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TANGENTIAL APPROXIMATION OF ANALYTIC SETS

MASSIMO FERRAROTTI, ELISABETTA FORTUNA AND LESLIE WILSON

Two subanalytic subsets of R” are called s-equivalent at a common point P if the Hausdorff distance
between their intersections with the sphere centered at P of radius r vanishes to order > s as r tends
to 0. We strengthen this notion in the case of real subanalytic subsets of R” with isolated singular points,
introducing the notion of tangential s-equivalence at a common singular point, which considers also the
distance between the tangent planes to the sets near the point. We prove that, if V (f) is the zero set of
an analytic map f and if we assume that V (f) has an isolated singularity, say at the origin O, then for
any s > 1 the truncation of the Taylor series of f of sufficiently high order defines an algebraic set with
isolated singularity at O which is tangentially s-equivalent to V (f).

1. Introduction

If A and B are two closed subanalytic subsets of R”, the Hausdorff distance between their intersections
with the sphere of radius r centered at a common point P can be used to “measure” how near the two
sets are at P. We say that A and B are s-equivalent (at P) if the previous distance tends to O more rapidly
than r%; if so, we write A ~ B.

In our papers [3; 4; 5; 6] we addressed the question of the existence of an algebraic representative Y
in the class of s-equivalence of a given subanalytic set A at a fixed point P. In this case we also say that
Y s-approximates A.

The answer to the previous question is in general negative for subanalytic sets. However, for any real
number s > 1 and for any closed semianalytic set A C R" of codimension > [, there exists an algebraic
subset Y of R" such that A ~; Y, and Y can be chosen of the same dimension as A; see [5; 6]. Note that
analogous approximation results for complex analytic sets have been obtained by M. Bilski [1] using
techniques which are peculiar to the complex setting.

In this paper we define a similar but stronger and geometrically significant equivalence relation: we
say that two subanalytic sets A and B having an isolated singularity at P are tangentially s-equivalent
if not only the points but also the tangent spaces to A and B are sufficiently “close” of order s near P.

If V is the zero set of an analytic map f : R" — R? such that f(P) =0, and if V is the closure of its
regular points, then in [4] we showed that V ~, V* for k e N sufficiently large, where V* is the zero set of
the k-th Taylor polynomial of f at P; in fact the same is true for any representative of the k-jet of f at P.
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In the present work we prove in Theorem 4.1 that, for any analytic map f defining an analytic set V
with an isolated singularity at O, and for any s, the truncation of the Taylor series of f of sufficiently
high order defines an algebraic set with isolated singularity at O which is tangentially s-equivalent to V.

Let us mention that M. Bilski, K. Kurdyka, A. Parusinski and G. Rond [2] proved, using very different
methods than ours, that every germ of an analytic set is homeomorphic to the germ of an algebraic
set, where the homeomorphism can be chosen in such a way that the analytic and algebraic germs
are sufficiently “near” up to any order. Moreover, the space of arcs contained in the algebraic germ
approximates the space of arcs contained in the analytic one, in the sense that they are identical up
to a prescribed truncation order. However this does not prove that the tangent spaces of the algebraic
approximation are close to those of the analytic set.

2. Basic notions and notation

In this section we recall the definition and some basic properties of s-equivalence of subanalytic sets at
a common point which, without loss of generality, we can assume to be the origin O of R”.

If A and B are nonempty compact subsets of R”, let §(A, B) = sup,.pd(x, A), where d(x, A) =
infyc4lx — y||. Thus, if we denote by D(A, B) the classical Hausdorff distance between the two sets
we have that

s

D(A, B) =max{8(A, B), 5(B, A)}.

Definition 2.1. Let A and B be closed subanalytic subsets of R” with O € AN B. Let s > 1 be a real
number. Denote by S, the sphere of radius r centered at the origin.

(a) We say that A <; B if one of the following conditions holds:

(i) O isisolated in A.
(i) O is nonisolated both in A and in B and

. 8BNS, ANS,)
lim =0

r—0 rs
(b) We say that A and B are s-equivalent, and we will write A ~; B, if A <s Band B < A.

It is easy to check that <; is transitive and that ~; is an equivalence relation.

Let B(O, R) denote the open ball centered at O of radius R. Observe that, if there exists R > 0 such
that AN B(O, R) C B, then A <; B forany s > 1.

