
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Functional Test of Special Function Units in GPUs / Guerrero-Balaguera, Juan-David; Rodriguez Condia, Josie
E.; Reorda, Matteo Sonza. - ELETTRONICO. - (2021), pp. 81-86. (Intervento presentato al convegno 2021 24th
International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS) tenutosi a Vienna nel
April 7-9, 2021) [10.1109/DDECS52668.2021.9417025].

Original

On the Functional Test of Special Function Units in GPUs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DDECS52668.2021.9417025

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2899592 since: 2021-05-11T18:48:41Z

IEEE

On the Functional Test of Special Function Units

in GPUs

Juan-David Guerrero-Balaguera, Josie E. Rodriguez Condia, Matteo Sonza Reorda

Department of Control and Computer Engineering

Politecnico di Torino, Torino, Italy

{juan.guerrero, josie.rodriguez, matteo.sonzareorda}@polito.it

Abstract1—The Graphics Processing Units (GPUs) usage has

extended from graphic applications to others where their high

computational power is exploited (e.g., to implement Artificial

Intelligence algorithms). These complex applications usually need

highly intensive computations based on floating-point

transcendental functions. GPUs may efficiently compute these

functions in hardware using ad hoc Special Function Units (SFUs).

However, a permanent fault in such units could be very critical

(e.g., in safety-critical automotive applications). Thus, test

methodologies for SFUs are strictly required to achieve the target

reliability and safety levels. In this work, we present a functional

test method based on a Software-Based Self-Test (SBST) approach

targeting the SFUs in GPUs. This method exploits different

approaches to build a test program and applies several

optimization strategies to exploit the GPU parallelism to speed up

the test procedure and reduce the required memory. The

effectiveness of this methodology was proven by resorting to an

open-source GPU model (FlexGripPlus) compatible with NVIDIA

GPUs. The experimental results show that the proposed technique

achieves 90.75% of fault coverage and up to 94.26% of Testable

Fault Coverage, reducing the required memory and test duration

with respect to pseudorandom strategies proposed by other

authors.

Keywords— Functional Testing, Graphics Processing Units, In-

field test, Software-based self-test, Special Function Units

I. INTRODUCTION

GPUs are increasingly used not only for consumer
applications but also in domains (e.g., automotive, high-
performance computing, robotics) where dependability (and in
particular safety) plays a crucial role. In the latter case, their
complexity and the very advanced semiconductor technologies
used for their manufacturing may increase the probability of
faults well beyond the acceptable thresholds [1].

When considering permanent faults, this means that the
probability of new faults arising during the operational life (due
to aging or other phenomena) may be significantly higher than
acceptable and induce an unacceptably high failure probability at
the application level.

To face this situation, a possible solution lies in adopting devices
(e.g., NVIDIA Xavier), where hardware-based hardening
solutions (e.g., [2]) can guarantee the ability to detect and
possibly detect a very high percentage of faults. However, the

1 This work has been partially supported by the European Commission through

the Horizon 2020 RESCUE-ETN project under grant 722325.

usage of different ad hoc devices for safety-critical applications
may involve a significant increase in their cost with respect to
the “normal” ones. It may also impact their performance, power
consumption, and ease of use.

Another solution may be represented by effective in-field test
solutions. In principle, they may detect faults before they
produce critical failures, thus lowering the failure probability to
acceptable values.

Clearly, the ability to effectively detect permanent faults
possibly affecting a GPU while the same is already in the
operational phase is a real challenge. Design for Testability
(DfT) solutions (such as Logic and Memory BIST) can be
effectively exploited if the in-field test is performed at the power-
on, when timing constraints are more relaxed. However, in some
cases, the hardware cost of DfT solutions is too high, and/or the
application safety constraints ask for a more frequent in-field
test, for example, using the time slots left idle by the application.
In such a scenario, software-based self-test (SBST) [3] may
represent a promising solution for GPUs, following what is
already widely done for MCUs and SoCs used for safety-critical
applications, especially in the automotive domain2. An important
advantage of such solution lies in the fact that the semiconductor
company (owning full details about the product) can develop
suitable Self-Test Libraries (STLs) able to achieve a given Fault
Coverage, which has been computed via Fault Simulation. The
STLs are then provided to the system company using the device,
which is in charge of integrating them in the application code and
activating their execution at the due time and with the required
frequency.

