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Summary

Applications using Convolutional Neural Networks (CNNs) and other Deep Neu-
ral Networks (DNNSs) for Machine Vision and Natural Language Processing tasks
achieved breakthrough results in many challenging domains. To continuously im-
prove these results and approach human abilities in a broad variety of domains, the
complexity of the network (i.e., its depth) increases. Most of these applications are
run on data-center-class servers, for which processing speed and energy consump-
tion are primary concerns. For those reasons, CPU- and GPU-based platforms are
poorly suited and increase operating costs. ASICs can provide the best energy
e ciency, but the continuous evolution of CNNs requires exible ASICs, such as
the Google TPU [1], which are, however, less e cient than theory would predict,
for example because they support only a few numerical data types.

FPGAs are a promising option for CNN and DNN acceleration in data-centers,
0 ering energy e ciency coupled with full re-programmability and con gurabil-
ity for both data path and memory architecture. This allows one to tailor the
architecture to the application to a much deeper extent than is possible with ei-
ther CPU/GPU platforms or relatively rigid domain-speci ¢ ASICs, like the Google
TPU. For these reasons, cloud providers like Amazon Web Service (AWS), Alibaba,
and Microsoft o er Virtual Machines coupled with multi-FPGA platforms to ac-
celerate data-center applications with GPU-like performance, but consuming much
less energy.

Since network depth and complexity increase, mapping a network on a single
FPGA in most of the cases fails to meet performance requirements and would
bene t from a multi-FPGA implementation. The problem that we are address-
ing is as follows. We are given an application modeled as an interconnection of
tasks, each with various implementation options with varying performance, mem-
ory bandwidth, energy and resource requirements. We would like to statically or
dynamically allocate resources to these tasks to optimize various measures of per-
formance, such as throughput, energy per operation, and so on. Platforms like the
CPU and the GPU use various kinds of schedulers (Operating System scheduler on
the SW side, thread and instruction schedulers on the HW side) for this purpose
at compile time or at runtime. The goal of this thesis is to design a compilation-
like resource allocator for multi-FPGA acceleration. We devised and implemented



an e cient and accurate optimization framework for the allocation of task-level
pipelined applications (like Convolutional Neural Networks and Deep Neural Net-
works) to multiple FPGAs, with the twofold goal of maximizing the application
throughput and minimizing the power consumption, under resource and o -chip
memory bandwidth constraints. The target Multi-FPGA platform consists of AWS
F1 instances with up to eight Virtex Ultrascale+ FPGAs.

First, we implemented in synthesizable C++ and optimized using HLS direc-
tives the computing kernel for each and every layer of large CNNs, such as AlexNet,
VGG, YOLO, ResNet, and large DNNs, such as Transformer variants. Then, using
SDAccel, we implemented individual kernels in hardware using one Compute Unit
(CU) for each layer, and orchestrated their execution on the FPGAs by a host code
written in OpenCL and executed by the CPU of the AWS board. This allowed us
to pro le each kernel and get resource and memory bandwidth usage, working fre-
guency, and execution time, which later become the input data of the optimization
problem. We provide a model that covers the whole application execution, and
includes: 1) input data transfer time from the host CPU to FPGA DDR memory
(dynamic RAM), 2) data transfer time from FPGA DDR memory to the FPGA
on-chip memory (static RAM), 3) the actual kernel computation, 4) data transfer
time from FPGA on-chip memory to FPGA DDR memory, and 5) data transfer
from the FPGA DDR memory to the host CPU. This model can be used to math-
ematically formulate a complex Mixed-Integer Non-Linear Programming (MINLP)
optimization problem, which can be solved using a commercial MINLP solver [2].
However, using a MINLP solver is very slow, since the problem is NP-complete [3].
To accelerate the optimization process, we provide a fast heuristic method using a
Geometric Programming (GP) [4] solver and an allocator. Not only it can return
the solution in a matter of seconds, instead of running several hours or days when
using the MINLP solver, but it also o ers better results than those returned by the
solver when its run time is limited for practical reasons.

Second, we developed another optimization framework to nd the solution with
minimum power consumption for a given throughput. This model is aimed at data
center applications, where energy and cooling costs are signi cant. To optimize the
power consumption we provide a power model on top of the performance model.
This model includes the power consumption in di erent phases: 1) data transfer
between host CPU and FPGA memory, 2) data transfer between FPGA and DDR,
3) FPGA computation. Given a throughput constraint, the model will return the
best number of parallel number of powered-on FPGAs and their clock frequency and
generates the most power-e cient bitstreams to program the FPGAs. This model
can also lead to the formulation of another Mixed-Integer Non-Linear optimization
problem, which can also be solved using a MINLP solver. We compared the solution
obtained by the solver with one that simply clock gates the fastest implementation
and one that uses frequency scaling: our method always uses less power. However,
a MINLP solver can be very slow especially for design space explorations which
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need to run the solver several times. Therefore, we provide two di erent heuristic
methods. One of them still uses the MINLP solver but in a reduced exploration
space; the other one uses a greedy allocation. Both heuristic methods can be a few
orders of magnitude faster than the MINLP solver.

Also for power optimization, we use AlexNet, VGG and Transformer networks
to verify our model. The experimental results show that our approach can nd the
best solution compared to both 1) applying frequency scaling to optimize power
under a throughput constraint starting from a fast con guration, and 2) replicating
a slow con guration on multiple FPGAs.
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Chapter 1

Introduction

1.1 Motivation
1.1.1 Multi-kernel Applications

Many data center applications are organized as sequences of sub-tasks, called
kernels in the following, which are organized roughly as a pipeline. For example,
database applications can be organized as a pipeline of classical SQL operators
(select, join, ...) or as map-reduce pipelines, nancial algorithms can be modeled
as random number generators followed by Monte Carlo simulation steps, and so on.
In this thesis we focus on a speci c class of such applications that has become very
popular in recent years, namely Arti cial Intelligence (Al) algorithms. However,
the techniques developed in this thesis can be applied much more broadly than the
illustrative examples that we use in our work.

We chose Al because it allowed us to focus on the modeling of the optimization
problem, rather than on the modeling of the application itself, since the synthe-
sizable C++ code for most CNN and DNN applications is freely available, and
because it has witnessed monumental growth in recent years. Researchers and
enthusiasts alike, work on numerous aspects of the eld to make amazing things
happen. Among all Al elds, Machine Learning (ML) is one of the most studied
and used to solve di erent classes of problems.

