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Abstract1—The Graphics Processing Units (GPUs) usage has 

extended from graphic applications to others where their high 

computational power is exploited (e.g., to implement Artificial 

Intelligence algorithms). These complex applications usually need 

highly intensive computations based on floating-point 

transcendental functions. GPUs may efficiently compute these 

functions in hardware using ad hoc Special Function Units (SFUs). 

However, a permanent fault in such units could be very critical 

(e.g., in safety-critical automotive applications). Thus, test 

methodologies for SFUs are strictly required to achieve the target 

reliability and safety levels. In this work, we present a functional 

test method based on a Software-Based Self-Test (SBST) approach 

targeting the SFUs in GPUs. This method exploits different 

approaches to build a test program and applies several 

optimization strategies to exploit the GPU parallelism to speed up 

the test procedure and reduce the required memory. The 

effectiveness of this methodology was proven by resorting to an 

open-source GPU model (FlexGripPlus) compatible with NVIDIA 

GPUs. The experimental results show that the proposed technique 

achieves 90.75% of fault coverage and up to 94.26% of Testable 

Fault Coverage, reducing the required memory and test duration 

with respect to pseudorandom strategies proposed by other 

authors. 

Keywords— Functional Testing, Graphics Processing Units, In-

field test, Software-based self-test, Special Function Units  

I. INTRODUCTION  

GPUs are increasingly used not only for consumer 
applications but also in domains (e.g., automotive, high-
performance computing, robotics) where dependability (and in 
particular safety) plays a crucial role. In the latter case, their 
complexity and the very advanced semiconductor technologies 
used for their manufacturing may increase the probability of 
faults well beyond the acceptable thresholds [1]. 

When considering permanent faults, this means that the 
probability of new faults arising during the operational life (due 
to aging or other phenomena) may be significantly higher than 
acceptable and induce an unacceptably high failure probability at 
the application level.  

To face this situation, a possible solution lies in adopting devices 
(e.g., NVIDIA Xavier), where hardware-based hardening 
solutions (e.g., [2]) can guarantee the ability to detect and 
possibly detect a very high percentage of faults. However, the 

 
1 This work has been partially supported by the European Commission through 

the Horizon 2020 RESCUE-ETN project under grant 722325. 

usage of different ad hoc devices for safety-critical applications 
may involve a significant increase in their cost with respect to 
the “normal” ones. It may also impact their performance, power 
consumption, and ease of use. 

Another solution may be represented by effective in-field test 
solutions. In principle, they may detect faults before they 
produce critical failures, thus lowering the failure probability to 
acceptable values.  

Clearly, the ability to effectively detect permanent faults 
possibly affecting a GPU while the same is already in the 
operational phase is a real challenge. Design for Testability 
(DfT) solutions (such as Logic and Memory BIST) can be 
effectively exploited if the in-field test is performed at the power-
on, when timing constraints are more relaxed. However, in some 
cases, the hardware cost of DfT solutions is too high, and/or the 
application safety constraints ask for a more frequent in-field 
test, for example, using the time slots left idle by the application. 
In such a scenario, software-based self-test (SBST) [3] may 
represent a promising solution for GPUs, following what is 
already widely done for MCUs and SoCs used for safety-critical 
applications, especially in the automotive domain2. An important 
advantage of such solution lies in the fact that the semiconductor 
company (owning full details about the product) can develop 
suitable Self-Test Libraries (STLs) able to achieve a given Fault 
Coverage, which has been computed via Fault Simulation. The 
STLs are then provided to the system company using the device, 
which is in charge of integrating them in the application code and 
activating their execution at the due time and with the required 
frequency. 

An STL is basically a set of software procedures that  can 
activate and make visible the effects of possible permanent faults 
possibly affecting a module or device. At the end of its execution, 
the test code itself is able to check the results produced by each 
procedure and discriminate between good and faulty devices, 
possibly returning error information.  

In past works [4][5][6][7][8], several techniques have been 
proposed for developing effective STLs for GPUs, showing that 
they can achieve good fault coverage figures with respect to 
stuck-at faults, as mandated by standards (e.g., ISO 26262).  