A useful tool to test the s-equivalence of two subanalytic sets is introduced in the following definition.

Definition 2.2. Let A be a closed subanalytic subset of R”, and O € A. For any real positive constant o
we will define the horn-neighborhood with center A and exponent ¢ to be the set

El

H(A,0) ={x eR" |d(x, A) < ||x]|}.
Observe that, if o > 1, then

#(A,0)NB(O,1) = {x € B(O, 1) |3y € A\ {0} such that [|x — y|| < [lx]|}.
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Proposition 2.3 [4]. Let A and B be closed subanalytic subsets of R" with O € AN B, and let s > 1.
Then A <y B if and only if there exist real constants R > 0 and o > s such that

(A\{ODNB(O, R) C¥(B, o).

Now, restricting to the case when O is an isolated singularity, we are going to strengthen the notion
of s-equivalence imposing additional conditions of differentiable nature.

Definition 2.4. Let A C R" be a closed subanalytic set. We say that A is an isolated singularity sub-
analytic set (for short IS) of dimension d if the origin O is a nonisolated point of A and A\ {O}is a
submanifold of pure dimension d.

If Aisan IS and x € A\ {0}, let T A be the tangent affine subspace to A\ {O} at x. If we denote
by P4 the set of affine d-dimensional subspaces in R", the tangent bundle of A will be the subset of
R" x %, 4 given by

TFA={(x, T A) | x € A\{O}}.

We define a “distance” between affine subspaces as follows. A unit basis of a vector subspace of R"
is a basis whose elements are unit vectors. If T}, T, € P, 4, for i = 1,2 let v(T}) be the vector subspace
orthogonal to the direction of 7;. If ®B; = {v’i, o vﬁhd} is a unit basis of v(T}), let A(%B, By) =
max{||vjl. — v?“ | j=1,...,n—d}. Then we set A(T|, T2) = inf A(%, B,), where %B; varies among the
unit bases of v(7;).

Evidently A(T}, T;) =0 if and only if 7} and T, are parallel.

Definition 2.5. Let A € R" be an IS of dimension d. For any real positive constant T we define the
tangential horn neighborhood with center A and exponent T to be the set

TH(A, T)={(x,T) eR" x Py 4| x €T, Iy e A\{O} such that |lx —y|| < IxlI®, A(TyA, T) < |IxI"}.
For any positive real number R we set
TrA ={(x, TxA) | x € (A\{OH N B(O, R)}.

Definition 2.6. Let A, B C R” be two IS’s of the same dimension d. If s > 1, we say that A and B are
tangentially s-equivalent (A ~; B) if there exist real constants R >0 and 7 > s such that TRk A C TH(B, 1)
and TpB CITH(A, 1).

It is easy to see that, if A~ B, then A ~; B. Moreover, as an immediate consequence of Definition 2.6,
we have that if A and B are tangentially 1-equivalent then they have the same Nash fiber at O.

3. Analytic maps and truncations

In this section we collect some results that will be used in the final section to prove our main theorem.
Some of these propositions are modified versions of results already used in [4] and [5].

If f: R" — R is an analytic map, let V(f) = {x e R" | f(x) =0} denote its zero set.

An essential tool that we will repeatedly use in compact neighborhoods of O is the following slightly
modified version of the classical f.ojasiewicz inequality.
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Proposition 3.1. Let A be a compact subanalytic subset of R". Assume that ¢ and  are subanalytic
Junctions defined on A such that ¢ is continuous, V(¢) C V(¥), Y is continuous at the points of V ()
and such that sup || < 1. Then there exists a positive constant o such that |yr|* < |p| on A and |y|* < ||
on A\ V(p).

As a consequence of the previous Lojasiewicz inequality we get:
Lemma3.2. If f =(f1,..., fp): R" > RP? is an analytic map, then:

(i) There exists an o € RT such that || f(x)|| > d(x, V() for all x € R"\ V (f) near enough to O.
(ii) There exists ay € R such that |V fi(x) — V()| < |x = y|lY foralli =1,..., p and for all
x,y € R" near enough to O with x # y.
Proof. (i) It is a straightforward consequence of Proposition 3.1.
(if) By Proposition 3.1, for any i there is a y; > 0 such that |V f;(x) = V()| < |lx — y||¥* for all
x, y € R" near enough to O with x # y. Then it is enough to take y = min{y; |i =1, ..., p}. [
Remark 3.3. If y fulfills Lemma 3.2 and if y" < y, then ¢’ has the same property.