ML comprises a wide variety of algorithms, among them Deep Learning (DL)
is the the most promising one. The key concept behind DL is that it uses multiple
levels of data features, hence the name deep. Starting from the raw input data,
several subsequent levels of features with di erent abstraction levels are extracted
and learned. Abstraction levels grow from low to high towards the outputs of the
network.

Arti cial Neural Networks (ANNSs) are a subset of Machine Learning models.
ANNSs can be shallow or deep. In the latter case, they are referred to as Deep
ANNSs (Deep Neural Networks, DNNs). Convolutional Neural Networks (CNNs)
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Machine Deep
Learning Learning

Artificial
Intelligence

Figure 1.1: Relation between Al, ML and DL.

are a typical class of DNNs. They have been used for both image recognition [5] [6]
[7] and natural language processing [8]. They can thus be used to process live data
for tra c surveillance cameras, identify people in pictures, transcribe voice and
analyze text to perform sentiment analysis (for customer support or to improve
user experience on social networks). To continuously improve these results and
approach human abilities in a broad variety of domains, the DNNs depth increases,
thus requiring more resources, and more design e ort to optimize performance over
a deep task-level pipeline composed of multiple kernels.

L
-9 -
i

Input feature maps Weights Output feature maps

Figure 1.2: Convolution layer.

A typical CNN algorithm is made of several layers. All the layers are connected
in a sequential order. The layers are based on a few key components, convolution,
recti cation, pooling, and fully connected layers. Among all the layers, the most
computationally signi cant layers are convolution and fully connected layers. Fig-
ure 1.2 shows a multi-dimension convolution operation. The input feature map
has three channels, this is the case for image recognition where the three channels
represent R, G, and B colors, respectively. The convolution uses four lters, each of
them having three channels to match the input feature maps. Each of the Iters and
the sliding window on the input feature map are having a point-wise multiplication
and addition to produce one pixel of the output feature map. In a typical CNN,
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1.1 Motivation

following the convolution layer is recti cation. It introduces the non-linearity to
the network allowing the model to learn faster and perform better. Another typical
CNN layer is pooling, which can be used to form a down-sampling. The most used
pooling methods are max and average pooling. The last layers in a CNN are typ-
ically the fully connected ones, which generate a vector whose size is equal to the
number of classes that the network can discriminate. Then the classi er will return
the class which has the highest probability. Since we only focus on the inference
phase of the network, the training part is omitted here.

CNNs are known to be computation-intensive. For example, AlexNet [5] has 0.7
GFLOPs, VGG [6] has 19.6 GFLOPs. These applications are used for computer
vision to perform inference. It is clear that such kind of applications have very strict
power and performance requirements. In this thesis, we focus on energy e cient
CNN accelerations.

1.1.2 Heterogeneous Computing Systems

To achieve high performance with good power and energy consumption, choos-
ing a suitable computing system platform is vital. This section explains the char-
acteristics of di erent heterogeneous computing systems.

A homogeneous computing system, composed of a group of CPUs has been the
preferred solution to build High Performance Computing systems and data centers
for a while. However, it is no longer able to achieve the remarkable performance
demanded in modern data centers because Single Instruction Single Data CPUs are
no longer increasing performance at the same rate as Single Instruction Multiple
Data GPUs and Vector Processors, or as recon gurable platforms such as FPGAs,
and they are also much less memory e cient [9]. The solution to this issue is
provided by heterogeneous computing systems.

They are called heterogeneous because the co-processors are di erent from the
host device, e.g., they have di erent instruction sets or architectures, and the pro-
gramming languages and environments are di erent. The performance and energy
e ciency can be achieved by the co-processors with specialized processing capa-
bilities to handle particular tasks. The co-processors can be the Graphic Pro-
cessing Units (GPUs), Field-Programmable Gate Arrays (FPGASs), and any other
Application-Speci c Integrated Circuits (ASICs). The co-processors communicate
with the host processors through the Peripheral Component Interconnect Express
(PCle) bus. Each processor has an independent memory. The co-processors may
communicate with each other via the same PCle bus, or via other dedicated pro-
tocols (e.g. Aurora for Xilinx FPGAS).
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Graphic Processing Unit

GPUs are speci cally designed integrated circuits originally used to process
graphical information such as images and videos. Currently, they are widely used
as accelerators for parallel computations such as training machine learning algo-
rithms. The architecture of the GPUs contains many computation cores also named
Algorithm-Logic Units (ALUs) managed by a single control unit.

The GPU can be programmed in CUDA, a proprietary programming language
that provides C/C++ syntax rules-based language and programming environment,
or the very similar (but open) Open Computing Language (OpenCL) which is a
framework to compile programs for executing on heterogeneous platforms. So the
GPU can be easily used by software developers.

However, it has been shown that these platforms are not very e cient with
respect to the energy consumption for many kinds of applications including the
machine learning algorithms that we considered in this thesis, mostly because (1)
they have a datapath that supports only a few xed data widths (e.g. FP32, FP16
and int8) and (2) their memory subsystem is very exible and powerr-hungry. This
issue has been addressed recently by using recon gurable hardware platforms as
accelerators.

Application-Speci c¢ Integrated Circuit

An ASIC is an integrated circuit customized for particular tasks rather than
intended for general-purpose use. So the ASIC has limited programmability as an
accelerator in a heterogeneous computing system. However, a well designed ASIC
chip usually achieves the best performance and energy e ciency for the particular
tasks running on it. ASICs can provide the best energy e ciency, but the con-
tinuous evolution of DNNs requires exible ASICs, such as the Tensor Processing
Unit (TPU) [1], which are, however, less e cient than theory would predict, mostly
because they are also limited to a xed (typically systolic) computational graph,
and to a few (e.g. FP16 and int8) data widths. TPUs have been designed from
the bottom up to allow faster execution of applications. However, TPUs are only
good at performing dense vector and matrix computations and are specialized in
running very fast programs based on Tensor ow. They are very well suited for ap-
plications dominated by matrix computations and for applications and models with
no custom TensorFlow operations inside the main training loop. That means that
they have lower exibility compared to CPUs and GPUs and they only make sense
to use them when it comes to models based on TensorFlow. FPGA on the other
hand can be used to perform high-performance matrix computations. Moreover, it
is much more exible compared with TPU. It can be programmed to perform other
kinds of computations.



