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Summary

Applications using Convolutional Neural Networks (CNNs) and other Deep Neu-
ral Networks (DNNs) for Machine Vision and Natural Language Processing tasks
achieved breakthrough results in many challenging domains. To continuously im-
prove these results and approach human abilities in a broad variety of domains, the
complexity of the network (i.e., its depth) increases. Most of these applications are
run on data-center-class servers, for which processing speed and energy consump-
tion are primary concerns. For those reasons, CPU- and GPU-based platforms are
poorly suited and increase operating costs. ASICs can provide the best energy
efficiency, but the continuous evolution of CNNs requires flexible ASICs, such as
the Google TPU [1], which are, however, less efficient than theory would predict,
for example because they support only a few numerical data types.

FPGAs are a promising option for CNN and DNN acceleration in data-centers,
offering energy efficiency coupled with full re-programmability and configurabil-
ity for both data path and memory architecture. This allows one to tailor the
architecture to the application to a much deeper extent than is possible with ei-
ther CPU/GPU platforms or relatively rigid domain-specific ASICs, like the Google
TPU. For these reasons, cloud providers like Amazon Web Service (AWS), Alibaba,
and Microsoft offer Virtual Machines coupled with multi-FPGA platforms to ac-
celerate data-center applications with GPU-like performance, but consuming much
less energy.

Since network depth and complexity increase, mapping a network on a single
FPGA in most of the cases fails to meet performance requirements and would
benefit from a multi-FPGA implementation. The problem that we are address-
ing is as follows. We are given an application modeled as an interconnection of
tasks, each with various implementation options with varying performance, mem-
ory bandwidth, energy and resource requirements. We would like to statically or
dynamically allocate resources to these tasks to optimize various measures of per-
formance, such as throughput, energy per operation, and so on. Platforms like the
CPU and the GPU use various kinds of schedulers (Operating System scheduler on
the SW side, thread and instruction schedulers on the HW side) for this purpose
at compile time or at runtime. The goal of this thesis is to design a compilation-
like resource allocator for multi-FPGA acceleration. We devised and implemented

iii



an efficient and accurate optimization framework for the allocation of task-level
pipelined applications (like Convolutional Neural Networks and Deep Neural Net-
works) to multiple FPGAs, with the twofold goal of maximizing the application
throughput and minimizing the power consumption, under resource and off-chip
memory bandwidth constraints. The target Multi-FPGA platform consists of AWS
F1 instances with up to eight Virtex Ultrascale+ FPGAs.

First, we implemented in synthesizable C++ and optimized using HLS direc-
tives the computing kernel for each and every layer of large CNNs, such as AlexNet,
VGG, YOLO, ResNet, and large DNNs, such as Transformer variants. Then, using
SDAccel, we implemented individual kernels in hardware using one Compute Unit
(CU) for each layer, and orchestrated their execution on the FPGAs by a host code
written in OpenCL and executed by the CPU of the AWS board. This allowed us
to profile each kernel and get resource and memory bandwidth usage, working fre-
quency, and execution time, which later become the input data of the optimization
problem. We provide a model that covers the whole application execution, and
includes: 1) input data transfer time from the host CPU to FPGA DDR memory
(dynamic RAM), 2) data transfer time from FPGA DDR memory to the FPGA
on-chip memory (static RAM), 3) the actual kernel computation, 4) data transfer
time from FPGA on-chip memory to FPGA DDR memory, and 5) data transfer
from the FPGA DDR memory to the host CPU. This model can be used to math-
ematically formulate a complex Mixed-Integer Non-Linear Programming (MINLP)
optimization problem, which can be solved using a commercial MINLP solver [2].
However, using a MINLP solver is very slow, since the problem is NP-complete [3].
To accelerate the optimization process, we provide a fast heuristic method using a
Geometric Programming (GP) [4] solver and an allocator. Not only it can return
the solution in a matter of seconds, instead of running several hours or days when
using the MINLP solver, but it also offers better results than those returned by the
solver when its run time is limited for practical reasons.

Second, we developed another optimization framework to find the solution with
minimum power consumption for a given throughput. This model is aimed at data
center applications, where energy and cooling costs are significant. To optimize the
power consumption we provide a power model on top of the performance model.
This model includes the power consumption in different phases: 1) data transfer
between host CPU and FPGA memory, 2) data transfer between FPGA and DDR,
3) FPGA computation. Given a throughput constraint, the model will return the
best number of parallel number of powered-on FPGAs and their clock frequency and
generates the most power-efficient bitstreams to program the FPGAs. This model
can also lead to the formulation of another Mixed-Integer Non-Linear optimization
problem, which can also be solved using a MINLP solver. We compared the solution
obtained by the solver with one that simply clock gates the fastest implementation
and one that uses frequency scaling: our method always uses less power. However,
a MINLP solver can be very slow especially for design space explorations which

iv



need to run the solver several times. Therefore, we provide two different heuristic
methods. One of them still uses the MINLP solver but in a reduced exploration
space; the other one uses a greedy allocation. Both heuristic methods can be a few
orders of magnitude faster than the MINLP solver.

Also for power optimization, we use AlexNet, VGG and Transformer networks
to verify our model. The experimental results show that our approach can find the
best solution compared to both 1) applying frequency scaling to optimize power
under a throughput constraint starting from a fast configuration, and 2) replicating
a slow configuration on multiple FPGAs.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Multi-kernel Applications
Many data center applications are organized as sequences of sub-tasks, called

kernels in the following, which are organized roughly as a pipeline. For example,
database applications can be organized as a pipeline of classical SQL operators
(select, join, . . . ) or as map-reduce pipelines, financial algorithms can be modeled
as random number generators followed by Monte Carlo simulation steps, and so on.
In this thesis we focus on a specific class of such applications that has become very
popular in recent years, namely Artificial Intelligence (AI) algorithms. However,
the techniques developed in this thesis can be applied much more broadly than the
illustrative examples that we use in our work.

We chose AI because it allowed us to focus on the modeling of the optimization
problem, rather than on the modeling of the application itself, since the synthe-
sizable C++ code for most CNN and DNN applications is freely available, and
because it has witnessed monumental growth in recent years. Researchers and
enthusiasts alike, work on numerous aspects of the field to make amazing things
happen. Among all AI fields, Machine Learning (ML) is one of the most studied
and used to solve different classes of problems.

ML comprises a wide variety of algorithms, among them Deep Learning (DL)
is the the most promising one. The key concept behind DL is that it uses multiple
levels of data features, hence the name deep. Starting from the raw input data,
several subsequent levels of features with different abstraction levels are extracted
and learned. Abstraction levels grow from low to high towards the outputs of the
network.

Artificial Neural Networks (ANNs) are a subset of Machine Learning models.
ANNs can be shallow or deep. In the latter case, they are referred to as Deep
ANNs (Deep Neural Networks, DNNs). Convolutional Neural Networks (CNNs)
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Introduction

Figure 1.1: Relation between AI, ML and DL.

are a typical class of DNNs. They have been used for both image recognition [5] [6]
[7] and natural language processing [8]. They can thus be used to process live data
for traffic surveillance cameras, identify people in pictures, transcribe voice and
analyze text to perform “sentiment analysis” (for customer support or to improve
user experience on social networks). To continuously improve these results and
approach human abilities in a broad variety of domains, the DNNs depth increases,
thus requiring more resources, and more design effort to optimize performance over
a deep task-level pipeline composed of multiple kernels.

Figure 1.2: Convolution layer.

A typical CNN algorithm is made of several layers. All the layers are connected
in a sequential order. The layers are based on a few key components, convolution,
rectification, pooling, and fully connected layers. Among all the layers, the most
computationally significant layers are convolution and fully connected layers. Fig-
ure 1.2 shows a multi-dimension convolution operation. The input feature map
has three channels, this is the case for image recognition where the three channels
represent R, G, and B colors, respectively. The convolution uses four filters, each of
them having three channels to match the input feature maps. Each of the filters and
the sliding window on the input feature map are having a point-wise multiplication
and addition to produce one pixel of the output feature map. In a typical CNN,
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1.1 – Motivation

following the convolution layer is rectification. It introduces the non-linearity to
the network allowing the model to learn faster and perform better. Another typical
CNN layer is pooling, which can be used to form a down-sampling. The most used
pooling methods are max and average pooling. The last layers in a CNN are typ-
ically the fully connected ones, which generate a vector whose size is equal to the
number of classes that the network can discriminate. Then the classifier will return
the class which has the highest probability. Since we only focus on the inference
phase of the network, the training part is omitted here.

CNNs are known to be computation-intensive. For example, AlexNet [5] has 0.7
GFLOPs, VGG [6] has 19.6 GFLOPs. These applications are used for computer
vision to perform inference. It is clear that such kind of applications have very strict
power and performance requirements. In this thesis, we focus on energy efficient
CNN accelerations.

1.1.2 Heterogeneous Computing Systems
To achieve high performance with good power and energy consumption, choos-

ing a suitable computing system platform is vital. This section explains the char-
acteristics of different heterogeneous computing systems.

A homogeneous computing system, composed of a group of CPUs has been the
preferred solution to build High Performance Computing systems and data centers
for a while. However, it is no longer able to achieve the remarkable performance
demanded in modern data centers because Single Instruction Single Data CPUs are
no longer increasing performance at the same rate as Single Instruction Multiple
Data GPUs and Vector Processors, or as reconfigurable platforms such as FPGAs,
and they are also much less memory efficient [9]. The solution to this issue is
provided by heterogeneous computing systems.

They are called heterogeneous because the co-processors are different from the
host device, e.g., they have different instruction sets or architectures, and the pro-
gramming languages and environments are different. The performance and energy
efficiency can be achieved by the co-processors with specialized processing capa-
bilities to handle particular tasks. The co-processors can be the Graphic Pro-
cessing Units (GPUs), Field-Programmable Gate Arrays (FPGAs), and any other
Application-Specific Integrated Circuits (ASICs). The co-processors communicate
with the host processors through the Peripheral Component Interconnect Express
(PCIe) bus. Each processor has an independent memory. The co-processors may
communicate with each other via the same PCIe bus, or via other dedicated pro-
tocols (e.g. Aurora for Xilinx FPGAs).

3
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Graphic Processing Unit

GPUs are specifically designed integrated circuits originally used to process
graphical information such as images and videos. Currently, they are widely used
as accelerators for parallel computations such as training machine learning algo-
rithms. The architecture of the GPUs contains many computation cores also named
Algorithm-Logic Units (ALUs) managed by a single control unit.

The GPU can be programmed in CUDA, a proprietary programming language
that provides C/C++ syntax rules-based language and programming environment,
or the very similar (but open) Open Computing Language (OpenCL) which is a
framework to compile programs for executing on heterogeneous platforms. So the
GPU can be easily used by software developers.

However, it has been shown that these platforms are not very efficient with
respect to the energy consumption for many kinds of applications including the
machine learning algorithms that we considered in this thesis, mostly because (1)
they have a datapath that supports only a few fixed data widths (e.g. FP32, FP16
and int8) and (2) their memory subsystem is very flexible and powerr-hungry. This
issue has been addressed recently by using reconfigurable hardware platforms as
accelerators.

Application-Specific Integrated Circuit

An ASIC is an integrated circuit customized for particular tasks rather than
intended for general-purpose use. So the ASIC has limited programmability as an
accelerator in a heterogeneous computing system. However, a well designed ASIC
chip usually achieves the best performance and energy efficiency for the particular
tasks running on it. ASICs can provide the best energy efficiency, but the con-
tinuous evolution of DNNs requires flexible ASICs, such as the Tensor Processing
Unit (TPU) [1], which are, however, less efficient than theory would predict, mostly
because they are also limited to a fixed (typically systolic) computational graph,
and to a few (e.g. FP16 and int8) data widths. TPUs have been designed from
the bottom up to allow faster execution of applications. However, TPUs are only
good at performing dense vector and matrix computations and are specialized in
running very fast programs based on Tensorflow. They are very well suited for ap-
plications dominated by matrix computations and for applications and models with
no custom TensorFlow operations inside the main training loop. That means that
they have lower flexibility compared to CPUs and GPUs and they only make sense
to use them when it comes to models based on TensorFlow. FPGA on the other
hand can be used to perform high-performance matrix computations. Moreover, it
is much more flexible compared with TPU. It can be programmed to perform other
kinds of computations.
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Field-Programmable Gate Array

An FPGA is a programmable integrated circuit that exploits a reconfigurable
spatial computing architecture for massive parallelism rather than the Instruction
Set Architectures (ISAs). On modern FPGAs, such as the Stratix from Altera
and the Ultra-Scale+ and Versal families from Xilinx, there are up to millions of
Configurable Logic Blocks (CLBs) and Flip-Flops, megabytes of on-chip the Block
RAM (BRAMs), hundreds of multiply and accumulate units (DSPs), and many
other dedicated hardware blocks, including ARM Cortex processors [10]. These
CLBs can be connected via a hierarchy of reconfigurable interconnects (configurable
wires) to perform complex combinational functions and sequential functions. The
integration of the DSPs makes the modern FPGAs also eligible for floating-point
computing acceleration.

1.1.3 FPGA Design Methodology
FPGAs are a promising option for CNN acceleration in data centers, offering

energy efficiency coupled with full re-programmability and configurability for both
datapath and memory architecture. This allows one to tailor the architecture to the
application to a much deeper extent than either CPU/GPU platforms or relatively
rigid domain-specific ASICs, like the Google TPU.

The Register Transfer Level (RTL) models are the predominant starting point
for standard design flows for FPGAs. These models are written in a Hardware De-
scription Language (HDL), and then are synthesized, placed and routed by Elec-
tronic Design Automation (EDA) tools. However, this traditional design flow is
losing steam. On one hand, it is very time-consuming, tedious, and error-prone to
code complex algorithms since it usually needs thousands of lines. This character-
istic limits flexibility. To test the correctness of the model, the user needs to write
a complex testbench. On the other hand, the standard software development flow,
based on the principle of “write once, run anywhere” is attractive for hardware
designers. Both Altera/Intel and Xilinx promise software-like development for ap-
plications that are entirely written in a high-level language and are then compiled
and synthesized for heterogeneous CPU-FPGA platforms. This software-like de-
sign flow is named high-level synthesis (HLS). HLS design flow can dramatically
reduce the design and verification costs, essentially eliminating the need to model
the design at RTL.

Given an algorithm modeled in a high-level language such as C, C++ or OpenCL,
several optimizations can be applied to improve its performance (and resource uti-
lization) on an FPGA. The optimizations can be done by using directives in HLS.
The most used directives are:

• Loop pipelining starts new iterations of a loop before the completion of the
previous ones. It is one of the best options for loop optimization in HLS,
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since it usually boosts the performance at a very low cost [11] [10].

• Loop unrolling creates multiple copies of the loop body to be executed fully in
parallel if their is no dependency among the iterations. In some cases it can
achieve even more performance than by means of pipelining, but typically at
a huge resource (i.e., area) cost [11].

• Compute unit is another mechanism to increase parallelism that is similar to
loop unrolling, but at a higher level.

• DATAFLOW. Computational processes in dataflow micro-architectures are
controlled by the availability of the input data rather than a centralized finite
state machine (FSM).

1.1.4 Multi-FPGA Platform
As network depth and complexity increase, single-FPGA designs cannot al-

ways meet performance requirements. Multi-FPGA can be a promising option for
accelerating high computation-intensive data-center applications to achieve high
performance. For these reasons, cloud providers like Amazon (AWS) offer Elastic
Compute Cloud (EC2) F1 instance which includes Virtual Machines coupled with
multi-FPGA platforms to accelerate data-center applications with GPU-like per-
formance but consuming less energy. Amazon EC2 F1 instance is also the platform
we use for our experiments in this work.

Figure 1.3: Architecture of the Amazon EC2 F1 instance.

Figure 1.3 shows the architecture of Amazon EC2 F1 instance. It has eight
Xilinx UltraScale+ FPGAs, each equipped with local DDR DRAM and connected
via the PCI express (PCIe) bus to an x86 host CPU. The role of the host CPU
is to orchestrate the execution of the applications on the FPGAs and allow them
to communicate via PCIe. Table 1.1 shows the specifications of the UltraScale+
device xcvu9p adopted by the Amazon EC2 F1 instance.

The host CPU has been used to program the FPGAs once the bitstreams are
ready, it also works as a control unit to handle the data transfer from the host CPU
to the FPGA, as well as the FPGA execution. The kernels on the FPGAs can be
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Device BRAM URAM DSP LUT LUTMem REG
xcvu9p 2088 960 6837 1110146 575398 2264435

Table 1.1: Xilinx UltraScale+ xcvu9p device specifications.

synchronized by the host CPU and all the kernels can be executed concurrently. All
these requirements can be passed to FPGA compilation environments like Xilinx
SDAccel [12] in the case of the Amazon EC2 F1 instance.

Figure 1.4: Flow of using SDAccel[12].

The SDAccel environment is an integrated development environment for appli-
cations targeting AWS F1 instances and other FPGA-as-a-Service offerings. Fig-
ure 1.4 shows the flow of using SDAccel for your design.

It provides a familiar software development flow with:

• An Integrated Development Environment (IDE)

• A profiler to guide application optimization

• Compilers for host & FPGA-accelerated code
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• Emulation flows for rapid development and debug

• Automatic communication between software and hardware

The host application is developed in C/C++ and uses standard OpenCL API
calls to interact with the FPGA-accelerated functions which can be modeled in
either RTL, C/C++, or OpenCL. This provides familiar entry points for hardware
designers and software engineers alike.

The SDAccel IDE provides all the features of a standard software develop-
ment environment: optimized compiler for host applications, cross compiler for
the adaptable hardware, a robust debugging environment, and profilers to identify
performance bottlenecks and optimize the application.

The Xilinx runtime (XRT) and board-specific shells automatically manage com-
munication between the FPGA accelerators and the host application. The software
developer does not need to implement any of these connection details.

1.1.5 Goal of the Thesis
Thanks to the Xilinx SDAccel design environment, users can easily program the

FPGAs starting from models written in C, C++ and OpenCL. However, the Vivado
HLS tool that is used by SDAccel only deals with micro-level resource allocation.
The global-level resource allocation is totally left to the programmer, who is in
charge of defining the number of Compute Units that are instantiated for each
kernel, in order to match the throughput of each pipeline stage while satisfying
resource and memory bandwidth constraints.

Figure 1.5 shows a task level pipeline model that has three kernels executing
one after another. If we pipeline it at a global level, all the kernels can work
concurrently, the throughput will be highly increased. The initiation interval is
determined by the slowest kernel. The throughput can reach its maximum if we
balance the resource allocation in a way that all the kernels have the same execution
time shown in Figure 1.6. To do so, SDAccel allows users to instantiate multiple
copies of each kernel, called Compute Units (CUs). The workloads can be equally
distributed on the multiple CUs to reduce the execution time.

Figure 1.5: Task-level pipeline model.

However, there are no available tools that can be used to accelerate applications
on multi-FPGA platforms to maximize throughput at the global level. Our goal
in this work is to develop an optimization model that can find the optimal level
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Figure 1.6: Resource balanced task-level pipeline model.

of parallelization as well as the allocation of these multi-kernel applications on a
Multi-FPGA system. By giving the number of FPGAs, the available resources,
and a set of constraints, the model will return the solution with the maximum
throughput, indicate the value of the throughput, on which FPGA the kernels
should be allocated after proper parallelization obtained using multiple Compute
Units (CUs) for each kernel, and the number of resources distributed to each kernel.

Similarly, we also develop another optimization framework to find the solution
with minimum power consumption for a given throughput. It should be able to
determine the number of FPGAs in-use, the number of CUs for each kernel, and
their allocation on different FPGAs in a multi-FPGA platform.

1.2 Overview of the Contributions
The contributions of this thesis are included in two areas: the throughput op-

timization model for CNNs on multi-FPGA platform and the power optimization
model. Regarding the throughput optimization model, we consider that the layers
of CNNs work concurrently in an efficient way by balancing the resource usage for
each layer; the resource organization that obtains the maximum throughput can be
achieved using a state-of-the-art solver or a heuristic method. Similarly, the latter
contribution concerns a model to optimize the total power consumption given a
minimum throughput as a constraint. It includes both the power consumed during
the data transfer as well as the one spent in computation on the FPGA. The so-
lution of an optimization problem will determine the number of FPGA in use and
their working frequency, other than the resource allocation.