Lemma 3.4. Let A be a closed subanalytic set such that O is a nonisolated point of A, and let ¢ : R" — R
be a continuous subanalytic function such that ¢(x) > 0 if x € A\ {O}. Then there exist 8,0 € Rt such
that p(y) > ||x||? for any x € A\ {O} near enough to O and any y € B(x, ||x||?).

Proof. Let Ag = A\ {O}. By Proposition 3.1, there exists g > 0 such that ¢(x) > ||x||# for any x € Ag
near O.
Consider the closed subanalytic set

W={(x,y) e AxR"|o®) < |x|}.

The function 6: A — R defined by §(x) = d((x, x), W) is subanalytic and continuous on A and
positive on Ag. Then, again by Proposition 3.1, there exists o > 0 such that §(x) > ||x||” on Ay near O.
Hence (x, y) ¢ W for any x € Ag near O and any y € B(x, ||x||”): otherwise there exist a sequence
x; € Ag converging to O and a sequence y; € B(x;, ||x;]|”) such that (x;, y;) € W. Then

3(x;) =d((xi, xi), W) < [1(xi, yi) — (i, )| +d ((xiy yi), W) = llxi — yill < |lx:11°,

a contradiction.
Then for any x € Ap near O and any y € B(x, ||x[|?), we have ¢(y) > |x||f. ]

Remark 3.5. Assume that g and o fulfill Lemma 3.4 and that 8’ > 8 and o’ > o. Then B’ and o’ have
the same property.

Let ¢: R" — RP be an analytic map and denote by dy¢ the differential of ¢ at x. Following [7],
consider the function on R" defined by

A= {0 if tk(d:¢) < p,
P Linf(ldig )1 v L ker(de), ol =1} if tk(dy) = p.

It can be checked that A¢ is continuous and subanalytic.
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As usual we endow Hom(R", R?) with the standard norm

L[| = max | L)l
w0 |lul|

for any linear map L: R" — RP.
The next proposition is a direct consequence of Proposition 3.3 in [4].

Proposition 3.6. Let ¢ and ¢’ be analytic maps from R" to RP. If there is a positive function €(x) such
that ||dc¢ — dx@'|| < €(x) for any x, then |A¢p(x) — Ag'(x)| < €(x) for any x.

Another useful result we will need is the following:

Lemma 3.7 [4, Lemma 3.5]. Let ¢: R" — R? be an analytic map which is a submersion on an open ball
B(x, p). Let r > 0 and assume that A¢(y) = r/p for all y € B(x, p). Then ¢ (B(x, p)) 2 B(¢p(x),r).

If f: R" — RP is an analytic map and k € N, we will denote by T* f(x) the polynomial map whose
components are the Taylor polynomials of order k at O of the components of f. Moreover we set
V=V(f), Vo=V \{O} and V¥ =V (T* ).

Definition 3.8. If /: R” — R? is an analytic map, we say that f defines an isolated singularity analytic
set (for short, f defines an 1S) if the origin O is a nonisolated point of V(f) and f is submersive on

V(H\10}.

Evidently, if f: R" — RP? defines an IS, the set V(f) \ {0} is an analytic submanifold of R" of
dimension d =n — p, i.e., V(f) is an IS of dimension d =n — p.

Observe also that, if f: R" — RP” is an analytic map, then f defines an IS if and only if O is a
nonisolated point of V (f) and Af is positive on V(f)\ {O}.

When f defines an IS, we already know [4, Corollary 4.2] that V(f) can be approximated to order s
by the zero set of a suitable truncation of the Taylor series of f. In the next section we will strengthen
this result obtaining a tangential approximation. To do that, we will use two results which are particular
cases of arguments used in [4]. Since these results do not appear as independent statements in that paper,
we conclude this section presenting them with their proofs for the sake of the reader.

Proposition 3.9. Let f: R" — R? be an analytic map. If a fulfills the thesis of Lemma 3.2, then there
exists a real constant R > 0 such that for any o > 0 and any k > ao we have

(VEA{O)NB(O, R) CH#(V,0).