1.1 Motivation

Field-Programmable Gate Array

An FPGA is a programmable integrated circuit that exploits a recon gurable
spatial computing architecture for massive parallelism rather than the Instruction
Set Architectures (ISAs). On modern FPGAs, such as the Stratix from Altera
and the Ultra-Scale+ and Versal families from Xilinx, there are up to millions of
Con gurable Logic Blocks (CLBs) and Flip-Flops, megabytes of on-chip the Block
RAM (BRAMS), hundreds of multiply and accumulate units (DSPs), and many
other dedicated hardware blocks, including ARM Cortex processors [10]. These
CLBs can be connected via a hierarchy of recon gurable interconnects (con gurable
wires) to perform complex combinational functions and sequential functions. The
integration of the DSPs makes the modern FPGAs also eligible for oating-point
computing acceleration.

1.1.3 FPGA Design Methodology

FPGAs are a promising option for CNN acceleration in data centers, o ering
energy e ciency coupled with full re-programmability and con gurability for both
datapath and memory architecture. This allows one to tailor the architecture to the
application to a much deeper extent than either CPU/GPU platforms or relatively
rigid domain-speci ¢ ASICs, like the Google TPU.

The Register Transfer Level (RTL) models are the predominant starting point
for standard design ows for FPGAs. These models are written in a Hardware De-
scription Language (HDL), and then are synthesized, placed and routed by Elec-
tronic Design Automation (EDA) tools. However, this traditional design ow is
losing steam. On one hand, it is very time-consuming, tedious, and error-prone to
code complex algorithms since it usually needs thousands of lines. This character-
istic limits exibility. To test the correctness of the model, the user needs to write
a complex testbench. On the other hand, the standard software development ow,
based on the principle of write once, run anywhere is attractive for hardware
designers. Both Altera/Intel and Xilinx promise software-like development for ap-
plications that are entirely written in a high-level language and are then compiled
and synthesized for heterogeneous CPU-FPGA platforms. This software-like de-
sign ow is named high-level synthesis (HLS). HLS design ow can dramatically
reduce the design and veri cation costs, essentially eliminating the need to model
the design at RTL.

Given an algorithm modeled in a high-level language such as C, C++ or OpenCL,
several optimizations can be applied to improve its performance (and resource uti-
lization) on an FPGA. The optimizations can be done by using directives in HLS.
The most used directives are:

Loop pipelining starts new iterations of a loop before the completion of the
previous ones. It is one of the best options for loop optimization in HLS,
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since it usually boosts the performance at a very low cost [11] [10].

Loop unrolling creates multiple copies of the loop body to be executed fully in
parallel if their is no dependency among the iterations. In some cases it can
achieve even more performance than by means of pipelining, but typically at
a huge resource (i.e., area) cost [11].

Compute unit is another mechanism to increase parallelism that is similar to
loop unrolling, but at a higher level.

DATAFLOW. Computational processes in data ow micro-architectures are
controlled by the availability of the input data rather than a centralized nite
state machine (FSM).

1.1.4 Multi-FPGA Platform

As network depth and complexity increase, single-FPGA designs cannot al-
ways meet performance requirements. Multi-FPGA can be a promising option for
accelerating high computation-intensive data-center applications to achieve high
performance. For these reasons, cloud providers like Amazon (AWS) o er Elastic
Compute Cloud (EC2) F1 instance which includes Virtual Machines coupled with
multi-FPGA platforms to accelerate data-center applications with GPU-like per-
formance but consuming less energy. Amazon EC2 F1 instance is also the platform
we use for our experiments in this work.

Figure 1.3: Architecture of the Amazon EC2 F1 instance.

Figure 1.3 shows the architecture of Amazon EC2 F1 instance. It has eight
Xilinx UltraScale+ FPGAs, each equipped with local DDR DRAM and connected
via the PCI express (PCle) bus to an x86 host CPU. The role of the host CPU
is to orchestrate the execution of the applications on the FPGAs and allow them
to communicate via PCle. Table 1.1 shows the speci cations of the UltraScale+
device xcvu9p adopted by the Amazon EC2 F1 instance.

The host CPU has been used to program the FPGAs once the bitstreams are
ready, it also works as a control unit to handle the data transfer from the host CPU
to the FPGA, as well as the FPGA execution. The kernels on the FPGAs can be
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Device | BRAM | URAM | DSP | LUT |LUTMem | REG
xcvu9p | 2088 960 6837 | 1110146 | 575398 | 2264435

Table 1.1: Xilinx UltraScale+ xcvu9p device speci cations.

synchronized by the host CPU and all the kernels can be executed concurrently. All
these requirements can be passed to FPGA compilation environments like Xilinx
SDAccel [12] in the case of the Amazon EC2 F1 instance.

Development

C/C++ C/C++, OpenCL C, RTL

4 ¥

SDAccel Environment

IDE, Profiler & Debugger

Host Code Compiler Hardware Acce!erator
Code Compiler

\ \

Compiled Application

Host Executable FPGA Binary

Deployment

HW Accelerator 1
PCI

Runtime (XRT) Express Shell | Configurable Hardware

& Drivers ~meroge
HW Accelerator n

x86 Host FPGA

Figure 1.4: Flow of using SDAccel[12].

The SDAccel environment is an integrated development environment for appli-
cations targeting AWS F1 instances and other FPGA-as-a-Service o erings. Fig-
ure 1.4 shows the ow of using SDAccel for your design.

It provides a familiar software development ow with:

An Integrated Development Environment (IDE)
A pro ler to guide application optimization

Compilers for host & FPGA-accelerated code
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Emulation ows for rapid development and debug
Automatic communication between software and hardware

The host application is developed in C/C++ and uses standard OpenCL API
calls to interact with the FPGA-accelerated functions which can be modeled in
either RTL, C/C++, or OpenCL. This provides familiar entry points for hardware
designers and software engineers alike.

The SDAccel IDE provides all the features of a standard software develop-
ment environment: optimized compiler for host applications, cross compiler for
the adaptable hardware, a robust debugging environment, and pro lers to identify
performance bottlenecks and optimize the application.

The Xilinx runtime (XRT) and board-speci c¢ shells automatically manage com-
munication between the FPGA accelerators and the host application. The software
developer does not need to implement any of these connection details.