More precisely, the contributions of this thesis are the following:

• Performance optimization model. We have proposed and experimentally
analyzed a fast and effective method to allocate resources for each kernel
in a multi-kernel task-level pipelined application, like a CNN, to optimize
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the throughout on multiple FPGAs. Our heuristic optimizes the number of
Compute Units (CUs) of each kernel and their allocations, while respecting
resource constraints and taking into account the cost of data transfer times be-
tween the FPGAs and a host CPU. We developed a cost/performance model,
we modeled it as an optimization problem.

– MINLP solver. The optimization problem has been solved initially
using a Mixed-Integer Non-Linear Programming (MINLP) solver [2].

– Heuristic Method. Due to the long CPU time and inefficiency of the
solver, we propose a fast and accurate heuristic method that consists
of two main parts. First we use a Geometric Programming [4] solver
(using a relaxed representation of the same model, without integrality
constraints) to get the number of CUs. Then we use a heuristic allocator
to assign them to different FPGAs in order to minimize the data transfer
time.

Experimental results show that our heuristic method can provide very similar
results as the exact MINLP solution when the problem size is small, and it
returns much better results for larger problem sizes.

• Power optimization model. We have proposed a power-performance op-
timization method to optimally configure a multi-FPGA platform running
multi-kernel pipelined workloads. Given an Initiation Interval (II) target,
the solution provides an optimal allocation of the best number of CUs for
each kernel so as to minimize the overall power consumption. Compared to
applying frequency scaling to reduce both II and power starting from a fast
configuration, or to replicating a slow configuration on multiple FPGAs, our
solution provides a much more effective way of saving power.

– MINLP solver. The optimization problem has been initially solved
using a MINLP solver. However, it takes too long to find an optimal or
near optimal solution.

– Heuristic methods. We then proposed two different kind of heuristic
methods to increase the efficiency. The first heuristic method still uses
a MINLP solver but with a reduced exploration space, thus increasing
the speed. Similar to the first one, the second heuristic method also uses
the same method to reduce the exploration space, but instead of using
the MINLP solver, it uses a greedy allocation.

Experimental results shows that the first heuristics constrains the exploration
space to significantly reduce the run-time, while achieving the same or even
better results than the exact algorithm. Moreover, the second heuristics is
thousands of times faster than the exact algorithm.
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1.3 Organization of the Thesis
This thesis presents a collection of the work done in the field of electronic design

automation (EDA) for multi-FPGA design of multi-kernel applications. The work
is composed of seven chapters and their organization is as follows:

• Chapter 2 covers the state-of-the-art.

• Chapter 3 provides a simplified performance optimization model that only
considers the execution time of the kernel.

• Chapter 4 proposes a more detailed method to map multi-kernel applications
on multi-FPGA platforms to maximize application throughput. We try to use
Mixed-Integer Non-Linear Programming (MINLP) solver to find the optimal
solution. Finding the optimal solution using a Mixed-Integer Non-Linear
Programming (MINLP) solver is often highly inefficient. Hence, we provide
a fast heuristic method that according to our experiments can be much more
efficient than the MINLP solver and finds comparable results.

• Chapter 5 discusses the way to minimize the power consumption for data
center applications on Amazon EC2 F1 instance. we propose to upload at run-
time the best power-optimized CNN implementation for a given throughput
constraint. The off-line optimization model can be solved using a Mixed-
Integer Non-Linear Programming (MINLP) solver, it gives the best number
of parallel instances of each kernel, their allocation to the FPGAs, the number
of powered-on FPGAs and their clock frequency.

• In chapter 6, we provide two heuristic optimization methods that improve
the quality of results of the power optimization model discussed in chapter 5.
We use several very large designs to demonstrate that both heuristics obtain
comparable results to a MINLP solver when this can find the best solution,
and they obtain much better results than the MINLP solver when this cannot
find the optimum within a bounded amount of time.

• Chapter 7 concludes the work and discusses the possible future work.
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Chapter 2

Related Work

Resource allocation is a well-studied problem for high-performance data cen-
ters with heterogeneous hardware (CPUs with Graphical Processing Unit (GPU)
or FPGA accelerators). Yet, the context of multi-FPGA platforms still requires
investigation, as the review of the literature that follows shows. Here we contrast
the previous work in this field with ours, and highlight the most important dif-
ferences between what has been proposed by other researchers and our own work.
We divide the literature analysis in two parts, which correspond to the two main
contributions of this thesis.

2.1 Performance Acceleration
The community interested in compilers for parallel architectures faced a similar

problem when mapping streaming applications to multiprocessor systems and ac-
celerators. Indeed, [13] defines three levels of parallelism (task, data and pipeline)
that are also exploited in our underlying execution model (tasks are called “ker-
nels”, data parallelism is exploited both at the CU level and the loop unrolling
level within a CU, and innermost loops are pipelined). Their compiler, based on
the StreamIt language, is aimed at processors (the RAW machine) rather than
FPGAs. Moreover, it makes only heuristic choices for allocation. Similarly, [14]
uses multiple process instances, but focuses only on process replication and FIFO
allocation, while we include resources as a primary aspect of our cost function and
consider array-based communication, rather than FIFO-based. Array-based is a
more natural programming model, because it is supported by languages like C,
C++ and OpenCL, and it requires fewer changes to legacy code, without complex
logic for forking and joining data to and from data parallel CUs. More recently,
[15] includes, like in our case, an explicit memory model, but solves the problem
heuristically with a clustering algorithm (using ILP only as a reference), while we
start from a GP relaxation for our heuristic.
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In terms of FPGA implementation of DNNs, the research focus moved from
single to multiple accelerators (i.e., the layers of a DNN) implemented on a single
FPGA [16, 17, 18]. Even though in these works the use of FPGA resources and
memory bandwidth are maximized, still single FPGA designs cannot deliver the
performance of multi-FPGA platforms, which have recently attracted the interest of
researchers. [19] schedules a task-parallel Static Dataflow Graph with multiple CU
instances, leading to a very efficient scheduling formulation as a Set of Difference
Constraints. However, it is also limited to FIFO-based communication and it does
not consider multi-FPGA allocation and the resulting trade-offs.

In the multi-FPGA side, the authors [20] propose Multi-FPGA CNN accelera-
tion by minimizing independently the latency of each kernel, while our goal is to
maximize the application throughput. Their design space exploration is applied to
each layer individually, which may oversize or undersize each layer with respect to
the global balancing of the task-level pipeline. However, similar to our work, [20]
also adopts an on-board data reuse scheme to minimize the external memory access
time.

The Brainwave project [21, 22] developed by Microsoft is designed for real-time
AI, which means the system can ingest a request as soon as it is received over the
network at high throughput and at ultra-low latency without batching. They did
a very good job to allow users without hardware expertise to automatically deploy
and accelerate state-of-the-art DNN models in real-time and at low cost. How-
ever, their main focus is the recurrent neural networks for text-driven applications
at Microsoft. This type of application is bandwidth-intensive and more difficult
to accelerate than CNNs. To solve the challenges, they exploit model parallelism
and store all the parameters on-chip. When an FPGA’s on-chip memory is ex-
hausted, the system will use more FPGAs to allow all the weights to be stored in
on-chip memory. They also provide a quantization mechanism to trim the bitwidth
of the weights. Different from the Brainwave project, we are more interested in
throughput, which is a more significant figure of merit for CNNs or DNNs used for
image classification in a non-real-time context. Our work is focusing on accelerat-
ing throughput-demand multi-kernel applications. All the kernels in a multi-kernel
application are working concurrently.

In [23], the pipeline stages are consecutive kernels allocated on a single FPGA
and the throughput is optimized by balancing the workload and the FPGA re-
sources. The initiation interval (II) of the pipeline in [23] is by construction
greater than in our work, and therefore the throughput lower, because the ker-
nels of each group are executed sequentially within a single FPGA. The advantage
of our method is that all kernels can work concurrently regardless their allocation
in the FPGAs, since each kernel is a single stage of the pipeline. Moreover, in [23]
the consecutive kernels are forced to be allocated on the same FPGA, while our
model does not force that. Finally, [23] does not consider the frequency reduction
due to routing congestion when the resource utilization increases, while we consider

14



2.1 – Performance Acceleration

it.
Similar to our work, in [24] the authors first obtain a characterization of indi-

vidual kernels, which then they use to feed a dynamic programming model that
optimizes the way in which the network is partitioned into stages. Still, our model
can obtain a better II for the same reason that it can outperform the results obtained
by the method proposed in [23], namely that we do not restrict the distribution of
CUs to FPGAs to be grouped by stages.

Also in [25], a preliminary characterization of kernels, termed as components,
is done before a design-space exploration of a system made of several components
is performed. In that work, an application is modeled as a Timed Marked Graph
and Petri net theory is used to find the best overall throughput, then imposing
a throughput constraint on every process and trying to satisfy it via High-Level
Synthesis. However, there is no guarantee that the requested throughput is fea-
sible, hence iterating is needed to explore the entire Pareto-optimal design space.
Moreover, the paper does not discuss memory bandwidth nor allocation to FPGAs.

In [26], the authors focus on designing optimal pipelined CNNs on a set of
heterogeneous FPGAs. The rationale is that different tasks in the pipeline are
better suited to a specific type of FPGA. Our work is different from theirs in
various aspects, of which the main three are as follows. First, we target an existing
commercial Multi-FPGA platform (AWS), which consists of a set of homogeneous
FPGAs, but our formulation can be adapted to heterogeneous FPGAs. Second, we
do not force neighboring pipeline stages to be on the same FPGA, but we take into
account the performance advantage of doing so to achieve a globally better solution.
Third, to improve the solver efficiency, [26] provides an efficient BLAST algorithm
using Dynamic Programming (DP), while we use a Geometric Programming solver
and a heuristic allocator to improve the efficiency.

[27, 28] propose to accelerate a lung cancer nodule segmentation algorithm on
a multi-FPGA system. All these works maximize the application throughput using
pipelined FPGA clusters, i.e., they force neighboring stages to be on the same
FPGA, which may or may not be the best solution. Our work uses the layers of the
DNNs as a more natural partition of the network into pipeline stages. Differently
from previous works, we also consider an estimated clock frequency reduction due
to routing, when FPGA resource usage increases.

Finally, Maxeler Technology offers to its users dataflow HPC solutions. The
workstations are hybrid computing platforms that are using both CPUs and FPGAs
[29]. In order to use the Maxeler system, three basic parts need to be provided by
the user: 1) The CPU interface code to handle the data flow, 2) kernels which
need to be implemented on FPGA, 3) the manager which handles the internal
functionality and the on-board and off-board data movement. Maxeler FPGA
[30] dataflow engines run at a few hundred megahertz, and can already beat the
performance of conventional CPUs. In addition, dataflow engines are easily able to
exploit increasing silicon capacity since performance comes directly from parallelism
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and can scale linearly with silicon area, without depending on clock frequency
increases. In order of using Maxeler DFE, applications should meet the following
four criteria:

• BigData. The first advantage of using Maxeler DFEs is that they are able to
accelerate the movement of data. So the application has to be a real BigData
application.

• Extensive data reuse. The application should use most data more than once.

• Loop structure. The application should have loops that consume most of the
processing time. The loops are the portions of the application that are move
to the DFE.

• Initial latency. The algorithm must tolerate initial latency.

From [30], we know that the Maxeler FPGAs are the dataflow engines. The
application is running on the FPGA with a dataflow mechanism. Similar to their
work, we also use FPGA to design accelerators in order to improve the application
throughput. However, we are using dataflow at a higher level. Instead of using
dataflow inside each kernel, we use dataflow at the kernel level. To use our method,
the application should have multiple kernels in order to "see" the advantage. In
addition, inside each kernel, the loops are also unrolled and pipelined. This gives
another level of parallelization. Moreover, each FPGA in the AWS platform has
three Super Logic Regions (SLR). If kernel instances use more than the resources
of an SLR, then there will be Super Long Lines (SLL) involved, reducing the work-
ing frequency. In our work, each kernel instance is using a small portion of the
FPGA, each FPGA can have several kernels allocated on it, and all the kernels are
totally independent and they are working concurrently. This will result in less SLR
crossing, thus higher working frequency.

2.2 Scheduling and Resource Allocation
For the resource allocation on multi-core systems, a large number of past works

are using strip packing or bin packing. In our work, we provide an allocator to
assign the kernels to different FPGAs. There are some similarities to the Strip-
Packing, Bin-Packing problems. Strip packing [31] problems involve packing items
into a single bin of fixed width and infinite height, with the objective of minimizing
the total height of the packing within the strip. [32] proposed online scheduling
for multi-core shared reconfigurable fabric. They modeled the task queue as a
2D rectangular Strip-Packing problem (2D-SPP) with the additional processor and
deadline constraints in order to find the optimal schedule. Unfortunately, 2D-SSP
is an NP-hard problem, and finding the optimal solution with a large number of
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rectangular is not feasible. However, it can provide a good target for the online
scheduler.

Bin-Packing problems [33], on the other hand, involves packing items into mul-
tiple bins of fixed width and height, so as to minimize the number of bins utilized.
[34] and [35] are using Bin-Packing to schedule tasks on multi-core systems. [34]
provides an optimization method for the task allocation step for multi-core proces-
sors. To complete their model, all the created tasks are mapped to the available
processing cores by using Bin-packing heuristics. [35] studies the problem of how
to schedule real-time tasks on multi-core platforms to maximize energy efficiency
under other constraints, like temperature.

Our allocation problem is similar to the bin packing problem. Each kernel is
using a certain amount of resources, hence it is like a rectangle in the bin packing
problem. Instead of minimizing the number of bins, we try to fit all the rectangles
in a limited number of bins, in addition to satisfying other constraints (e.g. memory
bandwidth).

2.3 Multi-FPGA Platform for Emulations
Researchers also use multi-FPGA as emulation platforms [36, 37, 38, 39, 40,

41]. [36] is using multi-FPGA for ASIC prototyping. [37] and [40] are using multi-
FPGA for multi-core processor simulations. [38, 39] and [41] are using it as logic
emulation platforms for Networks-on-chip.

[36] summarizes a number of issues that should be considered by designers,
including partitioning the netlist on multiple FPGAs. The authors suggested that
each FPGA should be treated as a block within an overall top-down ASIC design
flow, so it can help to localize the effect of design changes, reducing iteration time.

[37] described a multi-FPGA platform to accelerate logic verifications of the
Bluegene compute node ASIC, a multi-processor SOC implemented in IBM’s CMOS
technology. It discussed the challenges including the design partitioning. The au-
thors developed their own partitioning tool to map a DUT onto FPGAs. The tool
takes three inputs: 1) the netlist of the DUT, 2) the netlist of the physical hierarchy
of the FPGA systems, and 3) a mapping file. The tool analyzes the netlist and
writes a complete set of VHDL files contain the appropriate instances from the logi-
cal hierarchy. In addition, the tool also automatically generates timing constraints.
[40] proposed a method to emulate a 48-core multiprocessor on multi-FPGA. The
DUT is mapped onto one or several FPGAs by commercial ASIC/FPGA RTL
synthesis tools.

Hung et al.in [38] pointed out various challenging problems for logic emulation
using FPGA. The DUT will be partitioned into hundreds of pieces, and each of them
is allocated an FPGA without exceeding the resource utilization. The objective of
partitioning is to minimize the cut sizes.
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Abdellah-Medjadji et al.in [39] provided an accurate multi-FPGA emulation
platform. They try to partition the NoC into K subsets and each one assigned to
a reconfigurable device N (K ≤ N). This algorithm is trying to minimize the total
intra-cluster links under the constraint that a cluster must fit on one FPGA chip.
Different from [39], in our work, each kernel is a separated subset, and the num-
ber of subsets can be higher than the number of FPGAs. More than one cluster
can be allocated on the same FPGA. Similarly, Karypis et al.in [39] proposed a
partitioning algorithm for applications in the VLSI domain. The presented multi-
level hypergraph-partitioning algorithm directly operates on the hypergraphs. They
developed new multiphase refinement schemes based on the multilevel paradigm.
These schemes take an initial partition as input and try to improve them using the
multilevel scheme. These multiphase schemes further reduce the run times, as well
as improve the solution quality. The coarsening phase is able to generate a sequence
of hypergraphs that are good approximations of the original hypergraph. The ini-
tial partitioning algorithm is then able to find a good partitioning by essentially
exploiting global information of the original hypergraph. Finally, the iterative re-
finement at each uncoarsening level is able to significantly improve the partitioning
quality because it moves successively smaller subsets of vertices between the two
partitions.

2.4 Power Efficient Resource Allocation
Power-optimal FPGA design is a broadly investigated field, but mostly focused

on single-FPGA designs.
The traditional way of reducing power consumption consists in using frequency

scaling and dynamic voltage scaling methods. [42] presents a universal offline self-
calibration scheme, which automatically finds the FPGA frequency and core voltage
operating limit at different self-imposed temperatures by monitoring design-specific
critical paths. [43] investigates the energy reductions possible in commercially avail-
able FPGAs configured to support voltage, frequency and logic scalability combined
with power gating. [44] presents a method of dynamic voltage and frequency scal-
ing that uses online slack measurement to determine timing headroom in a circuit
while it is operating and scale the voltage and/or frequency in response. All these
methods focus on low-level aspects, whereas we propose a complementary high-level
approach, which can minimize the power consumption by allocating the kernels in
a certain way and also determine the working frequency of each FPGA in a multi-
FPGA platform.

Tesfatsion et al. [45] provide a resource management framework with a hardware
scheduler and an optimizer for FPGA-accelerated clouds. Similar to our work, they
split workloads into “chunks” run by Virtual Machines on CPUs and sharing FPGA
accelerators. But they do not pipeline chunk execution and consider only the FPGA
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static power.
Zhang et al. [46] map pipelined CNN layers to a multi-FPGA platform exploring

the design space for optimal performance and energy with dynamic programming.
However, they assume constant FPGA power consumption, thus reducing the prob-
lem of energy minimization to execution time minimization. Also, they use First In
First Out queues (FIFOs) for inter-layer communications, which require in-order
production and consumption of activation values. This may be difficult to achieve,
and is not supported by current multi-FPGA cloud platforms like Amazon AWS F1
(FPGA-to-FPGA transfers must be mediated by the CPU). On the other hand, we
model inter-kernel communication using memory arrays, which is arguably a more
general and natural programming model, supported by C, C++, and OpenCL.

The execution model in [13] exploits, like our work, application parallelism at
task, data, and pipeline level, but the authors target processors instead of FPGAs.
Furthermore, a compiler decides the allocation through heuristic moves, while we
solve an optimization problem. A task-parallel static dataflow graph execution
model with multiple CU instances is proposed in [19] for FPGA targets, with ef-
ficient scheduling formulated as a set of difference constraints. But it does not
consider multi-FPGA platforms and optimizes only performance, not power.

For multi-FPGA targets, [47, 48] propose to improve performance by using
direct network communication between FPGAs. However, they do not optimize the
power of the FPGA clusters, and again this communication model is not offered by
current PCIe-based multi-FPGA cloud platforms.

Li et al. [49] use a similar greedy resource allocation to the most critical kernel,
balancing resource usage until exhaustion, but without minimizing power consump-
tion or considering multi-FPGA allocation. Our model satisfies performance con-
straints while minimizing the overall, multi-FPGA power consumption. Cong et al.
[19] proposed a task-parallel static dataflow graph execution model with multiple
compute unit (CU) instances, with efficient scheduling modeled as a set of differ-
ence constraints, but for single-FPGA targets and optimizing only for performance,
not power.
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Chapter 3

Simplified Performance
Optimization Model for
Multi-kernel Applications on
Multi-FPGA Platform

In this chapter, we optimize the mapping of high-performance multi-kernel ap-
plications, like Convolutional Neural Networks, to multi-FPGA platforms. First,
we formulate the system level optimization problem, choosing within a huge design
space the parallelism and number of compute units for each kernel in the pipeline.
Then we solve it using a combination of Geometric Programming, producing the
optimum performance solution given resource and DRAM bandwidth constraints,
and a heuristic allocator of the compute units on the FPGA cluster.

The performance model used for the optimization is “simplified” as it does not
consider the data transfer time between the FPGAs and the host of the Multi-
FPGA platform. This is a reasonable assumption when the amount of data to
transfer outside each FPGA is relatively small (e.g., when communication happens
mostly locally within a single FPGA) or when the amount of data is independent
of the allocation.

This work was previously published in [50].
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3.1 Introduction
In this chapter we exploit an OpenCL-like execution model. In this model,

an application is typically a linear task-level pipeline of kernels, each kernel being
composed of independent Compute Units (CU). Each CU in turn contains loops
which can be unrolled and pipelined to offer further parallelization. Kernels com-
municate among each other and with the CPU-bound “host code” via large buffers
allocated in external DRAM. The designer must ensure that CUs do not interfere
with each other when writing into these buffer, i.e. CU-level parallelism can be
arbitrarily increased via replication. This computational model can also be sup-
ported by C++-based synthesis tools (in fact, we model our applications in C++
in order to have better control over loop handling during HLS), and fits very well
many datacenter applications, like CNNs or other Neural Networks and Machine
Learning algorithms.

