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EFFECTS OF AN ADVECTION TERM IN NONLOCAL

LOTKA-VOLTERRA EQUATIONS

REBECCA H. CHISHOLM ∗, TOMMASO LORENZI † , AND ALEXANDER LORZ ‡

Abstract. Nonlocal Lotka-Volterra equations have the property that solutions concentrate as
Dirac masses in the limit of small diffusion. In this paper, we show how the presence of an advection
term changes the location of the concentration points in the limit of small diffusion and slow drift.
The mathematical interest lies in the formalism of constrained Hamilton-Jacobi equations. Our mo-
tivations come from previous models of evolutionary dynamics in phenotype-structured populations
[R.H. Chisholm, T. Lorenzi, A. Lorz, et al., Cancer Res., 75, 930-939, 2015], where the diffusion op-
erator models the effects of heritable variations in gene expression, while the advection term models
the effect of stress-induced adaptation.

Key words. Nonlocal Lotka-Volterra equations, Dirac masses, Phenotype-structured popula-

tions, Stress-induced adaptation. Subject classifications. 35R09; 45M05; 92D25; 92D15

1. Introduction We consider the equation

ε∂tnε(t,x)+ε∇x ·(v(x)nε(t,x))=R
(

ρε(t),x
)

nε(t,x)+ε2∆nε(t,x), (1.1)

which models the evolutionary dynamics of a well-mixed population structured by
the phenotypic traits x∈R

d. Here, the function nε(t,x)≥0 is the population density
which characterises the phenotype distribution of individuals at time t∈R+, and we
note that time has already been rescaled with respect to the parameter ε in order to
study the population’s dynamics in the limit of many generations [3, 4, 5].

In this mathematical framework, natural selection is driven by the fitness function
R

(

ρε(t),x
)

, which models the net proliferation rate of individuals in the environment
characterised by the total population density

ρε(t)=

∫

Rd

nε(t,x)dx. (1.2)

The Laplace term takes into account heritable variation in gene expression (i.e.,
epimutations) due to non-genetic instability, whereas the drift term models the effects
of stress-induced epimutations [1]. In this setting, the direction of the vector v cor-
responds with the direction of stress-induced adaptation, while its modulus measures
the strength of the selective stress. Furthermore, the small parameter ε incorporates
the following two ideas: (i) epimutations are less frequent than proliferation and death
events; (ii) non-genetic instability induces epimutations which occur on a timescale
slower than that of stress-induced epimutations.

When v(·)=0, the solutions of Eq. (1.1) are known to concentrate as Dirac masses
in the limit ε→0. In this case, the concentration points are understood as maximum
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2 Effects of an advection term in nonlocal Lotka-Volterra equations

points of the function uε(t,x), which is introduced through a real phase WKB ansatz

nε = euε/ε, or equivalently uε = ε ln(nε), (1.3)

and satisfies, in the limit ε→0, the constrained Hamilton-Jacobi equation presented
in [2]. Furthermore, under the concavity assumptions considered in [2, 4, 5], it is
possible to prove that there is one single concentration point whose time dynamics
is governed by a differential equation that acts as the canonical equation of adaptive
dynamics. Here, we show how the inclusion of an advection term influences the
dynamics of the Dirac concentration point in the limit ε→0.

2. Assumptions and main results We make the following assumptions:

Assumptions on the function R
- R belongs to C2(R+×R

d) and there exists a constant ρM ∈R+ such that (fixing
the origin in x appropriately):

max
x∈Rd

R(ρM ,x)=0=R(ρM ,0). (2.1)

- There exist some positive real constants K0, K1, K1, K2, K2 and K3 such that for
all ρ∈ [0,ρM ]:

−K1|x|
2≤R(ρ,x)≤K0−K1|x|

2, (2.2)

−2K1≤D2R(ρ,x)≤−2K1 <0, (2.3)

−K2≤
∂R

∂ρ
≤−K2, ∆R≥−K3. (2.4)

- Finally,

D3R(ρ,·)∈L∞(Rd), uniformly for ρ∈ [0,ρM ]. (2.5)

Assumptions on the drift v
- v belongs to C2∩W 4,∞(Rd) and there exists some real constants A1,A2 >0 such
that

‖∇v(x)‖≤A1,
∣

∣Tr(D2v(x))
∣

∣≤2A2
1

1+ |x|
. (2.6)

Assumptions on the initial data n0
ε(x)

- The initial data n0
ε ∈L1∩L∞(Rd) satisfies n0

ε(x)≥0 a.e. on R
d, and there is a pos-

itive real constant ρm is such that

0<ρm <ρε(0) :=

∫

Rd

n0
ε(x)dx<ρM . (2.7)

- There exists a function u0
ε such that:

n0
ε(x)= e

u
0
ε
(x)

ε (2.8)
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with

D3u0
ε ∈L∞(Rd) componentwise uniformly in ε. (2.9)

With this assumption we can prove a gradient bound ‖∇uε‖≤C∇u(1+ |x|) (cf. equa-
tion (2.28)) and we can use the constant C∇u to formulate the next assumption

K1−A2C∇u >0. (2.10)

- There exist some positive real constants B, B, L0, L0, L1 and L1 such that:

−L0−L1|x|
2≤u0

ε(x)≤L0−L1|x|
2 (2.11)

and

−2L1≤D2u0
ε ≤−2L1, (2.12)

with

L1≤B≤B≤L1. (2.13)

We will specify B, B in equations (2.32), (2.33).