1.1.5 Goal of the Thesis

Thanks to the Xilinx SDAccel design environment, users can easily program the
FPGAs starting from models written in C, C++ and OpenCL. However, the Vivado
HLS tool that is used by SDAccel only deals with micro-level resource allocation.
The global-level resource allocation is totally left to the programmer, who is in
charge of de ning the number of Compute Units that are instantiated for each
kernel, in order to match the throughput of each pipeline stage while satisfying
resource and memory bandwidth constraints.

Figure 1.5 shows a task level pipeline model that has three kernels executing
one after another. If we pipeline it at a global level, all the kernels can work
concurrently, the throughput will be highly increased. The initiation interval is
determined by the slowest kernel. The throughput can reach its maximum if we
balance the resource allocation in a way that all the kernels have the same execution
time shown in Figure 1.6. To do so, SDAccel allows users to instantiate multiple
copies of each kernel, called Compute Units (CUs). The workloads can be equally
distributed on the multiple CUs to reduce the execution time.

Figure 1.5: Task-level pipeline model.

However, there are no available tools that can be used to accelerate applications
on multi-FPGA platforms to maximize throughput at the global level. Our goal
in this work is to develop an optimization model that can nd the optimal level
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kernel 2

kernel 2

. .

Figure 1.6: Resource balanced task-level pipeline model.

of parallelization as well as the allocation of these multi-kernel applications on a
Multi-FPGA system. By giving the number of FPGAs, the available resources,
and a set of constraints, the model will return the solution with the maximum
throughput, indicate the value of the throughput, on which FPGA the kernels
should be allocated after proper parallelization obtained using multiple Compute
Units (CUs) for each kernel, and the number of resources distributed to each kernel.

Similarly, we also develop another optimization framework to nd the solution
with minimum power consumption for a given throughput. It should be able to
determine the number of FPGASs in-use, the number of CUs for each kernel, and
their allocation on di erent FPGAs in a multi-FPGA platform.

1.2 Overview of the Contributions

The contributions of this thesis are included in two areas: the throughput op-
timization model for CNNs on multi-FPGA platform and the power optimization
model. Regarding the throughput optimization model, we consider that the layers
of CNNs work concurrently in an e cient way by balancing the resource usage for
each layer; the resource organization that obtains the maximum throughput can be
achieved using a state-of-the-art solver or a heuristic method. Similarly, the latter
contribution concerns a model to optimize the total power consumption given a
minimum throughput as a constraint. It includes both the power consumed during
the data transfer as well as the one spent in computation on the FPGA. The so-
lution of an optimization problem will determine the number of FPGA in use and
their working frequency, other than the resource allocation.

More precisely, the contributions of this thesis are the following:

Performance optimization model. We have proposed and experimentally
analyzed a fast and e ective method to allocate resources for each kernel
in a multi-kernel task-level pipelined application, like a CNN, to optimize
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the throughout on multiple FPGAs. Our heuristic optimizes the number of
Compute Units (CUs) of each kernel and their allocations, while respecting
resource constraints and taking into account the cost of data transfer times be-
tween the FPGAs and a host CPU. We developed a cost/performance model,
we modeled it as an optimization problem.

MINLP solver. The optimization problem has been solved initially
using a Mixed-Integer Non-Linear Programming (MINLP) solver [2].

Heuristic Method. Due to the long CPU time and ine ciency of the
solver, we propose a fast and accurate heuristic method that consists
of two main parts. First we use a Geometric Programming [4] solver
(using a relaxed representation of the same model, without integrality
constraints) to get the number of CUs. Then we use a heuristic allocator
to assign them to di erent FPGASs in order to minimize the data transfer
time.

Experimental results show that our heuristic method can provide very similar
results as the exact MINLP solution when the problem size is small, and it
returns much better results for larger problem sizes.

Power optimization model. We have proposed a power-performance op-
timization method to optimally con gure a multi-FPGA platform running
multi-kernel pipelined workloads. Given an Initiation Interval (Il) target,
the solution provides an optimal allocation of the best number of CUs for
each kernel so as to minimize the overall power consumption. Compared to
applying frequency scaling to reduce both Il and power starting from a fast
con guration, or to replicating a slow con guration on multiple FPGAs, our
solution provides a much more e ective way of saving power.

MINLP solver. The optimization problem has been initially solved
using a MINLP solver. However, it takes too long to nd an optimal or
near optimal solution.

Heuristic methods. We then proposed two di erent kind of heuristic
methods to increase the e ciency. The rst heuristic method still uses
a MINLP solver but with a reduced exploration space, thus increasing
the speed. Similar to the rst one, the second heuristic method also uses
the same method to reduce the exploration space, but instead of using
the MINLP solver, it uses a greedy allocation.

Experimental results shows that the rst heuristics constrains the exploration
space to signi cantly reduce the run-time, while achieving the same or even
better results than the exact algorithm. Moreover, the second heuristics is
thousands of times faster than the exact algorithm.
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1.3 Organization of the Thesis

This thesis presents a collection of the work done in the eld of electronic design
automation (EDA) for multi-FPGA design of multi-kernel applications. The work
is composed of seven chapters and their organization is as follows:

Chapter 2 covers the state-of-the-art.

Chapter 3 provides a simpli ed performance optimization model that only
considers the execution time of the kernel.

Chapter 4 proposes a more detailed method to map multi-kernel applications
on multi-FPGA platforms to maximize application throughput. We try to use
Mixed-Integer Non-Linear Programming (MINLP) solver to nd the optimal
solution. Finding the optimal solution using a Mixed-Integer Non-Linear
Programming (MINLP) solver is often highly ine cient. Hence, we provide
a fast heuristic method that according to our experiments can be much more
e cient than the MINLP solver and nds comparable results.

Chapter 5 discusses the way to minimize the power consumption for data
center applications on Amazon EC2 F1 instance. we propose to upload at run-
time the best power-optimized CNN implementation for a given throughput
constraint. The o -line optimization model can be solved using a Mixed-
Integer Non-Linear Programming (MINLP) solver, it gives the best number
of parallel instances of each kernel, their allocation to the FPGAs, the number
of powered-on FPGAs and their clock frequency.

In chapter 6, we provide two heuristic optimization methods that improve

the quality of results of the power optimization model discussed in chapter 5.

We use several very large designs to demonstrate that both heuristics obtain

comparable results to a MINLP solver when this can nd the best solution,

and they obtain much better results than the MINLP solver when this cannot
nd the optimum within a bounded amount of time.