However, globally optimizing the throughput of a task-level pipeline of kernels
over multiple FPGAs is far from trivial. One must take into account simultaneously:

1. throughput matching among multiple kernels, which can be increased or de-
creased by changing either the number of CUs or the parallelism of each CU
(e.g., via unrolling);

2. the amount of resources and external DRAM bandwidth used on each FPGA,
which increases as more CUs are allocated to them.

The number of choices to evaluate, and hence the designer expertise and effort
needed, quickly grows out of control. Note that while this problem superficially
resembles the classical pipeline scheduling problem in HLS, the actual model is
much more complex, because CUs that implement kernels:

1. have many more implementation choices (e.g., via unrolling or other HLS
transformations [25]) than typical Functional Units.

2. have a multi-dimensional cost function including performance, memory band-
width, and FPGA resources (DSPs, LUTs, FFs, and BRAMs).

In this work, we propose a new optimization method for the implementation of
task-level pipelined applications on multiple FPGAs. We assume that all commu-
nication is performed via off-chip DRAM, which is essentially the above-mentioned
OpenCL inter-kernel communication model. In this scenario, our method can be
used to choose how many CUs should be allocated for each kernel. This is a simple
option that can be passed to FPGA compilation environments like Xilinx SDAccel,
Intel SDK for OpenCL, and so on. While a mix of on-chip and off-chip communi-
cation resources would allow the exploration of an even larger design space, they
are not yet supported by any of these design environments. Hence their analysis is
left to future work.
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Our work is fully general, and could be applied (1) to other task-level pipelined
applications beyond CNNs, (2) to other cloud-based or super-computing FPGA
platforms beyond Amazon Web Services (AWS) F1 instances, and (3) to other
design environments beyond SDAccel. However, we use this generally available and
well-known trio to demonstrate and quantitatively evaluate our results.

Not all applications can be optimized using the proposed method. This method
can only be used for applications where the workload is arbitrarily parallelizable and
can be modeled as a pipeline, such as DNNs and some data-center applications, like
Financial simulation algorithms, some Database algorithms, video encoding, and
decoding. We acknowledge that the method is not efficient for other application
types, e.g. finite element methods.

In this work we use two Convolutional neural networks, AlexNet [5] and VGG16
[6]. Note that our algorithms do not depend at all on the considered networks, and
these two examples are used only for the sake of illustration. Each CNN is composed
of several convolutional, pooling, normalization and fully connected layers, and each
convolutional layer is mapped to a kernel. As discussed in [51], we use loop tiling to
reuse both the input feature maps and the weights. Memory access is optimized by
reshaping the input and output feature map arrays and the weight array, to allow
burst mode data transfers.

In these applications, throughput (i.e. processed images per second) is the main
measure of performance, while overall latency (i.e. total pipeline depth) is much less
important. Hence we focus on minimizing the maximum latency among all kernels,
because it determines the Initiation Interval (II) of the pipeline, and therefore its
throughput. Note also that memory bandwidth of external DRAM can be a major
factor limiting the performance of memory-intensive applications like CNNs. Hence
our cost and performance model takes this aspect explicitly into account.

Our flow starts from CNN models which have already been partitioned into
kernels and individually optimized for FPGA implementation. Then we collect cost,
memory bandwidth, and performance (throughput and latency) data from each
kernel, by running several versions of its CUs, with varying degrees of parallelism,
on an AWS F1. We then use these values to formulate an optimization problem
that is discussed in Section 3.2.1 and models the multi-kernel multi-FPGA resource-
and bandwidth-constrained allocation problem. This problem can then be solved:

1. either directly by a Mixed-Integer Non-Linear Programming (MINLP) solver,
to provide an exact solution in a potentially very long execution time.

2. or indirectly by combining the power of a Geometric Programming (GP)
solver, which is followed by an efficient integer relaxation of the problem
variables, with a novel allocation algorithm that:

• discretizes the result of the GP solver, and
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• tries to cluster CUs for a kernel on the same FPGA, to simplify the
communication coordinated by the host code.

The second method achieves essentially the same level of optimality as the MINLP
solver (whenever the latter is able to complete), in a fraction of the time.

We designed our GP model and allocator to optimize the assignment of Compute
Units on multiple FPGAs while keeping into account the limitations of modern
FPGAs (e.g. the maximum DRAM bandwidth), so that it can handle the large size
of typical state-of-the-art CNN applications. Our contributions are:

1. The definition of the multi-FPGA CU allocation problem for linear kernel
pipelines and its constraints.

2. The definition of a Non-Linear Programming model for that problem, and its
solution both (1) by an exact (very expensive) MINLP solver and (2) by a
GP solver, finding an optimal non-integer solution, followed by an allocator
aimed at minimizing the spreading of CUs of one kernel to multiple FPGAs.

3. The analysis of their result quality for two large CNN applications, imple-
mented on large multi-FPGA AWS F1 instances.

As mentioned, we are leaving the generalization to (less common) non-linear pipelines
and to (not yet available from industrial design environments) on-chip and off-chip
communication mechanisms to future work.

This is the organization of the chapter. We define the optimization problem
and our heuristic in Sec. 3.2. Experimental results are reported in Sec. 3.3 and
conclusions in Sec. 3.4.

3.2 Multi-FPGA Optimization
We consider an application as a set K of kernels organized in a linear pipeline.

As mentioned above, CNNs represent a relevant example, in which the kernels
are the convolutional, pooling and normalization layers1. Each kernel workload
is assigned to one or more compute units (CUs) that operate concurrently. The
kernels communicate through the host CPU. Since the control unit on the CPU
side is quite efficient, we do not consider the CPU time in our model. Application
throughput is the inverse of the pipeline initiation interval (II), which depends on
the execution time of the slowest pipeline stage.

1Some max-pooling layers are merged with the previous convolutional layer, whenever this
allows us to optimize memory access. We do not implement the fully connected layers, since
we are simply interested in showing a design methodology with a realistic use case, rather than
benchmarking a full application.
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Let us define WCETk the worst case execution time of kernel k obtained with
only one CU. We consider kernels that are inherently parallel and for which the
execution time ETk scales proportionally to the number Nk of CUs for that kernel:

ETk = WCETk

Nk

, ∀k ∈ K (3.1)

II = max
k∈K

ETk. (3.2)

To minimize II it is necessary to find the optimal value of Nk under specific con-
straints. We consider FPGA resource and memory bandwidth constraints, but we
do not consider (yet) power constraints.

Table 3.1: Notations used in the model
Notation Description
K set of kernels
k index of kernels, 1,2, . . . , |K|
f index of FPGAs, 1,2, . . . , F
WCETk constant; latency of kernel k with one CU
ETk variable; latency of kernel k with Nk CUs
Rk constant; FPGA resources used by one k’s CU
Bk constant; FPGA bandwidth used by one ks CU
R constant; resource limitation in one FPGA
B constant; bandwidth limitation in one FPGA
nk,f variable; CUs of kernel k allocated to FPGA f
Nk variable; sum of nk,f over all the FPGAs
ϕk variable; spreading function of kernel k
ϕ variable; global spreading function
II variable; initiation interval

As an additional design exploration knob, we can deploy an application onto one
or more FPGAs of a multi-FPGA board like the AWS F1 instance, which includes
eight Xilinx UltraScale Plus FPGAs. This is also the FPGA platform where we run
our experiments. In this platform, a host CPU orchestrates the execution of the
kernels. Figure 3.1 shows the architecture of the F1 instance. Table 3.1 summarizes
variables and constants used in the problem.

The design goal is therefore not just determining the optimal Nk, but also how
these CUs are allocated on F FPGAs. If we define nk,f as the CUs of kernel k on
FPGA f , we have

Nk = ∑︁F
f=1 nk,f ,∀k ∈ K. (3.3)

Since we assume a uniformly accessed global memory, in our model a kernel exe-
cution time depends on the number of CUs but not on where they are allocated.
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Figure 3.1: Architecture of the Amazon Web Service (AWS) F1 instance.

However, keeping the CUs of a kernel in the same FPGA simplifies the host code
(each pair of kernels needs only one buffer to communicate). To account for this,
we introduce a spreading function that is minimal when all CUs of a kernel are
allocated on one FPGA:

ϕk = ∑︁F
f=1

nk,f

1+nk,f
∀k ∈ K. (3.4)

To minimize the global II and the spreading of the CUs we formulate the opti-
mization problem shown in the following.

3.2.1 Problem Formulation
We can combine II and spreading objectives linearly with two weights α and

β into a single goal function g to minimize. The problem is then formulated as a
non-linear problem with both integer and real variables:

minimize g = α · II + β · ϕ (3.5)
subject to

II ≥ ETk, ∀k ∈ K (3.6)
ϕ ≥ ϕk, ∀k ∈ K (3.7)
Nk ≥ 1, ∀k ∈ K (3.8)∑︁|K|

k=1 nk,fRk ≤ R, f = 1,2, . . . , F (3.9)∑︁|K|
k=1 nk,fBk ≤ B, f = 1,2, . . . , F (3.10)

The constraint (3.8) guarantees at least one CU per kernel. In (3.9) and (3.10),
Rk and Bk are resource and memory bandwidth utilization, respectively, of each
CU of kernel k in each FPGA, their sum over all kernels should not exceed R and
B, the total resources and bandwidth of a single FPGA.

3.2.2 MINLP solver and GP solver
The optimization model formulated in (3.5)-(3.10) is a typical MINLP model.

It involves integer and non-integer variables. Some of the constraints are not linear.

26



3.2 – Multi-FPGA Optimization

Mixed-integer Non-linear Programming

Mixed-integer nonlinear programming (MINLP) combines the modeling capa-
bilities of mixed-integer linear programming (MILP) and nonlinear programming
(NLP) into a versatile modeling framework [52]. Furthermore, by using both linear
and non-linear functions it it possible to accurately model a variety of different phe-
nomena. However, MINLP is often considered as a "difficult" class of optimization
problems. There are few methods can be used to solve MINLP problems. Branch
and bound is proved to be an approach to solve MINLP problems by Gupta and
Ravindran [53]. It solves the MINLP problems by relaxing the integer restrictions
of the original problem and solving continuous NLP relaxations. Obtaining a tight
continuous relaxation is of great importance with branch and bound to avoid large
search trees. This is also the reason why, when the problem size increase, the
optimization time increase exponentially.

Geometric Programming

A geometric program (GP) is a type of mathematical optimization problem
characterized by objective and constraint functions that have a special form. A
geometric program is as follows:

minimize f0(x) (3.11)
subject to fi(x) <= 1, i = 1, ...,m, (3.12)

gi(x) = 1, i = 1, ..., p. (3.13)
where fi are posynomial functions, gi are monomials, and xi are the optimization
variables. Moreover, all the variables are positive, i.e., xi > 0. Since it relies on
convex optimization, this method is very fast [54]. By relaxing the integer variables
in (3.5)-(3.10), it also can be solved using GP solver as a preliminary step to speed
the optimization time, then discretize the variables to integer.

3.2.3 Heuristic Solution
As we mentioned in Sec. 3.2.2, the optimization problem formulated in (3.5)-

(3.10) can be solved by a Mixed-Integer Non-Linear Programming (MINLP) solver.
This can lead, however, to a very long optimization time for designs with many ker-
nels and FPGAs. Consider, for instance, that the VGG-net convolutional neural
network with 20 layers spread on 8 FPGA has 160 integer variables. Especially
for design space exploration, when the optimization may be repeated several times,
running a MINLP solver within an exploration loop might turn out to be pro-
hibitive.

For this reason, we propose a heuristic formulation that separates the optimiza-
tion in two steps. The first step determines the total number of CUs for each kernel
to minimize II. The second step allocates the CUs to the available FPGAs.
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First Step: Geometric Programming

If we disregard the spreading minimization, i.e. β = 0 in (3.5), and relax the
problem by letting nk,f take real values, the problem becomes fully symmetric
across the F identical FPGAs. This implies a symmetric solution with an equal
distribution of the CUs across the F FPGAs.

Let us define n̂k ∈ R the CUs that would be equally distributed. The total
number of CUs of kernel k will be

N̂k = F · n̂k. (3.14)

Since we want to guarantee that at least one CU is instantiated per kernel, i.e. N̂k ≥
1, it is possible that n̂k = N̂k/F be less than one2.

Kernel execution time and II become

ET̂k = WCETk

N̂k

, ∀k ∈ K (3.15)

IÎ = max
k∈K

ET̂k. (3.16)

We can thus reformulate the problem (3.5)-(3.10) with β = 0 as follows:

minimize ĝ = IÎ (3.17)
subject to

IÎ ≥ ET̂k, ∀k ∈ K (3.18)
N̂k ≥ 1, ∀k ∈ K (3.19)∑︁|K|

k=1
N̂k

F
Rk ≤ R, (3.20)∑︁|K|

k=1
N̂k

F
Bk ≤ B. (3.21)

Note that the number of unknowns N̂k is F times less than the number of unknowns
nk,f in the original formulation.

The minimization of IÎ in (3.17)-(3.21) is compatible with a Geometric Pro-
gramming (GP) formulation. GP problems are solved quickly even with hundreds
of variables. Therefore, we use a GP solver as the first step in our heuristic to
determine N̂k for all kernels.

Second Step: FPGA Allocation

Before allocation, the variables N̂k ∈ R must be discretized so as to obtain
Nk ∈ N. The integrality is enforced by a branch-and-bound technique similar to

2We can liken nk to the average number of CU of kernel k across F FPGAs.

28



3.3 – Experimental Results

those used in ILP. Two subproblems are generated with Nk ≤ ⌊N̂k⌋ and Nk ≥ ⌈N̂k⌉.
The search is pruned when the cost of a sub-problem is greater than the best cost
found. Even though this branch-and-bound technique may lead to a worst-case
exponential branching tree, in practice this does not lead to excessive execution
times due to the pruning strategy and the fact that the number of kernels is limited
(e.g. around 20 for the VGG benchmark). The MINLP approach, on the other
hand, must discretize every variable, and hence may potentially have a much larger
branching tree.

For simplicity, from now we use the general term resource constraint to refer to
both actual resource and bandwidth constraints.

The Nk CUs are allocated with a greedy heuristic. The rationale is to allocate
the critical kernels first. These are the kernels for which a CU reduction has a
significant impact on II, hence they should all be allocated. After each allocation
of a kernel, either full or partial, the kernels are sorted in decreasing criticality
order. Moreover, by sorting the FPGAs after each allocation in increasing order
of resource slack, the heuristic tends to consolidate the kernels by allocating all
the CUs to already occupied FPGAs while not exceeding the resource constraints.
If it is not possible to allocate all of them, the heuristic allocate as many CUs as
possible starting from the least occupied FPGA.

The pseudo-code of the heuristic is shown in Algorithm 1. We search for possible
solutions in the vicinity of the initial resource constraint R used in the GP step.
We define T as the maximum deviation from the initial constraint. We define ∆ as
the step by which the current resource constraint Rc, initialized as R, is updated
at each iteration, i.e. Rc = Rc + ∆. The iterations continue while Rc < R + T .

The for loop at line 11 partially allocates the CUs of kernels that cannot fit in
one single FPGA, if any. The for loop at line 23 attempts to allocate all of the
remaining CUs starting from the most occupied FPGA (while loop at line 26) and,
if not possible, it allocates as many CUs as possible in the least occupied FPGA
(lines 31-34).

3.3 Experimental Results
We implemented our allocation heuristic in C++ and linked it to an existing

efficient GP solver [55]. To validate our optimization method we used two widely
used CNNs, AlexNet [5] and VGG [6]. For AlexNet, we considered both 32-bit
floating point and 16-bit fixed point versions, to which we refer in the following as
Alex-16 and Alex-32, respectively. For VGG, we considered only the 16-bit fixed
point version. We experimented with different numbers of FPGAs, from 2 to 8,
and with different resource constraints.
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Algorithm 1: Pseudo-code of heuristic allocation
procedure AllocateCUs(Nk, T, R, ∆)

CU = (CU1, CU2, . . . , CU|K|) // Vector of kernel CUs to allocate
1 CUk = Nk, ∀k // CUs to allocate initialized to GP values
2 Rc = R // FPGA resource constraint initialized to GP value
3 S = (S1, S2, . . . , SF ) // Vector of FPGA resource slack
4 Sf = R, ∀f // FPGA resource slack initialized to constraint value
5 nk,f = 0, ∀k, f // Allocated CUs initialized to zero
6 alloc = FALSE
7 while Rc < R + T and not alloc do
8 sortCU(CU,K) // Sort kernels by descending criticality
9 for k = 1 to |K| do // Allocate large kernels first

10 f = 1
11 while CUk · Rk > R do
12 if Sf = R then
13 δCU = ⌊R/Rk⌋
14 CUk = CUk − δCU
15 Sf = Sf − δCU · Rk

16 nk,f = nk,f + δCU
17 else
18 f = f + 1

19 sortCU(CU,K)
20 sortFPGA(S) // Sort FPGAs by increasing slack
21 for k = 1 to |K| do // Allocate all kernels
22 partial_alloc = FALSE
23 f = 1
24 while f ≤ F and not partial_alloc do
25 if Sf ≥ CUk · Rk then
26 Sf = Sf − CUk · Rk

27 nk,f = nk,f + CUk

28 CUk = 0
29 partial_alloc = TRUE

30 f = f + 1

31 if CUk > 0 then
// Use the space of least used FPGA (F ), if possible δCU = ⌊SF /Rk⌋

32 CUk = CUk − δCU
33 SF = SF − δCU · Rk

34 nk,F = nk,F + δCU

35 sortFPGA(S)

36 if
∑︁

k
CUk > 0 then

37 Rc = Rc + ∆
38 else
39 alloc = TRUE // All kernels allocated

Tables 3.2-3.3 show the results of the initial characterization of the various ker-
nels of these applications when implemented on one FPGA of the AWS F1 instance3.
For space reasons we report only DSP and BRAM resource use, especially because

3While the kernel code for AlexNet has been fully optimized, and performance results are in
line with the literature, the VGG kernels have not yet been fully optimized. Again, our goal is to
show how CUs can be allocated, not to discuss how their internal code can be massaged for HLS.
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these resources are much more critical than LUTs and FFs in our experiments.

Table 3.2: Characterization of kernels for Alex-32 (AlexNet 32-bit floating point)
and Alex-16 (AlexNet 16-bit fixed point).

Alex-32 Alex-16
BRAM DSP BW WCET BRAM DSP BW WCET

Kernels (%) (%) (%) (ms) (%) (%) (%) (ms)
CONV1 13.07 21.24 1.3 13 10.59 4.31 1.8 5.16
POOL1 2.84 0 7.03 1.78 0.05 0 3.5 1.78
NORM1 6.1 2.11 5.7 0.839 2.53 0.06 3.1 0.78
CONV2 8.73 37.59 2.4 7.19 4.39 7.63 2.1 4.11
NORM2 7.75 2.11 3.7 0.807 6.66 0.06 2.2 0.67
CONV3 5.22 28.13 5.0 7.78 2.63 5.66 2.9 6.7
CONV4 2.13 37.5 3.7 9.08 1.91 7.55 3.2 5.06
CONV5 8.73 37.5 4.2 4.84 4.39 7.55 3.1 3.29

SUM 54.57 166.18 33.1 45.32 33.15 32.82 21.9 27.55

Table 3.3: Characterization of VGG kernels (16-bit fixed point).
Kernels BRAM (%) DSP (%) BW (%) WCET (ms)
CONV1 3.67 2.95 2.0 28.8
CONV2 9.97 15.14 2.1 67.8
POOL2 11.62 0.03 5.2 13.3
CONV3 9.97 15.14 2.3 22.7
CONV4 9.97 15.14 2.4 32.1
POOL4 2.94 0.03 5.1 6.9
CONV5 8.32 15.07 2.0 22.8

CONV6, 7 8.32 15.05 2.3 32.9
POOL7 1.5 0.03 5.0 3.5
CONV8 2.12 15.02 2.1 24.5

CONV9, 10 2.12 15.02 2.5 37.7
POOL10 0.05 0.01 4.0 2.1

CONV11,12,13 2.12 14.99 2.6 20.3
SUM 87.37 183.67 49.7 0.4 (s)

Before reporting the details of the comparison of our heuristic with a state-of-
the-art MINLP solver [2], we report on the evaluation of the effect of changing
the T parameter of the heuristic while keeping the other parameter ∆ set to 1%.
We report the result of this analysis for Alex-16 in Figure 3.2. Similar results are
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Figure 3.2: Alex-16 results with different values of T (in %).

obtained for Alex-32 and VGG. We observe little effect of T on the value of II
across a large range of resource constraints. Therefore, the following results have
all been obtained with T=0%.