Current GPUs are frequently used to implement Machine 
Learning applications. In such a case, they are often equipped 

2 The list of semiconductor and IP companies providing their customers with 
SBST-based test procedures allowing to in-field test their devices includes 

ARM, STMicroelectronics, Infineon, Cypress, Renesas, Microchip. 



 

with Special Function Units (SFUs) able to efficiently perform 
transcendental computations (in particular, exponential, 
logarithmic, and trigonometric functions).  

The authors in [7] proposed several custom test strategies, 
one for each component inside the GPU architecture, and until 
now, it is the only work that considered functional testing on 
SFUs. However, the lack of architectural details of the SFUs and 
observability forced them to develop test programs using random 
values and evaluate the fault detection capabilities through the 
input and output interfaces of some GPU internal module, only. 
Then, the achieved fault coverage could only be estimated using 
an error threshold parameter obtained from the tolerance 
characterization of the SFU.  

In this paper, we extend our previous work on the SBST-
based in-field test of GPUs and propose a solution to develop 
effective STLs for SFUs. The method mimics the basic idea 
reported in [9] for a simple pipelined CPU to leverage the test 
patterns generated at the module level by a combinational ATPG 
and then transform them into a parallel program (CUDA kernel). 
To the best of our knowledge, this is the first work providing a 
specific method to generate a functional in-field test for a SFU 
in an GPU and provide quantitative results of functional test 
methods, using a microarchitectural model of a GPU. 

In order to validate the effectiveness of the proposed method, 
we used an open-source GPU model we developed (named 
FlexGripPlus) [10], enriching it with some SFUs [11]. 
FlexGripPlus is compatible with the NVIDIA GPU architecture 
and development flow. In the rest of the paper, we describe the 
techniques we propose to develop effective STLs for the SFU 
and report experimental results proving their effectiveness. In 
particular, we show that they can achieve 90.75% of stuck-at 
Fault Coverage and demonstrate that some of the undetected 
faults are untestable under operating conditions, so obtaining a 
94.26% of Testable Fault Coverage. These results significantly 
outperform those obtainable with the method in [7]. 

Although this paper mainly refers to the architecture on an 
NVIDIA GPU, most of the ideas and techniques we describe can 
be extended to other GPU architectures as well. 

The paper is organized as follows. Section II provides some 
background about GPU organization and overviews the main 
features of the micro-architecture of the FlexGripPlus model and 
its SFU specifications. Section III describes the methodology to 
develop the STL for the SFU. Section IV reports the 
experimental results and their analysis, and Section V draws 
some conclusions. 

II. BACKGROUND 

A. GPU oganization  

The Graphics Processing Units (GPUs) are organized based 
on arrays of parallel execution units (also known as Streaming 
Multiprocessors or SMs). The SM is the main execution core 
inside a GPU, and it implements the Single-Instruction Multiple-
Data (SIMD) paradigm or a variation, such as the Single-
Instruction Multiple-Thread (SIMT). In this way, each SM 
includes several functional units (also known as Streaming 
Processors or SPs), which are used to process instructions in 
several threads. The number of SPs per SM may vary in a range 

from 8 to 128 and depends on the architecture and the number of 
parallel threads to be processed simultaneously. Furthermore, 
other functional units, such as Special Function Units (SFUs) 
and, more recently, tensor cores are also included in a minor 
number into the SMs to perform specific operations and support 
multimedia and artificial intelligence based on ‘Convolutional 
Neural Netwoks’ (CNN) applications. 

More in detail, a program kernel (parallel program executed 
in the GPU and called by the Host) is divided into parts by a 
general controller and assigned to the available SMs. Then, each 
SM loads one instruction from the program code and processes 
it in parallel through the available SPs. The program is divided 
into thread-groups (or Warps), and one new instruction is 
processed when all warps finished the execution of the previous 
one. Some modern GPU architectures may include additional 
local controllers (i.e., two controllers) in the SM to execute 
multiple instructions at the same time by dividing the SPs, so 
executing a limited number of threads per instruction in parallel, 
but improving performance. 

