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Data plane assisted state replication with Network Function
Virtualization

Iman Lotfimahyari, German Sviridov, Paolo Giaccone, Andrea Bianco
Dipartimento di Elettronica e Telecomunicazioni - Politecnico di Torino - Torino, Italy

e-mail: firstname.lastname@polito.it

Modern 5G networks are capable of providing ultra-low
latency and highly scalable network services by employing
modern networking paradigms such as Software Defined
Networking (SDN) and Network Function Virtualization (NFV).
The latter enables performance-critical network applications to
be run in a distributed fashion directly inside the infrastructure.
Being distributed, those applications rely on sophisticated state
replication algorithms to synchronize states among each other.
Nevertheless, current implementations of such algorithms do not
fully exploit the potential of the modern infrastructures, thus
leading to sub-optimal performance.

In this paper, we propose STARE, a novel state replication
system tailored for 5G networks. At its core, STARE exploits
stateful SDN to offload replication-related processes to the data
plane, ultimately leading to reduced communication delays and
processing overhead for VNFs. We provide a detailed description
of the STARE architecture alongside a publicly-available P4-
based implementation. Furthermore, our evaluation shows that
STARE is capable of scaling to big networks while introducing
low overhead in the network.

Index Terms—5G, NFV, Programmable data planes, State
sharing, Publish-subscribe model

I. INTRODUCTION

RAPID growth in demand for fast and reliable services
has made of Network Function Virtualization (NFV)

and Software Defined Network (SDN) the main pillar of
modern 5G management infrastructures, as emphasized by
ETSI [1]. SDN introduced the possibility of performing
centralized management of the network thanks to the
separation between the data plane, left in the switches
and the control plane, delegated to a network controller,
thus enabling fine-tuning of network operations. While SDN
provides means of centrally orchestrating and managing the
network operations, NFV poses itself as a real game-changer.
Thanks to NFV, dedicated hardware devices, previously
composing the network infrastructure, are substituted with
general-purpose machines such as commodity servers with
consequent virtualization of most of the legacy devices in the
form of Virtual Network Functions (VNF). Network operators
are now faced with a scenario in which general-purpose
devices are widespread and easily programmable. This opens
a new wide range of applications, ranging from IoT to real-
time digital applications to be run close to the end customers.
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At the same time, it creates opportunities for deploying new
control and management applications which permit gathering
insights on fine-grained network statistics.

While substantial effort is being put into devising novel
applications to be run on the newly added network devices,
new challenges arise related to the necessity of richer
coordination schemes. Most network applications are required
to communicate with other applications and to take cooperative
decisions either by design or to guarantee their correct
functionality. Such is the case of VNFs running Distributed
Deny-of-Service (DDoS) detection algorithms, stateful load
balancers, or user mobility services. Although having a
completely different purpose, all of the aforementioned
applications depend on some global states which, by design,
are shared across multiple VNFs.

At the same time, alongside speed and availability,
application-transparency becomes fundamental in modern
infrastructures. Developing custom algorithms for each
network application to convey state updates to different VNFs
becomes prohibitively tedious and expensive. This calls for a
clean and versatile scheme capable of enabling data sharing
across different VNFs with a bare minimum modification of
their original structure.

In this paper, we propose STARE, a mechanism that
mitigates the aforementioned issues by providing an
application layer-transparent method for state sharing in
5G networks. The replication in STARE is complementary
to eventual replication schemes running within clusters of
distributed SDN controllers. STARE provides seamless sharing
of application-level states by partially replicating those states
across different VNFs. This is achieved by exploiting advances
in the field of SDN, specifically in the field of programmable
data planes. While in traditional SDN, switches are left with
little to non-decision-making capabilities, recent advances in
the field of SDN introduced the concept of programmable data
planes by enhancing switches with powerful packet processing
pipelines and support of stateful operations.

To this end, STARE exploits these advances by defining
a custom publish-subscribe protocol run directly in the data
plane, thus not requiring any additional hardware. By fully
exploiting the potential of programmable switches, STARE
can achieve high scalability and no additional latency while
leading to memory-efficient state replication across multiple
VNFs. Furthermore, STARE simplifies the development
process of the VNFs by pushing the replication complexity
down from each VNF to the network. This is done by
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providing a middleware shared across all of the VNFs hosted
in a single server which simplifies the design and provides a
more transparent way for developing state sharing procedures.

The actual benefit of STARE is both toward the network
and VNFs. Indeed, reducing the memory consumption for
the matching tables allows us to better exploit the available
matching tables. Indeed, those are typically implemented
with expensive and limited-size TCAMs and extend the
applicability of network applications running in P4 switches.
Furthermore, STARE is beneficial for VNF developers since,
by giving provided with standard STARE libraries, they are
exempt from the burden of managing the real-time replication
protocols.

Our main contributions are twofold: (1) validate the
approach and show that STARE can run in a real P4-enabled
network, and (2) evaluate the resource occupancy of the
proposed solution to better understand the scalability of the
approach.

A. State sharing in operational scenarios

Our work has been motivated by an operational
use case in the context of the European 5G-EVE
project1 targeting the tracking of users’ mobility in smart
cities [2]. Mobility tracking enables a large variety of
new applications: on-demand public transportation, crowd
management, mobility planning, social distance monitoring,
etc. All these applications fit very well the pervasive nature of
mobile networks.

As shown in Fig. 1, the use case comprises a set of
WiFi scanners deployed in an area around eNodeBs used
in the testbed. The WiFi scanners capture the probe request
messages periodically sent by the smartphones advertising
the list of the WiFi access points to which they have been
connected in the past. A tracking-mobility VNF runs in each
edge cloud and processes the anonymized MAC addresses
of the mobile devices observed by each WiFi scanner. This
enables the possibility of tracking the device’s mobility in
a completely transparent way for the users. More details
are available in [3]. To capture the mobility across an area
spanning multiple eNodeBs, it is necessary to correlate the
presence and the coverage time of any device across multiple
VNFs. This requires sharing the internal states of each VNF.
Indeed, whenever a previously detected MAC address by a
given VNF is later detected by another VNF, it is possible to
infer the spatial trajectory of the device and its speed. In the
example scenario of Fig. 1, we have two VNFs (VNFx and
VNFy) that exchange their internal states (Sx and Sy) with the
timestamped list of all the observed MAC addresses. Thanks
to this state sharing, each VNF can individually evaluate the
direction of the path (either x → y or y → x) and the
corresponding average speed.