We ran all our optimization algorithms on a multi-core CPU (Intel Core i7-
2600 @3.40 GHz, 4 Cores, 8 Threads) with 16-GB DDR3 DRAM @1333 MHz from
Micron and with Linux CentOS (release 6.10), we are using one processor for our
experiments, and our FPGA accelerations on AWS F1 instances with 8 FPGAs.

Out of all our experiments we selected three representative cases of the spec-
trum of possible multi-FPGA implementations: Alex-16 on 2 FPGAs, Alex-32 on
4 FPGAs, and VGG on 8 FPGAs. For these three cases, Table 3.4 shows the value
of the two weights α and β. These values are chosen in such a way to equalize the
relative importance of II and ϕ in the optimization function g in (3.5).

Table 3.4: Parameters for the spreading function
Applications α β

Alex-16 on 2 FPGAs 1 0.7
Alex-32 on 4 FPGAs 1 6
VGG on 8 FPGAs 1 50

The left graphs in Figs. 3.3-3.5 report the results of II obtained by changing
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Figure 3.3: AlexNet 16-bit fixed-point on 2 FPGAs.
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Figure 3.4: AlexNet 32-bit floating-point on 4 FPGAs.

the resource constraint, i.e. the maximum allowed FPGA resource utilization. (In-
cidentally, the most critical resources in all our experiments are DSPs.) The right
graphs show the same points of the left graphs in a different space of II versus
average FPGA resource utilization. The labels in the figure keys are as follows:

• GP+A refers to the heuristic consisting of GP (optimizing II) and allocation
(discretizing and optimizing spreading);
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Figure 3.5: VGG 16-bit fixed-point on 8 FPGAs.

• MINLP refers to the MINLP solver set up to optimize only II and not the
spreading (i.e. β = 0)4;

• MINLP+G refers to the MINLP solver set up to optimize both II and
spreading (i.e. α and β as in Table 3.4).

As expected, the left graphs show that MINLP obtains the best II for a given
resource constraint when the spreading is ignored. With the exception of Alex-16
at low resource utilization, GP+A tracks well MINLP and in particular it catches
the extremes. The results on the right graphs show that II nicely scales down as
the average resource increases, especially for MINLP and GP+A.

The Alex-16 case is relevant because it shows that in some cases especially in
the lower range of resource constraint, GP+A cannot reach the same performance
of MINLP, but indeed behaves more similarly to MINLP+G. This is because both
GP+A and MINLP+G tend to consolidate the CUs in fewer FPGAs than what
MINLP does. This might result in a performance loss—25% in Figure 3.4(a) at the
lowest resource constraint—but in a better average FPGA utilization: Figure 3.4(b)
shows around 40% less average utilization of GP+A and MINLP+G compared to
MINLP at the lowest resource constraint5.

4These results show the best achievable II for a given resource constraint, but they would
require an extremely complex routing of data from each CU in one layer to several other CUs
spread over multiple FPGAs, each with its own DRAM banks, and thus they would make the host
code essentially unmanageable.

5The three MINLP points in Figure 3.4(a) represent actually the same solution, because the
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Figure 3.6: VGG resource usage for 61% resource constraint.

We report only one example of resource distribution in Figure 3.6, which refers
to the VGG case with a specific resource constraint of 61%. The histograms show
how the kernels are distributed across 8 FPGAs and how many resources each
kernel uses while respecting the 61% resource constraint (SLACK ≥39% in figure).
As expected from the previous discussion, both GP+A and MINLP+G tend to
concentrate the kernels in one FPGA, whereas MINLP spreads them across multiple
FPGAs.

Finally, the CPU time of GP+A ranges between 0.78 s (Alex-16 on 2 FPGAs)
to 4.4 s (VGG on 8 FPGAs), whereas that of MINLP and MINLP+G ranges from
around one minute to several hours, with a speedup that ranges from around 100x
to around 1000x. The quality of the results and the low CPU time clearly show
that our heuristic approach is suitable for design space exploration of multi-kernel
applications deployed on multi-FPGA boards.

solver is able to reach the minimum II without saturating the resource utilization in any FPGA.
This is more evident in Figure 3.4(b), where the three points overlap.
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3.4 Conclusions
We have proposed and experimentally evaluated a new and fast method for

minimizing the initiation interval of pipelined applications consisting of multiple
kernels and deployed on multiple FPGAs. We optimize the number of parallel
compute units (CUs) for each kernel while respecting resource and memory band-
width constraints. The optimization problem is non-linear and with both integer
(i.e. the CUs) and real variables, for which accurate MINLP solvers can be used but
at the cost of long execution time. We use a two-step heuristic that first relaxes
the problem by letting integer variables take real values, which allows us to use
a fast geometric programming solver. Second, we discretize the results and apply
a greedy allocation of the CUs over the target FPGAs, aimed at minimizing the
spreading of a kernel over FPGAs. We obtain results that are comparable to what
a MINLP solver can obtain, but our algorithm is 2-3 orders of magnitude faster.
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Chapter 4

Enhanced Performance
Optimization Model for
Multi-kernel Applications on
Multi-FPGA Platform

In Chapter 3 we proposed a model to optimize the performance of the multi-
kernel applications like CNNs. What is missing in the model is that it does not in-
clude the data transfer time between FPGA and host CPU, as well as the frequency
reduction due to the routing congestion introduced by the increasing resource uti-
lization. In this chapter, we propose a more precise model. For the given resources,
the model will return the optimal number of parallel instances of each kernel in
the pipeline and their allocation to one or more among the available FPGAs. We
obtain this by formulating and solving a mixed-integer, non-linear optimization
problem, in which we model the performance of each component and the dura-
tion of the phases. Finding the optimal solution using a Mixed-Integer Non-Linear
Programming (MINLP) solver is often highly inefficient. Hence, we provide a fast
heuristic method that according to our experiments can be much more efficient
than the MINLP solver and finds comparable results. For larger problems (more
CNN layers), our heuristic method can quickly find (several thousand times faster)
much better solutions than the MINLP solver, even if we run the latter for a very
long time.

This work content in this chapter was published in [56].
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4.1 Introduction
Similar to the model proposed in Chpter 3, we use the same multi-FPGA plat-

form AWS F1 instance. As shown in Figure 3.1, it has eight Xilinx UltraScale+
FPGAs, each equipped with local DDR DRAM and connected via the PCIexpress
(PCIe) bus to an x86 host CPU. The role of the host CPU is to orchestrate the
execution of the applications on the FPGAs and allow them to communicate via
PCIe.

We use an OpenCL-like (but not OpenCL-limited) execution model, in which
an application is typically (but not always, as we briefly discuss later) a linear task-
level pipeline of kernels. Figure 4.1 is an example of a K-stage kernel pipeline. In the
context of CNNs and DNNs, the kernels correspond to layers: convolutional, max-
pooling, normalization, etc. Each kernel is mapped to one or several independent
Compute Units (CUs), depending on the level of parallelism required for that kernel,
on one or more FPGAs. In Figure 4.1, each pipeline stage is mapped to a specific
number of CUs (N1, N2, . . . , Nk). The CUs are implemented in the FPGAs using
a High-Level Synthesis (HLS) flow. The CUs are optimized using loop tiling and
permutation of nested loops to reduce data dependencies and increase parallelism
[57]. Each CU executes loops, which can be unrolled and pipelined with HLS to
further increase the performance. Kernels communicate between them and with the
host CPU via large buffers allocated in the external DRAM, i.e. the MEM blocks
in Figure 4.1.
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Figure 4.1: Example of a K-stage kernel pipeline.

The CU-level parallelism can be arbitrarily increased via replication. This com-
putational model is also supported by C++-based synthesis tools1, and fits very
well many datacenter applications, like CNNs or other Neural Networks and Ma-
chine Learning algorithms, databases, video encoding and decoding algorithms, and
so on.

Optimizing the global throughput of a task-level pipelined application, however,
is not a trivial task. A designer needs to:

1In fact, in this work we model our applications in C++ to better control loop handling during
HLS, since the Xilinx OpenCL HLS front-end is not yet as developed as their C++ one.
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Figure 4.2: Slow progress of the MINLP solver while searching for the optimum
allocation of a CNN application.

• balance the number of CUs of each kernel, knowing that in an OpenCL-style
task-level pipeline, the application throughput is the inverse of the latency of
the slowest stage of the pipeline;

• allocate the CUs in the FPGAs trying to maximize communication locality;

• meet the FPGA constraints on memory bandwidth and resources: Look-Up
Tables (LUTs), Block RAMs (BRAMs), Flip-Flops (FFs), and Digital Signal
Processing (DSP) blocks.

Indeed, the optimization problem can be mathematically formulated as a com-
plex Mixed-Integer Non-Linear Problem (MINLP), which turns out to be particu-
larly hard to solve using commercial or academic solvers. As an example, Figure 4.2
shows the slow progress of the Couenne solver [2] when optimizing the Initiation In-
terval (II), which is the inverse of the pipeline throughput, of the YOLO CNN [58]
on three FPGAs with a specific resource utilization constraint (namely 45% target
maximum resource usage, to ensure good routability and fast clock frequency).

To accelerate the optimization process, we propose a fast heuristic that not only
returns the solution in a matter of seconds, instead of several hours or days run
time of the MINLP solver, but often offers better results than those returned by
the solver when its run time is limited for practical reasons.

In chapter 3 we did not model the data transfer time between the CPU and
the FPGAs. Here, instead, we consider both that time and the fact that the
communication between kernels mapped to the same FPGA can occur within a
board, thus avoiding costly inter-board data transfers through the host CPU (the
AWS platform does not yet offer direct inter-FPGA transfers via PCIe links). For
the execution phase, we separate the DDR access time from the computation time
to improve the model accuracy. We also consider the effects of clock frequency
reduction when the resource utilization increases.
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We improve also our heuristics, in order to tackle the more complex performance
and cost model, and increase the number of CNN benchmarks for which we show
results, now including AlexNet [59], VGG [6], YOLO [58] and ResNet [7]. Each of
these networks consists of convolution layers, pooling layers (sometimes combined
with the previous convolution layer for efficiency), and, only in AlexNet, normal-
ization layers. Although we restrict our results to these benchmarks, our technique
is completely general and applicable to any DNN or deep task-level pipelined ap-
plication.

Our main contributions are:

• A mathematical model that covers the whole application execution, which
consists of the following sequence:

1. input data transfer time from the host CPU to the FPGA DDR memory,
which is considered only if needed, i.e., if the data are bound to the first
kernel in the pipeline, or to a kernel allocated on different FPGA(s) than
the kernel that sends the data,

2. data transfer time from the FPGA DDR memory to the FPGA on-chip
memory,

3. actual kernel computation,
4. data transfer time from the FPGA on-chip memory to the FPGA DDR

memory, and
5. data transfer from the FPGA DDR memory to the host CPU, again

which is considered only if needed, i.e., if the data come from the last
kernel in the pipeline, or from a kernel allocated on different FPGA(s)
than the kernel that receives the data.

• An implementation of the model suitable for being solved by a MINLP solver,
which finds a solution that maximizes the global execution throughput by
minimizing the II of the kernel pipeline, which is the product of the cycle
count times the estimated clock period.

• A heuristic method that integrates Geometric Programming (GP) to relax the
constraints of the exact model, followed by an efficient allocation algorithm
that returns the number of compute units (CUs) for each kernel, and their
allocation on various FPGAs.

This chapter is organized as follows. In Section 4.2, we present the problem for-
mulation, and discuss the proposed heuristic method in Section 4.3. In Section 4.4,
we present and discuss the experimental results. In Section 4.5, we compare the re-
sult obtained using the "Simplified-model" and the "Enhanced-model". Section 4.6
concludes the chapter and outlines opportunities for future work.
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4.2 Problem Formulation
We consider a multi-kernel application, like a CNN or DNN, as a set of K kernels

organized as stages of a linear pipeline, i.e., {1,2, . . . ,K} as in Figure 4.1. However,
unlike [23, 26, 27, 28] we do not limit the allocation to follow strictly this logical
pipeline, because we do not force several adjacent kernels to be grouped as a single
stage of the pipeline and be allocated on a single FPGA, although we can exploit
this when advantageous. In CNNs and DNNs, the kernels are the convolutional,
pooling, and normalization layers2. The workload of each kernel, say the kth stage,
is assigned to Nk CUs that operate concurrently. We consider kernels that are
inherently parallel and for which the execution time scales proportionally with the
number Nk of CUs for that kernel3.

Application throughput is the inverse of the pipeline initiation interval (II),
which depends on the execution time of the slowest pipeline stage. To minimize II,
we must find the optimal value of Nk and the CU allocation on multiple FPGAs
under specific constraints. If we define nk,f as the number of CUs of kernel k on
FPGA f , we have

Nk =
F∑︂

f=1
nk,f , (4.1)

where F is the number of available FPGAs (e.g., F = 8 for the AWS F1.16xlarge).
By increasingNk to decrease the execution time, one has to consider not only the

FPGA resource limitations, but also the limited memory bandwidth. Indeed, the
CUs fetch from the external DRAM the intermediate data and constants needed for
their computation through AXI ports as shown in Figure 3.1. We do not consider
(yet) the possibility of streaming data directly between kernels, because it involves
complex routing of data at runtime. We simply assume that if all the CUs of two
adjacent kernels are on the same FPGA, then the host does not need to gather and
scatter the data between them. This is a reasonable assumption for applications
and platforms where the number of pipeline stages (i.e., kernels) is significantly
larger than the number of FPGAs.

2We merge some max-pooling layers with the previous convolutional layer whenever this allows
us to optimize memory access. We do not implement the fully connected layers, since we are simply
interested in showing a design methodology with a realistic use case, rather than benchmarking
a full application.

3This “unlimited parallelizability” is a key reason for the success of modern DNN algorithms.
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We formulate the optimization problem as follows:

minimize II (4.2)
subject to

Nk ≥ 1, ∀k (4.3)∑︂
k

nk,fRk,t ≤ Rt, ∀f, ∀t, (4.4)

where the goal is to minimize II. Constraint (4.3) guarantees that each kernel
is implemented with at least one CU. Constraint (4.4) defines an upper bound of
resource utilization in each FPGA for all types t of FPGA resources, i.e., DSPs,
BRAMs, Flip-Flops, LUTs, and AXI ports.

The problem difficulty stems from the complex dependencies between the II
and the main optimization variables nk,f , which will be thoroughly explained in
the next subsections. In particular, the presence of integer variables and non-linear
equations and constraints makes the problem a member of the Mixed-Integer Non-
Linear Problem (MINLP) class.

All the constants and variables used in the model equations introduced in this
and the following sections are reported in Table 4.1 and Table 4.2, respectively.
Note that we use bold typefaces for constants and regular typefaces for variables.

4.2.1 Modeling of Application Initiation Interval (II)
We divide the execution time of each stage of the pipeline in three phases:

1. Host-to-FPGA (H2F) data transfer phase: the host transfers the input data
from its own memory to the various DDR memories locally connected to the
FPGAs. We denote the transfer time of this phase as Th2f .

2. Execute (EXE) phase: all CUs fetch input data from the local DDR memory,
perform the computation, and save the data back in the local DDR memory.
The duration of this phase is Texe, and it is the maximum among the execution
times of the various kernels.

3. FPGA-to-Host (F2H) data transfer phase: the host transfers the output data
from the local DDR memories to its own memory. We denote the transfer
time as Tf2h.

Therefore, we can write

II = Th2f + Texe + Tf2h. (4.5)

Note that if the three times were comparable, we could pipeline the three phases at
the cost of double-buffering the DDR. We leave this further optimization for future
work.
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Table 4.1: Constants (boldface) used in model equations.

Notation Description

K number of kernels: k ∈ {1, . . . ,K} used as index
F number of FPGAs: f ∈ {1, . . . ,F} used as index
Ck Input constant data of kernel k
BH2F bandwidth of the link between host and FPGAs
DIk input data of k, not including constants
BF 2H bandwidth of the link between FPGAs and host
DOk output data of k
δk duplication factor for non-constant inputs
γk duplication factor for constant inputs
rk number of AXI ports used by k only to read
rwk number of AXI ports used by k both to read and write
xk number of AXI ports used by k to read
BDR read bandwidth of local DDR
wk number of AXI ports used by k only to write
yk number of AXI ports used by k to write
BDW write bandwidth of local DDR
TC1k worst-case computing time of kernel k when Nk = 1
F1k clock frequency of kernel k when Nk = 1
L1k latency (in clock periods) of kernel k when Nk = 1
Rt upper bound of usage for resource t in one FPGA:

t ∈ {BRAM, DSP, LUT, FF, AXI} used as index
Rk,t usage of resource t by kernel k in one FPGA

Figure 4.3 shows an example of pipelined execution of three kernels. In Fig-
ure 4.3(a), each kernel is implemented with one CU. In Figure 4.3(b), kernels K1
and K3 use two CUs each, which leads to a significantly lower II. Note how the
duration of the EXE phase is related to the maximum execution time among the
various kernels. The kernels that determine this maximum might change, depend-
ing on the number of CUs: in Figure 4.3(a), K1 sets the II, while in Figure 4.3(b)
it is set by K2.

In the initialization phase, before pipeline inception, all constant data are trans-
ferred from the host to the DDR memories locally connected to the FPGAs. For
example, in the CNNs these constant data are the weight and bias values. We
define Ck to be the amount of constant data for each kernel. The duration of this
transfer is not considered in the optimization, because it is typically small, since it
occurs only once.

The modeling of the three phases is illustrated in the following sections.
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Table 4.2: Variables (regular typeface) used in the model equations.

Notation Description

nk,f CUs of kernel k allocated to FPGA f
Nk sum of nk,f over all the F FPGAs
Th2f host-to-FPGA transfer time
Tf2h FPGA-to-host transfer time
Texe Execution phase time
DIH2F total input data transferred in H2F phase
DID total input data locally stored in DDR memories
ak binary, 1 if k’s inputs are in DDR, 0 otherwise
αk,f binary variable, 1 if k’s CUs are in f
αk number of FPGAs in which k’s CUs are spread
DOF 2H total input data transferred in F2H phase
DOD total input data locally stored in DDR memories
bk binary, 1 if k’s outputs are in DDR, 0 otherwise
ETk,f execution time of k in f
TRk,f reading time of k in f
TCk,f computing time of k in f
TWk,f writing time of k in f
drk data read from DDR by each of k’s CU
dwk data written to DDR by each of k’s CU
BXf AXI bandwidth in f
NRf num. of AXI ports concurrently reading from f ’s DDR
BRk,f instantaneous read bandwidth of k’s CU in f
NWf num. of AXI ports concurrently writing to f ’s DDR
BWk,f instantaneous write bandwidth of k’s CU in f
Lk latency (in clock periods) of kernel k for any Nk

Fk,f clock frequency of kernel k in FPGA f
ψ clock frequency degradation factor
Rf resource usage metric for clock frequency computation
Ff clock frequency of FPGA fˆ︃TCk computing time of k’s CU in Geometric Programming (GP)ˆ︃TC maximum computing time among all the kernels in GP
II initiation intervalˆ︂Nk total number of CUs of kernel k in GPˆ︁Lk latency (in clock periods) of kernel k for any ˆ︂Nk
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(a) Kernel pipeline with one CU

(b) Kernel pipeline with multiple CUs

Figure 4.3: Initiation Interval (II) depends on the number of compute units of each
kernel in a multi-kernel pipeline.

4.2.2 Host-to-FPGA (H2F) Phase
The duration of this phase is

Th2f = DIH2F

BH2F

, (4.6)

where DIH2F is the total amount of transferred input data (in bytes) and BH2F

is the bandwidth of the link between the host and FPGAs (in GB/s), which is
primarily the PCIe bus bandwidth (see Figure 3.1). Note that DIH2F is not the
total amount of input data for every kernel. Part of the input data, which we denote
as DID, is already stored in the local DDR and does not need to be transferred
during H2F. This happens when all the CUs of two adjacent stages of the pipeline
(kernels k−1 and k) reside in the same FPGA, therefore the output of kernel k−1,
which is the input of kernel k, does not need to be transferred.