 
Fig. 1 A general scheme of the SM in FlexGripPlus 

The GPU architecture also includes a memory hierarchy 
mainly used to reduce latency during the kernel execution. The 
memory resources include a ‘General Purpose Register File’ 
(GPRF), a shared memory, a local memory, a constant memory, 
and a global/main memory. The GPRF is organized in banks and 
is associated with each SP. Furthermore, the shared memory is 
also organized in banks and can be addressed by any thread. 
GPRF and shared memory are the in-core structures of the SM. 
The other memories are external resources. 

B. FlexGrip GPU Architecture 

The FlexGripPlus model [10] is an open-source soft-core 
GPU implementing the NVIDIA’s G80 architecture [12]. This 
model is an improved and extended version of the FlexGrip 
model [13]. FlexGripPlus supports up to 52 assembly 
instructions and is compliant with the CUDA programming 
environment. The organization of FlexGripPlus is based on an 
array of SMs. One general controller (block scheduler controller) 
commands the tasks submitted to the SMs. In each SM, a local 
controller (warp scheduler) manages the task by dispatching a 
warp into the available SPs. The SM is divided into five pipeline 
stages, and some pipeline registers (PRx) dividing the stages (see 
Figure 1) and executes one instruction following the Single-
Instruction Multiple-Thread (SIMT) paradigm. More in detail, 
the SM includes 8 SPs, 8 Floating Point Units (FP32), and two 

https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Trigonometric_function


 

Special Function Units (SFUs). Furthermore, the flexibility of 
the model allows the selection of the number of execution units 
(SPs, FP32) per SM (8, 16, or 32). Similarly, the number of SFUs 
corresponds to 2, 2, or 4 per SM. 

 
Fig. 2 Block diagram of the SFU architecture. 

C. The SFU 

The available SFU module in FlexGripPlus is an improved 
version of the first open-source SFU presented in [11]. This SFU 
can perform six transcendental functions (sin(x), cos(x), 
1/sqrt(x), log2(x), 2^x, 1/x and sqrt(x)) using the IEEE 754 
floating-point standard with single-precision format. The SFU 
implements a fast function approximation using a Minimax 
Quadratic Interpolator [14]. The component is described in 
VHDL, and it is similar to what is specified by the NVIDIA G80 
architecture [12].  

The SFU module evaluates transcendental functions 
employing a set of lookup tables (LUTs) used to retrieve the 
coefficients for the quadratic polynomial approximation 
followed by a fast evaluation of the polynomial. The 
approximation’s coefficients are obtained according to the 
enhanced minimax approximation algorithm described in [14].  

A general scheme of the SFU architecture is presented in Fig. 2. 
It is composed of: i) lookup tables that contain the coefficients of 
each function that will be evaluated. 𝑋1 addresses a set of three 
LUTs to get three finite-word coefficients 𝐶0, 𝐶1and 𝐶2. ii) a 
special parameter selector, which has the function of selecting 
the parameter to be evaluated, taking into account the selector 
(Selop), sign and exponent value. iii) a squaring unit, which is in 
charge of calculating the fast square operation of X2. iv) The 
Fused Accumulation Tree (FAT), which is a systolic array of 
Carry-Save Adders (CSAs) that performs a fast evaluation of the 
polynomial approximation of a function 𝑓(𝑋), in the range 𝑋1 ≤
𝑋 < 𝑋1 + 2−𝑚 using the expression presented in equation  (1) 
Finally, v) the normalization and output logic adjusts the 
exponent and evaluates special cases according to the IEEE 754 
representation. The 𝑚 parameter, in 𝑋1 and 𝑋2, determines the 
number of bits used to address the LUTs. This parameter depends 
on the function to be evaluated and the target precision. In this 
work, the SFUs modules use m = {6,7} selected according to 
[14]. 

𝑓(𝑋) ≈ 𝐶0 + 𝐶1𝑋2 + 𝐶2𝑋2
2 (1) 

 Each function to be approximated uses one or two sets of 
LUTs [14]. The set of tables is selected according to the exponent 
(E) of the input operand. For example, the 𝑙𝑜𝑔2(𝑥) function uses 
one set of tables when 𝐸 = 0  and another when 𝐸 ≠ 0 . In 
contrast, for the 𝑟𝑠𝑞𝑟𝑡(𝑥) and 𝑠𝑞𝑟𝑡(𝑥) functions the correct set 
of tables depends on whether the exponent is even or odd. The 
functions 𝑠𝑖𝑛(𝑥), 𝑐𝑜𝑠(𝑥), 2𝑥  and 1/𝑥  require only one set of 
LUTs for each one.  