To support such an application, a centralized approach
can be employed. Such an approach would require all
the WiFi scanners to send their data to a single VNF
which would aggregate the data from different eNodeB. This
solution, although feasible in many scenarios, has limited

1https://www.5g-eve.eu/
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Fig. 1: Urban mobility tracking application with multiple WiFi
scanners, leveraging a programmable data plane connecting
the different eNodeB for replication of global states between
VNFs.

scalability and does not exploit the natural spatial correlation
of the mobile nodes. Trajectory and speed are intrinsically
local properties from a spatial point of view and can be
easily evaluated through a distributed approach. STARE finds
excellent applicability in such a scenario as it enables direct
state sharing across multiple VNFs through a programmable
data plane (e.g., based on P4 switches) connecting the different
eNodeBs. Contrary to the centralized solution, STARE is
capable of achieving this goal without incurring scalability
issues, even whenever the monitored area becomes very large.

B. Organization of Paper

The rest of the paper is organized as follows. In Sec. II
we discuss the main challenges behind the implementation
of STARE and the potential benefits it can bring, while in
Sec. III we provide implementation details of STARE and
its operation modes. In Sec. IV we evaluate STARE in an
emulated test-bed to validate the approach, showing that it
is feasible to be implemented and run in a real P4-based
network. Alongside the evaluation, we quantify the resource
occupancy to understand the scalability of the approach. Then
we compare it against alternative solutions, either centralized
or distributed ones. In Sec. V we provide an overview of
how STARE relates to existing technologies based on stateful
data planes and highlight possible future directions. Finally in
Sec. VI we draw our conclusions.

II. ACCELERATING STATE REPLICATION WITH STARE

The possibility of replicating local states on remote devices
is the main pillar of most modern distributed applications. It
allows systems to efficiently scale to large sizes, thus providing
higher service availability and resilience.

The replication procedure typically involves a set of states,
defined as generic data structures that are to be shared
among different devices. Noteworthy, an efficient replication
algorithm must guarantee that all shared states are kept “fresh”
with respect to one another, i.e., all replicas should have the
same value. An important example of such necessity comes
from distributed database systems in which data is located
in different regions. In the case of real-time services, the
freshness becomes of paramount importance, as otherwise it
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may introduce ambiguity or preclude the correct functionality
of the service. To this end, multiple state replication schemes,
tailored for different applications, have been proposed.

A. State sharing

Traditionally simple gossip protocols have been widely
employed to disseminate information among different sites
by optimistically propagating information in the network.
Although being easy to implement and requiring low
computational and storage overhead, this family of algorithms
inevitably incurs practical limitations related to the data
freshness and resilience to faults. To solve these issues, modern
services rely on a broad variety of replication algorithms with
specific algorithms being chosen to satisfy particular service
requirements. Such requirements are summarized by the CAP
theorem [4] which states that for a replication algorithm, out
of Consistency, Availability, and Partition-tolerance only two
properties can be chosen at the same time. More formally
the CAP theorem defines three fundamental properties a
replication algorithm should satisfy:

1) Consistency: Any read performed on any replica of the
state will always return the most (globally) recent value
of such state or eventually an error. It follows that all
non-faulty replicas will always contain the same value
for a given state.

2) Availability: The availability property guarantees that
any read performed on any replica will yield a non-
error result independently from the freshness of the state
value. It follows that no service disruption is possible in
the case of faulty replicas. Yet, if consistency property
is not satisfied, the system must be designed in such a
way to guarantee correct functionality in the presence
of out-of-date state values.

3) Partition-tolerance: Partition-tolerance defines the
reliability property of the replication algorithm. If this
property is satisfied the replication system is guaranteed
to operate correctly even in the case of an arbitrary
number of state-update messages being dropped or
delayed by the network.

Being the reliability a crucial factor in modern
infrastructures, it follows that no practical replication
algorithm can operate without satisfying the partition-
tolerance property. This reduces the freedom of picking
the possible property combinations down to Availability-
Partition-tolerance and Consistency-Partition-tolerance, which
leads to eventual consistency and strong consistency models
for replication algorithms, respectively.

Recently different proposals have been emerging as
substitutes to classic replication algorithms. Motivated by the
ever-rising number of connected devices and an ever-growing
number of different applications common to many devices,
schemes such as publish-subscribe have been proposed.

B. Publish-Subscribe for VNF state synchronization

Low latency is among the main requirements for modern
real-time network applications as it affects systems reactivity

and dramatically impacts user satisfaction. The latency
requirement is made even more crucial for sharing application-
critical states across different applications. From the point
of view of a replication scheme, this translates into the
necessity of providing availability. Furthermore, since the
majority of modern distributed systems such as IoT or cellular
networks operate in a loosely-coupled or fully autonomous
way, supporting also partition tolerance becomes fundamental.
Indeed, no network is immune to faults, thus algorithms
that implement some degree of resilience to network failures
are required. As a consequence, the Consistency-Partition-
tolerance model is typically deployed.

Publish-subscribe has been introduced as a possible solution
for such kinds of environments by closely mimicking
the eventual-consistency models, thus providing fast and
reliable state replication. Publish-subscribe protocols provide
a message exchange mechanism between two main actors
involved in the algorithm, namely the publishers and the
subscribers. The peculiarity of such schemes is that, differently
from the traditional replication algorithm, most of the
complexity is moved out of the endpoints and pushed inside
a central entity, namely the broker, which is responsible to
collect the data from the publishers and distribute to all the
relevant subscribers.

Traditional publish-subscribe algorithms work in three
phases. i) A given subscriber can express its interest in a
particular topic by specifying it to the broker. ii) The broker
builds and keeps track of a map between specific topics and the
subscribers interested in those topics. iii) Each time a publisher
sends an update on a specific topic to the broker, the broker
forwards the update to all of the subscribers of that topic.
This scheme effectively enables one-to-many communication,
while decoupling in time and space the publishers from the
subscribers.

