representative subject is shown in Fig. 9, considering strides 

with HFPS, PFPS, and PS sequences. As reported in Section 

III-I, the present intra-subject approach is validated by a 

comparison with a reference method [19]. Direct comparison 

of performances achieved with the two methods is shown in 

Table III. 40% reduction of mean MAE is reached by the 

intra-subject assessment of HS (p = 5×10-5), compared with 

reference approach (Table III). Analogously, a 41% decrease 

of mean MAE is provided in TO prediction (p = 3×10-5). F1-

score values are also significantly improved with the 

introduction of the intra-subject approach, for both HS (p = 
2×10-9) and TO (p = 4×10-4). Correlation between prediction 

performances (MAE, precision, recall, and F1-score for both 

HS and TO) and the number of strides characterized by each 

foot-floor-contact (HFPS, PFPS, PS, and others, Table I) is 

also computed. For all tested data, correlation is not significant 

(p > 0.05). Effect of tolerance chosen to detect true positives 

on the quantification of the evaluation measures is shown in 

Tables IV-V. Results achieved using post-processing error 

correction (threshold 150 ms) are reported in Tables VI-VII.  

V. DISCUSSION 

The present work aims to provide a machine-learning-based 

detection of the two main gait events during hemiplegic-

children walking, from only sEMG signals. sEMG-based 

prediction of HS and TO appears to be particularly significant 

and useful in walking condition where assistive devices are 

needed. It has been observed, indeed, that exoskeletons could 

benefit from adopting sEMG for gait-event assessment in 

different ways, including the simultaneous control of the 

timing and intensity of the assistance [9]. Main outcomes of 

the study lie in the fact that, despite the large variability of the 

signal to predict, the proposed approach is able to provide a 

suitable prediction of HS and TO which improves preceding 

sEMG-based attempts in cerebral-palsy populations [30] and 

is quantitatively comparable with outcomes achieved by 

reference approaches in control populations [19].  

 According with previous findings [3], three main foot-

floor-contact sequences are detected in the present population 

of mild hemiplegic children: on average, HFPS sequence is 

found in 20.1±32.9% of total strides, PFPS sequence in 

46.2±33.1%, and PS sequence in 18.8±31.9% (Table I). These 

percentages express a large variability of foot-floor contact 

across the population, associated to a just as big within-subject 

variability quantified by SDs. Each one of these foot-floor-

contact sequences would correspond to a different sEMG 

pattern [3]. Thus, variability is expected not only in contact 

sequences but also in the associated sEMG signal. This 

variability is also enhanced by the fact that the walking task 

fulfilled by children involves deceleration, reversing, curves 

and acceleration, since they walked back and forth over a 10-

m straight walkway for around 3 minutes. The large variability 

in both signals, compared to a healthy subject population, is 

expected to make the classification task more challenging. As 

a matter of fact, it is reasonable foreseeing reduced 

 

TABLE III 

COMPARISON OF MEAN PREDICTION PERFORMANCES BETWEEN THE 

PRESENT AND THE REFERENCE APPROACHES 

HS MAE (ms) Precision Recall F1-score 
     

intra 14.8±3.2* 0.94±0.04* 0.96±0.02* 0.95±0.03* 

reference 24.5±8.1 0.75±0.09 0.93±0.04 0.83±0.07 
     

TO MAE (ms) Precision Recall F1-score 
     

intra 17.6±4.2* 0.91±0.07* 0.93±0.06* 0.92±0.07* 

reference 30.0±12.7 0.75±0.11 0.92± .09 0.82±0.09 
     

* means that the considered parameter value is significantly different 

between present approach and reference approach. 

TABLE VI 

EFFECT OF POST-PROCESSING ERROR CORRECTION: MEAN PREDICTION 

PERFORMANCES FOR INTRA-SUBJECT APPROACH AFTER CORRECTION*. 