An STL is basically a set of software procedures that can
activate and make visible the effects of possible permanent faults
possibly affecting a module or device. At the end of its execution,
the test code itself is able to check the results produced by each
procedure and discriminate between good and faulty devices,
possibly returning error information.

In past works [4][5][6][7][8], several techniques have been
proposed for developing effective STLs for GPUs, showing that
they can achieve good fault coverage figures with respect to
stuck-at faults, as mandated by standards (e.g., ISO 26262).

Current GPUs are frequently used to implement Machine
Learning applications. In such a case, they are often equipped

2 The list of semiconductor and IP companies providing their customers with
SBST-based test procedures allowing to in-field test their devices includes

ARM, STMicroelectronics, Infineon, Cypress, Renesas, Microchip.

with Special Function Units (SFUs) able to efficiently perform
transcendental computations (in particular, exponential,
logarithmic, and trigonometric functions).

The authors in [7] proposed several custom test strategies,
one for each component inside the GPU architecture, and until
now, it is the only work that considered functional testing on
SFUs. However, the lack of architectural details of the SFUs and
observability forced them to develop test programs using random
values and evaluate the fault detection capabilities through the
input and output interfaces of some GPU internal module, only.
Then, the achieved fault coverage could only be estimated using
an error threshold parameter obtained from the tolerance
characterization of the SFU.

In this paper, we extend our previous work on the SBST-
based in-field test of GPUs and propose a solution to develop
effective STLs for SFUs. The method mimics the basic idea
reported in [9] for a simple pipelined CPU to leverage the test
patterns generated at the module level by a combinational ATPG
and then transform them into a parallel program (CUDA kernel).
To the best of our knowledge, this is the first work providing a
specific method to generate a functional in-field test for a SFU
in an GPU and provide quantitative results of functional test
methods, using a microarchitectural model of a GPU.

In order to validate the effectiveness of the proposed method,
we used an open-source GPU model we developed (named
FlexGripPlus) [10], enriching it with some SFUs [11].
FlexGripPlus is compatible with the NVIDIA GPU architecture
and development flow. In the rest of the paper, we describe the
techniques we propose to develop effective STLs for the SFU
and report experimental results proving their effectiveness. In
particular, we show that they can achieve 90.75% of stuck-at
Fault Coverage and demonstrate that some of the undetected
faults are untestable under operating conditions, so obtaining a
94.26% of Testable Fault Coverage. These results significantly
outperform those obtainable with the method in [7].

Although this paper mainly refers to the architecture on an
NVIDIA GPU, most of the ideas and techniques we describe can
be extended to other GPU architectures as well.

The paper is organized as follows. Section II provides some
background about GPU organization and overviews the main
features of the micro-architecture of the FlexGripPlus model and
its SFU specifications. Section III describes the methodology to
develop the STL for the SFU. Section IV reports the
experimental results and their analysis, and Section V draws
some conclusions.

II. BACKGROUND

A. GPU oganization

The Graphics Processing Units (GPUs) are organized based
on arrays of parallel execution units (also known as Streaming
Multiprocessors or SMs). The SM is the main execution core
inside a GPU, and it implements the Single-Instruction Multiple-
Data (SIMD) paradigm or a variation, such as the Single-
Instruction Multiple-Thread (SIMT). In this way, each SM
includes several functional units (also known as Streaming
Processors or SPs), which are used to process instructions in
several threads. The number of SPs per SM may vary in a range

from 8 to 128 and depends on the architecture and the number of
parallel threads to be processed simultaneously. Furthermore,
other functional units, such as Special Function Units (SFUs)
and, more recently, tensor cores are also included in a minor
number into the SMs to perform specific operations and support
multimedia and artificial intelligence based on ‘Convolutional
Neural Netwoks’ (CNN) applications.