Employing a publish-subscribe scheme is well-tailored for
environments comprised of multiple heterogeneous devices
as it requires little to no integration inside the devices
while offering the flexibility in managing different states
and implementing safeness properties of traditional replication
algorithms based on eventual consistency. Nevertheless,
differently from traditional gossiping algorithms, publish-
subscribe schemes may suffer considerably from increased
latency in the case of excessive overload of the broker. This
in turn limits the applicability of such mechanisms for ultra-
low latency applications such as in the case of most of the
applications targeted by 5G networks.

C. Programmable data planes in next generation networks

Recent advances in the field of SDN led to considerable
improvements not only in the scalability and performance of
SDN controllers but most importantly in the architecture of
SDN switches.

Programmable data planes emerged as a novel paradigm
for the next generation SDN switches. Differently from
traditional data planes, programmable data planes [5], [6]
introduce the possibility of embedding user-defined programs
directly inside switches, thus enabling the possibility of
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Fig. 2: Overview of STARE communication modes.

executing custom code during the packet processing pipeline
at zero increased latency cost. Although commercial products
employing programmable data planes still have numerous
limitations in terms of resources and programming semantics,
the degree of programmability offered by programmable
switches remains sufficiently high. This flexibility is mainly
because, alongside programmability, programmable switches
offer the possibility of keeping persistent states inside switches
thanks to the presence of stateful elements such as registers
and counters, hence they are also usually referred to as stateful
data planes. At the same time, numerous programmable switch
architectures offer the opportunity of defining custom packet
headers by directly programming the packet parser which
was widely employed to develop novel traffic management
schemes [7] and monitoring applications [8].

The combination of all of the novel features introduced by
programmable data planes makes them a perfect foundation
to build upon for novel algorithms targeting the in-network
acceleration of application-layer services.

D. Dataplane-assisted publish-subscribe acceleration

Motivated by the flexibility of programmable data planes
and the potential of achieving ultra-low latency, we propose
STARE, a state sharing protocol to replicate the states between
VNFs, able to fill the performance gap of traditional publish-
subscribe protocols by performing acceleration of the protocol
via data-plane operations.

The high-level communication pattern of the proposed
approach is depicted in Fig. 2. STARE removes the inevitable
drawbacks which come from employing a software broker
by delegating its functionalities to the data plane. Switches
act as a distributed publish-subscribe brokers for inter-VNFs
state replication while relying on a centralized controller
only for the initialization phase and in case of critical
events. All publish/subscribe messages are processed directly
by programmable switches, thus allowing packets to always
follow the shortest path to their destination without any need
of being detoured to a middle-box first. At the same time, such
an approach does not introduce any processing latency, since,
as previously discussed, programmable switches can process
packets at the line rate.

While reducing the communication latency, STARE also
provides means for effortless integration in existing and new
VNFs. In the following section, we will discuss in detail the
implementation and the operation of STARE.
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Fig. 3: STARE message format

TABLE I: Coding and definition of different Message kinds.

Message kind Definition Message kind Definition
00 Publish 01 SUB-ack
10 SUB-remove 11 SUB-register

III. STARE IMPLEMENTATION

At its core, STARE exploits three main components
to provide fast and application layer-transparent publish-
subscribe service: i) a custom communication protocol that is
easily interpretable both by the VNFs and by the switches,
ii) a middleware running at each machine hosting VNFs
which exposes clean and easily accessible communication
hooks to each VNF and iii) a data plane algorithm running
inside the programmable switches responsible of performing
broker’s tasks. In the following section, we closely analyze the
implementation and design choices behind each of the three
components.

A. STARE communication protocol

STARE heavily exploits features provided by modern
programmable data planes. Notably, it relies on the possibility
of defining custom protocol headers and the possibility of
taking switch-local decisions based on them.

STARE uses the IPv4 Administratively Scoped IP Multicast
range (239.0.0.0 - 239.255.255.255) as destination IP address
in order to disseminate the publish/subscribe messages.
STARE exploits this 32-bits length field by including within
the essential data required to guarantee correct message
identification and forwarding. Specifically, three custom fields
are encoded by STARE within the IPv4 destination field
that is summarized in Fig. 3: i) a constant 8 bit-long
protocol ID(PROTO_ID) equal to (11101111), which is
required to correctly identify STARE packets, ii) a 2 bit-long
Message kind(M_K), which permits to disambiguate among
different kind of messages present in STARE whose values
are summarized in Table I, and iii) a 22 bit-long field for
state ID(STATE_ID) to uniquely identify the ID of the state
for which the message has been generated, corresponding
to about 4 106 maximum number of states. All of the
above information, combined with a dedicated destination
UDP port (number 65432 in our evaluation), ensures correct
identification of STARE packets inside switches and endpoints.

By construction, independently from the size of the network
and the number of states, the message overhead is fixed (i.e.,
36 bytes for each subscription and publish) and the number
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� �
1 apply {
2 if (!hdr.ipv4.isValid()){ // Drop non-IPv4 packets
3 drop(); return;}
4 // Process the IPv4 destination field and
5 // check if a STARE message has been received
6 ipDstCheck();
7 if (loc_metadata.ipDstProtoId == IP_STARE
8 && hdr.udp.isValid()
9 && hdr.udp.dstPrt == PROTO_STARE){
10 checkMsgKindAndInputPortMask();
11 if (local_metadata.STARE_msgKind == 0){
12 setMcastGrp(); publish();}
13 else if (local_metadata.STARE_msgKind == 1)
14 sendToCpuPort();// Embedded controller-based
15 Drop();// Register-based
16 else if (local_metadata.STARE_msgKind == 2)
17 updateUnsubscribe();
18 else if (local_metadata.STARE_msgKind == 3)
19 updateSubscribe();}
20 else // process non-STARE packets
21 ipv4_lpm.apply();}
22 � �

Listing 1: STARE message processing in P4

H2H1

H3 H4

P4 switch

Replica controller

SDN controller

STARE middleware STARE middleware

STARE middleware

VNF1,1 VNF2,1 VNF2,2

VNF3,1

Fig. 4: VNFs, middleware and replica controller running in a
STARE scenario.

of exchanged messages is minimum, thanks to the use of
spanning trees connecting the subscriber and publisher nodes.