HS Tol (ms) MAE (ms) Precision Recall F1-score 
      

 60 14.7±3.0 0.96±0.02 0.96±0.03 0.96±0.03 

 150 16.6±4.1 0.99±0.01 0.99±0.01 0.99±0.01 

 300 17.7±4.6 0.99±0.01 0.99±0.01 0.99±0.01 
      

TO Tol (ms) MAE (ms) Precision Recall F1-score 
      

 60 17.6±4.1 0.93±0.07 0.93±0.07 0.93±0.07 

 150 21.7±8.0 0.99±0.01 0.99±0.01 0.99±0.01 

 300 22.7±8.4 0.99±0.01 0.99±0.01 0.99±0.01 
      

 

*Treshold of 150 ms is used. 

 

TABLE VII 

EFFECT OF POST-PROCESSING ERROR CORRECTION: MEAN PREDICTION 

PERFORMANCES FOR INTER-SUBJECT APPROACH AFTER CORRECTION*. 

HS Tol (ms) MAE (ms) Precision Recall F1-score 
      

 60 18.3±4.6 0.91±0.16 0.91±0.16 0.91±0.16 

 150 23.9±14.1 0.99±0.02 0.99±0.01 0.99±0.01 

 300 24.9±15.6 1.00±0.01 1.00±0.01 1.00±0.01 
      

TO Tol (ms) MAE (ms) Precision Recall F1-score 
      

 60 22.5±5.6  0.84±0.14 0.83±0.14 0.83±0.14 

 150 32.0±13.1 0.99±0.02 0.98±0.02 0.98±0.02 

 300 33.5±14.4 1.00±0.01 0.99±0.01 1.00±0.01 
      

 

*Treshold of 150 ms is used. 

 

 

TABLE IV 

AVERAGE PREDICTION PERFORMANCES ACHIEVED BY THE INTRA-SUBJECT 

APPROACH WITH DIFFERENT TOLERANCE VALUES (TOL). 

HS Tol (ms) MAE (ms) Precision Recall F1-score 
      

 60 14.8±3.2 0.94±0.04 0.96±0.02 0.95±0.03 

 150 16.6±4.0 0.97±0.02 0.99±0.01 0.98±0.01 

 300 17.1±4.2 0.97±0.02 0.99±0.01 0.98±0.01 
      

TO Tol (ms) MAE (ms) Precision Recall F1-score 
      

 60 17.6±4.2 0.91±0.07 0.93±0.06 0.92±0.07 

 150 21.5±7.7 0.97±0.02 0.99±0.01 0.98±0.02 

 300 22.2±8.1 0.97±0.02 0.99±0.01 0.98±0.01 
      

 
 

TABLE V 

AVERAGE PREDICTION PERFORMANCES ACHIEVED BY THE INTER-SUBJECT 

APPROACH WITH DIFFERENT TOLERANCE VALUES (TOL). 

HS Tol (ms) MAE (ms) Precision Recall F1-score 
      

 60 18.3±4.6 0.88±0.17 0.91±0.16 0.89±0.16 

 150 23.9±14.1 0.96±0.05 0.99±0.01 0.97±0.02 

 300 24.7±14.6 0.96±0.04 1.00±0.01 0.98±0.02 
      

TO Tol (ms) MAE (ms) Precision Recall F1-score 
      

 60 22.5±5.6 0.81±0.14 0.84±0.13 0.82±0.14 

 150 33.0±13.2 0.95±0.05 0.99±0.01 0.98±0.03 

 300 33.6±14.3 0.96±0.04 1.00±0.01 0.98±0.02 
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performances when both the input to the neural network 

(sEMG signal) and the signal to be predicted (foot-floor 

contact) are more variable, as in hemiplegic children. 
 

A. Neural-network performances in hemiplegic population 

Since a reference approach in hemiplegic-child walking is 

not available, the first stage of the present study is to test, on 

the present population of hemiplegic children, the EMG-based 

approach which is still reporting the best performance in 

predicting the two main gait events (HS and TO) in control 

subjects [19]. As aforementioned, this is an intra-subject 

approach based on a MLP interpretation of sEMG signals, 

proposed by the present group of researchers. In a population 

of 23 control adults, it achieves a MAE of 14.4±4.7 ms and 

23.7±11.3 ms and a F1-score of 0.99±0.01 and 0.99±0.02 in 

predicting HS and TO timing, respectively [19]. Performances 

of this approach deteriorate when applied to the present 

hemiplegic-children population, in terms of both MAE 

(24.5±8.1 ms for HS and 30.0±12.7 ms for TO, Table III, 

reference line) and F1-score (0.83±0.07 for HS and 0.82±0.09 

ms for TO, Table III, reference line). Deterioration was 

expected, but the size of this worsening is surprising (mean 

48% increase in MAE and mean reduction of 0.17 in F1-

score). This suggests that the approach which best performs in 

control subjects, could be not reliable in a different population.  