The GPU has several SFU components (named SFU cores) 
and one special dispatcher that controls the threads distribution 
to each SFU core. We called SFU processor this set of 
components.   

III. PROPOSED APPROACH FOR THE FUNCTIONAL TEST OF SFUS  

The proposed methodology aims to define a logic flow for 
the generation of in-field test programs to be executed by the 
GPU and targeting faults in the SFU. 

 

 
Fig. 3. A general scheme of the method for SBST generation 

A. Basic flow  

The proposed methodology is composed of a sequence of 
four stages: i) Test Pattern (TP) generation, ii) TP conversion 
into test routines, iii) SBST kernel construction, and iv) fault 
simulation of the SBST kernel. Fig. 3 shows a general scheme of 
the proposed method highlighting each stage. 

In the first stage (TP generation), three different sets of test 
patterns are generated starting from the gate-level netlist of the 
SFU core. The first set of TPs is generated using a random 
approach without restrictions; the second set is generated 
resorting to an ATPG. The third set is created using an ad-hoc 
generation method that performs a customized TPs generation 
targeting the most critical components in the SFU. The three sets 
of TPs are reduced to one set of TPs through the elimination of 
redundant TPs. 

In the second stage, the TPs are automatically converted into 
GPU instructions. These instructions are selected so that they 
apply the target TPs to the SFU. Then, a self-test routine is 
developed using the selected instructions for each TP plus 



 

additional instructions employed to implement a Signature-per-
Thread (SpT) mechanism [6]. This mechanism resorts to logic 
and shifts instructions to update the signature value after the 
application in each TP. At the end of the self-test routine, the 
computed and expected SpTs are compared. If they do not match, 
then a fault is detected. 

The overall self-test library includes several independent 
routines (e.g., one per each SFU operation). In this way, we can 
split the test process for the SFU, reducing their duration and 
more easily matching the time constraints for in-field test. 

 After the generation of the self-test routines, the third stage 
turns them into an SBST kernel. For this purpose, the SBST 
kernel requires the specifications of TP allocation (as operands 
of instructions or as elements of the global memory). Moreover, 
other configuration parameters, including the number of Treads-
per-Block (TpB), the number of Blocks-per-Core (BpC), and 
pointers initialization are defined. 

In the last stage, a fault simulation is performed to evaluate 
the fault coverage achieved by the developed SBST kernel. If the 
results are too low, the process could be restarted from the first 
stage increasing the effort or the amount of the generated TPs, 
targeting the still undetected faults.  

B. Stage 1: Test Pattern Generation 

In this stage, we perform the generation of a compact set of 
TPs starting from a combination of three independent sets of TPs. 
The first set of TPs is based on the generation of random input 
patterns. This set of test patterns also includes edge conditions, 
such as NaN, ±∞, ±0, and subnormal’s representation of the 
IEEE 754 values for each operation in the SFU. The second set 
of TPs is generated using an ATPG targeting the combinational 
part of the SFU, only. However, the complexity of the SFU 
structure does not allow the ATPG to generate TPs for all 
possible faults. For this reason, a further set of TPs is required. 

This third set of TPs is created resorting to a custom hand-
made approach, targeting the interconnections among 
components in the SFU and the faults in the combinational part 
of the SFU that were not yet detected.  

Finally, the three sets of TPs are joined into a single set of 
TPs. However, we can reduce the size of this set of TPs by 
removing replicated or useless TPs. This optimization can be 
performed by fault simulation of the combinational part of the 
SFU. 

C. Stage 2: Self-Test routine development  

The construction of the self-test routine is developed in three 
main steps: i) TPs classification, using the constraints given by 
the ISA, ii) mapping of TPs into equivalent instructions, and iii) 
addition of signature mechanisms to detect the possible fault 
presence.  