Proof. By Lemma 3.2, we have that || f (x)|| > d(x, V)* for all x € R*\ V near O. Then for x € #(V, o)
we have that || f(x)|| > [|x]|*°.
Let k be an integer such that k > ao. Then

ook
lim | f(x)—=T"f(o)ll _0

x>0 [xle
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It follows that V¥ \ {0} C #(V, o) near O: otherwise there would exist a sequence of points y; # O
converging to O such that y; € V¥\ %(V, o) and hence

3y — T* £y :
o OD =T fOIN _ im OO

i=00 llyi ll* i—oo |lyifl*r

£}

which is a contradiction. O

Proposition 3.10. Let [ : R" — R” be an analytic map which defines an IS. Assume that 8 and o are
exponents which satisfy Lemma 3.4 when we take A =V (f) and ¢ = Af, and let ¢ > 1. Then:

() If k is an integer such that k > B + 1, then AT* f (y) > ||x||**" for any x € V, near O and for any
y € B(x, ||x||°); in particular, T* f is a submersion on B(x, Ix117).

(ii) There exists a real constant R > 0 such that
VoNB(O, R) C#(V*, o)
for all integers k such that k > 8+ o + 1. In particular, O is not isolated in V*.

Proof. (1) Assume for contradiction that there exist a sequence x; € V; converging to O and a sequence
yi € B(x;, ||x;]|?) such that Aka(y,-) < |Ix;1#*". Thus by Lemma 3.4 we have

Af(yi) — AT f () _ lloxi 18 — [l ||
llxi 117 llx; 117

=1—lxl.

On the other hand, by Taylor expansion and Proposition 3.6,
AfGD = AT FG) _ vl Ay ==l + DX (= xll a )
0< 3 < e = = 7 il
llxi [lxi [ llxi lIf llxi l

—h 1—hyk—1
< (1”7 Ml T,

where h = 8/(k —1). Since o > 1 and & < 1, we have that

Af (i) = AT f ()
[l 116

converges to 0, which is a contradiction.

(i) Let k be an integer such that k > 40 + 1. Using (i)enumi, if x € Vj is near enough to O, then
AT*f(y) > ||lx||#*! for any y € B(x, ||x||?). So we can apply Lemma 3.7 with ¢ = T* £, r = ||x|/f*+o+!
and p = ||x]|?, to obtain

T*f(B(x, |1x17)) 2 B(T* £ (x), [lx|FFoth.

Moreover we have

IT*f@I _ . 7@ - @)
= lim =0.
>0, lz|¥ >0, llzll*
eV eV
As a consequence, if x € Vp is sufficiently near O, then ||ka(x)|| < llxlI* < |lx]”*t°*" and hence O
belongs to B(T* f(x), [lx[|#+°+1); so there exists y € B(x, ||x]|°) such that T* f (y) = O. Then near O
we have that Vo € #(V¥, o) and our thesis is proved. ]
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As an immediate consequence of Propositions 3.9 and 3.10 we obtain:

Corollary 3.11. Let f: R" — R?” be an analytic map which defines an IS. Then V() ~¢ V(T* f) for k
sufficiently large.

4. Main theorem
We are now ready to prove our main result.

Theorem 4.1. Let f: R" — R? be an analytic map which defines an IS. If s > 1, there exists kg € N
such that for all integers k > ko the map T* [ defines an IS and V (f) ~; V(T* f).

Proof. As in the previous section, set f = (fi,..., f»), V=V (f), Vo=V \ {0} and VK = v(T* f).

At first let us prove that we can find ko € N such that for any integer k > ko the map T* f defines an
IS and there exist R > 0 and T > s such that TV C TH(V¥, 7).

Take a and y to fulfill the thesis of Lemma 3.2. Since by hypothesis f defines an IS, then Af
is positive on Vj; so let By, oy be exponents which satisfy Lemma 3.4 when we take A = V(f) and
o =Af.

Moreover, fori =1, ..., p apply Lemma 3.4 with A = V(f) and ¢ = ||V f;|| to get exponents B;
and o;. If we set B =max{f; |i =0, ..., p} and 0 =max{o; |i =0, ..., p}, by Remarks 3.3 and 3.5
we can assume that y <land o > (B+s)/y > 1.