Thus, the present study proposes an alternative approach, 
specifically developed to handle the large signal variability 

met in the hemiplegic population. The idea behind the setting 

described in Section III.D is that predicting the correct gait 

phase basing on a consistent number of previous signal 

samples could mitigate such a variability issue. This would 

allow the neural network to learn not only from local samples 
values (as in [19]), but also by analyzing the muscle-activation 

patterns that lead to a specific state. Beside that, the use of 

sliding overlapping windows increases the data used during 

the training phase. Mean classification accuracies and 

prediction performance are shown in Table II. Detailed 

prediction performances provided by this novel approach in 

each single subject are reported in Figures 7-8 and in 

supplementary material. Mean prediction performances over 

the hemiplegic population are compared with corresponding 

performances provided by the reference approach in the same 

population in Table III. The present approach clearly 

outperforms the reference one in terms of mean MAE, 
providing a 40% improvement for HS (14.8±3.2 ms vs. 

24.5±8.1 ms, p < 0.05) and a 41% enhancement for TO 

(17.6±4.2 ms vs. 30.0±12.7 ms, p < 0.05). The same goes for 

F1-score in HS (0.95±0.03 vs. 0.83±0.07 p < 0.05) and TO 

(0.92±0.07 vs. 0.82±0.09, p < 0.05) assessment. The present 

approach seems to outperform also the performances of the 

only one other EMG study reported in literature, trying to 

address the issue of machine-learning-based assessment of gait 

events directly in child affected by cerebral palsy [30]. This 

ANFIS-based study reports the detailed prediction error for 

each gait event only in terms of TD: a mean TD of 4 ms (SD = 
40 ms) for HS and –5 ms (SD = 31 ms) for TO prediction. The 

present approach can provide a mean TD of -1.5 ms (SD = 

15.8 ms) for HS and –2.4 ms (SD = 18.4 ms) for TO 

prediction, showing a relevant reduction in both mean error 

values and SDs. Moreover, a mean MAE value over all 

predictions of less than 30 ms was achieved in [30] (detailed 

values are not reported) vs. the value of 14.8 ms and 17.6 ms 

produced by the present study for HS and TO, respectively. In 

[30], the reported mean prediction accuracy over gait events is 

around 0.97, simply calculated as the ratio between the 

number of predicted events and the number of reference 

events. In the present study, the prediction accuracy is 
evaluated by F1-score and, for the configuration with a 60-ms 

tolerance, is 0.95 for HS and 0.92 for TO prediction 

Considering the evaluation strategy (detailed in Section III.H), 

the quantification of the evaluation measures clearly depends 

on the tolerance chosen to detect the true positives: a bigger 

tolerance is related to a higher precision and recall and a lower 

MAE and TD. A tolerance of 60 ms is used in the present 

study, based on recent evaluation studies where such value is 

indicated as the maximum acceptable prediction error [22,23]. 

Table IV shows as MAE and TD deteriorate when the 

tolerance increases from 60 ms to 150 ms, and further to 300 
ms, while the prediction accuracy (precision, recall, and F1-

score) improves. Nevertheless, MAE and TD values remain 

lower than those reported in [30] for every tolerance value in 

Table IV and F1-score values exceed 0.97 for tolerances > 60 

ms. A further difference consists in the fact that in the present 

study foot-switch signal is adopted as the ground truth, since it 

represents the gold standard in gait segmentation [21,32,35], 

ANFIS study adopted the stereo-photogrammetry, introducing 

an uncertainty of 17 ms due to the video-frame resolution [30]. 