The TPs classification step identifies those TPs that cannot 
be transformed into GPU instructions due to ISA restrictions, 
limiting the full control of the primary inputs of the SFU. This 
situation is present, for example, when one TP requires a specific 
combination of values in the selection inputs of the SFU, but the 
existing instructions of the GPU do not allow that combination. 

In this case, the TP cannot be applied, it is classified as “invalid 
TP”, and it is discarded. 

In the second step, the TPs classified as “valid” are converted 
into instructions. Each TP has two main fields: the operand data 
field, and the function field. The function field of the TP selects 
the matching instruction that executes the desired function in the 
SFU. This instruction refers to a source register (containing the 
operand data of TP) and destination register where the fault effect 
will be observed through the SpT mechanism. 

The allocation of the data operand in the GPU registers can 
be managed using two main approaches. The first consist of 
loading the value of the data operand directly on a register using 
the Register Immediate Addressing (IMM – routines) in this case 
the immediate values are part of the opcode of the instruction. In 
the second approach, the data operands are read from memory to 
a register using the Memory Addressing (MEM – routines). Any 
of those techniques guarantee the injection of the TPs to the 
SFUs during the runtime execution. 

1) IMM  routines 
This approach employs the register immediate-addressing 

mode defined by the GPU ISA. This operation moves the 
operand data and the expected SpTs (immediate) directly to a 
general-purpose register for every thread in the GPU. It is 
possible to employ one or a combination of instructions for this 
purpose, depending on the ISA specifications and the available 
instructions.  

The main advantage of the proposed SBST approach is that 
it only uses registers and the target SFUs to perform its job. Any 
other memory resource in the GPU core is not employed during 
the execution of the SBST program. Furthermore, the SBST 
program can be implemented by organizing the TPs in any order. 
However, we anticipate that the execution time may require a 
considerable number of clock cycles, because the GPU core 
executes the test program in a purely sequential manner, so 
neglecting the implicit parallel capabilities of the GPU 
architecture. 

2) MEM  routines 
The limitations of the immediate-addressing strategy can be 

avoided by storing the TP values (for each SFU function) in any 
memory resource of the GPU. This method permits the execution 
of parallel threads in the GPU core, so exploiting the execution 
of the same functions in the SFUs to inject different TPs (as 
operands) per thread and allowing a faster test program 
execution. Hence, the test program can use the TPs to exploit the 
SIMT organization in the GPU core (the same operation is 
performed with different values in the different threads). 

In this memory-based approach, the TPs are grouped 
according to the function field that they have in common. Then, 
the number of TpB is defined to configure the SBST kernel. This 
parameter is specified relying on the average number of TPs to 
be applied, since the number of TPs per SFU’s operation can be 
different. Thus, suitably selecting the value for this parameter 
allows trading-off between the length of the test program and the 
number of TpB executed per instruction.  

It is important to note that for the self-test routines 
development, some SFU operations could include TPs that 



 

require executing more threads than the number of TpB for the 
SBST kernel. Thus, threads of operations are executed several 
times as a consecutive procedure of reading data from memory 
followed by the same SFU instruction, so executing a fixed 
number of TpB.  

From the hardware side, a TpB is made up of Warps with size 
Wz, with each thread occupying one lane. Each Warp runs 
sequentially in Parallel Groups of Warp Lanes (PgWL). The 
SFU processor dispatcher mechanism symmetrically distributes 
each PgWL to each SFU core to guarantee the same number of 
Threads-per-SFU (TpS) processed by each execution module, 
applying the same operation on them. Therefore, the data for the 
TP operands and the SpT, stored in memory, must be properly 
organized to test all ‘SFUs per SM’ (SpSM). In that case, each 
TP operand value for the same SFU function must be replicated 
(within one PgWL) as many times as the number of available 
SpSM, to ensure the injection of all TPs into each SFU core. This 
data replication can be performed using two techniques: i) data 
operands replicated directly from memory or ii) replication 
managed through the pointers of each tread.idx: 

a. Replication allocated in memory: In memory, the TPs' 

operand values are replicated and allocated consecutively. 

In this way, after reading data from memory, each PgWL 

will have the data correctly organized to apply the same TPs 

to each SFU without adding additional instructions in the 

program.  

b. Replication from tread pointer index: This approach only 

stores in memory the data operands of the TPs for one SFU. 