Notably, the use of UDP poses hard constraints on the
maximum size of the states to be replicated. For this reason,
STARE exploits some semi-application layer segmentation to
support large states, thus appearing in a completely transparent
way to the data plane.

The general implementation of the switch logic for
STARE, alongside the definition of the IPv4 destination
type in P4, is depicted in the Listing 1. Since the
IPv4 header is discarded at the endpoints once it is
received, an application layer message is placed on top
of the UDP header including: i) message kind(M_K),
ii) Virtual Network Function (VNF) ID(VNF_ID), iii)
state ID(STATE_ID), iv) update number(UPDATE_NO),
v) the update total segments(TOT_SEGM), and vi)
segment number(SEGM_NO). Although the definition
of the format for each field can be arbitrarily decided by the
programmer, in our implementation we employed a format
represented in Fig. 3.

B. STARE Middleware

As previously anticipated, STARE is transparent to the
actual implementation of the core logic of each VNF. This is
achieved thanks to the fact that STARE incorporates flexible
middleware which is responsible for managing the overall
process of state replication. Thus, as the replication protocol
runs in the network, the VNFs are not directly involved in
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Fig. 5: The software architecture for STARE middleware

it. This approach permits the reduction of the computation
overhead incurred by the management of complex replication
algorithms at the VNF level and further simplifies both the
development of new VNF and integration of STARE in legacy
ones. The proposed middleware acts as a single endpoint of
the replication scheme within each server, thus it is agnostic
to the amount of VMs and VNFs running on each server.
The main role of the middleware is de facto to act as a proxy
between local VNFs and other servers comprising the network,
as shown in the example of 4 servers depicted in Fig. 4.

Fig. 5 depicts an overview of the main components of
the sample middleware we implemented. The black lines are
the regular data-paths carrying the STARE data, the red
lines are the possible Publish distribution paths which can
be either intra-server or inter-server, the green lines define
the Information paths used to keep the control information
updated inside the middleware, and the blue line defines the
replica controller message path.

To achieve our final goal, we implemented a simple protocol
to permit the interaction between the VNF and the STARE
middleware. The architecture is made clearer by mimicking
all messages exchanged inside the middleware to the behavior
of the publish-subscribe protocol adopted at the network level
by the programmable switches.

The middleware is composed of two macro elements: i)
an external module EXT module which is responsible for
managing communication between the server hosting the
VNFs and the external network and ii) a dedicated internal
module INT module which is responsible for managing
communications between individual VNFs and the EXT
module.

The main components of the EXT module can be
summarized as follows:

1) INIT thread: The main entry point to the middleware
is defined by the INIT thread which is responsible for
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opening a new socket and spawning a listener on a
specific TCP port (65431 in our case). This listener
provides the main means of communication between
the VNFs and the STARE middleware. Whenever a new
VNF is instantiated it will try to reach the middleware
by binding on this particular port (we assume the port
number to be known in each VNF).

2) SIG SEND and SIG RECEIVE threads: These
processes implement a TCP connection with the replica
controller and are responsible for managing all of the
control information between the replica controller and
the VNFs. This control information, implemented via a
set of replica controller messages, includes connection
initialization of each VNF and the management of the
publish messages losses.

3) MAIN MESSAGE-HANDLER thread: MAIN
MESSAGE-HANDLER, is responsible for reading
and rebuilding the signaling messages queued in the
incoming IN-1 Queue. Whenever a message from the
replica controller is received, it will update the Internal
data structure and will forward the message to the
input queue of the proper VNF.

4) INTERNAL DATA-STRUCTURE: The internal data
structure is responsible for keeping track of the
publish and SUB-register requests made by the VNFs
connected to the middleware. This component helps
the EXT module with the distribution of the publish
packets received from the network to the proper
VNFs. Furthermore, whenever required, the MESSAGE-
HANDLER thread of the INT modules can access
this component for the information about the local
subscribers, if any, for their publishes, so that avoid extra
circulation of their published data using the possible
Publish distribution paths.

5) MAIN SEND thread: All the outgoing messages
generated by the VNFs, except the replica controller
messages, are managed by the MAIN SEND thread. This
process provides connectivity to the external network by
writing data present in the OUT-2 Queue on a dedicated
UDP socket. Depending on the message kind it will take
care of specifying a proper destination for the IP layer,
set the UDP layer destination port to another special port
number (65432 in our case), and will send the message
to the network. Whenever a SUB-register message is
sent to the network, the employed IPv4 address is
recorded in the IP-multicast membership module of the
OS. This ensures that the OS will be able to deliver
the published messages related to the sub-register to the
STARE middleware. A similar procedure will be done
to remove the registration in the membership module of
the OS in case of a SUB-remove message. To address
the current challenges, we integrate information from all
of the DC network.

6) MEMBERSHIP-MAKER threads: These threads
permit to overcome the limitation of the UNIX-based
OSs for multicast-group memberships which have a
limited membership size. Following an attempt in
sending a new message, an instance of such thread is

spawned whenever then IP-multicast registration in the
IP-multicast membership module of the OS fails.

7) SUB-* RESEND thread: As a primitive practice for
ensuring the delivery of the SUB-register and SUB-
remove messages to the network, this process emulates
an ARQ protocol. It will periodically check the Internal
data structure for the SUB-register messages that have
been sent but which did not receive a SUB-ack message
from the network. It will then add them to the OUT-
2 Queue to be resent. It loosely ensures the delivery of
the subscription messages to at least one of the switches
participating in our protocol.

8) MAIN RECEIVE thread: Similarly to the MAIN
SEND thread, the MAIN RECEIVE thread is responsible
for managing all of the incoming messages with the
exception for the replica controller messages. Upon
message reception, this thread will forward the message
to the proper INT module according to the information
stored in the Internal Data Structure. Additionally, if
the processed message is an SUB-ack message, the
thread will update the information associated with the
waiting list of the non-acknowledged SUB-remove or
SUB-register messages. The list will then be checked
by the SUB-* RESEND thread periodically.

