
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Model-Based Framework to Assess the Reliability of Safety-Critical Applications / Matana Luza, Lucas; Ruospo,
Annachiara; Bosio, Alberto; Ernesto, Sanchez; Dilillo, Luigi. - ELETTRONICO. - (2021), pp. 41-44. (Intervento presentato
al convegno 2021 24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)
tenutosi a Vienna, Austria nel 7-9 April 2021) [10.1109/DDECS52668.2021.9417059].

Original

A Model-Based Framework to Assess the Reliability of Safety-Critical Applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DDECS52668.2021.9417059

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2900034 since: 2021-05-13T09:25:22Z

IEEE



A Model-Based Framework to Assess the
Reliability of Safety-Critical Applications

Lucas Matana Luza∗, Annachiara Ruospo†, Alberto Bosio‡, Ernesto Sanchez† and Luigi Dilillo∗§
∗University of Montpellier, LIRMM, Montpellier, France. Email: {lucas.matana-luza, dilillo}@lirmm.fr

†Politecnico di Torino, Torino, Italy. Email: {annachiara.ruospo, ernesto.sanchez}@polito.it
‡Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270, France. Email: alberto.bosio@ec-lyon.fr

§Centre National de la Recherche Scientifique (CNRS), Paris, France

Abstract—Solutions based on artificial intelligence and brain-
inspired computations like Artificial Neural Networks (ANNs)
are suited to deal with the growing computational complexity
required by state-of-the-art electronic devices. Many applications
that are being deployed using these computational models are
considered safety-critical (e.g., self-driving cars), producing a
pressing need to evaluate their reliability. Besides, state-of-the-
art ANNs require significant memory resources to store their
parameters (e.g., weights, activation values), which goes outside
the possibility of many resource-constrained embedded systems.
In this light, Approximate Computing (AxC) has become a
significant field of research to improve memory footprint, speed,
and energy consumption in embedded and high-performance
systems. The use of AxC can significantly reduce the cost of ANN
implementations, but it may also reduce the inherent resiliency
of this kind of application. On this scope, reliability assessments
are carried out by performing fault injection test campaigns. The
intent of the paper is to propose a framework that, relying on the
results of radiation tests in Commercial-Off-The-Shelf (COTS)
devices, is able to assess the reliability of a given application. To
this end, a set of different radiation-induced errors in COTS
memories is presented. Upon these, specific fault models are
extracted to drive emulation-based fault injections.

Index Terms—safety-critical applications, reliability, approxi-
mate computing, neural network, fault injection

I. INTRODUCTION

Today, a wide variety of application domains requires
smarter electronic devices and high-performance computing
systems. Solutions based on artificial intelligence and brain-
inspired computations like Artificial Neural Networks (ANNs)
are suited to cope with this growing computational complexity.
For their outstanding computational capabilities, ANNs are
being increasingly deployed in many application domains.
Many of these are considered safety-critical due to the gravity
that a failure could cause. One peculiar characteristic of these
brain-inspired models is their intrinsic robustness. Despite the
claimed built-in robustness of ANNs [1], there is a pressing
need for evaluating their reliability, especially if they are
deployed on resource-constrained hardware devices for safety-
critical applications. More precisely, it is essential to evaluate
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whether a hardware or software fault may cause a system
failure. In parallel with reliability assessment, a lot of effort
has been made to reduce the memory and energy footprint of
ANNs, for instance, by leveraging on reduced bit-width data
type in either training or inference phase. It is crucial to cope
with the emerging trend towards deploying ANNs on resource-
constrained hardware implementations that are fast and ultra-
low-power, optimised for solving specific tasks. This contrasts
with the trend that sees the growing complexity of the state-
of-the-art ANNs that can require some kB or MB of memory
for storing their parameters. In this light, Approximate Com-
puting (AxC) has become a significant field of research to
improve memory footprint, speed, and energy consumption in
embedded and high-performance systems [2]. By relaxing the
need for fully precise or completely deterministic operations,
AxC substantially improves energy efficiency and reduces
the memory requirement. The use of AxC can significantly
reduce the cost of ANN implementations, but it may also
reduce the inherent resiliency of this kind of application,
which can be more prone to errors due to external perturbation
(e.g., radiation harsh environment like space). The radiation-
induced effects may be amplified by the AxC techniques,
which can result in unacceptable outputs. On this scope,
reliability assessments are carried out by performing fault
injection campaigns. Depending on how faults are injected
and at which abstraction level, several methodologies can be
drawn. The most precise but also costly in terms of hardware
resources and exposure time is radiation tests.