Chapter 7 concludes the work and discusses the possible future work.
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Chapter 2
Related Work

Resource allocation is a well-studied problem for high-performance data cen-
ters with heterogeneous hardware (CPUs with Graphical Processing Unit (GPU)
or FPGA accelerators). Yet, the context of multi-FPGA platforms still requires
investigation, as the review of the literature that follows shows. Here we contrast
the previous work in this eld with ours, and highlight the most important dif-
ferences between what has been proposed by other researchers and our own work.
We divide the literature analysis in two parts, which correspond to the two main
contributions of this thesis.

2.1 Performance Acceleration

The community interested in compilers for parallel architectures faced a similar
problem when mapping streaming applications to multiprocessor systems and ac-
celerators. Indeed, [13] de nes three levels of parallelism (task, data and pipeline)
that are also exploited in our underlying execution model (tasks are called ker-
nels , data parallelism is exploited both at the CU level and the loop unrolling
level within a CU, and innermost loops are pipelined). Their compiler, based on
the Streamlt language, is aimed at processors (the RAW machine) rather than
FPGAs. Moreover, it makes only heuristic choices for allocation. Similarly, [14]
uses multiple process instances, but focuses only on process replication and FIFO
allocation, while we include resources as a primary aspect of our cost function and
consider array-based communication, rather than FIFO-based. Array-based is a
more natural programming model, because it is supported by languages like C,
C++ and OpenCL, and it requires fewer changes to legacy code, without complex
logic for forking and joining data to and from data parallel CUs. More recently,
[15] includes, like in our case, an explicit memory model, but solves the problem
heuristically with a clustering algorithm (using ILP only as a reference), while we
start from a GP relaxation for our heuristic.
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In terms of FPGA implementation of DNNs, the research focus moved from
single to multiple accelerators (i.e., the layers of a DNN) implemented on a single
FPGA [16, 17, 18]. Even though in these works the use of FPGA resources and
memory bandwidth are maximized, still single FPGA designs cannot deliver the
performance of multi-FPGA platforms, which have recently attracted the interest of
researchers. [19] schedules a task-parallel Static Data ow Graph with multiple CU
instances, leading to a very e cient scheduling formulation as a Set of Di erence
Constraints. However, it is also limited to FIFO-based communication and it does
not consider multi-FPGA allocation and the resulting trade-o s.

In the multi-FPGA side, the authors [20] propose Multi-FPGA CNN accelera-
tion by minimizing independently the latency of each kernel, while our goal is to
maximize the application throughput. Their design space exploration is applied to
each layer individually, which may oversize or undersize each layer with respect to
the global balancing of the task-level pipeline. However, similar to our work, [20]
also adopts an on-board data reuse scheme to minimize the external memory access
time.

The Brainwave project [21, 22] developed by Microsoft is designed for real-time
Al, which means the system can ingest a request as soon as it is received over the
network at high throughput and at ultra-low latency without batching. They did
a very good job to allow users without hardware expertise to automatically deploy
and accelerate state-of-the-art DNN models in real-time and at low cost. How-
ever, their main focus is the recurrent neural networks for text-driven applications
at Microsoft. This type of application is bandwidth-intensive and more di cult
to accelerate than CNNs. To solve the challenges, they exploit model parallelism
and store all the parameters on-chip. When an FPGA’s on-chip memory is ex-
hausted, the system will use more FPGAs to allow all the weights to be stored in
on-chip memory. They also provide a quantization mechanism to trim the bitwidth
of the weights. Di erent from the Brainwave project, we are more interested in
throughput, which is a more signi cant gure of merit for CNNs or DNNs used for
image classi cation in a non-real-time context. Our work is focusing on accelerat-
ing throughput-demand multi-kernel applications. All the kernels in a multi-kernel
application are working concurrently.

In [23], the pipeline stages are consecutive kernels allocated on a single FPGA
and the throughput is optimized by balancing the workload and the FPGA re-
sources. The initiation interval (1) of the pipeline in [23] is by construction
greater than in our work, and therefore the throughput lower, because the ker-
nels of each group are executed sequentially within a single FPGA. The advantage
of our method is that all kernels can work concurrently regardless their allocation
in the FPGAs, since each kernel is a single stage of the pipeline. Moreover, in [23]
the consecutive kernels are forced to be allocated on the same FPGA, while our
model does not force that. Finally, [23] does not consider the frequency reduction
due to routing congestion when the resource utilization increases, while we consider
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it.

Similar to our work, in [24] the authors rst obtain a characterization of indi-
vidual kernels, which then they use to feed a dynamic programming model that
optimizes the way in which the network is partitioned into stages. Still, our model
can obtain a better 11 for the same reason that it can outperform the results obtained
by the method proposed in [23], namely that we do not restrict the distribution of
CUs to FPGAs to be grouped by stages.

Also in [25], a preliminary characterization of kernels, termed as components,
is done before a design-space exploration of a system made of several components
is performed. In that work, an application is modeled as a Timed Marked Graph
and Petri net theory is used to nd the best overall throughput, then imposing
a throughput constraint on every process and trying to satisfy it via High-Level
Synthesis. However, there is no guarantee that the requested throughput is fea-
sible, hence iterating is needed to explore the entire Pareto-optimal design space.
Moreover, the paper does not discuss memory bandwidth nor allocation to FPGAs.

In [26], the authors focus on designing optimal pipelined CNNs on a set of
heterogeneous FPGAs. The rationale is that di erent tasks in the pipeline are
better suited to a speci ¢ type of FPGA. Our work is di erent from theirs in
various aspects, of which the main three are as follows. First, we target an existing
commercial Multi-FPGA platform (AWS), which consists of a set of homogeneous
FPGAs, but our formulation can be adapted to heterogeneous FPGAs. Second, we
do not force neighboring pipeline stages to be on the same FPGA, but we take into
account the performance advantage of doing so to achieve a globally better solution.
Third, to improve the solver e ciency, [26] provides an e cient BLAST algorithm
using Dynamic Programming (DP), while we use a Geometric Programming solver
and a heuristic allocator to improve the e ciency.

[27, 28] propose to accelerate a lung cancer nodule segmentation algorithm on
a multi-FPGA system. All these works maximize the application throughput using
pipelined FPGA clusters, i.e., they force neighboring stages to be on the same
FPGA, which may or may not be the best solution. Our work uses the layers of the
DNNs as a more natural partition of the network into pipeline stages. Di erently
from previous works, we also consider an estimated clock frequency reduction due
to routing, when FPGA resource usage increases.