For each VNF the STARE middleware creates a dedicated
instance of an INT module that provides message connectivity
to the rest of the middleware. The architecture of such a
module closely mimics that of the EXT module: two different
threads (SEND and RECEIVE threads) are responsible for
reading and writing from/on a dedicated socket which is
continuously listened by the VNF, thus providing the last hop
to the actual implementation of the VNFs. Analogously to
the EXT module, input and output queues are used to buffer
messages with the latter being read by a dedicated message
handler which is responsible for forwarding the message to
the EXT output queue.

C. The role of the replica controller

Although being highly decoupled from centralized entities,
STARE still requires minor intervention from a central
controller. In particular, during network setup, a replica
controller provides unique identifiers for each VNF, which
will be later exploited by STARE to avoid ambiguity in the
communication protocol. Furthermore, globally unique IDs
are assigned to each state in an analogous way to what
already happens in classic publish-subscribe schemes. Those
IDs permit discrimination among different publish/subscribe
messages and, as we will show later, are exploited to perform
message forwarding in the network. Finally, there is the need
of keeping a backlog of published messages in the network
which must be used to recover from message losses. The
replica controller may be implemented as a dedicated server
or as an integrated process running inside the SDN controller.

D. Message loss recovery

In the case of a loss of a publish message, the event
can be easily detected inside the subscriber VNFs. This
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TABLE II: Example of a state forwarding table and the
corresponding match-action rules for messages forwarding

State forwarding table Port forwarding table

State ID — i register[i] Match
Dst. bitmask

Action
Forward on ports

0 00011110 00011110 {4,5,6,7}
1 10001010 10001010 {1,5,7}
2 10000000 10000000 {1}

is performed by checking the application layer message
information regarding the continuity of the segment number in
relevance with the state update sequence number and the total
segments of the update. Whenever a VNF detects a loss, it will
notify the replica controller through a RECOVER message
containing the related information from the application
message layer, in turn, and the replica controller will provide
the lost message by looking for it in the stored backlog. The
use of the replica controller for such tasks significantly reduces
the resource overhead on each server running STARE. Indeed,
all of the backlogs of the published messages are stored at the
controller instead of being distributed on every single server.
This approach reduces the overall memory requirement for
the deployed servers and considerably simplifies the design
of the STARE middleware. To keep the memory utilization
low, the backlog must be periodically truncated. This can be
achieved by actively querying single VNFs for the maximum
segment numbers received so far for any given state. This
information can then be easily exploited to perform backlog
truncation by considering the minimum among the received
segment numbers and by truncating the backlog up to that
point.

We address the recovery of the SUB-remove and SUB-
register messages on both the: i) VNF to switch / switch
to VNF and ii) switch to switch segments. As explained in
Sec. III-B, we delegate the reliable delivery of these messages
to the first P4 switch (VNF to switch segment) through a
simple ARQ algorithm and by employing the SUB-* RESEND
process for both solutions. Employing such a simple ARQ
protocol implementation inside a light-weighted embedded-
controller on each P4 switch effectively permits to support
reliable delivery of these messages between switches.

E. Dataplane Implementation

Concerning the data plane implementation, we consider
P4-enabled devices [5] as the main candidate for the
implementation of STARE functionalities. This, however, does
not limit the generality of our approach since most of the
modern programmable switches architectures, as we discussed
in Sec. II-C, offer similar capabilities. Nevertheless, in the case
of computationally or resource-limited devices, some of the
requirements of the STARE data plane implementation may
be unfeasible to implement. For this reason, we propose two
alternative solutions, the first (denoted as “Register-based”)
being a pure data plane implementation, while the second
(denoted as “Embedded controller-based”) being a hybrid data
plane/CPU implementation.
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Fig. 6: The general subscription distribution tree and the
possible paths traversed by the subscription messages.

For further discussion, we assume that the SDN controller
has already set up a subscription distribution tree spanning
all the switches to which the servers running the VNFs are
connected. An example of this tree is highlighted with the
red lines in Figs. 6(a) and 6(b). The subscribe (i.e., SUB-
register and SUB-remove) and publish messages will only be
forwarded on this tree or a subset of if. Details will be provided
in the following sections.

1) Register-based with P4 data plane implementation
A pure data plane implementation requires a considerable

amount of stateful resources inside the switch to support the
broker functionalities. Analogously to a traditional software
broker, the switch must be able to correctly process three
main kinds of messages: the subscribe, the unsubscribe, and
the publish messages. To do so, switches must keep track of
a data structure mapping particular state IDs specified in the
Sub-register messages to a set of output ports on which VNFs
requiring updates of that particular state are reachable. This
is achieved thanks to a dedicated data structure, namely the
state forwarding table implemented with an array of registers.
Analogously to a hashmap, given a state ID x, the state
forwarding table stores a bitmask Bx of output ports inside the
register indexed by index x. Noteworthy, such implementation
implies that the number of bits to store each bitmask is equal
to the number of ports in the switch. Table II depicts an
example of a state forwarding table for an 8 ports switch
storing 3 state IDs alongside the corresponding match-action
port forwarding table responsible for multicasting the message
on given ports.

Notably, although the distribution tree spans all of the
available endpoints, to reduce the total data overhead in the
network, only a subset of the links is used each time. Each
switch forwards publish messages on a given port only if an
active subscriber is reachable through that port (yellow line in
Fig. 6a). Similarly, whenever a subscribe message floods the
distribution tree, all ports leading to an active publisher are
ignored (green line in Fig. 6a) since the publish connectivity
is already guaranteed up to that point.

A partial implementation of this solution with P4 is available
on github in [9].

2) Embedded controller-based with P4 data plane
implementation

This second solution is motivated by the fact that the
scarce availability of registers can pose hard constraints
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on the feasibility of the register-based solution due to
the impossibility of storing the state forwarding table.
Yet, the match-action tables are plentiful even in low-
end devices which provides an alternative for building the
state forwarding table. Nevertheless, commercial switches are
typically equipped with an onboard CPU that can operate
as a local embedded controller, although without the global
visibility of the SDN controller, but at a much-reduced
latency. To build the state forwarding table, The switch
exploits the arrival port ID of the Sub-register messages
and uses the state ID as a key in the state forwarding
table to retrieve and eventually update the current destination
bitmask. Unfortunately, the current implementation of the P4
programming abstraction does not provide means of direct
match-action table manipulation, thus relying on the controller
for such a task.