 
Fig. 9.  Predictions of foot-floor-contact signal in the same six strides of a 

representative subject, provided by intra- and inter-subject experiments (two 

lower panels). Ground truth is depicted in blue. The five upper panels show 

the correspondent normalized full-wave rectified and enveloped signal in the 

five muscles of the hemiplegic leg, used as input to the neural network. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076366, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

Otherwise, foot-switches fixed under the barefoot sole are 

placed in correspondence of precise easy-to-identify 

anatomical landmarks. This makes sensor positioning not 

particularly critical and provides a direct measurement of foot-

floor contacts, supporting the use of foot-switches as a valid 
reference, ground-truth method. It needs to be mentioned that 

ANFIS study used only one sEMG sensor on each lower limb 

vs. the five sEMG sensors involved here. The use of a minimal 

set-up like that would help reducing the costs and simplifying 

the challenges associated with sEMG data acquisition in 

hemiplegic children. Besides these quantitative differences, it 

is worth to notice that the perspective is very different 

between ANFIS-based study and the present one. The present 

approach is designed for a general environment-independent 

prediction of gait events and could be suitable for different 

applications, as for example clinical gait analysis, smart 

prostheses, and EMG-driven assistive devices. Otherwise, 
ANFIS approach was developed for the specific long-term 

goal of assessing gait events to make up a controller for the 

application of functional electrical stimulation to leg muscles, 

to enhance walking capability. Thus, the need of calibrating 

the system for each subject to generate the ANFIS model (and 

re-calibrating each time it is used) could be acceptable for this 

specific aim, since the prediction of gait events occurs in real 

time, after model calibration. However, it is not suitable for 

the timing of everyday clinical application. In our intra-subject 

approach, the neural network should be trained with sEMG 

and basographic data for each new subject. The very good 
performances provided by this approach indicate that 

prediction of gait events of a single patient could be accurately 

achieved by processing data from only that specific patient. 

This outcome leads to argue that in the intra-subject approach, 

training could be performed only once for each patient. For all 

the successive tests, no further training and time consumption 

would be required. Although this seems to be a reasonable 

conclusion, sEMG data across separate sessions would be 

needed to support it. Thus, further studies will be designed to 

address this issue. 
  

B. Intra-subject vs. Inter-subject approach 

To try and overcome the aforementioned limitation, a so-

called inter-subject approach was also tested on the same 20-

hemiplegic-childred population. The inter-subject approach 

consists in training the neural network with sEMG signals 

measured during walking of a large population of patients and 

then testing the network on a population of brand-new patients 

affected by the same disorder. Thus, to run the inter-subject 

approach, a standardized dataset as larger as possible of foot-

floor-contact and EMG signals from many different patients is 

needed to train the neural network [18,19]. When such a 
dataset is available, prediction of gait events in new patients 

requires no further training and is no further time-consuming. 

Mean prediction performances provided by the inter-subject 

approach are displayed in Table II. A significant mean 

deterioration (p < 0.05) of 3.5 ms for HS-MAE and 4.9 ms for 

TO-MAE, respectively, associated to a significant mean 

worsening (p < 0.05) of F1-score (0.05 and 0.10 points), is 

observed for the inter-subject approach with respect to the 

intra-subject one. Although on average also the inter-subject 

approach appears to work adequately in terms of prediction 

error, a not negligible deterioration of prediction accuracy is 

the price to pay in adopting this approach. Ultimately, the 

present study proposes two different experimental approaches 

to the aim of predicting the two main gait events during 

hemiplegic-children walking: the intra-subject and the inter-
subject approaches. As discussed, the intra-subject approach 

reports better quantitative performances for the present 

specific task, in terms of both prediction error (MAE and TD) 

and prediction accuracy (precision, recall, and F1-score). 

However, the adoption of the more appropriate approach 

should not be guided only by prediction performances but also 

by patient convenience and clinical requirement. In particular, 

the intra-subject approach seems to be more suitable for those 

situations where hemiplegic patients should undergo 

periodical tests and when high precision of the prediction is 

essential to correctly identify the small improvements of 

patient performances in temporal parameters during 
rehabilitation. In these cases, indeed, after a first session 

where basographic and sEMG must be acquired and the model 

trained, all the subsequent tests would not need neither to 

acquire basographic signal nor to train the model, but only to 

measure the sEMG signals of the single patient under 

examination. Conversely, the inter-subject approach is 

preferable when a large dataset from many subjects is 

available and when limiting time consumption is the priority. 