We model this using a binary variable, ak ∈ {0,1}, which denotes whether kernel
k already has all its input data in the local DDR (ak = 1) or not (ak = 0):

ak =
⋁︂

k>1,∀f

((nk−1,f = Nk−1) ∧ (nk,f = Nk)) . (4.7)

Note that ak is zero for the first kernel (k = 1), which always receives its input
data from the host CPU. For the other kernels (k > 1), the logic expression (4.7) is
true only if all the CUs of consecutive kernels (k−1 and k) are on the same FPGA.

The input data of kernel k, denoted as DIk, can be either in the local DDR or
must be transferred from the host memory, but does not include the constant data

45



Enhanced Performance Optimization Model for Multi-kernel Applications on Multi-FPGA Platform

which are in the local DDR after initialization. Thus, the part of the input data
that is already in the local DDR, because it is produced by the previous kernel, is

DID =
K∑︂

k=1
akDIk. (4.8)

If kernel k does not already have its input data in local DDR, then it will receive
(1 − ak)DIk data during H2F. Note that some networks like ResNet [7] violate the
linear pipeline scheme of Figure 4.2 and include branches that reconverge. In this
case we can split the input data of one layer in two or more parts depending on
how many branches reconverge to that layer. In terms of modeling, this requires
a simple change of (4.8); in terms of implementation, this simply requires adding
more memory buffers in DDR.

Each kernel k can have its CUs spread across multiple FPGAs. When they
are spread, these data need to be duplicated4. Let us denote as αk the number
of different FPGAs in which the CUs of kernel k are spread. This is obtained as
follows:

αk,f =
{︄

1 if nk,f > 0
0 otherwise

(4.9)

αk =
F∑︂

f=1
αk,f . (4.10)

Finally, the total amount of data to be transferred during the H2F phase is

DIH2F =
K∑︂

k=1
αk(1 − ak)DIk. (4.11)

Figure 4.4 illustrates an example of H2F phase with a hypothetical allocation of
four kernels in three FPGAs. The constant data, C1−C4, have been pre-transferred
at initialization. Since kernels K3 and K4 are allocated to the same FPGA, the
input data DI4 is not transferred during H2F, whereas DI1, DI2, and DI3 are all
transferred. Note that it is necessary to transfer DI2 because not all CUs of K1 are
allocated to the same FPGA as K2.

4.2.3 FPGA-to-Host (F2H) Phase
Similar to the H2F phase, the duration of the F2H phase can be expressed as

Tf2h = DOF 2H

BF 2H

, (4.12)

4We assume, for simplicity, that the host CPU only needs to know where kernel k is allocated
and not which CUs are in each of the FPGAs where k is allocated. As a result, the host will
simply duplicate the data transfer αk times. As discussed above, a more precise model of data
scattering and gathering is left to future work.
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Figure 4.4: Host-to-FPGA (H2F) example showing data transfer between host DDR
and FPGA DDRs. DI4 is not transferred because kernels K3 and K4 are on the
same FPGA. DI2 is transferred because parts of K1 are on different FPGA than
K2.

where BF 2H is the bandwidth and DOF 2H is the output data to be transferred to
the host. Like before, a part of the output data remains in the local DDR, DOD.
To model this, we introduce another binary variable, bk, for each kernel:

bk =
⋁︂

k<K,∀f

((nk,f = Nk) ∧ (nk+1,f = Nk+1)) . (4.13)

Note that bk is zero for the last kernel (k = K, which always transfers its output to
the host CPU), and that for the kernels between 1 and K−1 its value is bk = ak+1.

If we define as DOk the output data of kernel k (which can be either in the local
DDR or be transferred to the host memory), we have

DOD =
K∑︂

k=1
bkDOk (4.14)

DOF 2H =
K∑︂

k=1
(1 − bk)DOk. (4.15)

Note that DOk = DIk+1 for kernels between 2 and K − 1.
Note also that, contrary to the input data, there is no output data duplica-

tion. Each CU, regardless of its allocation, contributes to a unique, non-duplicated
fraction of the total output data DOk of kernel k.

Figure 4.5 shows the F2H phase of the same hypothetical allocation in Fig-
ure 4.4. Since kernels K3 and K4 are in the same FPGA, the output data DO3
are not transferred during H2F, whereas DO1, DO2, and DO4 are all transferred.

This model does not force the CUs of a kernel, nor consecutive kernels, to be
allocated on a single FPGA. However, grouping can reduce the data transfer time,
which is part of the II. Hence, when the solver optimizes the II, it will implicitly try
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Figure 4.5: FPGA-to-Host (F2H) example showing data transfer between FPGA
DDRs and host DDR. K3 and K4 are on the same FPGA and DO3 does not need
to be transferred.

to group the CUs on a single FPGA. And for the same reason, consecutive kernels
are also grouped together whenever possible.

4.2.4 Processing (EXE) Phase
In comparison with our previous model in chapter 3, we improve the accuracy

of the model by including the memory access time. This is obtained by dividing the
execution time into three stages: reading data from DDR, performing computation
and writing data to DDR.

The execution time of the CUs of kernel k located in FPGA f is ETk,f , made
of reading, computing, and writing times5:

ETk,f = TRk,f + TCk,f + TWk,f . (4.16)

The duration of the EXE phase is obtained taking the maximum of all execution
times:

Texe = max
k, f

ETk,f (4.17)

The three times in (4.16) depend on the number of CUs of kernel k, Nk, as shown
in the following.

Reading from Local DDR

Let us define as drk the amount of total data that one CU of kernel k reads from
the local DDR memory. These data include the input data, DIk, and the constant

5Here we assume that reading, computing, and writing do not overlap, i.e. that task-level
pipelining is not used inside the kernel to further optimize throughput at the expense of on-chip
RAM usage. Including this aspect would require a simple modification of our model, using the
max instead of the sum, which is not considered here.
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data, Ck. If the workload is perfectly balanced among the CUs of a kernel, these
data will be split in Nk chunks, and each CU will fetch one of these chunks. It
is possible, however, that some data and/or some constants are duplicated. We
introduce two factors to take into account the possible duplication of some of the
data and the constants, δk and γk, respectively, such that we can express drk as
follows:

drk = δkDIk + γkCk

Nk

+ (1 − δk)DIk + (1 − γk)Ck, (4.18)

where 0 ≤ δk ≤ 1 and 0 ≤ γk ≤ 1. (4.18) captures the fact that not all input
data scale with Nk and a residual amount of data needs to be fetched by all the
CUs from local DDR even when Nk → ∞. The two extreme values of δk and γk

capture the extreme cases of full duplication (δk = γk = 0) and perfect scaling
(δk = γk = 1). The values of these constants can be obtained by profiling a few
instances of the application with different CU allocations.

Each CU of kernel k accesses the local DDR through separate AXI ports, each
with bandwidth BXf . Note that the AXI bandwidth can be different in each
FPGA (hence the f subscript) due to the specific clock frequency at which FPGA
f is running. We also assume that all CUs start reading at the same time, and
those that need less data or have the best memory bandwidth finish first, as we
will discuss below.

The read bandwidth of the DDR connected to each FPGA is BDR. This band-
width is instantaneously shared among the NRf actively reading AXI ports asso-
ciated to the various kernels allocated to that FPGA. NRf changes over time, due
to the different finishing time. The instantaneous read bandwidth for each CU is
therefore the minimum between the total AXI bandwidth used by the CU and the
portion of DDR bandwidth that the CU receives:

BRk,f = xk · min
(︄
BXf ,

BDR
NRf

)︄
, (4.19)

where xk is the number of AXI ports used in the reading phase. Some of these
ports are used only for reading and some are used both for reading and writing: let
us denote their number as rk and rwk, respectively. Therefore, we have

xk = rk + rwk. (4.20)

Each CU has a different amount of data to read through the AXI interface,
so the data read time also varies from kernel to kernel. At the beginning, all the
ports share the bandwidth, but when the first CU finishes reading, the available
bandwidth for the remaining CUs increases, since the number of active reading
ports is reduced. Eventually there will be only one active port reading data from
external DDR memory.

Worst-case Approximation: Unfortunately, taking into account the different
read times requires an iterative formulation, which would be too costly to implement
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(the MINLP solver already times out with just a single iteration). Therefore, we
simplify it to obtain a worst-case formula by assuming that the number of active
AXI ports is always equal to the initial value, i.e., NRf = ∑︁

k∈K(xk · nk,f ), i.e. that
the memory reading times are roughly balanced among the kernels. In this way,
we can use a fixed value for the read bandwidth as in (4.19), and consequently the
approximated reading time becomes

TRk,f ≃ drk

BRk,f

. (4.21)

Writing to Local DDR

All the CUs of kernel k write their output data dwk to the local DDR memory
roughly at the same time, while the CUs of different kernels in principle can write
at different times. Since it is difficult to model the exact time at which each kernel
starts writing the data, we consider the worst-case scenario when all the CUs of all
kernels start writing at the same time, in the same way as we did for the reading
phase. This is a crude approximation, but we consider it acceptable because the
writes are much fewer than the reads. Therefore, we will determine the TWk,f time
in a similar way as we obtained the TRk,f time. One difference is that there is no
output data duplication:

dwk = DOk

Nk

. (4.22)

Each CU of kernel k writes in the local DDR through yk separate AXI ports,
each with bandwidth BXf . Some of these ports are used both for writing and
reading (rwk), while some only for writing (wk). Hence, we have

yk = wk + rwk. (4.23)

The DDR memory write bandwidth is BDW. It is instantaneously shared
among the NWf actively writing AXI ports associated to the various kernels allo-
cated to that FPGA. NWf changes over time and we assume that initially it takes
the value NWf = ∑︁

k∈K(yk ·nk,f ). The instantaneous write bandwidth for each CU
is therefore

BWk,f = yk · min
(︄
BXf ,

BDW
NWf

)︄
. (4.24)

Worst-case Approximation: As in the previous case, we can obtain a worst-
case expression by assuming that the number of active AXI ports is always equal
to the initial value, i.e., NWf = ∑︁

k∈K(yk · nk,f ). By assuming that the write
bandwidth is always as in (4.24), we obtain the approximated writing time:

TWk,f ≃ dwk

BWk,f

. (4.25)
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Computing

Let us define TC1k as the worst case computing time when kernel k is im-
plemented with only one CU and runs at clock frequency F1k. The computing
latency in clock cycles needed by one CU is therefore L1k = TC1k · F1k. Consid-
ering that kernel k is arbitrarily parallelizable, its latency Lk scales proportionally
to its number of CUs, Nk:

Lk = L1k

Nk

. (4.26)

The actual clock frequency in each FPGA depends on both resource utilization
and the different kernels allocated to it. We observed an almost linear graceful
degradation of clock frequency for each kernel as the amount of resources increases:

Fk,f = F1k − ψ ·Rf , (4.27)

where Rf is a metric of resource utilization in the FPGA f and ψ ≥ 0 is a constant,
potentially different for each kernel. To obtain ψ, we collected experimental data
with different numbers of compute units (in this case, the kernel resource utilization
will change) and we noticed that a linear fitting worked very well. Since all kernels
in f run at the same clock frequency6, Ff , it is determined as

Ff = min
k
Fk,f (4.28)

and we can obtain the computing delay for each kernel k in FPGA f :

TCk,f = Lk

Ff

. (4.29)

4.3 Geometric Programming and Allocator
Similar to chapter 3, MINLP solver can lead to a long optimization time. For

this reason, we propose a heuristic formulation that separates the optimization in
two steps. The first step determines the total fractional number of CUs for each
kernel to minimize the computation time (this simplification is reasonable when the
reading time and writing time are much smaller than the computation time, which
is the case for CNNs). With this relaxation, we can use a Geometric Programming
(GP) solver that is much faster than a MINLP solver (just like Linear Programming
is much faster than its integer variant). The second step allocates the CUs to the
available FPGAs in a greedy but “smart” way, in order to minimize the data transfer
time between the host CPU and the external DDR memory. In the following, we
refer to this two-step approach as GP+A.

6Even though it would be possible for each kernel to run at a different clock frequency even in
the same FPGA, we did not consider this possibility for now.
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4.3.1 Geometric Programming
To use GP [4], we relax the constraints of the problem by allowing the total

number of CUs for each kernel nk,f be a real number, rather than an integer as
it should be. Given the number of FPGAs, the total available resources, and the
computation time of each kernel (since only the computation time depends on
resources like DSPs and BRAM), a GP solver returns the optimal number of CUs
of each kernel as real numbers. With these, the allocation problem becomes fully
symmetric across the F identical FPGAs, and the optimum solution has an equal
distribution of CUs across the F FPGAs.

Let us define ˆ︁nk ∈ R the number of CUs that would be assigned to an FPGA.
The total number of CUs of kernel k will be

ˆ︂Nk = F · ˆ︁nk. (4.30)

To guarantee that at least one CU is generated for each kernel, we need to specify
that ˆ︂Nk ≥ 1, but of course it is possible that ˆ︁nk ≤ 17.

Now the kernel latency becomes

ˆ︁Lk = L1kˆ︂Nk

, ∀k ∈ K (4.31)

and the kernel computing time becomes

ˆ︃TCk =
ˆ︁Lk

F1k

, ∀k ∈ K, (4.32)

where we use F1k as an estimation of the actual clock frequency. This is justified
by the fact that the clock frequencies of different kernels are similar, as we will
show in Section 4.4, and that the degradation due to the implementation affects all
FPGAs in a similar way, since we utilize them fairly uniformly.

Thus, we can reformulate the optimization problem in (4.2)–(4.4) as follows:

minimize ˆ︃TC (4.33)
subject toˆ︃TC ≥ ˆ︃TCk, ∀k ∈ K (4.34)ˆ︂Nk ≥ 1, ∀k ∈ K (4.35)∑︁

k
ˆ︁Nk

F Rk,t ≤ Rt. (4.36)

The new formulation in (4.33)–(4.36) is compatible with GP requirements [4], and
as such can be solved very efficiently. Once we obtain the (fractional) number of

7We can liken ˆ︁nk to the average number of CUs of kernel k across F FPGAs.

52



4.3 – Geometric Programming and Allocator

CUs of each kernel, in the next step we allocate them on FPGAs in integer chunks,
via discretization. Note that the initial GP spreads the kernels across F, which is
clearly suboptimal because it increases the data transfer time and the complexity
of the work done by the host CPU. This is why we introduce a heuristic allocator
to optimize the mapping.

4.3.2 FPGA Allocation
Before allocation, the variables ˆ︂Nk ∈ R must be discretized to obtain Nk ∈ N.

We enforce integrality using a branch-and-bound technique similar to those used in
Integer Linear Programming. We generate two sub-problems, each with Nk ≤ ⌊ˆ︂Nk⌋
and Nk ≥ ⌈ˆ︂Nk⌉. The search is pruned when the overall resource usage of a sub-
problem exceeds the resource bound of all the FPGAs (this might happen because
GP uses ˆ︂Nk to meet the resource constraints, but ⌈ˆ︂Nk⌉ ≥ ˆ︂Nk). Even though this
branch-and-bound technique may lead to a worst-case exponential branching tree,
in practice this does not lead to excessive execution times due to:

• the pruning strategy,

• the fact that we need to discretize only K variables, where K is the total
number of of distinct kernels in the network, and

• the fact that the number of kernels K is relatively small. E.g., it is around 20
for the VGG benchmark, and 37 for the ResNet benchmark. ResNet, however,
includes only 16 types of distinct kernels, and different layers with the same
type of kernel can have exactly the same number of total CUs. Hence even
for ResNet we have only 16 variables to discretize, as discussed below.

The full MINLP approach, on the other hand, must discretize every variable (160
in the case of VGG over eight FPGAs), hence it may potentially have a much larger
search space.

For each sub-problem generated with the discretization, we perform the actual
allocation, which consists of two phases:

1. Kernel group allocation.

2. Individual kernels allocation.

Kernel Group Allocation

A repetitive pattern can be observed from the results generated using MINLP
solver, the solver tries to group the kernel groups which has a huge amount of data
transfer on a single FPGA, thus to minimize the H2F and F2H transfer times, In the
heuristic kernel allocation, we also try to allocate on the same FPGA kernels that
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are consecutive in the pipeline, so that their communication can happen through
buffers in local DDR without involving the host CPU. To do so, we first enumerate
all possible groups of at least two kernels. We then associate each group with
the size of the input data required by the kernels in the group, data that will be
transferred locally if the group fits in a single FPGA. An example of groups and
associated data is shown on the left of Figure 4.6(a).

Many of these combinations are not feasible (i.e., the group cannot fit in one
FPGA) and are therefore flagged as invalid and pruned, as shown in the figure.
This is beneficial because it reduces the overall runtime of our heuristic. After
pruning, we sort the list of remaining kernel groups in descending order of input
data size, as shown on the right of Figure 4.6(a).

(a)

(b)
Figure 4.6: Grouping example with five kernels: (a) possible kernel groups (left),
flagging and discarding, and kernel group sorting by input data size (right). (b)
possible allocation: first allocate the kernel groups and then allocate the individual
kernels.

Based on this list and on FPGA resource constraints, we allocate the groups
using the greedy heuristic procedure called AllocateGroups in Algorithm 2.

After pruning and sorting the groups (N_g is the set of groups and its cardi-
nality is |N_g| = ∑︁K−1

n=1 n), the loops in lines 9–21 simply try to allocate each group
as long as an FPGA has enough space. If a group is allocated to FPGA f , each
kernel k in the group will have all of its CUs (as determined by GP) allocated to f
(nk,f = CUk = Nk) and the corresponding value CUk will be set to zero, otherwise
CUk will keep the initial value Nk. The resource slack of f is also updated. The
procedure returns the modified arrays CU and S, which are then passed to the
last phase for the individual allocation of the residual kernels. Figure 4.6(b) shows
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Algorithm 2: Pseudo-code of kernel group allocation
procedure AllocateGroups(Nk, R)

CU = (CU1, CU2, . . . , CUK) // Kernel CUs to allocate
1 CUk = Nk, ∀k // Initialized to GP values
2 S = (S1, S2, . . . , SF) // FPGA resource slacks
3 Sf = R, ∀f // Initialized to resource constraint
4 nk,f = 0, ∀k, f // Allocated CUs initialized to zero
5 Ng = All_Kernel_groups // Set of all possible groups
6 Ng = Ng \ Infeasible_groups(Ng) // Pruning
7 Ng = Sorted_groups(Ng) // Sorting by data size
8 Rg = Group_resources(Ng) // Resources needed by

// each group
9 for n = 1 to |N_g| do // Try to allocate group n

10
11 for f = 1 to F do
12 if R_g[n] ≤ Sf then // if f has space left
13
14 Sf = Sf − R_g[n]
15 for k ∈ N_g[n] do // all kernels in n
16
17 nk,f = CUk

18 CUk = 0

19 Ng = Ng \ {Ng [n]} // remove group n
20 sortFPGA(S) // Sort by increasing slack
21

22 return CU, S
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one possible allocation of a five-kernel application. By following the order of the
sorted kernel groups, the allocator first tries to allocate the first two kernel groups
on a single FPGA, but does not succeed. Then it tries to allocate the third kernel
group and successfully assigns it to FPGA1. Similarly, k1 and k2 are allocated on
FPGA2. The individual kernel k3 cannot fit on FPGA1 or FPGA2, and is allocated
on FPGA3 using the algorithm in the following.

Individual Kernel Allocation

Before delving into the details of the procedure shown in Algorithm 3, it is
important to note that, due to the discretization that follows the GP solution,
it might happen that an allocation is not feasible, as it might exceed the initial
resource constraint Rc = R. For this reason, we use a soft bound that can be
increased iteratively by a little amount (Rc = Rc + ∆) until it exceeds the initial
constraint by a predetermined threshold (Rc > R + T ). This is implemented by
the outer while loop in lines 2–34 of Algorithm 4, with the boundary increased on
line 32 and the exit condition (in case of allocation) on line 34.

If no discretization case can be allocated (alloc = FALSE for all of them), it
means that the initial constraint R was too tight and the entire GP+A heuristic
needs to be run again with the looser constraint R + Tmax.

The two for loops inside the while loop (lines 4–13 and 15–30, respectively) are
preceded by a procedure that sorts the kernels in descending “criticality.” Critical
kernels are those that might end up being the slowest in the pipeline and determine
the overall II. In practice, we sort the kernels in descending ˆ︃TCk as determined
by the GP step.

After sorting by criticality, the first for loop attempts to allocate a portion of
the CUs of the large kernels that cannot fit in a single FPGA (line 6) to still empty
FPGAs (line 7).

The second loop is preceded by an FPGA sorting by ascending slack (the less
empty first). The rationale is that we want to consolidate the kernels by allocating
all the residual CUs to the already partially filled FPGAs. If this is not possible
(line 25), we use the least used FPGA, which is the last in the ordered set (F, i.e.,
the one with the largest slack), to allocate as many CUs as possible.