First let us prove that there exists an integer ko such that 7% f defines an IS for all k > ko. Namely, if
we consider U = | J, . B(x, [|x]|7), the sets V and W = R" \ U are subanalytic and meet only at O, so
they are regularly situated, i.e., there exists p such that d(x, V) +d(x, W) > ||x||** for all x near O. In
particular if x € #(V, p) then d(x, W) > 0 and hence x e U, i.e., #(V, u) C U.

Let ko be the integer part of max{ao, 8 +0o + 1, ap}+ 1.

Then for any k > ko by Proposition 3.10(ii)enumi, O is not isolated in vk: moreover, since k > oL,
by Proposition 3.9, VK\ {0} € #(V, ) € U near O. This implies that for any y € V*\ {0} there exists
x € V such that y € B(x, ||x||?); thus by Proposition 3.10(i)enumi we have that AT* f does not vanish
on VK\ {0}, and therefore the map T* f defines an IS.

Moreover for any k > ko, again by Proposition 3.10(ii)enumi, we have that Vy N B(O, R) C H(VE, o)
for some R; so, for each x € VoN B(O, R) there is a y € VK \ {0} such that ||x — y|| < [lx||”, and hence
Iyl < llx]l + llx)|°. Then y € B(x, ||x]|?) and, since k > B + 1, by Proposition 3.10(i)enumi Tk f is
submersive at y. For such x, y let us estimate A(7\ V, T, kY,

The vector spaces v(T, V) and v(T, V*) have bases

B ={Vfix)|i=1,....p} and By={VT*fi(y)|li=1,....p},
respectively; then, by Lemma 3.2 and Taylor expansion, we have fori =1, ..., p,
IV fi(x) = VT* i) < IV i) = VEDN IV £i () = VT* )l < e =yl + Iy l<.

Since y <l and k > ky > o + 1, it follows that k — yo — | > 0; thus from the previous inequalities
we get that near O,

IV £i ) = VTX £ < 117+ (el 1) = a7 (T e 177 a4 o= ! < 2)1x17e.
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Since B+ 5 < yo, we can choose 71 such that 8 +s5 < n < yo; so we can assume that
IV fi(x) = VT* i)l < 3llx]".

We want to estimate A(%,, “Bk) where %, and 073" are the unit bases obtained from B, and Bk
respectively, by normalizing their elements
Observe that, if u, v € R*\ {0},

u v vl — llullv ol —llvllv + llvliv = fluflv || _ e —vll + [lvll = llull]
lall Tl [l o]l llulllv]] a fluell ’
hence the following inequality holds:
u v llu — ]
(1) T e
lell vl [zl

Applying inequality (1) and Lemma 3.4 to u = V f; (x) and v = VT* f;(y), we get

' Vi)  VT*fiy)
IVAGI  IVTEfinl
Since s <n—pB <yo—p <o andsince ||x—y| < [|x||7, if we take T = n— B we get that lx—yl <lx]||*
and A(TyV, T, V*) < A(B,, BY) < ||x||". Hence TV € TH(VF, 7).
Now we show that, up to reducing R, we have T x V¥ C TH(V, 7) with the same ky and  as above.
By Proposition 3.9, if k > kg, for any x € (R \{O})NB(O, R) there is a y € Vj such that ||x — y|| <
X1 < |lx|I*. Since

IV ) = VT ;) S IV £) = VAN + IV £ () = VT f (0,

by computations and arguments analogous to the ones used in the previous part of our proof we can
deduce that

” < |lx [P < |lx |7 E.

2) IV () = VT fioll < llx = yI” + el < )7 + e
Since y € B(x, ||x]|”), we have |yl > [lx|| — ||x||”. Moreover, since y € Vp, by Lemma 3.4 we have
that |V f;(»)|| > |ly||?. So from inequalities (1) and (2) we obtain that (near O)
H V fi(y) VT* f;(x) “ IIVfi(y)—Vkai(X)II <2||x||>’”+||x||"*‘ - 177 + flx ]!
IVAOD)I VT foll IV il (A2l = (lxl = llxf19)f
e
=gpproe Tl o <3llx )77 < x| F = |lx |
(1= llxllo=H4
Hence T x VK C TH(V, t), and so V ~ VX for k > ko. O
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