Finally, Maxeler Technology o ers to its users data ow HPC solutions. The
workstations are hybrid computing platforms that are using both CPUs and FPGAs
[29]. In order to use the Maxeler system, three basic parts need to be provided by
the user: 1) The CPU interface code to handle the data ow, 2) kernels which
need to be implemented on FPGA, 3) the manager which handles the internal
functionality and the on-board and o -board data movement. Maxeler FPGA
[30] data ow engines run at a few hundred megahertz, and can already beat the
performance of conventional CPUs. In addition, data ow engines are easily able to
exploit increasing silicon capacity since performance comes directly from parallelism
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and can scale linearly with silicon area, without depending on clock frequency
increases. In order of using Maxeler DFE, applications should meet the following
four criteria:

BigData. The rst advantage of using Maxeler DFEs is that they are able to
accelerate the movement of data. So the application has to be a real BigData
application.

Extensive data reuse. The application should use most data more than once.

Loop structure. The application should have loops that consume most of the
processing time. The loops are the portions of the application that are move
to the DFE.

Initial latency. The algorithm must tolerate initial latency.

From [30], we know that the Maxeler FPGAs are the data ow engines. The
application is running on the FPGA with a data ow mechanism. Similar to their
work, we also use FPGA to design accelerators in order to improve the application
throughput. However, we are using data ow at a higher level. Instead of using
data ow inside each kernel, we use data ow at the kernel level. To use our method,
the application should have multiple kernels in order to "see" the advantage. In
addition, inside each kernel, the loops are also unrolled and pipelined. This gives
another level of parallelization. Moreover, each FPGA in the AWS platform has
three Super Logic Regions (SLR). If kernel instances use more than the resources
of an SLR, then there will be Super Long Lines (SLL) involved, reducing the work-
ing frequency. In our work, each kernel instance is using a small portion of the
FPGA, each FPGA can have several kernels allocated on it, and all the kernels are
totally independent and they are working concurrently. This will result in less SLR
crossing, thus higher working frequency.

2.2 Scheduling and Resource Allocation

For the resource allocation on multi-core systems, a large number of past works
are using strip packing or bin packing. In our work, we provide an allocator to
assign the kernels to di erent FPGAs. There are some similarities to the Strip-
Packing, Bin-Packing problems. Strip packing [31] problems involve packing items
into a single bin of xed width and in nite height, with the objective of minimizing
the total height of the packing within the strip. [32] proposed online scheduling
for multi-core shared recon gurable fabric. They modeled the task queue as a
2D rectangular Strip-Packing problem (2D-SPP) with the additional processor and
deadline constraints in order to nd the optimal schedule. Unfortunately, 2D-SSP
is an NP-hard problem, and nding the optimal solution with a large number of
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rectangular is not feasible. However, it can provide a good target for the online
scheduler.

Bin-Packing problems [33], on the other hand, involves packing items into mul-
tiple bins of xed width and height, so as to minimize the number of bins utilized.
[34] and [35] are using Bin-Packing to schedule tasks on multi-core systems. [34]
provides an optimization method for the task allocation step for multi-core proces-
sors. To complete their model, all the created tasks are mapped to the available
processing cores by using Bin-packing heuristics. [35] studies the problem of how
to schedule real-time tasks on multi-core platforms to maximize energy e ciency
under other constraints, like temperature.

Our allocation problem is similar to the bin packing problem. Each kernel is
using a certain amount of resources, hence it is like a rectangle in the bin packing
problem. Instead of minimizing the number of bins, we try to t all the rectangles
in a limited number of bins, in addition to satisfying other constraints (e.g. memory
bandwidth).

2.3 Multi-FPGA Platform for Emulations

Researchers also use multi-FPGA as emulation platforms [36, 37, 38, 39, 40,
41]. [36] is using multi-FPGA for ASIC prototyping. [37] and [40] are using multi-
FPGA for multi-core processor simulations. [38, 39] and [41] are using it as logic
emulation platforms for Networks-on-chip.

[36] summarizes a number of issues that should be considered by designers,
including partitioning the netlist on multiple FPGAs. The authors suggested that
each FPGA should be treated as a block within an overall top-down ASIC design

ow, so it can help to localize the e ect of design changes, reducing iteration time.

[37] described a multi-FPGA platform to accelerate logic veri cations of the
Bluegene compute node ASIC, a multi-processor SOC implemented in IBM’s CMOS
technology. It discussed the challenges including the design partitioning. The au-
thors developed their own partitioning tool to map a DUT onto FPGAs. The tool
takes three inputs: 1) the netlist of the DUT, 2) the netlist of the physical hierarchy
of the FPGA systems, and 3) a mapping le. The tool analyzes the netlist and
writes a complete set of VHDL les contain the appropriate instances from the logi-
cal hierarchy. In addition, the tool also automatically generates timing constraints.
[40] proposed a method to emulate a 48-core multiprocessor on multi-FPGA. The
DUT is mapped onto one or several FPGAs by commercial ASIC/FPGA RTL
synthesis tools.

Hung et al.in [38] pointed out various challenging problems for logic emulation
using FPGA. The DUT will be partitioned into hundreds of pieces, and each of them
is allocated an FPGA without exceeding the resource utilization. The objective of
partitioning is to minimize the cut sizes.
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Abdellah-Medjadji et al.in [39] provided an accurate multi-FPGA emulation
platform. They try to partition the NoC into K subsets and each one assigned to
a recon gurable device N (K N). This algorithm is trying to minimize the total
intra-cluster links under the constraint that a cluster must t on one FPGA chip.
Di erent from [39], in our work, each kernel is a separated subset, and the num-
ber of subsets can be higher than the number of FPGAs. More than one cluster
can be allocated on the same FPGA. Similarly, Karypis et al.in [39] proposed a
partitioning algorithm for applications in the VLSI domain. The presented multi-
level hypergraph-partitioning algorithm directly operates on the hypergraphs. They
developed new multiphase re nement schemes based on the multilevel paradigm.
These schemes take an initial partition as input and try to improve them using the
multilevel scheme. These multiphase schemes further reduce the run times, as well
as improve the solution quality. The coarsening phase is able to generate a sequence
of hypergraphs that are good approximations of the original hypergraph. The ini-
tial partitioning algorithm is then able to nd a good partitioning by essentially
exploiting global information of the original hypergraph. Finally, the iterative re-

nement at each uncoarsening level is able to signi cantly improve the partitioning
quality because it moves successively smaller subsets of vertices between the two
partitions.