 To be noticed that most of the studies focusing on this topic 

involve data acquisition in the controlled conditions of 

treadmill walking [14-17]. The present study considers only 
walking on the ground without using any assistive device, in 

order to avoid mobility problems (i.e. fall risk) and gait-

performance modification associated to treadmill walking 

[36]. Possible correlation between numerosity of each foot-

floor-contact sequence and prediction performances is also 

tested. No significant correlation is detected (p > 0.05). This 

seems to suggest that the fact that hemiplegic walking affects 

the neural-network performances does not depend on the type 

of the single foot-floor-contact sequence, but on the large 

variability of sequences observed in this disorder. 
 

C. Post-processing and computational time 

Experiments are performed on a machine equipped with a 

2,6 GHz Intel Core i7 processor. The neural-network-

processing time ranges from approximately 0.25 ms (for the 

one-layer network used in intra-subject setting) to 

approximately 0.55 ms (for the three-layer network used in 

inter-subject setting) for each EMG-signal window (composed 

of 600 samples for each muscle). As in our experimental 

setting, window-segmentation pace is 2.5 ms and four 

preliminary predictions are made for each data sample before 

a final prediction is produced. Temporal delay is between 

10.25 and 10.55 ms. Although this paper does not explicitly 

target real-time applications, such a delay between the signal 

recording and the actual event detection could be acceptable 

under real-time constraints [26]. EMG-signal pre-processing 

does not further increase this delay, since envelope can be 

computed in real time [37]. Event-detection performances 

could be improved, by applying an error correction post-

processing, at the cost of a longer delay of about 150 ms. As 

highlighted by the comparison between Tables VI and IV and 
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between Tables VII and V, the effect of post-processing on 

mean MAE is negligible, in both intra and inter-subject 

approaches. Slight improvements are detected in terms of 

prediction-accuracy performances, mainly for the inter-subject 

approach (≈ 0.02 mean increase of F1-score). 

VI. CONCLUSION 

The outcomes of the present study prove the feasibility of 

neural networks in predicting the two main gait events using 

surface EMG signals, also in condition of high variability of 

the signal to predict as in mild cerebral-palsy hemiplegic 

children. Recurrent neural networks (RNN) are successfully 

used to interpret gait data (not sEMG), to detect gait event in 
healthy subjects. Future developments could test if involving 

RNNs may improve performances of the present approach. To 

the same aim, more advanced signal-processing techniques in 

frequency or time/frequency domain, such as wavelet 

transform, could be involved to provide further information to 

train the neural networks. From the clinical point of view, 

future efforts could be focused to generalize the present 

findings, including also more severe types of hemiplegia, such 

as Winters’ type 3 and 4, or patients using assistive devices. 
 

REFERENCES 

[1] https://chasa.org/ accessed on October 2nd, 2020. 

[2] S. Ostensjø, E. B. Carlberg, N. K. Vøllestad, “Motor impairments in 

young children with cerebral palsy: relationship to gross motor function 

and everyday activities”. Dev Med Child Neurol, vol. 2, no. 46, pp. 

580–589, 2004 DOI: 10.1111/j.1469-8749.2004.tb01021.x. 

[3] V. Agostini et al., “Multiple gait patterns within the same Winters class 

in children with hemiplegic cerebral palsy”, Clin Biomech, vol.  30, pp. 

908–914, 2015, DOI: 10.1016/j.clinbiomech.2015.07.010. 

[4] D. M. Bojanic et al., “Quantification of dynamic EMG patterns during 

gait in children with cerebral palsy”, J Neurosci Methods, vol. 198, pp. 

325–331, 2011, DOI: 10.1016/j.jneumeth.2011.04.030. 

[5] F. Di Nardo et al., “EMG-Based Characterization of Walking 

Asymmetry in Children with Mild Hemiplegic Cerebral Palsy”, 

Biosensors (Basel), vol.  9, no. 3, 82, 2019, DOI: 10.3390/bios9030082 

[6] C. Frigo and P. Crenna, “Multichannel SEMG in clinical gait analysis: 

A review and state-of-the-art”, Clin Biomech, vol. 24, no. 3, pp. 236 – 

245, 2009,  DOI: 10.1016/j.clinbiomech.2008.07.012. 