The main intent of the paper is to bring a framework to
enable the reuse of results from radiation test campaigns in
Commercial-Off-The-Shelf (COTS) devices. The reuse of the
results is reached with a detailed evaluation of the radiation-
induced faults. It is possible to define realistic fault models
used to assess the reliability of a given application through a
model-based fault injection when emulating its functionality.
The ultimate goal is to use the proposed framework for quick
but still accurate reliability estimation of approximate ANNs
to be deployed in resource-constrained hardware devices for
safety-critical applications.

The rest of the paper is organised as follows. Section II
presents different AxC techniques and related works. Sec-
tion III presents the proposed framework by targeting the978-1-6654-3595-6/21/$31.00 ©2021 IEEE



transition from a radiation-based fault-injection to a model-
based one using realistic fault models extracted from the
radiation test campaigns. Finally, Section IV concludes the
paper.

II. APPROXIMATE COMPUTING TECHNIQUES

AxC techniques provide a set of design choices for a
performance-accuracy trade-off evaluation, bringing the pos-
sibility to enhance, for example, speed, energy efficiency, and
memory usage, at the cost of reducing the accuracy constraints
at different levels of abstractions [3]. Some techniques are
explored in the following subsections.

A. Voltage and Frequency Scaling

Voltage scaling is a technique that aims at reducing a supply
voltage level at the cost of impacting the computation timing
of processing blocks or even affecting the accuracy of the final
result of an application [4]. In [5], by exploring the inherent
noise resilience of binary neural networks and over scaling
the supply voltage of the memories used in the implemented
system-on-chip (SoC) at the cost of 1% of classification
accuracy degradation. Furthermore, the voltage scaling may
reduce the voltage threshold that is used to define the logical
‘1’ or ‘0’, which can result in data cells becoming stuck at a
logical value or even increasing the probability of soft error
occurrence, leading to a degradation in the hardware reliability
and even affecting the data precision [6].

Besides the clock frequency scaling that can be applied
alongside the supply voltage scaling (as shown with the DVFS
technique), another approach is reducing the execution rate
of systematic operations. In [7], this technique is explored
by means of reducing the refresh frequency of an embedded
DRAM (eDRAM) implemented in a SoC. In [8], authors
propose the use of sub-optimal refresh rates on DRAM by
applying a quality-aware approximate system, where, based on
characterisations testes, the critical data is allocated in physical
pages where the number of errors generated by the sub-optimal
refresh rates is low.

B. Data Precision Reduction

The memory footprint can be directly reduced by chang-
ing the data representation of the parameters (e.g., weights,
activations) of an ANN implementation. Reducing memory
footprint can lead to a reduction in the energy consumption of
the implementation since there is a decrease in the amount of
data transferred from/to the memory [9]. Methods of reduc-
ing the floating-point precision, or even the bit-width used
for data representation, can significantly reduce the energy
consumption with a cost of degradation in the outcomes of
an application [10]. In [11], the authors present a framework
to integrate the use of fixed-point data representation and a
reduction in the floating-point data representation to improve
the energy efficiency in mobile GPUs, reaching a reduction of
about 30% with acceptable degradation in the rendered images.
Reducing the bit-width of the adopted data representation
can also improve the robustness of the neural network, as

demonstrated in [12]. The implementation of these techniques
are not restricted to software-based implementations but also
can be implemented at the hardware level and directly in
FPGA (Field Programmable Gate Array) applications. This
type of improvement on hardware projects does not directly
impact the software level positively. From one side, with
FPGA implementations, area and energy costs can be reduced
by implementing mathematical functions (e.g., logarithms).
However, it can increase the application execution time at the
software level, in which the data handling and operations are
implemented [13].

III. PROPOSED FRAMEWORK

We propose a framework to assess the reliability of AxC
on ANN-based applications, enabling the trade-off estimation
between the impact of radiation-induced faults and resource
usage in terms of hardware and software on these appli-
cations. The proposed framework enables the use of fault
models extracted from the characterisation of COTS memories
in conjunction with the target environment conditions (e.g.,
radiation type, flux, and dose) to analyse the different scenarios
regarding the reliability of the system. The idea is based
on three steps: radiation-based fault injection, fault model
evaluation, model-based fault injection.

A. Radiation-Based Fault Injection

Radiation-based fault injections aim at characterising a
device or application and validate predictive models of events
produced by the impact of ionising particles (e.g., neutrons,
alphas, heavy ions, protons) on a given electronic device. The
reliability assessment is carried out on the actual platform
during the radiation test campaign.