2.4 Power E cient Resource Allocation

Power-optimal FPGA design is a broadly investigated eld, but mostly focused
on single-FPGA designs.

The traditional way of reducing power consumption consists in using frequency
scaling and dynamic voltage scaling methods. [42] presents a universal o ine self-
calibration scheme, which automatically nds the FPGA frequency and core voltage
operating limit at di erent self-imposed temperatures by monitoring design-speci ¢
critical paths. [43] investigates the energy reductions possible in commercially avail-
able FPGAs con gured to support voltage, frequency and logic scalability combined
with power gating. [44] presents a method of dynamic voltage and frequency scal-
ing that uses online slack measurement to determine timing headroom in a circuit
while it is operating and scale the voltage and/or frequency in response. All these
methods focus on low-level aspects, whereas we propose a complementary high-level
approach, which can minimize the power consumption by allocating the kernels in
a certain way and also determine the working frequency of each FPGA in a multi-
FPGA platform.

Tesfatsion et al. [45] provide a resource management framework with a hardware
scheduler and an optimizer for FPGA-accelerated clouds. Similar to our work, they
split workloads into chunks run by Virtual Machines on CPUs and sharing FPGA
accelerators. But they do not pipeline chunk execution and consider only the FPGA
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static power.

Zhang et al. [46] map pipelined CNN layers to a multi-FPGA platform exploring
the design space for optimal performance and energy with dynamic programming.
However, they assume constant FPGA power consumption, thus reducing the prob-
lem of energy minimization to execution time minimization. Also, they use First In
First Out queues (FIFOs) for inter-layer communications, which require in-order
production and consumption of activation values. This may be di cult to achieve,
and is not supported by current multi-FPGA cloud platforms like Amazon AWS F1
(FPGA-to-FPGA transfers must be mediated by the CPU). On the other hand, we
model inter-kernel communication using memory arrays, which is arguably a more
general and natural programming model, supported by C, C++, and OpenCL.

The execution model in [13] exploits, like our work, application parallelism at
task, data, and pipeline level, but the authors target processors instead of FPGAs.
Furthermore, a compiler decides the allocation through heuristic moves, while we
solve an optimization problem. A task-parallel static data ow graph execution
model with multiple CU instances is proposed in [19] for FPGA targets, with ef-

cient scheduling formulated as a set of di erence constraints. But it does not
consider multi-FPGA platforms and optimizes only performance, not power.

For multi-FPGA targets, [47, 48] propose to improve performance by using
direct network communication between FPGAs. However, they do not optimize the
power of the FPGA clusters, and again this communication model is not o ered by
current PCle-based multi-FPGA cloud platforms.

Li et al. [49] use a similar greedy resource allocation to the most critical kernel,
balancing resource usage until exhaustion, but without minimizing power consump-
tion or considering multi-FPGA allocation. Our model satis es performance con-
straints while minimizing the overall, multi-FPGA power consumption. Cong et al.
[19] proposed a task-parallel static data ow graph execution model with multiple
compute unit (CU) instances, with e cient scheduling modeled as a set of di er-
ence constraints, but for single-FPGA targets and optimizing only for performance,
not power.
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Chapter 3

Simpli ed Performance
Optimization Model for
Multi-kernel Applications on
Multi-FPGA Platform

In this chapter, we optimize the mapping of high-performance multi-kernel ap-
plications, like Convolutional Neural Networks, to multi-FPGA platforms. First,
we formulate the system level optimization problem, choosing within a huge design
space the parallelism and number of compute units for each kernel in the pipeline.
Then we solve it using a combination of Geometric Programming, producing the
optimum performance solution given resource and DRAM bandwidth constraints,
and a heuristic allocator of the compute units on the FPGA cluster.

The performance model used for the optimization is simpli ed as it does not
consider the data transfer time between the FPGAs and the host of the Multi-
FPGA platform. This is a reasonable assumption when the amount of data to
transfer outside each FPGA is relatively small (e.g., when communication happens
mostly locally within a single FPGA) or when the amount of data is independent
of the allocation.

This work was previously published in [50].
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3.1 Introduction

In this chapter we exploit an OpenCL-like execution model. In this model,
an application is typically a linear task-level pipeline of kernels, each kernel being
composed of independent Compute Units (CU). Each CU in turn contains loops
which can be unrolled and pipelined to o er further parallelization. Kernels com-
municate among each other and with the CPU-bound host code via large bu ers
allocated in external DRAM. The designer must ensure that CUs do not interfere
with each other when writing into these bu er, i.e. CU-level parallelism can be
arbitrarily increased via replication. This computational model can also be sup-
ported by C++-based synthesis tools (in fact, we model our applications in C++
in order to have better control over loop handling during HLS), and ts very well
many datacenter applications, like CNNs or other Neural Networks and Machine
Learning algorithms.

However, globally optimizing the throughput of a task-level pipeline of kernels
over multiple FPGAs is far from trivial. One must take into account simultaneously:

1. throughput matching among multiple kernels, which can be increased or de-
creased by changing either the number of CUs or the parallelism of each CU
(e.g., via unrolling);

2. the amount of resources and external DRAM bandwidth used on each FPGA,
which increases as more CUs are allocated to them.

The number of choices to evaluate, and hence the designer expertise and e ort
needed, quickly grows out of control. Note that while this problem super cially
resembles the classical pipeline scheduling problem in HLS, the actual model is
much more complex, because CUs that implement kernels:

1. have many more implementation choices (e.g., via unrolling or other HLS
transformations [25]) than typical Functional Units.

2. have a multi-dimensional cost function including performance, memory band-
width, and FPGA resources (DSPs, LUTs, FFs, and BRAMS).

In this work, we propose a new optimization method for the implementation of
task-level pipelined applications on multiple FPGAs. We assume that all commu-
nication is performed via o -chip DRAM, which is essentially the above-mentioned
OpenCL inter-kernel communication model. In this scenario, our method can be
used to choose how many CUs should be allocated for each kernel. This is a simple
option that can be passed to FPGA compilation environments like Xilinx SDAccel,
Intel SDK for OpenCL, and so on. While a mix of on-chip and o -chip communi-
cation resources would allow the exploration of an even larger design space, they
are not yet supported by any of these design environments. Hence their analysis is
left to future work.
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3.1 Introduction

Our work is fully general, and could be applied (1) to other task-level pipelined
applications beyond CNNs, (2) to other cloud-based or super-computing FPGA
platforms beyond Amazon Web Services (AWS) F1 instances, and (3) to other
design environments beyond SDAccel. However, we use this generally available and
well-known trio to demonstrate and quantitatively evaluate our results.