3) Comparison among the two implementations
The register-based implementation relies on a static number

of registers, defined at compilation time. This implies that
anytime the amount of different states present in the publish-
subscribe scheme exceeds the available ones, it is necessary
to perform switch reconfiguration. While, in theory, this
reconfiguration can be operated live on specialized hardware,
in practice it may introduce transient service outage. On
the other hand, the embedded controller-based solution can
overcome this issue, as match/action tables are plentiful in
modern switches, but at the cost of increased complexity and
new rule installation latency [10]. Indeed, the processing time
of STARE subscribe messages for the Embedded controller-
based solution can be slightly higher than the Register-based
solution due to the time required to modify the match-
action tables. More on that, the interaction required with the
embedded controller can introduce a very small latency, which
such latency is still considerably lower in comparison with
the interaction to a remote-controller. Due to its general-
purpose nature, the embedded controller can implement
additional capabilities such as secure communications, e.g., by
supporting MACsec to protect network links between P4-based
SDN switches as described in [11]. It is worth highlighting that
both schemes do not require the interaction of the switch and
the VNF with the replica controller or with the SDN controller,
since all the related operations are offloaded directly to the data
plane.

IV. EXPERIMENTAL EVALUATION

We implemented the STARE framework and performed a
set of experiments to compare it with alternative solutions.
We used Mininet [12], a network emulator that provides
software models for vanilla SDN switches and P4 switches,
and BMV2 [13] software switch to run the experiments based
on P4 switches.

First, we tailored our experiments to the 5G use case
described in Sec. I-A, where a VNF for the mobility tracking
is available at each edge cloud. Fig. 7a depicts the testbed
topology, which includes 4 VNFs and one P4 switch. The
replica controller runs in H4, and STARE middleware runs
in H1, H2, and H3 while to mimic a more heterogeneous

H1

H2

H3

H4

P4 switch

(a) STARE scenario

H1

H2

H3

H4

OF switch

Controller

(b) Pure OpenFlow scenario

Fig. 7: Topologies employed in the experimental testbed.

scenario, we consider one VNF running on H1 and H3
and two VNFs running on H2. The VNFs track the users’
mobility according to the considered 5G use case. To measure
the resources required in the P4 switches and compare the
different solutions, we evaluated the memory occupancy in
terms of Resident Set Size (RSS) of the process running the
virtual switch.

We run an alternative scenario based on a pure OpenFlow
approach. Ryu [14] is the SDN controller interacting with
the OpenFlow switches and P4 switches, chosen thanks to its
simplicity of deployment and its wide support of OpenFlow
standards. The STARE middleware has been developed in
Python and implemented through the standard Python socket
library. For the register-based solution, we have pre-allocated
the switch resources by defining 2048 registers inside the P4
program at the compilation time.

To emulate accurately the arrival process of messages
generated by the WiFi scanners, every 20 seconds a report
message is generated by each scanner. Each message carries a
list of MAC addresses (corresponding to the detected mobile
devices) with the corresponding timestamps, both encoded
in JSON format. The number of detected MAC addresses
varies randomly between 10 and 50 to mimic the experimental
conditions observed in the 5G EVE use case during rush hours
in the area between our university and the main train station
of our city.

As a term of comparison, we considered a pure OpenFlow
implementation for the adopted publish/subscribe protocol,
based on OpenFlow 1.3. In particular, we use Open
vSwitch [15] software switch for the experiments based on
standard OpenFlow switches. A simple topology for this
scenario is shown in Fig. 7b.

In such a scenario the SDN controller takes the
responsibility of storing the state forwarding table, which
forces the switch to interact with the SDN controller anytime
a new subscription occurs. Thus, this scenario is representative
of a centralized solution alternative to STARE. Also, the
initialization phase, required to assign the VNFs with their
corresponding unique IDs and to know the state IDs used
to publish and subscribe, is managed centrally by the
SDN controller. All the subscription messages received by
a switch are sent to the SDN controller, which in turn
programs the switch flow tables to associate the corresponding
incoming port of the switch as the forwarding port for all
the corresponding publish messages. This permits avoiding
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TABLE III: Memory occupancy of the three scenarios.

Scenario Average memory per rule
Register-based P4 solution 119 bytes
Embedded-controller P4 solution 184 bytes
OpenFlow-based solution 586 bytes

additional interaction with the SDN controller whenever an
already seen publish message arrives since the packet will
be directly sent to all the switch ports corresponding to
subscribing VNFs.

We do not report any results regarding latency
measurements, since Mininet is an emulated network
environment and does not allow us to evaluate meaningful
statistics regarding the delays. Nevertheless, it is worth
recalling that, by design, P4 switches perform packet
processing at the line rate, thus we expect minimum
processing delays (which depends on the internal hardware
pipeline and the organization of the programmable matching
tables of the P4 switch). Thus, by eliminating the necessity
of the switch to interact with a remote controller (replica
or SDN) anytime a publish message is received, we expect
STARE to achieve lower latency in respect to traditional
solutions.

A. Resource consumption

We compare the performance of the STARE with the
solution based on OpenFlow switches in terms of internal
resource consumption within the switch.

1) Registered-based with P4 solution
Fig. 8a reports the average RSS memory, including the 95%

confidence intervals and a linear regression over the average
values. The achieved accuracy is very high since the relative
width of the confidence interval is around 0.2%. From the
figure, the average amount of memory is 119.0 bytes for each
installed rule.

2) Embedded controller-based with P4 solution
In the adopted match-action table, we evaluate the width

of the key. In the flow match-action table, we use an exact
matching on the IP address, so 32 bits are needed, and the
corresponding action is coded as a 32-bit number representing
the multicast group, thus we can expect a minimum of 64 bits
for each rule.