- Finally,

n0
ε(x)−−−⇀

ε→0
ρ(0)δ(x− x̄0) weakly in the sense of measure. (2.14)

In the framework of these assumptions, we can prove the following

Theorem 2.1 (Limit ε→0). Let assumptions (2.1)–(2.4), (2.6), (2.7) and
(2.13)–(2.12) hold true. Then, for all T >0:

i) A priori bounds on ρε(t).
The solutions nε to (1.1) satisfy

ρm≤ρε(t)≤ρM a.e. on [0,T ], (2.15)

and ρε is uniformly bounded in BV (R+).

ii) Asymptotic behaviour of ρε and nε for ε→0.
There exists a subsequence of ρε, denoted again as ρε, such that

ρε(t)→ρ(t) in L1
loc(R+), as ε→0, (2.16)

with

ρm≤ρ(t)≤ρM ,
d

dt
ρ(t)≥0. (2.17)

Moreover, weakly in measures,

nε(t,x)⇀ρ(t)δ(x− x̄(t)), as ε→0, (2.18)
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and the pair (ρ(t), x̄(t)) satisfies:

R(ρ(t),x̄(t))=0, a.e. on [0,T ]. (2.19)

iii) Asymptotic behaviour of uε(t,x) for ε→0.
There exists a subsequence of uε, denoted again as uε, such that

uε(t,x)−−−→
ε→0

u(t,x) strongly in L∞
(

(0,T );W 1,∞
loc

(

R
d
))

, (2.20)

where u(t,x) is a C2-function, with D3u(t, ·)∈L∞(Rd), that satisfies



































∂

∂t
u(t,x)=R(ρ(t),x)+ |∇u(t,x)|2−(v ·∇u)(t,x) , (t,x)∈R+×R

d,

max
x∈Rd

u(t,x)=0=u(t,x̄(t)),

u(t=0,x)=u0(x)

(2.21)

in the viscosity sense introduced in [5].

Theorem 2.2 (Canonical equation). Let assumptions (2.1)–(2.12) hold true.
Then, x̄(·) belongs to W 1,∞(R+) and satisfies the following initial value problem















˙̄x=(−D2u(t,x̄))−1 ·
(

∇R(ρ(t),x̄)−∇(v ·∇u)(t,x̄)
)

, t∈R+,

x̄(t=0)= x̄0,

(2.22)

where x̄0 is defined by assumption (2.14) and ρ(·)∈W 1,∞(R+).

Theorem 2.3 (Long-time asymptotics). Let assumptions (2.1)–(2.12) hold
true. Then,

ρ(t)→ρ∞ and x̄(t)→ x̄∞, as t→∞, (2.23)

and the limits ρ∞ and x̄∞ are identified by the relations

R(ρ∞,x̄∞)=0,
[

∇R(ρ∞,x)−∇(v ·∇u∞)(x)
]

x=x̄∞

=0, (2.24)

where u∞(x) satisfies















R(ρ∞,x)+ |∇u∞(x)|2−(v ·∇u∞)(x)=0 , x∈R
d,

max
x∈Rd

u∞(x)=0=u∞(x̄∞).

(2.25)

With the additional assumptions (2.6), proofs of the above theorems are similar
to those presented in [4, 5] and therefore are left without proof. However, we show
that the semi-convexity and the concavity of the initial data is preserved which can
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be checked with calculations on D2uε(t, ·):

Proof. [Bounds on D2uε] We begin by calculating

∂tnε =nε ∂tuε/ε, ∇nε =nε∇uε/ε, ∆nε =nε ∆uε/ε+nε |∇uε|
2/ε2. (2.26)

Plugging this in equation (1.1), we find that uε satisfies the Hamilton-Jacobi equation

∂

∂t
uε(t,x)=R(ρε(t),x)+ |∇uε(t,x)|2 +ε∆uε(t,x)−(v ·∇uε)(t,x)−ε∇·v(x). (2.27)

The same way as in [4] section 8, we obtain the gradient bound. To increase readability
we give a brief version here: we write uε =K−q2 with a constant K large enough
such that q(t,x)>C >0. Then we obtain

∇uε =−2q∇q ∆uε =−2q∆q−2|∇q|2

and therefore it follows from equation (2.27) that

−2q∂tq =R+4q|∇q|2−2εq∆q−2ε|∇q|2 +2vq∇q−ε∇v.

Dividing by −2q, taking the derivative with respect to xi and defining p :=∇q, we
have

∂tpi =−

(

R

2q

)

xi

−2pip
2−2qp ·∇pi +ε∆pi +ε

p ·∇pi

q
−ε

p2

v2
pi

−vxi
·p−v ·∇pi +ε

∇·qxi

2q
−ε

∇·v

2q2
qi.