[7] M. Galli et al., “Gait patterns in hemiplegic children with cerebral 

palsy: comparison of right and left hemiplegia”, Res Dev Disabil, vol. 

31, pp. 1340–1345, 2010, DOI: 10.1016/j.ridd.2010.07.007. 

[8] D. Patikas, S. Wolf, and L. Döderlein, “Electromyographic evaluation 

of the sound and involved side during gait of spastic hemiplegic 

children with cerebral palsy” Eur J Neurol, vol. 12, pp. 691-9, 2005, 

DOI: 10.1111/j.1468-1331.2005.01047.x. 

[9] J. Taborri et al., “Gait Partitioning Methods: A Systematic Review”, 

Sensors (Basel), vol. 16, no .1, pp. 66., 2016, DOI: 10.3390/s16010066. 

[10] E. Wentink et al., “Detection of the onset of gait initiation using 

kinematic sensors and emg in transfemoral amputees”, Gait Posture, 

vol. 39, no. 1, pp. 391-396, 2014, DOI: 10.1016/j.gaitpost.2013.08.008. 

[11] D. Ferris, G. Sawicki, M. Daley, “A physiologist’s perspective on 

robotic exoskeletons for human locomotion”, Int J HR, vol. 4, no. 3, pp. 

507, 2007, DOI: 10.1142/S0219843607001138. 

[12] K. De Pauw et al., “The efficacy of the ankle mimicking prosthetic foot 

prototype 4.0 during walking: Physiological determinants”, Prosthet 

Orthot Int, vol. 42, no. 5, pp. 504–510, 2018, Doi: 

10.1177/0309364618767141. 

[13] R. Lauer et al., “Feasibility of gait event detection using intramuscular 

electromyography in the child with cerebral palsy”, Neuromodulation, 

vol. 7, no. 3, pp. 205–213, 2004, DOI: 10.1111/j.1094-

7159.2004.04200.x.   

[14] M. Meng et al., “Emg signals based gait phases recognition using 

hidden markov models,” in Proc. IEEE ICIA, Harbin, China, 2010, pp. 

852–856. 

[15] J. Ziegier, H. Gattringer, and A. Mueller, “Classification of gait phases 

based on bilateral emg data using support vector machines,” in Proc. 

IEEE RAS/EMBS, Enschede, The Netherlands, 2018, pp. 978–983. 

[16] C. Joshi, U. Lahiri, and N. Thakor, “Classification of gait phases from 

lower limb emg: Application to exoskeleton orthosis,” in Proc. IEEE-

EMBS PHT, Bangalore, India, 2013, pp. 228–231. 

[17] N. Nazmi et al., “Generalization of ann model in classifying stance and 

swing phases of gait using emg signals,” in Proc. IEEE-EMBS 

IECBES, Kuching Sarawak, Malaysia 2019, pp. 461–466. 

[18] C. Morbidoni et al., “A deep learning approach to emg-based 

classification of gait phases during level ground walking,” Electronics 

(Switzerland), vol. 8, no. 8, 2019, DOI: 10.3390/electronics8080894. 

[19] F. Di Nardo et al., “Intra-subject approach for gait-event prediction by 

neural network interpretation of EMG signals”, BioMed Eng OnLine 

vol. 19, no. 58, 2020, DOI: 10.1186/s12938-020-00803-1. 

[20] V. Agostini et al., “Normative EMG activation patterns of school-age 

children during gait”, Gait Posture, vol. 32, no. 3, pp. 285– 89, 2010, 

DOI: 10.1016/j.gaitpost.2010.06.024. 

[21] T. F. Winters, J. R. Gage, and R. Hicks, “Gait patterns in spastic 

hemiplegiain children and young adults”, J. Bone and Joint Surg, vol. 

69, pp. 437-441, 1987, DOI: 10.2106/00004623-198769030-00016. 