More in detail, a program kernel (parallel program executed
in the GPU and called by the Host) is divided into parts by a
general controller and assigned to the available SMs. Then, each
SM loads one instruction from the program code and processes
it in parallel through the available SPs. The program is divided
into thread-groups (or Warps), and one new instruction is
processed when all warps finished the execution of the previous
one. Some modern GPU architectures may include additional
local controllers (i.e., two controllers) in the SM to execute
multiple instructions at the same time by dividing the SPs, so
executing a limited number of threads per instruction in parallel,
but improving performance.

Fig. 1 A general scheme of the SM in FlexGripPlus

The GPU architecture also includes a memory hierarchy
mainly used to reduce latency during the kernel execution. The
memory resources include a ‘General Purpose Register File’
(GPRF), a shared memory, a local memory, a constant memory,
and a global/main memory. The GPRF is organized in banks and
is associated with each SP. Furthermore, the shared memory is
also organized in banks and can be addressed by any thread.
GPRF and shared memory are the in-core structures of the SM.
The other memories are external resources.

B. FlexGrip GPU Architecture

The FlexGripPlus model [10] is an open-source soft-core
GPU implementing the NVIDIA’s G80 architecture [12]. This
model is an improved and extended version of the FlexGrip
model [13]. FlexGripPlus supports up to 52 assembly
instructions and is compliant with the CUDA programming
environment. The organization of FlexGripPlus is based on an
array of SMs. One general controller (block scheduler controller)
commands the tasks submitted to the SMs. In each SM, a local
controller (warp scheduler) manages the task by dispatching a
warp into the available SPs. The SM is divided into five pipeline
stages, and some pipeline registers (PRx) dividing the stages (see
Figure 1) and executes one instruction following the Single-
Instruction Multiple-Thread (SIMT) paradigm. More in detail,
the SM includes 8 SPs, 8 Floating Point Units (FP32), and two

https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Trigonometric_function

Special Function Units (SFUs). Furthermore, the flexibility of
the model allows the selection of the number of execution units
(SPs, FP32) per SM (8, 16, or 32). Similarly, the number of SFUs
corresponds to 2, 2, or 4 per SM.

Fig. 2 Block diagram of the SFU architecture.

C. The SFU

The available SFU module in FlexGripPlus is an improved
version of the first open-source SFU presented in [11]. This SFU
can perform six transcendental functions (sin(x), cos(x),
1/sqrt(x), log2(x), 2^x, 1/x and sqrt(x)) using the IEEE 754
floating-point standard with single-precision format. The SFU
implements a fast function approximation using a Minimax
Quadratic Interpolator [14]. The component is described in
VHDL, and it is similar to what is specified by the NVIDIA G80
architecture [12].

The SFU module evaluates transcendental functions
employing a set of lookup tables (LUTs) used to retrieve the
coefficients for the quadratic polynomial approximation
followed by a fast evaluation of the polynomial. The
approximation’s coefficients are obtained according to the
enhanced minimax approximation algorithm described in [14].

A general scheme of the SFU architecture is presented in Fig. 2.
It is composed of: i) lookup tables that contain the coefficients of
each function that will be evaluated. 𝑋1 addresses a set of three
LUTs to get three finite-word coefficients 𝐶0, 𝐶1and 𝐶2. ii) a
special parameter selector, which has the function of selecting
the parameter to be evaluated, taking into account the selector
(Selop), sign and exponent value. iii) a squaring unit, which is in
charge of calculating the fast square operation of X2. iv) The
Fused Accumulation Tree (FAT), which is a systolic array of
Carry-Save Adders (CSAs) that performs a fast evaluation of the
polynomial approximation of a function 𝑓(𝑋), in the range 𝑋1 ≤
𝑋 < 𝑋1 + 2−𝑚 using the expression presented in equation (1)
Finally, v) the normalization and output logic adjusts the
exponent and evaluates special cases according to the IEEE 754
representation. The 𝑚 parameter, in 𝑋1 and 𝑋2, determines the
number of bits used to address the LUTs. This parameter depends
on the function to be evaluated and the target precision. In this
work, the SFUs modules use m = {6,7} selected according to
[14].