Since the term of highest order in p on the right hand side is −2pip
2, we obtain that

p is bounded and therefore there is a constant C∇u such that

‖∇u‖≤C∇u(1+ |x|). (2.28)

To prove the concavity results, we only give formal arguments for the limit case.
To adapt the argument for the ε-case is purely technical. For a unit vector ξ, we use
the notation uξ :=∇ξuε and uξξ :=∇2

ξξuε to obtain

uξt =Rξ +2∇u ·∇uξ−vξ ·∇u−v ·∇uξ, (2.29)

uξξt =Rξξ +2∇uξ ·∇uξ +2∇u ·∇uξξ−vξξ ·∇u−2vξ ·∇uξ −v ·∇uξξ. (2.30)

Along the line of [4], we use the fact that |∇uξ|≥ |uξξ| and we introduce the definition
w(t,x) :=minξ uξξ(t,x) to achieve

∂tw≥−2K1 +2w2 +2∇u ·∇w−vξξ ·∇u−2vξ ·∇uξ −v ·∇w

≥−2K1 +2w2 +2∇u ·∇w−2A2C∇u−2A1|w|−v ·∇w. (2.31)

Defining

B =
A1 +

√

A2
1 +4(K1 +A2C∇u)

4
, (2.32)

by a comparison principle and assumptions (2.6), (2.12), (2.13), the differential in-
equality (2.31) gives that if B≤L1 then w(t,x)≥−2L1 for all times t.
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The upper bound −2L1≥D2u(t,x) can be obtained similarly with

B =
−A1 +

√

A2
1 +4(K1−A2C∇u)

4
. (2.33)

In a similar way, we can establish a L∞-bound (uniform in ε) on the third
derivative of uε(t, ·).

Moreover, since the function ρ(t) is continuous away from a countable set of
discontinuity points, the proof of the relation (2.19) follows the method of Perthame
and Barles [5]:

Proof. [R(ρ,x̄)=0] Let t∗ be a continuity point of ρ(t) and x̄(t∗) be a maximum
point of u(t∗,·). Using the viscosity subsolution criteria in (t∗,x̄(t∗)) and testing
against the test function 0, we find

R(ρ(t∗),x̄(t∗))≥0. (2.34)

On the other hand, integrating in time equation (2.21) on the interval (t∗,t∗+h) at
the point x= x̄(t∗), we obtain

0≥
u(t∗+h,x̄(t∗))

h
≥

1

h

∫ h

0

R(ρ(t∗+s),x̄(t∗))ds + 0,

which implies, since t∗ is a continuity point of ρ(t),

0≥R(ρ(t∗),x̄(t∗)). (2.35)

We can then use (2.34) and (2.35) to achieve (2.19).

Finally, the derivation of the canonical equation (2.22) follows the method of
Lorz, Mirrahimi and Perthame [4]:

Proof. [Canonical equation] Since uε(·,x) is concave and smooth, we can define
x̄ε(t) as the maximum point of uε(t, ·) and conclude that ∇uε(t,x̄ε(t))=0. This implies
that

d

dt
∇uε(t,x̄ε(t))=0,

and the chain rule gives

∂

∂t
∇uε(t,x̄ε(t))+D2uε(t,x̄ε(t)) ˙̄xε(t)=0. (2.36)

Using equation (2.27) we thus find that, for almost every t,

D2uε(t,x̄ε(t)) ˙̄xε(t)=−
∂

∂t
∇uε(t,x̄ε(t))=−∇R(ρε(t),x̄ε(t))+∇(v ·∇uε)(t,x̄ε(t))

−ε∆∇uε(t,x̄ε(t))+ε(∇(∇·v))(x̄ε(t)).

Since R belongs to C2(R+×R
d), v is a C2-function and D3uε is bounded uniformly

in ε, we can pass to the limit in the above equation and obtain (2.22).
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3. Numerics We illustrate the asymptotic results established by Theorems 2.1–
2.3 by performing numerical simulations in Matlab. An implicit-explicit finite dif-
ference scheme with 3000 points on the interval [−0.5,1.5] is used to solve the math-
ematical problem defined by Eq. (1.1), zero Neumann boundary conditions and the
following initial data

n0
ε(x) := e−

(x−0.65)2

ε . (3.1)

We select the interval [0,10] as the time domain (time step dt=0.0001), and we define

ε :=0.001, v(·) :=−1, R(ρε(t),x) :=0.1+0.8 e−5(x−1)2−0.1ρε(t). (3.2)

The results presented in Figs. 3.1–3.2 show that the solution of Eq. (1.1) does not
concentrate in the point x=1, as it would do in the absence of the advection term.
Instead, it concentrates in the point that satisfies the relations (2.24).

Fig. 3.1. Dynamics of nε(t,x) (left) and profile of uε(t,x) at t=10 (right). The dashed line
highlights the maximum point of nε(t,x) at t=10.

Acknowledgement. This work was supported by the French National Re-
search Agency through the “ANR blanche” project Kibord [ANR-13-BS01-0004]. TL
was also supported by the Hadamard Mathematics Labex, backed by the Fondation
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