One common outcome is the evaluation of Single-Bit Upsets
(SBUs) due to the radiation effects. Also, Single-Event Latch-
Up (SEL) may occur in the device. This kind of event can lead
to permanent damage, affecting not only the memory array but
also its controller part. The SEL can be observable by a sudden
increase in the nominal supply current [14].

Moreover, in [15], the authors spotted that the retention
time of a COTS DRAM memories has a significant decrease
when exposed to ion irradiation. This characteristic plays an
important role when scaling the refresh rate once the retention
capability of the cells will decrease, and the downscaled
refresh rate will be not reliable when the system is exposed
to a harsh environment containing this type of particle.

Furthermore, supplementary to the device characterisation,
the reliability assessment directly in the application can be
explored by radiation test at both hardware and software level.
Several works have been published on this scope. In [16], the
authors studied the radiation-induced soft-errors based on AxC
techniques applied to the data representation of weights in a
Convolutional Neural Network (CNN). Withal, by using an
accelerated neutron beam to inject transient errors and fault
injection experiments for permanent errors, the reliability of a
54-layer CNN is assessed by exposing the entire GPU to the
radiation source [17].



B. Fault Model Evaluation

Radiation-based fault injection exposed the system to sim-
ilar conditions of an in-field application, e.g., space applica-
tions. From the radiation tests, it is possible to evaluate the
electronic device by identifying the types of the generated
faults and their frequency and appearance conditions. Based
on the research group activities, several types of memories
were already exposed to different radiation sources. In [18], the
authors review the techniques and results of several radiation
test campaigns on two commercial SRAMs (90 nm and
65 nm) technology nodes. Moreover, the effects on a SLC
(Single Level Cell) NAND Flash under heavy-ions and proton
irradiation were evaluated in [19]. Also, in [20], several tests
on a MRAM show that the memory is prone to suffering from
SELs. Studies on these memories show that SEEs can occur in
different ways, such as SBUs, Multiple Cell Upsets (MCUs),
Single-Event Functional Interruptions (SEFIs), or SELs, and
it generates different kinds of fault behaviours on the devices.

From recognizing the different types of errors and identi-
fying the occurrences of each one, the estimated event cross
section provides the probability of its occurrences in a given
scenario. The cross section is defined as

σbit =
N

F ×M
(1)

where N is the number of events, F is the beam fluence in
n/cm2, and M is the number of bits [21].

C. Model-Based Fault Injection

Based on the radiation-induced soft errors, the model-based
fault injection is proposed as a case study, where it is shown
the main ideas to enable the injection of realistic fault models
during the simulation or emulation of a target application.
In order to define the scope, the next steps are based on
neutron irradiation on a COTS self-refresh DRAM memory
(results can be explored in more details in [22]), and the
reliability assessment is based on the injection of realistic
faults extract from this test campaign in applications that may
use this memory to run. Then, starting from the radiation
test campaigns, based on the results presented in [22], it was
defined the cross sections for three different types of errors that
were identified: SBUs, stuck-at bits, and block errors. From the
estimated cross sections, we can define the E-SER (Execution
Soft Error Rate), which provides the expected amount of
events within a run of the defined application. The equation
is:

E -SER = σbit ×M × φ̄× t (2)

where σbit is the calculated cross section (cm2/bit), M is
the memory size in bits used by the application (stored in
the target), φ̄ is the average neutron flux (n/cm2/s) of the
target environment, and t is the application execution time
in seconds.

A case study is proposed by using the CNN LeNet-5 [23] as
the application target. The trained network was exported as C
code using three different data representations for the weights:
the accurate network having 32-bit floating-point real numbers

TABLE I
ESTIMATED EVENT RATE FOR THE THREE DIFFERENT CNN VERSIONS.

CNN
version

E-SER [events/run]

SBUs Stuck-at bits Block errors

Float 32 1.04 0.53 0.40
Int 16 0.30 0.15 0.21
Int 8 0.10 0.05 0.13

(Float 32), and two approximated versions: a 16-bit integer
quantised CNN (Int 16), and an 8-bit integer quantised CNN
(Int 8). The three replicas were then ported to an embedded
system using an SoC, which provides an ARM Cortex™A9
processor attached to a 28 nm Artix®7 FPGA. This platform
was then implemented to have the HyperRAM memory allo-
cating the weights of the CNN. From this implementation,
we extract two parameters used by the E-SER equation.
The allocated resources in the HyperRAM memory gives
us the M . Furthermore, by running the application for the
determined quantity of inferences (1,000 images), we extracted
t. The estimated E-SER for the three different versions were
calculated with the cross sections defined in [22], with an
average flux of 5 × 106 n/cm2/s. The memory usage was
approximately 4 Mb for Float 32, 2 Mb for Int 16 and 1 Mb
for Int 8 with respect to the network weights. The execution
time was approximately 1800 s for Float 32, 960 s for Int 16,
and 600 s for Int 8. The estimated E-SER are presented in
Tab. I.