𝑓(𝑋) ≈ 𝐶0 + 𝐶1𝑋2 + 𝐶2𝑋2
2 (1)

 Each function to be approximated uses one or two sets of
LUTs [14]. The set of tables is selected according to the exponent
(E) of the input operand. For example, the 𝑙𝑜𝑔2(𝑥) function uses
one set of tables when 𝐸 = 0 and another when 𝐸 ≠ 0 . In
contrast, for the 𝑟𝑠𝑞𝑟𝑡(𝑥) and 𝑠𝑞𝑟𝑡(𝑥) functions the correct set
of tables depends on whether the exponent is even or odd. The
functions 𝑠𝑖𝑛(𝑥), 𝑐𝑜𝑠(𝑥), 2𝑥 and 1/𝑥 require only one set of
LUTs for each one.

The GPU has several SFU components (named SFU cores)
and one special dispatcher that controls the threads distribution
to each SFU core. We called SFU processor this set of
components.

III. PROPOSED APPROACH FOR THE FUNCTIONAL TEST OF SFUS

The proposed methodology aims to define a logic flow for
the generation of in-field test programs to be executed by the
GPU and targeting faults in the SFU.

Fig. 3. A general scheme of the method for SBST generation

A. Basic flow

The proposed methodology is composed of a sequence of
four stages: i) Test Pattern (TP) generation, ii) TP conversion
into test routines, iii) SBST kernel construction, and iv) fault
simulation of the SBST kernel. Fig. 3 shows a general scheme of
the proposed method highlighting each stage.

In the first stage (TP generation), three different sets of test
patterns are generated starting from the gate-level netlist of the
SFU core. The first set of TPs is generated using a random
approach without restrictions; the second set is generated
resorting to an ATPG. The third set is created using an ad-hoc
generation method that performs a customized TPs generation
targeting the most critical components in the SFU. The three sets
of TPs are reduced to one set of TPs through the elimination of
redundant TPs.

In the second stage, the TPs are automatically converted into
GPU instructions. These instructions are selected so that they
apply the target TPs to the SFU. Then, a self-test routine is
developed using the selected instructions for each TP plus

additional instructions employed to implement a Signature-per-
Thread (SpT) mechanism [6]. This mechanism resorts to logic
and shifts instructions to update the signature value after the
application in each TP. At the end of the self-test routine, the
computed and expected SpTs are compared. If they do not match,
then a fault is detected.

The overall self-test library includes several independent
routines (e.g., one per each SFU operation). In this way, we can
split the test process for the SFU, reducing their duration and
more easily matching the time constraints for in-field test.

 After the generation of the self-test routines, the third stage
turns them into an SBST kernel. For this purpose, the SBST
kernel requires the specifications of TP allocation (as operands
of instructions or as elements of the global memory). Moreover,
other configuration parameters, including the number of Treads-
per-Block (TpB), the number of Blocks-per-Core (BpC), and
pointers initialization are defined.

In the last stage, a fault simulation is performed to evaluate
the fault coverage achieved by the developed SBST kernel. If the
results are too low, the process could be restarted from the first
stage increasing the effort or the amount of the generated TPs,
targeting the still undetected faults.

B. Stage 1: Test Pattern Generation

In this stage, we perform the generation of a compact set of
TPs starting from a combination of three independent sets of TPs.
The first set of TPs is based on the generation of random input
patterns. This set of test patterns also includes edge conditions,
such as NaN, ±∞, ±0, and subnormal’s representation of the
IEEE 754 values for each operation in the SFU. The second set
of TPs is generated using an ATPG targeting the combinational
part of the SFU, only. However, the complexity of the SFU
structure does not allow the ATPG to generate TPs for all
possible faults. For this reason, a further set of TPs is required.