Before the next iteration of the for loop, the FPGAs are sorted again by as-
cending slack.

After the loop, if there are still CUs that are not allocated (line 31), the soft
boundary is increased and the outer while loop is executed again.

If all kernels are allocated, the procedure returns nk,f for all kernels and FP-
GAs. In this case, the FPGA working frequency is updated and the AXI reading
time Tread and writing time Twrite are calculated, as well as the data transfer time
between the host CPU and the local DDR memory Th2f and Tf2h. Finally, the

56



4.3 – Geometric Programming and Allocator

Algorithm 3: Pseudo-code of kernel allocation
procedure AllocateKernels(CU, S)

Rc = R // Resource constraint initialized
1 alloc = FALSE
2 while Rc < R + T and not alloc do
3 sortKernels(CU) // Sort by descending criticality
4 for k = 1 to K do // Allocate large kernels first
5 f = 1
6 while CUk · Rk > R do // Can’t fit in one FPGA
7 if Sf = R then
8 δCU = ⌊R/Rk⌋
9 CUk = CUk − δCU

10 Sf = Sf − δCU · Rk

11 nk,f = nk,f + δCU
12 else
13 f = f + 1

14 sortFPGA(S) // Sort by ascending slack
15 for k = 1 to K do // Allocate all kernels
16 partial_alloc = FALSE
17 f = 1
18 while f ≤ F and not partial_alloc do
19 if Sf ≥ CUk · Rk then
20 Sf = Sf − CUk · Rk

21 nk,f = nk,f + CUk

22 CUk = 0
23 partial_alloc = TRUE

24 f = f + 1

25 if not partial_alloc then
// Use least used FPGA F, if possible

26 δCU = ⌊SF/Rk⌋
27 CUk = CUk − δCU
28 SF = SF − δCU · Rk

29 nk,F = nk,F + δCU

30 sortFPGA(S)

31 if
∑︁

k
CUk > 0 then // Not all CUs are allocated

32 Rc = Rc + ∆
33 else
34 alloc = TRUE // All kernels allocated

35 if alloc then // All CUs are allocated
36 return nk,f , ∀k, ∀f
37 else
38 return allocation failed
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II is computed and compared with the best obtained so far. If better, the alloca-
tion of the current sub-problem obtained with discretization of GP results is kept,
otherwise it is discarded and a new discretization is considered.

4.4 Experimental Results
We implemented our allocation heuristics in C++ and linked it to an existing

GP solver [55]. To validate our optimization method, we use several widely used
CNNs: AlexNet [59], VGG-net [6], YOLO [58] and ResNet [7]. For AlexNet, we
consider both a 32-bit floating point version and a 16-bit fixed-point version, which
we denote Alex-32 and Alex-16, respectively. For VGG-net, we only use the 16-bit
fixed-point version, denoted VGG-16. For YOLO we only use the floating-point
version, denoted YOLO-32. Finally, for ResNet we only use 16-bit fixed-point ver-
sion denoted RESNET-16. Again, this is just an arbitrary selection of benchmarks
to show the effectiveness of our technique for a growing CNN complexity. We val-
idate our heuristic against the MINLP solver Couenne under the same conditions,
and for this purpose we introduce two symbols:

• GP+A refers to the solution given by the heuristic method that couples GP
and Allocation;

• MINLP refers to the solution obtained using the state-of-the-art MINLP
solver Couenne.

We compare the solutions obtained with the two methods for different numbers
of FPGAs and different resource constraints. We ran all our MINLP and GP+A
optimizations on a multi-core CPU (Intel Core i7-6900K clocked at 3.2 GHz, 16
cores) with Linux CentOS 6.9. We are using one processor for our experiments.
Our hardware platform is an AWS F1.x16large instance with eight UltraScale Plus
FPGAs.

Initially, we ran our kernels individually on AWS and obtained the performance
and cost characteristics with one CU each, that are needed for the cost-performance
model. Tables 4.3–4.6, 4.8 report the input/output data size of each kernel, du-
plication factor of the input data, constant data weights, number of input/output
data ports, working frequency, resource usage (since the critical resource usage in
our applications are DSPs, we only report the DSP usage), and computation time.
Note that we do not need to characterise all kernels individually, because some
of them have exactly the same configuration (same input/output data size and
amount of computation).

Out of all the experiments that we carried out, we select five representative
cases of increasing complexity: ALEX-16 on two FPGAs, ALEX-32 on four FPGAs,
YOLO-32 on three FPGAs, VGG-16 on four FPGAs, VGG-16 on six FPGAs, and
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Table 4.3: Characterization of kernels for Alex-32 (floating point). C, P, N stand
for convolutional, pooling and normalization layers.

DIk DOk Ck δk γk rwk F1k DSP TC1k
Kernels (MB) (MB) (MB) (GHz) (%) (ms)

C1 0.62 1 0 0 1 1 0.25 21.24 4.41
P1 1 0.27 0 1 1 1 0.25 0 0.11
N1 0.27 0.27 0 1 1 1 0.25 2.11 0.29
C2 0.27 0.17 1.17 0 1 1 0.22 37.59 2.99
N2 0.17 0.17 0 1 1 1 0.223 7.75 0.2
C3 0.17 0.25 3.375 0 1 1 0.214 28.13 2.18
C4 0.25 0.25 2.53 0 1 1 0.21 37.5 1.82
C5 0.25 0.035 1.69 0 1 1 0.22 37.5 3.73

Table 4.4: Characterization of kernels for Alex-16 (fixed-point). C, P, N stand for
convolutional, pooling and normalization layers.

DIk DOk Ck δk γk rwk F1k DSP TC1k
Kernels (MB) (MB) (MB) (GHz) (%) (ms)

C1 0.31 0.58 0 0 1 1 0.25 4.31 2.63
P1 0.58 0.139 0 1 1 1 0.25 0.58 0.37
N1 0.139 0.139 0 1 1 1 0.25 0.06 0.28
C2 0.139 0.086 0.614 0 1 1 0.25 7.63 1.927
N2 0.086 0.086 0 1 1 1 0.25 0.06 0.17
C3 0.086 0.13 1.77 0 1 1 0.25 5.66 1.82
C4 0.13 0.13 1.33 0 1 1 0.25 7.55 1.08
C5 0.13 0.018 0.884 0 1 1 0.25 7.55 1.72

ResNet on five FPGAs. The MINLP solver manages to complete and return the
(provably) optimum solution in a reasonable time only in the smallest among all
these cases, namely ALEX-16 on two FPGAs. The MINLP CPU time for this
case is shown in Table 4.9, where we vary the DSP resource constraint (FPGA
DSPs are always the limiting factor) from 55% to 92%. In this range, we observe
an almost linear degradation of the maximum clock frequency with the FPGA
resource utilization, which we captured in (4.27).
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Table 4.5: Characterization of kernels (K) for YOLO-32 (floating point). C and P
stand for convolutional and pooling layers.

DIk DOk Ck δk γk rwk F1k DSP TC1k
K (MB) (MB) (MB) (GHz) (%) (ms)
C1 0.574 3.063 0.0016 1 0 1 0.25 3.66 6.63
P1 3.063 0.767 0 1 1 1 0.25 0 0.43
C2 0.767 1.531 0.018 1 0 1 0.25 9.52 4.22
P2 1.531 0.383 0 1 1 1 0.25 0 0.03
C3 0.383 0.766 0.07 0 1 1 0.25 9.43 2.24
P3 0.766 0.191 0 1 1 1 0.25 0 0.03
C4 0.191 0.383 0.281 0 1 1 0.25 18.77 1.2
P4 0.383 0.096 0 1 1 1 0.25 0 0.03
C5 0.096 0.096 0.563 0 1 1 0.25 18.72 0.58
P5 0.096 0.024 0 1 1 1 0.25 0 0.016
C6 0.024 0.048 1.125 0 1 1 0.247 4.68 1.02
C7 0.048 0.079 0.415 0 1 1 0.25 7.31 0.49

Table 4.9: ALEX-16 on 2 FPGAs: MINLP CPU time to obtain one optimum
solution varying the resource constraint.

Resource Usage on each FPGA

55% 61% 76% 82% 92%

Time (h) 8.2 1.7 1.8 1.93 1.6

Table 4.10: Execution time of our heuristic method GP+A to generate the Pareto
points in Figure 4.10.

CNN / # FPGAs

Alex-16 Alex-32 YOLO-32 VGG-16 VGG-16
2 FPGAs 4 FPGAs 3 FPGAs 4 FPGAs 6 FPGAs

Time (s) 25 22 17 89 66

For all the other cases, we had to set a time limit to stop the MINLP solver. We
chose it by looking at the progress of the solution: when we observed a flattening
of the II curve as in Figure 4.2, we decided to stop the solver. The time limit, as
shown in Table 4.7, varies from 10 to 70 hours for the different cases, due to the
different size of the problem.
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Table 4.6: Characterization of kernels (K) for VGG-16 (fixed-point). C and P stand
for convolutional and pooling layers.

DIk DOk Ck δk γk rwk F1k DSP TC1k
K (MB) (MB) (MB) (GHz) (%) (ms)
C1 0.287 6.126 0.003 1 0 1 0.25 2.95 14.652
C2 6.126 6.126 0.07 1 0 1 0.249 15.14 20.18
P2 6.126 1.531 0 1 0 1 0.25 0.03 0.115
C3 1.531 3.063 0.141 1 0 1 0.25 15.14 10.042
C4 3.063 3.063 0.281 1 0 1 0.249 15.14 13.71
P4 3.063 0.766 0 1 1 1 0.25 0.03 0.115
C5 0.766 1.531 0.563 0 1 1 0.246 15.07 7.808
C6 1.531 1.531 1.125 0 1 1 0.249 15.05 14.97
C7 1.531 1.531 1.125 0 1 1 0.249 15.05 14.97
P7 1.531 0.383 0 1 1 1 0.25 0.03 0.115
C8 0.383 0.766 2.25 0 1 1 0.244 15.02 7.66
C9 0.766 0.766 4.5 0 1 1 0.25 15.02 14.94
C10 0.766 0.766 4.5 0 1 1 0.25 15.02 14.94
P10 0.766 0.192 0 1 1 1 0.25 0.01 0.115
C11 0.192 0.192 4.5 0 1 1 0.245 14.99 3.84
C12 0.192 0.192 4.5 0 1 1 0.245 14.99 3.84
C13 0.192 0.192 4.5 0 1 1 0.245 14.99 3.84

Table 4.7: Time limit used by the Couenne MINLP solver to obtain one point on
the II vs. R curve of each implementation in Figure 4.10.

CNN / # FPGAs

Alex-32 YOLO-32 VGG-16 VGG-16
4 FPGAs 3 FPGAs 4 FPGAs 6 FPGAs

Time (h) 10 30 30 40

Table 4.10 shows instead the CPU time required by our heuristic to generate
a set of results, which is generally several thousand times faster than the MINLP
solver.

As shown in Algorithm 4, our heuristic requires to set a resource usage threshold,
T . Figure 4.7 shows the effect of changing it while keeping the other parameters of
ALEX-16 on two FPGAs constant. We observe little effect of T on the value of II
across a large range of the resource constraint R. Similar results are obtained for
the other benchmark cases. Because of this, in the following we report the results
obtained with one specific threshold, namely for T = 1%.
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Table 4.8: Characterization of kernels (K) for ResNet, C and P stand for convolu-
tional and pooling layers.

DIk DOk Ck δk γk rwk F1k DSP TC1k
K (MB) (MB) (MB) (GHz) (%) (ms)
C1 0.287 1.53 0.018 1 0 1 0.25 0.34 4.07
P1 1.53 0.383 0 1 1 1 0.25 0 0.13
C2,3,5,7 0.383 0.383 0.07 0 1 1 0.25 1.99 4.02
C4,6 0.766 0.383 0.07 0 1 1 0.25 2 4.02
C8 0.766 0.191 0.141 0 1 1 0.25 3.85 1.11
C9,11,13,15 0.191 0.191 0.281 0 1 1 0.25 3.85 2.01
C10,12,14 0.383 0.191 0.281 0 1 1 0.25 3.85 2.01
C16 0.383 0.096 0.563 0 1 1 0.25 7.58 0.56
C17,19,21,23,25,27 0.096 0.096 1.125 0 1 1 0.25 7.55 1.01
C18,20,22,24,26 0.191 0.096 1.125 0 1 1 0.25 7.55 1.01
C28 0.191 0.048 2.25 0 1 1 0.25 7.56 0.52
C29,31,33 0.049 0.048 4.5 0 1 1 0.25 7.58 0.99
C30,32 0.096 0.048 4.5 0 1 1 0.25 7.58 0.99
C34 0.383 0.048 0.008 0 1 1 0.25 3.79 0.3
C35 0.191 0.024 0.031 0 1 1 0.25 3.79 0.3
C36 0.096 0.012 0.125 0 1 1 0.25 3.79 0.3
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Figure 4.7: II vs. Rmax with different resource usage thresholds for AlexNet fixed-
point (Alex-16) on two FPGAs.
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The plots in Figure 4.10 show the results obtained by changing the resource
constraint for both the MINLP solver and our heuristic. ALEX-16 on two FP-
GAs, shown in Figure 4.10(a), shows the effectiveness of our method since we know
that MINLP returns the optimum result for this benchmark: notice how MINLP
and GP+A completely overlap. Interestingly, for all the other cases with increased
complexity shown in Figures. 4.10(b)–(e), GP+A significantly outperforms MINLP
(even for runs within the fairly large time limits of Table 4.7), with only one excep-
tion: the point at R = 61% for ALEX-32 on four FPGAs in Figure 4.10(b) where
the heuristic is slightly worse than MINLP.

Different from the other benchmarks, for ResNet the comparison between the
heuristic and the MINLP solver is impractical. In the 5-FPGA case for which
we report the heuristic result in Figure 4.8, the MINLP solver could not return
a feasible solution even after a very long runtime. We stopped it after 70 hours,
whereas our heuristics returned the points in Figure 4.8 in only 15 seconds.

In general, the larger the size of the problem, the larger the gap between GP+A
and MINLP. As the problem gets more complex, the MINLP solver either gets
stuck in a local minimum, or needs an impractical amount of time to converge to
the global optimum. Our heuristic instead returns in a short amount of time a
competitive solution.
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Figure 4.10: Initiation interval as a function of FPGA resource usage: (a) ALEX-16
on 2 FPGAs, (b) ALEX-32 on 4 FPGAs, (c) YOLO-32 on 3 FPGAs, (d) VGG-16
on 4 FPGAs and (e) VGG-16 on 6 FPGAs.
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The histograms in Figure 4.9 and Figure 4.11 show the resource allocation of
kernels for ALEX-32 on four FPGAs and VGG-16 on six FPGAs, respectively, with
a different value of R. These correspond to two specific points that are circled out
in the plots of II vs R in Figure 4.10(b) and Figure 4.10(e), respectively.

 0

 20

 40

 60

 80

 100

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

%
 o

f 
to

ta
l 
re

s
o

u
rc

e
s

VGG-16 - FPGA resource utilization by kernels

GP+A MINLP

CONV1
CONV2
POOL2

CONV3
CONV4
POOL4

CONV5
CONV6
CONV7

POOL7
CONV8
CONV9

CONV10
POOL10
CONV11

CONV12
CONV13

R

Figure 4.11: VGG-16 kernel allocation on 6 FPGA using GP+A and MINLP.

Figure 4.9 shows that MINLP and GP+A made very similar allocations. Both
manage to place in the same FPGA kernels that are consecutive in the pipeline, as
highlighted by the coloring (similar colors refer to consecutive kernels that should
be allocated on the same FPGA).

On the contrary, in the more complex case in Figure 4.11 the allocations are
significantly different. While GP+A manages to both use efficiently the resources
available within the R constraint and group in the same FPGA consecutive kernels,
MINLP does not succeed at any of these two tasks within the allotted time.
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Figure 4.12: Initiation interval as a function of the number of FPGAs used: (a)
ALEX-16, (b) ALEX-32, (c) YOLO-32, (d) VGG-16, and (e) RESNET-16.
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In Figure 4.12, we show the value of II (red curves) as a function of the number
of FPGAs, for the best solutions returned for each number of FPGA by our heuristic
in the four benchmark cases. We plot in the same graphs the Transfer time and
Computing time fractions of II, which show that there is an optimum number of
FPGAs for each application. This is because more FPGAs (1) provide more parallel
resources that allow decreasing the computing time, but (2) more FPGAs also tend
to increase the transfer time in the H2F and F2H phases because fewer kernel pairs
can share data directly and data transfers via host code are slower. Even though
the MINLP solver can theoretically return this optimum, for the more complex
cases this is highly impractical. Our heuristic can be efficiently used for a faster
design space exploration.

4.5 Result Comparison
In this section, we will compare the result obtained using the simplified model

proposed in chapter 3, which is denoted by "Simplified-model" and the result ob-
tained in the current chapter, which is called "Enhanced-model". From the for-
mulation of the models, we know that the Enhanced-model is more precise and it
includes the optimization of the data transfer time between host CPU and FPGAs.
So the data transfer is minimized by allocated as many as possible the consecu-
tive kernels that have a large amount of data flow on a single FPGA. While the
Simplified-model does not consider that.

Figure 4.13 shows the allocation of kernels of VGG-16 on 6 FPGAs with a
resource usage at 76%. We can clearly see that The Enhanced-model grouped
the consecutive kernels together, then allocate them on the same FPGA. In the
Simplified-model, the kernels are scattered on 6 FPGAs. It’s not difficult to guess
the II obtained from Enhanced-model is much better than the Simplified-model
with II equals to 12ms and 28.8ms, respectively.

Since the two models are different, the CPU time spent for the two heuristic
methods reported in chapter 3 and chapter 4 is also different. For the Alex-16,
the CPU time is 0.78s and 25s for the Simplified-model and the Enhanced-model,
respectively. In the case of VGG-16, it takes 4.4s for Simplified-model and 66s for
the Enhanced-model.

The difference is caused by the data transfer time. In summary, the Simplified-
model can be used for multi-kernel applications that do not have a large amount
of intermediate data that need to be transferred, i.e. where the data transfer time
is much less than the computation time. Instead, the Enhanced-model can be used
for any multi-kernel application where the workload can be arbitrarily parallelized.
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mance optimization model.

4.6 Conclusion
We have proposed and experimentally analyzed a fast and effective method to

allocate resources for each kernel in a multi-kernel task-level pipelined application,
like a CNN, to optimize the throughout on multiple FPGAs. Our heuristic op-
timizes the number of compute units of each kernel and their allocations, while
respecting resource constraints and taking into account the cost of data transfer
times between the FPGAs and a host CPU. We developed a cost/performance
model, we modeled it as an optimization problem, and we solved it using a MINLP
solver. However, due to the long CPU time and inefficiency of the solver, we propose
a fast and accurate heuristic method that consists of two main parts. First we use
a GP solver (using a relaxed representation of the same model, without integrality
constraints) to get the number of CUs. Then we use a heuristic allocator to assign
them to different FPGAs in order to minimize the data transfer time. Experimental
results show that our heuristic method can provide very similar results as the exact
MINLP solution when the problem size is small, and it returns much better results
for larger problem sizes.
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Chapter 5

Power-Optimal Mapping of
Multi-kernel Applications to
Multi-FPGA Platforms

Multi-FPGA platforms like Amazon Web Services F1 are perfect to accelerate
multi-kernel pipelined applications, like Convolutional Neural Networks (CNNs).
To reduce energy consumption, we propose to upload at runtime the best power-
optimized CNN implementation for a given throughput constraint. Our design
method gives the best number of parallel instances of each kernel, their alloca-
tion to the FPGAs, the number of powered-on FPGAs and their clock frequency.
This is obtained by solving a mixed-integer, non-linear optimization problem that
models power and performance of each component, as well as the duration of the
computation phases—data transfer between a host CPU and the FPGA memory
(typically DDR), data transfer between DDR and FPGA, and FPGA computation.
The results show that the power saved compared to simply clock gating the fastest
implementation is obviously very high, but it is also much more significant than
simply scaling the frequency of the fastest implementation or replicating the slowest
implementation on multiple FPGAs.

The work presented in this chapter was published in [60].
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5.1 Introduction
In this chapter we provide a model to optimize the power consumption of DNNs

or other kind of multi-kernel applications on data center platforms including FP-
GAs, like the AWS F1 instances. Data center workloads vary and accelerators
designed for the highest application throughput may be underutilized most of the
time, wasting both FPGA resources and energy. Clock gating and frequency scaling
can lower energy consumption, but FPGA reconfiguration adapted to application
throughput can lower it even more. Throughput is the inverse of the Initiation
Interval (II), hence a smaller II means a faster throughput.