Then, the replication process is performed by efficiently 

managing the address pointers for each thread within each 

PgWL, so accessing to same data operands stored in 

memory and replicating the data for each SFU in the 

reading process. This technique requires SpSM times less 

memory than the in-memory replication technique. Also, 

the performance can be affected because the reading 

process requieres to access several times in memory for the 

same operand data for each PgWL. 

IV. EXPERIMENTAL RESULTS 

For the experimental campaign to validate the proposed 
SBST approach, the FlexGripPlus model was configured with 1 
SM, 8 SP-cores, and 2 SFUs per SM. All fault simulation 
experiments were performed on a workstation with two AMD 
EPYC 7301 16-core processors running at 2.2GHz and equipped 
with 127 GB of RAM memory.  

The SFU module at gate-level is composed of 23,380 
combinational cells, 516 sequential cells, 519 In/out pins and 
accounts for 180,540 stuck-at faults. The results were obtained 
using a commercial synthesis tool and the Nangate 15nm OCL 
technology library [15].  

The evaluation and validation were performed in two steps: 
(1) a RT-level simulation of the GPU running the SBST program 
to extract the reference values in the input and output ports of the 
SFU, and (2) the gate-level fault simulation.  

For the experiments, we developed a parser tool in Python to 
automatically generate the self-test routines. This tool takes as 
input the generated TPs and the Instruction Set Architecture of 

the GPU (SASS)[16]. The format of the assembly instructions is 
used to match the input TPs and produce the self-test routines. 
Moreover, the parser tool produces a Test Program, the 
configuration parameters for the GPU and the data memory 
content to be used during the execution of the test program. The 
total computational cost required to build a SBST kernel since 
the TP generation to the fault simulation is about 8 hours. 

TABLE I. COMPARISON OF DIFFERENT PROGRAMS IN TERMS OF FAULT 

COVERAGE, MEMORY AND EXECUTION TIME 

 

Data 

Memory 

size (B) 

Test 

Duration 

(CCs) 

Number of 

Instructions 
FC (%) 

Benchmark 

SIN 4,096 40,767 11 34.41 

COS 4,096 40,767 11 34.02 

RSQ 4,096 40,767 10 37.76 

LG2 4,096 40,767 10 30.77 

EX2 4,096 40,767 11 28.99 

RCP 4,096 40,767 10 33.06 

NN 8,192 87,195 23 40.88 

SBST 

Random 

method based 

on [7] 

RND_30K 245,760 1,546,404 309 (M 82.55), (SD 0.56) ** 

RND_60K 491,520 3,074,844 609 (M 77.67), (SD 0.07) ** 

RND_90K 737,280 4,603,284 909 (M 89.11), (SD 0.42) ** 

RND_120K 983,040 6,131,724 1,209 (M 88.26), (SD 0.36) ** 

SBST 

proposed in 

this work 

IMM 0 1,200,034 16,856 

90.75 MEM_MR 21,312 212,914 117 

MEM_CR 10,944 216,764 125 

** M: Mean; SD: Standard Deviation 

Three different groups of program kernels were used in the 
fault campaigns: i) some representative benchmarks using the 
SFU, ii) a set of programs using pseudorandom data, based on 
the method proposed in [7], and iii) the SBST programs 
developed resorting to the proposed method. The comparison 
between the three groups allows us to better analyze the fault 
coverage, the test duration, the size and the memory footprint of 
each test program.   

The benchmarks correspond to GPU programs that perform 
SFU’s operations. The first 6 benchmarks (SIN, COS, RSQ, 
LG2, EX2, RCP) are embarrassingly parallel programs 
executing each SFU operation on an array of 1,024 elements. The 
last benchmark (NN) is extracted from the Rodinia benchmark 
suite [17] and implements a parallel version of the Nearest 
Neighbor algorithm, commonly used in critical applications, 
including pattern recognition and computer vision. 