The result of the measurement is shown in Fig. 8b, which
shows that the memory occupancy increases linearly with
the number of installed rules and that the average memory
occupancy is 184 bytes per installed rule.

3) OpenFlow-based solution
We evaluated the RSS of the OVSK process and the

measurements were collected by the remote SDN controller.
The result of the measurements is depicted in Fig. 8c, which
shows a step-wise increasing function. Such behavior is due to
the internal memory allocation scheme, which employs a batch
allocation process in the memory. The average occupancy is
586 bytes per installed rule.

As a summary, the memory occupancy for the three above
scenarios is shown in Table III.

TABLE IV: Network messages to deliver a publish message.

Approach In-net(B) Out-net(B) In-net(W) Out-net(W)
Unicast 32 17 96 17
Broadcast 84 85 84 85
ALM 20 59 26 67
OFM 20 17 26 17
P4 source routing 20 17 26 17
STARE 20 17 26 17

B: Best case W: Worst case

The most efficient solution in terms of memory is based
on register-based STARE implementation, whereas the least
efficient solution is the one based on a standard OpenFlow
switch. The differences are due to the internal memory
management process internal to the BMV2 software switch
(for both P4-based solutions) and the Open vSwitch software
switch (for the OpenFlow-based solution).

B. Traffic overhead

We compare the register-based solution of STARE in terms
of the network traffic and protocol overhead with the following
five alternative approaches.

In the Unicast approach, the publisher sends one publish
message individually to each subscriber. In the Broadcast
approach, the publisher sends one publish message in the
whole distribution tree.

Application-Layer Multicast (ALM) is based on a broker
for each switch, which is aware of the switch ports that
are on the distribution tree towards the subscribers. This
broker will receive the publish packet of the switch and will
return the packet to the switch with a header containing the
corresponding multicast group.

OpenFlow Multicast (OFM) [16] is an OpenFlow-based
approach that uses an IP address and a UDP port number for
addressing a multicast-tree stored on the switches. We assume
that all these OFM trees have been already configured through
related flow rules from the SDN controller.

The P4 source routing approach that was recently proposed
in [17] as a centralized approach for publish-subscribe based
on source-routing multicast implemented in P4. It uses a stack
of headers added to the MAC header containing the switch
identifiers of the path to the subscribers and the corresponding
multicast address for each switch. The SDN controller is
responsible for receiving the subscription and informing the
publisher on how to generate this header stack.

The traffic overhead depends on the network topology.
In our evaluation, we considered a symmetric tree topology
connecting the switches with 63 leaves, distributed in 4
layers (comprising root and leaves). All nodes (except the
leaves) have 4 children. The total number of links is 84.
The subscribers are connected to the leaf switches while
the publisher is connected to an arbitrary switch through a
dedicated link. We calculated the best and the worst case with
respect to selecting any set of leaves for the subscribers and
the position of the publisher. Since subscriptions are transient
and are defined only in publish-subscribe schemes, for a fair
comparison, we consider only the publish phase since it is well
defined for all of the considered approaches. Thus, we evaluate



10

0 500 1000 1500 2000
Amount of allocated registers

35.2

35.3

35.4

35.5

M
em

or
y 

oc
cu

pa
nc

y 
(M

B)
 

Linear regression of the RSS
Measured RSS

(a) Register-based solution.

0 250 500 750 1000 1250 1500 1750 2000
Amount of configured rules

37.1

37.2

37.3

37.4

M
em

or
y 

oc
cu

pa
nc

y 
(M

B)
 

(b) Embedded controller-based solution.
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(c) Remote Controller-based solution.

Fig. 8: Comparison of the internal memory occupancy

the traffic in terms of “in-net” traffic, i.e., across links in the
considered topology, and in terms of “out-net” traffic, i.e.,
across the links that will connect the publisher and subscribers
VNFs (not considered in the above topology).

Table IV depicts the in-net and out-net messages needed for
delivering a publish message to 16 subscribers in the network
for the different approaches. The minimum number of in-net
traffic is achieved by STARE, P4 source-routing, and OFM
since each link in the distribution tree is used just once for
each publish message. The results of ALM are worse since it
requires each switch to forward the publish messages to the
software broker and to receive the corresponding multicast
group from it. ALM is similar to STARE, except for the fact
that in STARE the switch does not need an external interaction.
Unicast is inefficient since the same publish message may
be sent multiple times on the same link, and it would be
a reasonable solution for few subscribers. Instead, broadcast
results to be the least inefficient since each publish message is
flooded across the whole distribution tree, independently from
the subscribers. Although it is not depicted in the table, the
amount of traffic generated by STARE, P4 source-routing, and
OFM converges to the amount of traffic generated by broadcast
whenever all nodes act as subscribers and it converges to the
unicast case whenever there is only one subscriber.

After considering the traffic overhead in terms of the number
of packets, we consider the traffic overhead in terms of bytes,
for each protocol message. All of the considered approaches
adopt standard protocol headers at layers 2, 3, and 4, except for
the P4 source routing. [17] adopts a stack of sorted labels that
enable simple processing at each switch, yet is it required to
be transmitted across links even if not required. Each label is 3
bytes-long and includes the switch identifier and the bitmask
with the local destination ports. In the considered scenario
with 16 subscribers at the leaves of the topology, it can be
shown that, in the best case, the stack comprises between 16
and 20 labels, depending on the level in the topology, with an
average of 18 labels per publish message (54 bytes total). In
the worst case, the stack comprises between 16 and 24 labels,
depending on the level in the topology, with an average of
18.75 labels (56.25 bytes). Note that such overhead may not
be negligible in the case of updates corresponding to ”small”
states, e.g., integer counters.

V. RELATED WORKS

The work in E-State [18] presents a state management
framework to share the states between VNFs by creating

a logically distributed state memory. It provides fast reads
and writes to flow-related states on the local VNF instance
and, when global reads are used, it provides an eventual
consistency model, exactly as STARE assumes. In E-State
replication is managed directly within the application layer,
thus reducing the net resources devoted to the VNF, especially
when the replication is directed to a very large number of
VNFs. On the contrary, in STARE the replication is offloaded
into P4 switches through a middleware running outside the
VNF application. This reduces the resources required within
each VNF, which is not involved anymore in the replication
process. Furthermore, replication latency in STARE is mainly
affected by the network congestion and communication details,
and not by the CPU load on the VM/container running the
VNF. Moreover, STARE is providing a simple interface to the
middleware to facilitate the VNF development.