Not all applications can be optimized using the proposed method. This method
can only be used for applications where the workload is arbitrarily parallelizable and
can be modeled as a pipeline, such as DNNs and some data-center applications, like
Financial simulation algorithms, some Database algorithms, video encoding, and
decoding. We acknowledge that the method is not e cient for other application
types, e.g. nite element methods.

In this work we use two Convolutional neural networks, AlexNet [5] and VGG16
[6]. Note that our algorithms do not depend at all on the considered networks, and
these two examples are used only for the sake of illustration. Each CNN is composed
of several convolutional, pooling, normalization and fully connected layers, and each
convolutional layer is mapped to a kernel. As discussed in [51], we use loop tiling to
reuse both the input feature maps and the weights. Memory access is optimized by
reshaping the input and output feature map arrays and the weight array, to allow
burst mode data transfers.

In these applications, throughput (i.e. processed images per second) is the main
measure of performance, while overall latency (i.e. total pipeline depth) is much less
important. Hence we focus on minimizing the maximum latency among all kernels,
because it determines the Initiation Interval (I11) of the pipeline, and therefore its
throughput. Note also that memory bandwidth of external DRAM can be a major
factor limiting the performance of memory-intensive applications like CNNs. Hence
our cost and performance model takes this aspect explicitly into account.

Our ow starts from CNN models which have already been partitioned into
kernels and individually optimized for FPGA implementation. Then we collect cost,
memory bandwidth, and performance (throughput and latency) data from each
kernel, by running several versions of its CUs, with varying degrees of parallelism,
on an AWS F1. We then use these values to formulate an optimization problem
that is discussed in Section 3.2.1 and models the multi-kernel multi-FPGA resource-
and bandwidth-constrained allocation problem. This problem can then be solved:

1. either directly by a Mixed-Integer Non-Linear Programming (MINLP) solver,
to provide an exact solution in a potentially very long execution time.

2. or indirectly by combining the power of a Geometric Programming (GP)
solver, which is followed by an e cient integer relaxation of the problem
variables, with a novel allocation algorithm that:

discretizes the result of the GP solver, and
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tries to cluster CUs for a kernel on the same FPGA, to simplify the
communication coordinated by the host code.

The second method achieves essentially the same level of optimality as the MINLP
solver (whenever the latter is able to complete), in a fraction of the time.

We designed our GP model and allocator to optimize the assignment of Compute
Units on multiple FPGAs while keeping into account the limitations of modern
FPGAs (e.g. the maximum DRAM bandwidth), so that it can handle the large size
of typical state-of-the-art CNN applications. Our contributions are:

1. The de nition of the multi-FPGA CU allocation problem for linear kernel
pipelines and its constraints.

2. The de nition of a Non-Linear Programming model for that problem, and its
solution both (1) by an exact (very expensive) MINLP solver and (2) by a
GP solver, nding an optimal non-integer solution, followed by an allocator
aimed at minimizing the spreading of CUs of one kernel to multiple FPGA:s.

3. The analysis of their result quality for two large CNN applications, imple-
mented on large multi-FPGA AWS F1 instances.

As mentioned, we are leaving the generalization to (less common) non-linear pipelines
and to (not yet available from industrial design environments) on-chip and o -chip
communication mechanisms to future work.

This is the organization of the chapter. We de ne the optimization problem
and our heuristic in Sec. 3.2. Experimental results are reported in Sec. 3.3 and
conclusions in Sec. 3.4.

3.2 Multi-FPGA Optimization

We consider an application as a set K of kernels organized in a linear pipeline.
As mentioned above, CNNs represent a relevant example, in which the kernels
are the convolutional, pooling and normalization layerst. Each kernel workload
is assigned to one or more compute units (CUs) that operate concurrently. The
kernels communicate through the host CPU. Since the control unit on the CPU
side is quite e cient, we do not consider the CPU time in our model. Application
throughput is the inverse of the pipeline initiation interval (I11), which depends on
the execution time of the slowest pipeline stage.

1Some max-pooling layers are merged with the previous convolutional layer, whenever this
allows us to optimize memory access. We do not implement the fully connected layers, since
we are simply interested in showing a design methodology with a realistic use case, rather than
benchmarking a full application.
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3.2  Multi-FPGA Optimization

Let us de ne WCET, the worst case execution time of kernel k obtained with
only one CU. We consider kernels that are inherently parallel and for which the
execution time ETy scales proportionally to the number Ny of CUs for that kernel:

WCET,

ETy = ———; 82K (3.1)
N
I = max ETy: 3.2)

To minimize 11 it is necessary to nd the optimal value of N under speci ¢ con-
straints. We consider FPGA resource and memory bandwidth constraints, but we
do not consider (yet) power constraints.

Table 3.1: Notations used in the model
Notation Description

K set of kernels
k index of kernels, 1;2;:::;jK]
f index of FPGAs, 1;2;::::F
WCET\ constant; latency of kernel k with one CU
ETk variable; latency of kernel k with Ny CUs
Ry constant; FPGA resources used by one k’s CU
Bk constant; FPGA bandwidth used by one ks CU
R constant; resource limitation in one FPGA
B constant; bandwidth limitation in one FPGA
Nk-f variable; CUs of kernel k allocated to FPGA f
Nk variable; sum of ni.¢ over all the FPGAs

K variable; spreading function of kernel k

variable; global spreading function
I variable; initiation interval

As an additional design exploration knob, we can deploy an application onto one
or more FPGAs of a multi-FPGA board like the AWS F1 instance, which includes
eight Xilinx UltraScale Plus FPGAs. This is also the FPGA platform where we run
our experiments. In this platform, a host CPU orchestrates the execution of the
kernels. Figure 3.1 shows the architecture of the F1 instance. Table 3.1 summarizes
variables and constants used in the problem.

The design goal is therefore not just determining the optimal N, but also how
these CUs are allocated on F FPGAs. If we de ne ny.¢ as the CUs of kernel k on
FPGA T, we have P
Ny = ?zl Ni-£, 8k 2 K: (33)
Since we assume a uniformly accessed global memory, in our model a kernel exe-
cution time depends on the number of CUs but not on where they are allocated.
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