This third set of TPs is created resorting to a custom hand-
made approach, targeting the interconnections among
components in the SFU and the faults in the combinational part
of the SFU that were not yet detected.

Finally, the three sets of TPs are joined into a single set of
TPs. However, we can reduce the size of this set of TPs by
removing replicated or useless TPs. This optimization can be
performed by fault simulation of the combinational part of the
SFU.

C. Stage 2: Self-Test routine development

The construction of the self-test routine is developed in three
main steps: i) TPs classification, using the constraints given by
the ISA, ii) mapping of TPs into equivalent instructions, and iii)
addition of signature mechanisms to detect the possible fault
presence.

The TPs classification step identifies those TPs that cannot
be transformed into GPU instructions due to ISA restrictions,
limiting the full control of the primary inputs of the SFU. This
situation is present, for example, when one TP requires a specific
combination of values in the selection inputs of the SFU, but the
existing instructions of the GPU do not allow that combination.

In this case, the TP cannot be applied, it is classified as “invalid
TP”, and it is discarded.

In the second step, the TPs classified as “valid” are converted
into instructions. Each TP has two main fields: the operand data
field, and the function field. The function field of the TP selects
the matching instruction that executes the desired function in the
SFU. This instruction refers to a source register (containing the
operand data of TP) and destination register where the fault effect
will be observed through the SpT mechanism.

The allocation of the data operand in the GPU registers can
be managed using two main approaches. The first consist of
loading the value of the data operand directly on a register using
the Register Immediate Addressing (IMM – routines) in this case
the immediate values are part of the opcode of the instruction. In
the second approach, the data operands are read from memory to
a register using the Memory Addressing (MEM – routines). Any
of those techniques guarantee the injection of the TPs to the
SFUs during the runtime execution.

1) IMM routines
This approach employs the register immediate-addressing

mode defined by the GPU ISA. This operation moves the
operand data and the expected SpTs (immediate) directly to a
general-purpose register for every thread in the GPU. It is
possible to employ one or a combination of instructions for this
purpose, depending on the ISA specifications and the available
instructions.

The main advantage of the proposed SBST approach is that
it only uses registers and the target SFUs to perform its job. Any
other memory resource in the GPU core is not employed during
the execution of the SBST program. Furthermore, the SBST
program can be implemented by organizing the TPs in any order.
However, we anticipate that the execution time may require a
considerable number of clock cycles, because the GPU core
executes the test program in a purely sequential manner, so
neglecting the implicit parallel capabilities of the GPU
architecture.

2) MEM routines
The limitations of the immediate-addressing strategy can be

avoided by storing the TP values (for each SFU function) in any
memory resource of the GPU. This method permits the execution
of parallel threads in the GPU core, so exploiting the execution
of the same functions in the SFUs to inject different TPs (as
operands) per thread and allowing a faster test program
execution. Hence, the test program can use the TPs to exploit the
SIMT organization in the GPU core (the same operation is
performed with different values in the different threads).

In this memory-based approach, the TPs are grouped
according to the function field that they have in common. Then,
the number of TpB is defined to configure the SBST kernel. This
parameter is specified relying on the average number of TPs to
be applied, since the number of TPs per SFU’s operation can be
different. Thus, suitably selecting the value for this parameter
allows trading-off between the length of the test program and the
number of TpB executed per instruction.

It is important to note that for the self-test routines
development, some SFU operations could include TPs that

require executing more threads than the number of TpB for the
SBST kernel. Thus, threads of operations are executed several
times as a consecutive procedure of reading data from memory
followed by the same SFU instruction, so executing a fixed
number of TpB.