As explored in the previous sections, the radiation-induced
errors in memories can be seen in different ways, from just
SBUs up to errors spanning a significant range of addresses.
A model-based fault injection must take into account its
differences. From the three types of errors that were identified
in [22], the SBUs are the simplest ones to be injected on
a target application since they can be injected on random
addresses of the target memory accordingly the calculated
E-SER. Stuck-at faults also occurred in random addresses,
but two characteristics should be taken into account for this
type of errors: it presented an intermittent behaviour that
should be explored by defining a behavioural equation based
on the number of occurrences for each bit address, and the
injected faults may be permanent and not recoverable. Finally,
block errors have shown normally a faulty address pattern
when analysed by logical bitmaps. Then, the block error
model should take into account its shape and size, as well
as its behaviour, once write operations is generally capable of
restoring the cells access.

From these assumptions, an emulator can be designed based
on two processes. The application process is responsible for
running the target neural network, and the injector process is
responsible for introducing errors in memory locations. Both
processes are executed in parallel and share the same memory
resources, which should be implemented with concurrency
control mechanisms. The E-SER and the fault models should
be provided, and the injector process will use these inputs to



determine where and when a fault should be injected into the
running application. Fig. 1 depicts a top-level diagram of the
emulator.

Application running

Start Extract E-SER E-SER

Fault
Model

Extract Fault
Model

Application Process Injector Process

Create Processes

Start CNN

Finish CNN

Load Faults

Inject Fault

Requirements
achieved? FalseFalse

True

Return

Fig. 1. Emulator top level diagram.

IV. CONCLUSION

In this work, we presented a framework to assess the relia-
bility of approximate computing applications. The framework
leverages the results from radiation tests in COTS devices to
assess a given application’s reliability. We presented radiation-
induced errors targeting COTS memories, which can be just
SBUs and stuck-at bits, including events that generate errors
spanning a significant range of addresses. This paper also high-
lighted that the errors could appear in different manners and
with different behaviours. Finally, it is presented an emulator
architecture aimed at injecting the extracted fault models into
a specific application. We explored the use of previous results
to enable the reliability assessment by proposing a case study.
In the future, the group’s target aims to use the framework
to deploy an emulator capable of handling and injecting
the defined fault models. They will be used to estimate the
reliability of approximate ANNs.

REFERENCES

[1] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017,
doi: 10.1109/ACCESS.2017.2742698.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016. [Online].
Available: http://doi.acm.org/10.1145/2893356

[3] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS), May 2013, pp. 1–6, doi: 10.1109/ETS.2013.6569370.

[4] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and A. Raghu-
nathan, “Scalable effort hardware design,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 9, pp. 2004–2016,
2014, doi: 10.1109/TVLSI.2013.2276759.

[5] A. D. Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L. Benini,
“Always-on 674µW@4GOP/s error resilient binary neural networks with
aggressive SRAM voltage scaling on a 22-nm IoT end-node,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11,
pp. 3905–3918, 2020, doi: 10.1109/TCSI.2020.3012576.

[6] V. Chandra and R. Aitken, “Impact of technology and voltage scaling
on the soft error susceptibility in nanoscale CMOS,” in 2008 IEEE In-
ternational Symposium on Defect and Fault Tolerance of VLSI Systems,
2008, pp. 114–122, doi: 10.1109/DFT.2008.50.

[7] S. Ganapathy, A. Teman, R. Giterman, A. Burg, and G. Karakonstantis,
“Approximate computing with unreliable dynamic memories,” in 2015
IEEE 13th International New Circuits and Systems Conference (NEW-
CAS), 2015, pp. 1–4, doi: 10.1109/NEWCAS.2015.7182027.

[8] A. Raha, H. Jayakumar, S. Sutar, and V. Raghunathan, “Quality-
aware data allocation in approximate DRAM*,” in 2015 International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), 2015, pp. 89–98, doi: 10.1109/CASES.2015.7324549.

[9] G. Rodrigues, F. Lima Kastensmidt, and A. Bosio, “Survey on approx-
imate computing and its intrinsic fault tolerance,” Electronics, vol. 9,
no. 4, p. 557, 2020, doi: 10.3390/electronics9040557.
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