Figure 5.1 outlines a multi-FPGA platform. Here the host CPU controls eight
FPGAs over a PCI-express (PCIe) bus and can quickly (≈100 ms) reconfigure them
with one of several configurations generated offline, adapting them to the actual
application performance needs. Reconfiguration is most likely infrequent, e.g., once
per minute (or hour), but it optimizes the number of active FPGAs and their clock
to spare energy.

Energy-per-computation is the product of power times the initiation interval.
Hence at fixed II, minimum power is also minimum energy-per-computation. Since
we provide the full power and energy-per-computation versus II curves, other
choices can be made (e.g., find the best II to minimize energy-per-computation),
according to the application requirements.

Figure 5.1: Multi-FPGA configurations for different power-performance profiles.

We propose a flow to obtain power-optimized multi-FPGA configuration bit-
streams that satisfy different application II requirements. We consider applica-
tions that can be modeled as multi-kernel task-level pipelines, and among these
we focus our experiments on Convolutional Neural Networks (CNNs). Each task,
which corresponds to a CNN layer, can be computed by parallel kernel instances,
termed Compute Units (CUs). They are shown in Figure 5.1 as k3:2, k4:3, etc.,
indicating how many CUs of each kernel are allocated on each FPGA (e.g., k3:2 in
FPGA3 means the allocation of two CUs of kernel 3 on it).
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Figure 5.2: Comparison of different power optimization strategies for AlexNet.

After characterizing the multi-FPGA environment and kernels for power, per-
formance, resources, etc., we build a power-performance model that considers both
computation and data transfers. Then we solve a Mixed-Integer Non-Linear Prob-
lem (MINLP) that, given an II constraint, finds the allocation of the CUs to FPGAs
and the clock frequency of each FPGA that minimize power and so also energy per
computation.

We compare this strategy to two alternatives: 1) finding the fastest multi-
FPGA implementation and applying frequency scaling to reduce energy when the
II requirement decreases; 2) finding the fastest single-FPGA implementation and
replicating it on the minimum number of FPGAs needed to meet the II con-
straint. Figure 5.2 compares the three strategies showing an allocation example for
AlexNet [5] convolutional layers. The fastest solution (not shown in figure) achieves
II = 0.8 ms with three FPGAs (F1–F3) each running at a fast and individually
optimized clock frequency. But if the application requires II = 1.4 ms, frequency
scaling applied to the fastest solution (middle) consumes 14% more power than an
optimized configuration (left), which uses only two FPGAs (F1, F2) at a higher
clock frequency. The replication solution (right) is also less efficient and consumes
17% more power than our solution.

5.2 Multi-FPGA Power Optimization
We model CNN layers as K kernels organized in a linear pipeline, including Data

Transfer (DT) stages between the host CPU and the FPGA DDRs (see Figure 5.3).
The slowest stage sets the II of the pipeline (here the bottleneck is k1, but it
could also be DT). To reduce II, we split the kernel workloads into one or more
CUs running concurrently, like OpenCL workgroups or CUDA thread groups (see
Figure 5.4(a)), and allocate them to the FPGAs (see Figure 5.4(b)). This execution
model is well supported by commercial FPGA design tools, e.g., Xilinx SDAccel [12],
and it approximately divides the computation time by N when allocating N CUs
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Figure 5.3: CNNs modeled as pipelines of kernels, including data transfer DT.

(a) (b)

Figure 5.4: Kernels are split into multiple compute units allocated on FPGAs.

to each layer (data transfer times are accounted for separately in our model). We
design a custom IP for each layer grouping convolution, pooling, and normalization
in a single kernel.

Power consumption depends on the number of CUs of each kernel and their allo-
cation to FPGAs. We seek the solution that minimizes power for a given II. Since
the II target can change at runtime, we find the optimal solution for each II value
in a discretized range. Figure 5.5 shows the proposed design flow. From a C++
or OpenCL high-level description of kernels, we use Xilinx SDAccel to profile their
implementation: FPGA resource utilization (LUTs, FFs, DSPs, BRAMs), DDR
memory bandwidth, execution time, etc. We enter the profile and target platform
characteristics (AWS F1 x8.large in our experiments, which is the largest publicly
available cloud FPGA platform) into our power and performance model, then use
a MINLP solver to find the configuration with minimum power for each value of
II (the points in the graph inset in Figure 5.5). Finally, for each configuration we
generate the configuration bitstreams.

5.2.1 Problem Formulation
We aim to minimize the total power while keeping the initiation interval II

shorter than IImax to satisfy the required throughput (5.1). As shown later, II
depends on the number nk,f of CUs of each kernel k allocated to each FPGA f ,
and on the clock frequency Fckf of each FPGA. Each CU of kernel k requires Rk,t

resources of type t (where t ∈{FF, LUT, DSP, BRAM, DDR bandwidth}) and must
not exceed the available amount on each FPGA Rt (5.2), while the clock Fckf of
any FPGA f must be slower than the maximum supported FCK (5.3). Moreover,
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Figure 5.5: Design flow to obtain the power-optimal FPGA configurations.

each kernel k must run on at least one CU (5.4).

II ≤ IImax (5.1)∑︁
k nk,fRk,t ≤ Rt, ∀f, ∀t (5.2)

Fckf ≤ FCK, ∀f (5.3)
Nk = ∑︁F

f=1 nk,f ≥ 1, ∀k. (5.4)

The resulting problem is a MINLP one because it includes integer (nk,f ) and real
(Fckf ) variables and non-linear constraints.

5.2.2 Initiation Interval (II) Modeling
The top-level computation consists of pipelined data transfers and kernel execu-

tions. We use double buffers in the FPGA DDR so that execution can overlap data
transfer with the host CPU (using single-buffering requires just a simple change of
our model, and it will not be discussed further).

II is limited by the maximum among the data transfer time from host CPU to
FPGA DDR Th2f and back Tf2h, and the CU execution time Texe. Execution can
overlap with data transfer (Figure 5.3), but all data transfers are managed by the
CPU, hence

II ≥ max(Th2f + Tf2h, Texe). (5.5)
We now analyze separately the terms in (5.5).
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Execution Phase

We assume that kernel workloads are arbitrarily parallelizable via doall top-level
loops, which is applicable not only to CNNs but also to many machine learning,
big data, and scientific applications, and is well supported by the OpenCL and
CUDA models of computation. If Twc,k is the single-CU execution time of kernel
k at maximum FPGA frequency FCK, and the kernel workload is split over nk,f

CUs on one or several FPGAs f , then the actual kernel execution time in FPGA
f , Tk,f , scales with the number Nk of CUs and the actual frequency Fckf of FPGA
f (5.7), and Texe is the maximum across all kernels and FPGAs (5.8)

δk,f =
⎧⎨⎩1 if nk,f > 0

0 otherwise
, ∀f, ∀k (5.6)

Tk,f = Twc,k
Nk

· FCK
Fckf

· δk,f , ∀f, ∀k (5.7)
Texe = max

k,f
Tk,f . (5.8)

Here, the allocation variable δk,f is 1 if at least one CU of kernel k is allocated to
FPGA f , and 0 otherwise.

Host-to-FPGA and FPGA-to-Host Phases

Th2f is the ratio between the total size of input data from the host memory to
the DDR of the FPGAs, DIH2F , and the PCIe bandwidth, BH2F . Similarly, Tf2h

is the ratio between the total size of output data from the DDR of the FPGAs to
the host memory, DOF 2H , and the PCIe bandwidth, BF 2H

Th2f = DIH2F

BH2F
, Tf2h = DOF 2H

BF 2H
. (5.9)

In this paper we assume the worst case, namely that direct data transfers between
FPGA DDRs are not supported, since this is the case for the AWS F1 platform
(again, relaxing this assumption requires a minor change to the model, and will
not be discussed further). We also assume that all CUs need the entire input data
set DIk, which is true for CNNs and can be a worst-case assumption for other
applications. Hence, we must replicate the input data if the CUs of a kernel k are
allocated to multiple FPGAs, and the replication factor αk is

αk = ∑︁F
f=1 δk,f , ∀k. (5.10)

The data transferred in the host-to-FPGA phase amount to

DIH2F = ∑︁K
k=1 αkDIk. (5.11)
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Note that constant data (e.g., weights and bias in CNNs) are not considered, since
they are transferred once during initialization.

Differently from the input data, we assume instead that the output data com-
puted by a kernel, DOk, are equally divided among its CUs, hence we transfer

DOF 2H = ∑︁K
k=1 DOk. (5.12)

5.2.3 Power Modeling
FPGA-related average power consumption has a constant static contribution,

Ps, and a dynamic one, Pd, accounting for both data transfer with the host and the
FPGA processing. Table 5.1 shows all the variables involved in the power model.

DDR Power Model

Table 5.1: Variables used in power model equations.

Notation Description

Ptotal total power
Fckf actual working frequency of FPGA f
Th2f , Tf2h data transfer time host to DDR and DDR to host, resp.
Texe execution time
Eh2f, Ef2h energy spent during Th2f and Tf2h, resp.
Eexe total energy spent during Texe

Erw energy spent by accesssing to DDR during Texe

DIH2F total data transferred in the host-to-FPGA phase
DOF 2H total data transferred in the FPGA-to-host phase
PDDRdr, PDDRdw DDR dynamic power when reading and writing, resp.
Pfs on-chip static power
Pfd,f dynamic power of FPGA f

we obtained the FPGA DDR power using a calculator [61] and from experiments
on the AWS F1 platform, which includes an API to report power consumption.
Idle DDR consumes only static power, PDDRs, while dynamic power depends on
the normalized read Br and write Bw bandwidths (i.e., Br = 1 if the maximum
bandwidth is used for reading), and is the sum of the corresponding PDDRdr and
PDDRdw. The equations that we used, with coefficients expressed in Watt and
coming from the characterization above, are: PDDRs = 0.5, PDDRdr(Br) = 0.672Br

and PDDRdw(Bw) = 0.4Bw.
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Single FPGA Power

it consists of static and dynamic power obtained with the Xilinx Power Estima-
tor (XPE) [62]. Static power Pfs includes logic Pfls and memory I/O Pfio power

Pfs = Pfls +Nfio · Pfio (5.13)

with Nfio = 4 DDR banks per FPGA. One I/O bank consumes Pfio = 0.414 W from
[62] and logic power is Pfls = 2.842 W.

Dynamic power Pfd,f of FPGA f depends on each kernel’s CUs allocated to f ,
nk,f , and scales with clock frequency

Pfd,f = ∑︁
k nk,f · Pk · Fckf

FCK (5.14)

with Pk the dynamic power of one CU of kernel k when running at the highest
clock frequency FCK.

Multi-FPGA Power

static power Ps depends only on the number of active FPGAs, NF :

Ps = NF (PDDRs + Pfs) . (5.15)

Total dynamic power Pd depends on the energy spent during data transfer from
host to FPGA DDRs Eh2f, processing Eexe, and data transfer from FPGA DDRs
to host Ef2h

Pd = Eh2f+Eexe+Ef2h
II

= Ed

II
. (5.16)

Here, Eh2f depends on the data replication factor αk (5.10), DDR write band-
width Bwk, and transfer time twk obtained from the FPGA profiling reports

Eh2f = ∑︁K
k αk · PDDRdw(Bwk) · twk. (5.17)

Similarly, Ef2h depends on DDR read bandwidth Brk, and transfer time trk also
from profiling (note that there is no output data replication)

Ef2h = ∑︁K
k PDDRdr(Brk) · trk. (5.18)

CU execution energy Eexe includes the energy to read/write data on DDR Erw
and the FPGA processing energy Ec

Erw = ∑︁K
k Nk (PDDRdr(brk) + PDDRdw(bwk)) · Texe (5.19)

Ec = ∑︁F
f Pfd,f · Texe (5.20)

Eexe = Erw + Ec. (5.21)
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where the data transfer bandwidths that the CUs of kernel k use to read from and
write to DDR are brk and bwk, respectively.

Total power consumption Ptotal is given by the static power from (5.15) and the
dynamic power from (5.16)

Ptotal = Ps + Pd. (5.22)
The energy per computation is Ecomp = Ptotal · II.

5.3 Experiments
We check our optimization method against frequency scaling, clock gating, and

replication for two widely used and realistically large CNNs, AlexNet [5] and VG-
GNet [6]. However, note that our technique is not specific to CNNs (even though
we evaluate it for well-known CNNs), and only depends on the assumption of ar-
bitrarily parallelizable kernel pipelines mapped to multiple FPGAs with DDR-based
memory transfers. We show results for AlexNet using 32-bit floating-point and
16-bit fixed-point, and VGGNet using only fixed-point. To solve the minimization
problem in (5.1)–(5.3) we use a state-of-the-art MINLP solver, Couenne [2]. Note
that a MINLP problem can have in principle multiple local minima. We tried
running the solver multiple times, but the result was always the same.

We characterize the kernels for the power and performance model discussed in
Sec. 5.2 using the FPGA profiling reports from Xilinx SDAccel and actual mea-
surements on an Amazon AWS F1 x8-large instance with eight Xilinx UltraScale+
FPGAs, each with four DDR banks and a PCIe connection to the host CPU (see
Figure 5.1). MINLP and SDAccel run on CentOS Linux 6.9 on a 16-core Intel Core
i7-6900K @3.2GHz. We are using one processor for our experiments.

The MINLP solver requires ≈1 hour to optimize one AlexNet fixed-point imple-
mentation, ≈1 day for AlexNet floating-point, and ≈30 hours for VGGNet. Faster
heuristics are left to future work.

Characterization data from AWS executions for the AlexNet and VGG bench-
marks are shown in Table 5.3-Table 5.4, respectively. The performance of the
optimization methods is shown Figure 5.7, and the number of FPGAs used as a
function of the II is shown in Figure 5.6. The labels in the figure captions are:

• Our Solution is the MINLP optimum using the design flow in Figure 5.5; note
that this is most likely a local minimum, since the optimization space is not
convex;

• Freq. Scaling scales down the clock frequency of the fastest-II MINLP solu-
tion to meet each actual II requirement; note that the AWS platform does
not support voltage scaling; including it into our model would be a simple
modification;
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Figure 5.6: Number of used FPGAs as a function of the optimization method (FS
is frequency scaling, CK is clock gating) and the target initiation interval.
Table 5.2: AlexNet 32-bit floating-point kernel characterization. Layers: convolu-
tional Conv, pooling Pool.

BRAM DSP Twc Bw/Br tw/tr bw/br Pk
Kernels (%) (%) (ms) (%) (ms) (%) (W)

Conv1 13.07 21.24 13 26.54 / 21.96 0.2 / 0.55 0.193 / 0.130 4.542
Pool1 2.84 0 1.78 41.48 / 13.62 0.29 / 0.21 1.415 / 0.341 0.633
Norm1 6.1 2.11 0.839 12.5 / 11.39 0.23 / 0.26 0.725 / 0.725 1.091
Conv2 8.73 37.59 7.19 8.45 / 9.4 0.35 / 0.19 0.54 / 0.052 8.367
Norm2 7.75 2.11 0.807 9.32 / 9.92 0.19 / 0.18 0.466 / 0.466 1.252
Conv3 5.22 28.13 7.78 7.92 / 26.33 0.23 / 0.1 1.18 / 0.072 6.173
Conv4 2.13 37.5 9.08 6.63 / 12.7 0.4 / 0.21 1.063 / 0.073 7.979
Conv5 8.73 37.5 4.84 3.77 / 4.38 0.38 / 0.09 1.027 / 0.017 8.150

• Clock Gating stops the FPGA clock when the CUs of the fastest-II MINLP
solution finish computation; note that the AWS platform does not support
power gating at runtime; since static power is ≈20% of the total power,
considering power gating would bring Clock Gating closer to Freq. Scaling,
but still far from Our Solution.

• Replication makes copies of the MINLP solution that uses the minimal num-
ber of FPGAs (hence the slowest solution) until it meets the II requirement.

By design, 1) all plots in Figure 5.7 except for replication start at the best
performance point, and 2) replication meets our solution at the worst performance
point. Note that our solution always yields equal or superior results to other
methods.

Freq. scaling and clock gating show a reciprocal dependency between power and
II, because they keep the same number of kernel CUs, the same FPGA allocation,
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Table 5.3: AlexNet 16-bit fixed-point kernel characterization. Layers: convolutional
Conv, pooling Pool.

BRAM DSP Twc Bw/Br tw/tr bw/br Pk
Kernels (%) (%) (ms) (%) (ms) (%) (W)

Conv1 10.59 4.31 5.16 16.19 / 15.42 0.2 / 0.39 0.209 / 0.052 1.004
Pool1 0.05 0 1.78 26.86 / 8.79 0.23 / 0.17 0.709 / 0.171 0.605
Norm1 2.53 0.06 0.78 6.26 / 9.62 0.23 / 0.15 0.389 / 0.388 0.596
Conv2 4.39 7.63 4.11 7.08 / 7.77 0.22 / 0.12 0.475 / 0.046 1.438
Norm2 6.66 0.06 0.67 4.59 / 7.63 0.2 / 0.12 0.281 / 0.279 0.664
Conv3 2.63 5.66 6.7 1.864 / 14.4 0.5 / 0.09 0.684 / 0.042 1.109
Conv4 1.91 7.55 5.06 5.346 / 14.5 0.256 / 0.09 0.737 / 0.056 1.274
Conv5 4.39 7.55 3.29 2.93 / 2.08 0.24 / 0.09 0.755 / 0.012 1.340

Table 5.4: VGGNet 16-bit fixed-point kernel characterization results

BRAM DSP Twc Bw/Br tw/tr bw/br Pk
Kernels (%) (%) (ms) (%) (ms) (%) (W)

Conv1 3.67 2.95 28.8 17.33 / 24.79 0.18 / 2.70 0.028 / 0.484 0.914
Conv2 9.97 15.14 67.8 83.20 / 22.78 0.80 / 2.94 0.321 / 0.206 2.106
Pool2 11.6 0.03 13.3 83.86 / 23.33 0.80 / 0.72 1.045 / 0.261 0.825
Conv3 9.97 15.14 22.7 49.28 / 24.47 0.34 / 1.37 0.269 / 0.307 2.108
Conv4 9.97 15.14 32.1 78.28 / 24.26 0.46 / 1.38 0.380 / 0.217 2.107
Pool4 2.94 0.03 6.9 72.86 / 22.67 0.92 / 0.74 1.020 / 0.254 0.714
Conv5 8.32 15.07 22.8 23.37 / 22.52 0.36 / 0.74 0.341 / 0.153 2.055
Conv6-7 8.32 15.05 32.9 44.44 / 23.33 0.38 / 0.72 0.472 / 0.106 2.063
Pool7 1.50 0.03 3.5 56.74 / 17.18 0.29 / 0.24 0.985 / 0.246 0.615
Conv8 2.12 15.02 24.5 8.986 / 19.06 0.47 / 0.44 0.455 / 0.071 1.982
Conv9-10 2.12 15.02 37.7 10.93 / 19.28 0.77 / 0.43 0.590 / 0.046 1.979
Pool10 0.05 0.01 2.1 31.87 / 11.84 0.26 / 0.18 0.800 / 0.200 0.582
Conv11-13 2.12 14.99 20.3 3.319 / 10.96 0.63 / 0.19 0.629 / 0.022 1.986

and the same number of active FPGAs. They satisfy the II constraint either by
scaling the FPGA clock frequency only, or by disabling the clock in addition to
scaling it. Unlike them, our solution saves more power when the II constraint is
relaxed, because it optimizes both the number and allocation of CUs, the number
of active FPGAs, and their working frequencies at the same time.

Replication starts from the optimal results obtained using our solution for the
highest II. For both AlexNet implementations in Figure 5.7(a) and Figure 5.7(b),
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Figure 5.7: Power versus initiation interval in (a) AlexNet Fixed-Point, (b) AlexNet
Floating-Point, and (c) VGGNet Fixed-Point.
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replication finds better solutions than freq. scaling and clock gating for II con-
straints when the execution time is much higher than data transfer time. In fact,
from (5.7) the execution time is inversely proportional to CU number, while from
(5.9)–(5.11) Th2f is proportional to the number of CUs, because the input data
are replicated with the same factor. VGGNet [Figure 5.7(c)] shows an extreme
case when data transfer time is very high and solution replication mostly increases
power by increasing the number of CUs, without a significant reduction of the II,
since it is dominated by data transfer time. However, as shown in Figure 5.2, our
solution smartly groups the kernel CUs on fewer FPGAs, minimizing both data
transfer time and power at the same time.