The work [19] addresses the problem of live-migrating
VNFs. The migration requires to transfer of the internal state
of the original VNF to the new one in real-time. Thus, the
problem is similar to our state sharing problem between VNFs,
but with the peculiarity that the replication process occurs just
once and in one direction. The proposed framework SHarP
separates the state migration problem from the traffic steering
scheme that reroutes the flows from the old VNF to the
new one. By decoupling the state replication by the traffic
management, the framework is compatible with any replication
scheme, and in particular, it is compatible with our STARE
scheme, offloading the state replication into the data plane.

There is a substantial ongoing effort in investigating
application-level acceleration and state replication via
programmable data planes. This is enabled by multiple stateful
switch architectures capable of holding persistent states and
performing custom packet processing being proposed in
the last years. OpenState [20], which introduces a minor
architectural extension to the OpenFlow data plane and control
plane, is capable of supporting custom persistent states inside
the switch which can be interacted with by custom routines
upon packet arrival, internal switch signals, or timers. Open
Packet Processor (OPP) [21] extended OpenState by adding
additional features that allow the executions of Extended Finite
State Machines (EFSM) directly in the data plane. Similarly,
P4-enabled switches [5] switches are capable of performing
the same tasks as OPP-based switches, yet also, they provide
a comprehensive high-level programming language for the
definition of custom packet processing routines.

In NetPaxos [22] the authors propose to move part of the
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traditional Paxos consensus protocol into the network in an
effort of accelerating its application-layer performance. Being
one of the most deployed protocols in distributed systems
and a fundamental building block to several distributed
applications [23], [24], [25], NetPaxos showed the potential
benefit programmable data planes can bring to the application
level. On the contrary, in SwingState [26] a first attempt has
been made of performing state migration entirely in the data
plane. The authors were able to dynamically migrate an in-
switch internal state across different switches but assumed a
single copy of the state that is on-demand migrated across the
network. A step forward towards full data plane solutions has
been made in [27], which proposed LOADER, a programming
abstraction for defining distributed network applications based
on replicated states. Yet, similarly to [26], the authors of
LOADER focused just on internal states available at the
switches, thus, without providing any interaction with other
elements of the network such as servers or VNFs. STARE,
instead, closes this gap by providing a comprehensible
middleware between the application layer and the network.
The consistency model for the state replication adopted in
STARE is the same as the one considered in [27], for which
the P4 implementation on the data plane provides a prototypal
idea for the implementation of the publish-subscribe scheme
in STARE.

More related to our work, the work in [28] proposed to
use the concept of group table introduced in OpenFlow 1.3
to implement a publish-subscribe scheme to increase the
performance in terms of data delivery and notification process.
While it takes a step towards providing application-layer
acceleration using SDN, it remains highly dependent on the
remote controller for any change in the subscriptions, while
STARE manages the subscription directly on the data plane.
The idea of [17] which is source-routing pubsub with P4, is
that the publisher sends the notification packet containing a
stack of headers similar to MPLS after the Ethernet header.
Each stack has two fields containing the switch ID and a bit-
mask of the ports of the mentioned switch that the copies of
the publish packet (notification) should be sent out of them.

The authors of [17] propose a content-based
publish/subscribe based on source-routing multicast which
exploits P4 programmable data planes. They show that
their approach is better than competing schemes, including
different implementations of Application Layer Multicast
(ALM) with software brokers, unicast, and broadcast, while
having a similar structure to OpenFlow Multicast (OFM) [16].
In our paper, we compared STARE with the same approach.
We show that our solution behaves similarly to [17] in terms
of the number of packets and network overhead during
the notification publish. Furthermore, apart from lacking
scalability due to the absence of a complete decoupling of
publishers and subscribers, the authors of [17] do not clarify
how the subscription problem is handled in dynamically
changing scenarios. Indeed, dynamic subscriptions and
publishes are completely supported by construction in
STARE and it is handled without interaction with the SDN
controller.

The work in [29] has addressed the problem of how to

optimally place replicated states within a programmable data
plane-enabled network. This has been performed by taking into
consideration both the data traffic and the replication traffic
overheads. The work has proposed a framework to optimize
the number of replicas and their placement within the network,
taking into account the main trade-off between data traffic
and replication traffic. Differently from [29], STARE does not
optimize the placement of the VNFs within the network. Yet,
we foresee optimizing VNF placement as a potential future
work.

VI. CONCLUSION

In this paper, we propose STARE, a low-latency publish-
subscribe architecture for NFV and SDN-enabled networks.
STARE aims at achieving fast state replication among different
VNFs in 5G networks. To do so, it exploits recent advances
in the field of programmable data planes by offloading the
functionalities of a traditional publish-subscribe broker to the
programmable switches. At the same time, STARE provides
an easily deployable middleware that permits rapid integration
of new and existing VNFs by exposing simple APIs which can
be accessed easily inside the source code of each VNF. We
validate our approach by employing an emulated, yet realistic,
testbed network with both P4-enabled switches and vanilla
SDN based on OpenFlow switches. We also compared our
solution with some other approaches for the distribution of
the published notifications with different technologies.

Our experiments show that using STARE, in combination
with P4-enabled switches, leads to completely homogeneous
traffic in the network by using fixed-length headers that use the
least possible number of packets for delivering the published
notifications to the subscribers. It also remarks that as a trade-
off by sending in total a few larger amount of bytes than one or
two approaches, the approach will not need to interact with a
software broker nor mapping the total path between publishers
and subscribers inside the packet, which leads to completely
decoupling of the publishers and subscribers. . At last, it incurs
a smaller overhead in terms of memory in comparison with
the traditional approaches based on vanilla SDN. Furthermore,
thanks to the limited interaction with a centralized controller
and removing software brokers, STARE is expected to lead to
significantly lower state replication latency compared to the
traditional publish-subscribe schemes.
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