[22] G. Pacini Panebianco et al., “Analysis of the performance of 17 

algorithms from a systematic review: Influence of sensor position, 

analysed variable and computational approach in gait timing estimation 

from IMU measurements,” Gait Posture, vol. 66, pp. 76-82, 2018, 

DOI: 10.1016/j.gaitpost.2018.08.025. 

[23] M. Flood et al., “Gait event detection from accelerometry using the 

teager-kaiser energy operator”, IEEE Trans Biomed Eng, vol. 67, no.3, 

pp. 658–666, 2020, DOI: 10.1109/TBME.2019.2919394. 

[24] S. Khandelwal and Wickstrasm, “Evaluation of the performance of 

accelerometer-based gait event detection algorithms in different real-

world scenarios using the MAREA gait database”, Gait Posture, vol. 

51, pp. 84–90. 2017, DOI: 10.1016/j.gaitpost.2016.09.023. 

[25] M. Aung et al., “Automated detection of instantaneous gait events 

using time frequency analysis and manifold embedding”, IEEE Trans 

Neural Syst Rehabil Eng  vol. 21, no. 6, pp. 908–916, 2013, DOI: 

10.1109/TNSRE.2013.2239313. 

[26] Ł. Kidziński, S. Delp, and M. Schwartz, “Automatic real-time gait 

event detection in children using deep neural networks”, PLoS One, 

vol. 31, no. 14(1), e0211466, 2019 DOI: 10.1371/journal.pone.0211466.. 

[27] M. Lempereur et al., “A new deep learning-based method for the 

detection of gait events in children with gait disorders: Proof-of-

concept and concurrent validity”, J Biomech, vol. 98, 2020, DOI: 

10.1016/j.jbiomech.2019.109490. 

[28] E. Ledoux, “Inertial sensing for gait event detection and transfemoral 

prosthesis control strategy,” IEEE Trans Biomed Eng, vol. 65, no. 12, 

pp. 2704–2712, 2018, DOI: 10.1109/TBME.2018.2813999. 

[29] A. Behboodi et al., “Real-time detection of seven phases of gait in 

children with cerebral palsy using two gyroscopes,” Sensors 

(Switzerland), vol. 19, no. 11, 2019, DOI: 10.3390/s19112517. 

[30] R. Lauer, B. Smith, and R. Betz, “Application of a neuro-fuzzy network 

for gait event detection using electromyography in the child with 

cerebral palsy”, IEEE Trans Biomed Eng,  vol. 52, no. 9, pp. 1532–

1540, 2005, DOI: 10.1109/TBME.2005.851527. 

[31] D.A. Winter, “Biomechanics and motor control of human movement”, 

2nd ed., Wiley, New York, USA, 1990. 

[32] C. J. De Luca et al., “Inter-electrode spacing of surface EMG sensors: 

reduction of crosstalk contamination during voluntary contractions”, J 

Biomech, vol.  45, no. 3, pg 555-561, 2012, DOI: 

10.1016/j.jbiomech.2011.11.010. 

[33] V. Agostini, G. Balestra, M. Knaflitz, “Segmentation and Classification 

of Gait Cycles”, IEEE Trans Neural Syst Rehabil Eng, vol. 22, no. 5, 

pp. 946-52, 2014, DOI: 10.1109/TNSRE.2013.2291907. 

[34] J. Rueterbories et al., “Methods for gait event detection and analysis in 

ambulatory systems”, Med Eng Phys, vol. 32, no. 6. Pg 545-52, 2010, 

DOI: 10.1016/j.medengphy.2010.03.007. 

[35] S. Winiarski and A. Rutkowska-Kucharska, “Estimated ground reaction 

force in normal and pathological gait”, Acta Bioeng Biomech, vol. 11, 

pp. 53–60, 2009. 

[36] P. O. Riley et al., “A kinematic and kinetic comparison of overground 

and treadmill walking in healthy subjects”, Gait Posture, vol. 26, pp. 

17–24, 2007, DOI: 10.1016/j.gaitpost.2006.07.003. 

[37] O. Barzilay and A. Wolf, “A fast implementation for EMG signal linear 

envelope computation”, J Electromyogr Kinesiol, vol. 21, no. 4, pp. 

678-682, 2011, DOI: 10.1016/j.jelekin.2011.04.004. 