The second group is composed of SBST programs using 
pseudorandom test patterns following the approach presented in 
[7]. For the purpose of this work, we developed 4 different SBST 
programs. Each test program applies a different number of 
random values: RND_30K (30,000 random TPs), RND_60K 
(60,000 TPs), RND_90K (90,000 TPs) and RND_120K 
(120,000 TPs). Each test program was generated and executed 
five times to evaluate the variability in the achieved fault 
coverage. 

Finally, the last group of test programs was generated using the 
proposed approach. A set of 1,815 test patterns were initially 
generated for the SFUs using the proposed method, leading to 
the development of three SBST programs (IMM, MEM_MR, 
and MEM_CR). The IMM program exploits immediate 
addressing instructions. The corresponding program size 
amounts to 16,856 instructions, with a relatively high total test 
duration time. Although IMM has the largest program size, its 
duration time is shorter than pseudorandom-based SBSTs. The 
memory-based test programs MEM_MR (input patterns 



 

replicated in global memory), and MEM_CR (input patterns 
replicated by code) are SBST programs that have a similar 
structure. However, MEM_CR uses half of the data memory size 
than MEM_MR, but involves a performance penalty of around 
3,900 clock cycles (CCs).  

Table I presents the experimental results in terms of fault 
coverage, Test duration in clock cycles, program size, and data 
memory size. As it can be observed, the benchmark programs 
achieve a moderate Fault Coverage (FC) (28,99% to 40.88%) 
and show limited use of resources and duration time compared 
to the test programs. Regarding the pseudorandom SBST 
programs, they provide a higher FC (from 77% to 89%) but 
require a relevant size of memory and a longer duration time than 
the other test programs. The data about the FC of the SBST 
random-based programs also include the mean (M), and 
Standard Deviation (SD) computed with the five versions of each 
program. The highest FC reached by this method was 89.11% 
(using the RND_90K test-program) with an SD of 0.42%. It is 
important to remark that according to our results, pseudorandom 
test programs with a higher number of random TPs do not 
necessarily achieve a higher FC. 

Regarding the results of the SBST programs implemented 
with the proposed approach, all provide a higher FC (90.75%). 
A considerable percentage of the undetected faults (almost 
3.44% of the total) are untestable due to 130 invalid TPs, mainly 
caused by incompatible instructions in the ISA of the GPU and 
unfeasible matching between the TPs and the op-codes of the 
instructions (several binary combinations in the selector input of 
the SFU processor cannot be controlled). Marking these faults as 
untestable we computed a Testable Fault Coverage (TFC) equal 
to 94.48%, which also includes a 0.29% of untestable faults at 
the combinational level, according to the ATPG results. 

The remaining 5.52% of not detected faults (NDs) are faults 
aborted by the ATPG tool due to the complexity of the SFU core 
architecture, which has internal restrictions on the input ports of 
the FAT component. Therefore, it is challenging to find at least 
one TP to detect any of the faults in that component. Analyzing 
the SFU architecture presented in Fig. 2, the inputs of the FAT 
module have controllability restrictions mainly caused by the 
limited number of constant coefficients stored in the LUTs. In 
fact, they only store 1,280 values out of a total number of 253 
possible values for C0, C1 and C2. A similar situation happens 
for the 𝑋2

2 input of the FAT module. This input depends on a 
squaring unit, which never produces all possible combinations.  

V. CONCLUSIONS 

In this paper, we propose a functional test methodology to 
develop self-test programs targeting the Special Function Units 
(SFUs) in a GPU. The proposed solution offers a TP generation 
strategy that allows finding an adequate set of TPs for testing the 
SFUs, keeping in mind the constraints coming from the SFU 
architecture, which prevent the generation of all TPs during the 
functional behavior. Despite these limitations, the generated test 
programs allow to reach 90.75% of stuck-at FC, corresponding 
to 94.48% of stuck-at TFC.  

We compared the results of our method first with those 
produced by some application programs and then with those of 
pseudorandom test patterns, as proposed in [7]. In both cases, the 

results have been quite far from those provided by our method in 
terms of achieved FC, required memory, and test duration. The 
test program generated resorting to our method perfectly fits the 
requirements for on-line testing of GPUs used in safety-critical 
applications. 

Further work is ongoing to further increase the effectiveness 
of the method and to extend it to other fault models. 
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