5.4 Conclusion
We proposed a power-performance optimization method to optimally configure

a multi-FPGA platform running multi-kernel pipelined workloads. Given an II
target, the solution of a MINLP problem provides an optimal allocation of the best
number of CUs for each kernel so as to minimize the overall power consumption.
Compared to applying frequency scaling to reduce both II and power starting from
a fast configuration, or to replicating a slow configuration on multiple FPGAs, our
solution provides a much more effective way of saving power.
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Chapter 6

Fast Power-Optimal Multi-Kernel
Application Allocation on
Multi-FPGA Platforms

In Chapter 5 we proposed a power optimization model to find the power min-
imum solution for given throughput constraint offline and upload the specific bit-
stream at runtime to program the FPGA. The model has been solved using a
MINLP solver; however, it is not feasible to use it for design space exploration due
to its inefficiency.

In this chapter, we provide two heuristic optimization methods that improve
result quality within a bounded time. We use several very large designs to demon-
strate that both heuristics obtain comparable results to MINLP, when it can find
the best solution, and they obtain much better results than MINLP, when it cannot
find the optimum within a bounded amount of time. The heuristic methods can
also be thousands of times faster than the MINLP solver.

This work has been submitted to IEEE Transactions on COMPUTER-AIDED
DESIGN of Integrated Circuits and Systems.
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6.1 Power Modeling
The average FPGA power consumption has a constant static component, Ps,

and a dynamic one, Pd, including both the data transfer with the host and the
FPGA processing. Total power consumption is thus

Ptotal = Ps + Pd. (6.1)

The detailed power model is discussed in Chapter 5.

Static Power

includes the DDR static power, PDDRs, and the FPGA static power, Pfs. In
addition, it is proportional to the number of active FPGAs, F

Ps = F (PDDRs + Pfs) . (6.2)

Dynamic Power

is proportional to the average dynamic energy, Ed, spent during one II

Pd = Ed

II
. (6.3)

Dynamic energy consists of DDR dynamic energy, Eddrd, due to data transfer be-
tween host and DDR, and the processing energy, Ec, due to the CUs allocated on
FPGA f

Ed = Eddrd + Ec (6.4)
Ec = ∑︁F

f Pfd,f · Texe (6.5)
Pfd,f = ∑︁

k nk,f · Pk · Fckf

FCK . (6.6)

The dynamic power of FPGA f , Pfd,f, depends on the number of CUs of each kernel
allocated to it, nk,f , and scales with the clock frequency. The detailed equation for
the calculation of the DDR dynamic power is discussed in Chapter 5.

6.2 Heuristic Solutions
The optimization problem in chapter 5 can be solved using a Mixed-Integer Non-

Linear Programming (MINLP) solver. However, this may need a very long time
to solve, being often impractical, especially for explorations that invoke multiple
times the MINLP solver. Hence, we propose two heuristic methods to improve the
exploration efficiency. The first still uses a MINLP solver, but over a much smaller
exploration space. The second avoids completely the MINLP solver and is much
faster.
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6.2 – Heuristic Solutions

6.2.1 First Heuristic Solver, Using MINLP
To speed up the MINLP solver, we fix the number of active FPGAs, limit the

number of possible CUs for each kernel, and simplify the power model. In our
previous work Chapter 5, we empirically noticed that the best solutions save static
power by always using the minimum number of FPGAs, Fmin, most likely because
of the static power consumption. Hence, our first heuristics uses Fmin as a hard
bound on resources instead of exploring allocations on more FPGAs. To obtain
Fmin, we first determine the minimum number of CUs for each kernel that satisfies
the IImax constraint

CUmink
=
⌈︂
Twc,k/IImax

⌉︂
(6.7)

and then we find Fmin by using the resource utilization

Fmin = max
t

⌈︃∑︁K
k=1 Rk,t · CUmink

Rt

⌉︃
. (6.8)

In our experiments with CNNs and NLP, the maximum in (6.8) is always deter-
mined by the total number of required and available DSP units (i.e., Rk,t and Rt,
with t = DSP) on a single FPGA.

We introduce an additional binary variable in the problem, extraCUk = {0, 1},
to limit the number of CUs per kernel, CUk, to at most one higher than CUmink

from (6.7)
CUk = CUmink

+ extraCUk. (6.9)
We do this because additional CUs may reduce the execution time of a kernel,
which may become closer in speed to other kernels, hence allowing us to reduce
the frequency when these kernels are all allocated to the same FPGA. With CUk

limited to only two values in (6.9), the possible values of the allocation variables
nk,f—the sum of which over the active FPGAs is CUk—is also largely reduced,
which has a substantial effect on the execution time of the MINLP solver.

We do not include the data-transfer power in the model because it is typically
much lower than the computation power. In this way, the model is further sim-
plified. Notice, however, that this power contribution will be implicitly minimized
by our method, since the CUs of the same kernel are likely allocated in the same
FPGA because they have the same execution time. As a result, the input data
of that kernel will not be duplicated, and data transfer and its associated power
consumption will also be reduced.

6.2.2 Second Heuristic Solver, Without MINLP
For larger problems, even the simplified model introduced in Sec. 6.2.1 can be

too slow. To further speed up the solution, we propose another heuristic method
that does not rely on external solvers.
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For the same reasons explained in Sec. 6.2.1, we determine the number of active
FPGAs F = Fmin as in (6.8), and we determine before the allocation with (6.7)
the minimum number of CUs for each kernel, and use the auxiliary binary variable
as in (6.9). This leads to 2K possible combinations for the number of CUs, which
we test exhaustively as shown in Algorithm 4 (line 3). Notice that although this
is exponential, the number of kernels K is usually small and the run time is short,
as we report in the experiments. Moreover, the combinations that do not fit in the
FPGAs are pruned early by the filter on line 9 to further reduce the run time.

Rtotal in the pseudo-code refers to the DSP resources needed by each kernel,
which limit the allocation of computation-intensive applications, such as CNNs and
transformer networks, before other resources are exhausted (LUT, FF, BRAM).

From the solution generated in Chapter 5, we can see that to optimize the power
consumption, all the kernels that have similar execution time are allocated on the
same FPGA. This way can further reduce the FPGA working frequency, hence,
reduce the power consumption. We also design the allocation algorithm to do a
similar job. Prior to allocation, we set the FPGA resource slack R according to
resource constraints (line 10). Then we sort the kernels (line 12) in descending
order of the execution time obtained with CUmink

CUs. In this way, we favor the
allocation of kernels with similar execution time to the same FPGA, helping to
reduce the operating frequency, power, and input data duplication (lines 14 to 29).
At the end of this loop, some kernels might have residual CUs that could not be
allocated. Therefore, we go through the kernels in the opposite order, allocating
the kernels with the smallest execution time to FPGAs in increasing operating
frequency order (lines 32 to 47). Note that the kernels are ordered in descending
order of execution time on FPGAs, and they are allocated on FPGA in the same
order, so the first FPGA will have the highest frequency, and the last one the
slowest frequency. We accept only the allocations with total data transfer times
below IImax (lines 50 to 53), and we select the allocation with minimum power
consumption.

6.3 Experiments
We use the same MINLP solver from Chapter 5 to implement the first heuristic

method (see Sec. 6.2.1), and we implemented the second one in C++ (see Sec. 6.2.2).
We validate the methods using two widely used CNNs, 8-layer AlexNet [59] (32-bit
floating-point, ALEX-32, and 16-bit floating-point, ALEX-16) and 17-layer VGG
[6] (16-bit floating-point, VGG-16), and a transformer network for NLP [8] (16-bit
fixed-point, one decoder, one encoder, four heads in the attention layer, 11 layers
total, TRANSFORMER-16). Table 6.1

88



6.3 – Experiments

Algorithm 4: Second heuristic allocation method
procedure AllocateCUs(CUmin, Rtotal, IImax)

// Vector of min required CUs per kernel
1 CUmin = (CU1min , CU2min , . . . , CUKmin )
2 boolean extraCU = (CU1e , CU2e , . . . , CUKe )
3 for c = 1 to 2K do // 2K combinations in total, cause each kernel has two possible CUs
4 assign extraCU according to c
5 alloc = False; Rtotal = 0
6 for k = 1 to K do
7 CUk = CUkmin + extraCUk

8 Rtotal += CUk · Rk

9 if Rtotal < F · R then
// Vector of FPGA resource slack initialized to constraint value

10 S = (S1, S2, . . . , SF ); ∀f : Sf = R

// Allocated CUs initialized to zero
11 ∀k, f : nk,f = 0

// Sort by descending exec. time
12 sortCU(CU)
13 k = 0
14 for f = 1 to F do
15 Racc = 0
16 while k < K do
17 Racc += CUk · Rk
18 if Racc ≤ R then
19 δCUk = CUk
20 Sf = Sf − CUk · Rk

21 CUk = 0
22 nk,f = δCUk

23 else
24 δCUk = ⌊Sf /CUk⌋
25 CUk = CUk − δCUk
26 Sf = Sf − δCUk · Rk

27 nk,f = nk,f + δCUk

28 break;

29 k = k + 1

30 if
∑︁

k
CUk > 0 then

31 k = K − 1
32 for f = F to 1 do
33 Racc = 0
34 while k > 0 and CUk > 0 do
35 Racc += CUk · Rk
36 if Racc ≤ Sf then
37 δCUk = CUk
38 Sf = Sf − CUk · Rk

39 CUk = 0
40 nk,f = δCUk

41 else
42 δCUk = ⌊Sf /CUk⌋
43 CUk = CUk − δCUk
44 Sf = Sf − δCUk · Rk

45 nk,f = nk,f + δCUk

46 break;

47 k = k − 1

48 if
∑︁

k
CUk = 0 then

49 alloc = True

50 Calculate Tf2h + Th2f
51 if alloc and Tf2h + Th2f < IImax then
52 Update Fckf

53 Calculate Power

54 nk,f = arg(min(Power))
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Figure 6.1: Minimum power and number of FPGAs function of the initiation in-
terval obtained with optimization method in Chapter 5 (MINLP), first (H1) and
second (H2) heuristic methods for (a) 16-bit floating-point AlexNet, (b) 32-bit
floating-point AlexNet, (e) 16-bit fixed-point Transformer, and (f) 16-bit floating-
point VGG. 90



6.3 – Experiments

Table 6.1: Transformer kernel characterization on the AWS F1 platform

BRAM DSP Twc Bw / Br tw / tr bw / br Pk
Kernels (%) (%) (ms) (%) (ms) (%) (W)
Attention1 20.9 31.5 9.5 1.23 / 0.39 8.9 / 0.3 1.03 / 0.004 4.12
Attention2 9 16.5 6.3 9.52 / 0.89 0.59 / 0.12 1.03 / 0.004 3.04
feed_forward1 0.9 3.7 16.7 77.4 / 3.63 0.28 / 0.11 0.275 / 0.01 0.85
feed_forward2 0.9 3.7 16.8 11.5 / 0.95 1.94 / 0.11 0.28 / 0.011 0.85
norm 0.5 0.5 0.3 20.5 / 10.24 0.1 / 0.1 0.315 / 0.16 0.92

shows the transformer kernel characterizations on the AWS F1 platform. Kernel
characterizations for the other three implementations are reported in Chapter 5.

Figure. 6.1 shows the experimental results obtained on a CentOS Linux v6.9 ma-
chine with an Intel Core i7-6900K processor with 128 GB RAM. MINLP denotes the
optimization with the method described in Chapter 5, H1 denotes the first heuristic
method, and H2 denotes the second heuristic method. Figures. 6.1(a)(b)(e)(f) show
the minimum power consumption obtained for a range of II using each optimization
method. Figures. 6.1(c)(d)(g)(h) show the corresponding number of FPGAs. For
small-size problems, e.g., ALEX-16 and ALEX-32, all optimization methods yield
the same result, proving the effectiveness of the proposed heuristics. The latter are
much faster than MINLP, which needs around one hour to solve the ALEX-16 com-
pared to 20 min for H1 and a few seconds for H2, or around one day for ALEX-32
compared to less than 15 h for H1, and a few seconds for H2.

For larger problems, e.g., TRANSFORMER-16 in Figure. 6.1(e), MINLP re-
quires one day, while H1 needs 10 h, and H2 always completes in a few seconds.
Additionally, the proposed heuristics H1 and H2 find better results, especially for
II = 2 ms. H2 returns a suboptimal solution for II = 4 ms, but it finishes compar-
atively much faster, in a few seconds.

For even larger problems, e.g., VGG-16 in Figure. 6.1(f), H1 often misses the
best solution by roughly 12 % after running for about 15 h compared to MINLP
running for 30 h. H2 solutions are the best with run times around 10 s.

Summarizing, for small problems both our heuristic methods, H1 and H2, find
good solutions. H1 may even obtain better solutions, such as for II = 4 ms for
TRANSFORMER-16. For larger problems, H2 is better and much faster.

Note that for larger problems we had to stop MINLP early. Hence, the results
in Figure. 6.1(f) are the best after 24 h to 30 h, but still sub-optimal. This explains
why the proposed heuristic methods H1 and H2 may reach better results (e.g., for
VGG-16).

The number of FPGAs used for the best solution achieved using the three
different methods are shown in Figures. 6.1(c)(d)(g)(h). In all cases, the optimal
number of FPGAs is the same.
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6.4 Conclusion
We propose two heuristic methods to efficiently obtain energy-optimal or near-

optimal solutions to configure a multi-FPGA platform for a given II. The first
heuristics constrains the exploration space to significantly reduce the runtime, while
achieving the same or even better results than the exact algorithm. Similarly, the
second heuristics first reduces the exploration space, then groups the kernels with
similar execution time on a single FPGA to minimize the FPGA frequency, thus
minimizing the power consumption. In addition, it is thousands of times faster
than the exact algorithm.
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Conclusion and Future Work
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Conclusion and Future Work

7.1 Conclusion
In chapter 3, we provide a new and fast method to maximize the throughput,

i.e. minimize the initiation interval, of pipelined applications consisting of multiple
kernels and deployed on multiple FPGAs. This method can efficiently optimize the
number of parallel compute units of each kernel and allocate them on FPGAs in a
way to respect the resource and memory bandwidth constraints. Since the method
is based on an optimization problem that involves integer variables and is non-linear,
it first has been solved using a Mixed-Integer Non-Linear Programming (MINLP)
solver which, however, is highly inefficient. Due to this reason, we provided a
heuristic method which includes a Geometric Programming (GP) solver and an
allocator. The GP solver first relaxes the constraints and returns the number
of Compute Units (CUs) of each kernel as a real number, but since we need an
integer value we round it to both the smaller and greater nearest integer values,
hence creating two possible alternative implementations for each kernel. Then, the
allocator assigns the CUs on the FPGAs and selects the best implementation. By
comparing the solutions obtained using MINLP solver and our heuristic method
on a set of benchmarks, we could prove the effectiveness of our approach, which is
much more efficient than the MINLP solver.

However, the first mathematical model implemented in our optimization frame-
work did not include the data transfer time from the host CPU to the FPGA
memory. Since the data transfer time can be very high for applications like CNNs
since the data size of neuron activation is very high, neglecting the data transfer
time could lead to suboptimal solutions. To improve the accuracy, a more detailed
performance optimization model is presented in chapter 4. It includes the data
transfer time. Moreover, it considers the frequency reduction introduced by the
increasing resource usage of an FPGA. The execution time is divided into three
parts, data transfer time from DDR to FPGA, computation time, and data trans-
fer time from FPGA to DDR. We also separate the computation time and the data
transfer time between DDR and FPGA. Similarly to the preliminary model, we first
solved the optimization problem using a MINLP solver. However, due to the long
CPU time and inefficiency of the solver, we propose a fast and accurate heuristic
method. Experimental results show that our heuristic method can provide very
similar results as the exact MINLP solution when the problem size is small, and it
returns much better results for larger problem sizes.

We also compared the results obtained using these two models in chapter3 and
chapter 4. In summary, the first “Simplified” model can be used for multi-kernel
applications that do not have a big amount of data to transfer from one layer to
the next layer. While the “Enhanced” model can be used for any multi-kernel
application. They can provide a solution that maximizes the throughput of the
multi-kernel application while respecting the resource constraints and it is highly
efficient.
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The second part of the thesis focuses on the power optimization model for
multi-kernel applications targeting multi-FPGA platforms. We propose to upload
at runtime the best power-optimized CNN implementation for a given throughput
constraint. Our design method gives the best number of parallel instances of each
kernel, their allocation to the FPGAs, the number of powered-on FPGAs and their
clock frequency. We compared the proposed method with state-of-the-art methods
including frequency scaling of the solution with the best throughput and replicating
the solutions with the minimum throughput. Our method proved to be the best.

The power optimization problem has also been solved at first with a MINLP
solver, which again proved to be highly inefficient. Thus we proposed two heuristic
methods to efficiently obtain energy-optimal or near-optimal solutions to configure a
multi-FPGA platform for a given II. The first heuristics constrains the exploration
space to significantly reduce the runtime, then uses the same MINLP solver, which
now can complete in a much shorter time. Similarly, the second heuristics first
reduces the exploration space, then uses a greedy algorithm to further reduce the
runtime. The results show that the first heuristic method can find better solution
within the same time limit, while the second heuristic can return better solution
and at the same time it is thousands of times faster than the exact algorithm.

7.2 Future Work
In the models that we proposed in the thesis, we did not consider direct on-

chip data transfer from the previous layer to the next. All the data are transferred
through DDR even when consecutive kernels are allocated on the same FPGA. This
assumption is used to simplify the problem, because routing data between different
CUs allocated on the same chip and on different chips would be very complex.
However, it is redundant for kernels that are allocated on the same FPGA since
they can exchange data directly on FPGA. In this way, it will reduce the bandwidth
usage and reduce the total execution time.

For now the model can only be used for multi-kernel applications for which the
computation workload can be split in multiple pipelined kernels, like CNNs. It
would also be interesting to extend the method to work in a hierarchical fashion,
where the performance of each kernel (as well as its cost, bandwidth requirements
and so on) can also be changed using the unrolling of loops inside each kernel,
in addition to instantiating multiple CUs. This will provide a further level of
optimization that can lead to better results.

There are some practical implementation details that we did not address. For
example, how to allocate CUs on the multi-SLR FPGAs which state some con-
straints. Moreover, for now, we assume the DDR memory is uniform to simplify
the model, but actually, the memory is banked over multiple DDR memory banks
per FPGA. We will address these issues to make the model more precise.
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Finally, in the power model, the data transfer from host CPU to FPGA DDR
Th2f and back Tf2h are done sequentially. However, the PCIe interface is duplex,
the data transfer can be done in parallel to improve the performance.
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Nomenclature

Acronyms / Abbreviations

2D-SPP 2D rectangular Strip-Packing Problem

AI Artificial Intelligence

ALU Algorithm-Logic Unit

ANN Artificial Neural Network

API Application Programming Interface

ASIC Application Specific Integrated Circuit

AWS Amazon Web Service

AXI Advanced eXtensible Interface

BRAM Block RAM

CLB Configurable Logic Block

CMOS Complementary Metal–Oxide–Semiconductor

CNN Convolutional Neural Network

CPU Central Processing Unit

CU Compute Unit

CUDA Compute Unified Device Architecture

DDR Double Data Rate

DFE Dataflow Engine

DL Deep Learning

DNN Deep Neural Network
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Nomenclature

DP Dynamic Programming

DRAM Dynamic Random-Access Memory

DSP Digital Signal Processor

DUT Device Under Test

EC2 Elastic Compute Cloud

EDA Electronic Design Automation

FF Flip-Flop

FIFO First In First Out queue

FP16 Fixed-point 16 bits

FP32 Fixed-point 32 bits

FPGA Field Programmable Gate Array

FSM Finite State Machine

GFLOP Giga Floating Point Operations Per Second

GP Geometric Programming

GPU Graphic Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

HPC High Performance Computing

HW Hardware

IDE Integrated Development Environment

II Initiation Interval

int8 Integer 8 bits

IP Intellectual Property

LUT Lookup Table

MINLP Mixed-Integer Non-Linear Programming

98



Nomenclature

ML Machine Learning

NoC Network On a Chip

OpenCL Open Computing Language

PCIe Peripheral Component Interconnect Express

RAM Random Access Memory

REG Register

RTL Register Transfer Level

SDK Software Development Kit

SLL Super Long Line

SLR Super Logic Region

SOC Syetem On a Chip

SQL Structured Query Language

SW Software

TPU Tensor Processing Unit

URAM Unified-Random Access Memory

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLSI Very Large-Scale Integration

XRT Xilinx runtime
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