From the hardware side, a TpB is made up of Warps with size
Wz, with each thread occupying one lane. Each Warp runs
sequentially in Parallel Groups of Warp Lanes (PgWL). The
SFU processor dispatcher mechanism symmetrically distributes
each PgWL to each SFU core to guarantee the same number of
Threads-per-SFU (TpS) processed by each execution module,
applying the same operation on them. Therefore, the data for the
TP operands and the SpT, stored in memory, must be properly
organized to test all ‘SFUs per SM’ (SpSM). In that case, each
TP operand value for the same SFU function must be replicated
(within one PgWL) as many times as the number of available
SpSM, to ensure the injection of all TPs into each SFU core. This
data replication can be performed using two techniques: i) data
operands replicated directly from memory or ii) replication
managed through the pointers of each tread.idx:

a. Replication allocated in memory: In memory, the TPs'

operand values are replicated and allocated consecutively.

In this way, after reading data from memory, each PgWL

will have the data correctly organized to apply the same TPs

to each SFU without adding additional instructions in the

program.

b. Replication from tread pointer index: This approach only

stores in memory the data operands of the TPs for one SFU.

Then, the replication process is performed by efficiently

managing the address pointers for each thread within each

PgWL, so accessing to same data operands stored in

memory and replicating the data for each SFU in the

reading process. This technique requires SpSM times less

memory than the in-memory replication technique. Also,

the performance can be affected because the reading

process requieres to access several times in memory for the

same operand data for each PgWL.

IV. EXPERIMENTAL RESULTS

For the experimental campaign to validate the proposed
SBST approach, the FlexGripPlus model was configured with 1
SM, 8 SP-cores, and 2 SFUs per SM. All fault simulation
experiments were performed on a workstation with two AMD
EPYC 7301 16-core processors running at 2.2GHz and equipped
with 127 GB of RAM memory.

The SFU module at gate-level is composed of 23,380
combinational cells, 516 sequential cells, 519 In/out pins and
accounts for 180,540 stuck-at faults. The results were obtained
using a commercial synthesis tool and the Nangate 15nm OCL
technology library [15].

The evaluation and validation were performed in two steps:
(1) a RT-level simulation of the GPU running the SBST program
to extract the reference values in the input and output ports of the
SFU, and (2) the gate-level fault simulation.

For the experiments, we developed a parser tool in Python to
automatically generate the self-test routines. This tool takes as
input the generated TPs and the Instruction Set Architecture of

the GPU (SASS)[16]. The format of the assembly instructions is
used to match the input TPs and produce the self-test routines.
Moreover, the parser tool produces a Test Program, the
configuration parameters for the GPU and the data memory
content to be used during the execution of the test program. The
total computational cost required to build a SBST kernel since
the TP generation to the fault simulation is about 8 hours.

TABLE I. COMPARISON OF DIFFERENT PROGRAMS IN TERMS OF FAULT

COVERAGE, MEMORY AND EXECUTION TIME

Data

Memory

size (B)

Test

Duration

(CCs)

Number of

Instructions
FC (%)

Benchmark

SIN 4,096 40,767 11 34.41

COS 4,096 40,767 11 34.02

RSQ 4,096 40,767 10 37.76

LG2 4,096 40,767 10 30.77

EX2 4,096 40,767 11 28.99

RCP 4,096 40,767 10 33.06

NN 8,192 87,195 23 40.88

SBST

Random

method based

on [7]

RND_30K 245,760 1,546,404 309 (M 82.55), (SD 0.56) **

RND_60K 491,520 3,074,844 609 (M 77.67), (SD 0.07) **

RND_90K 737,280 4,603,284 909 (M 89.11), (SD 0.42) **

RND_120K 983,040 6,131,724 1,209 (M 88.26), (SD 0.36) **

SBST

proposed in

this work

IMM 0 1,200,034 16,856

90.75 MEM_MR 21,312 212,914 117

MEM_CR 10,944 216,764 125

** M: Mean; SD: Standard Deviation

Three different groups of program kernels were used in the
fault campaigns: i) some representative benchmarks using the
SFU, ii) a set of programs using pseudorandom data, based on
the method proposed in [7], and iii) the SBST programs
developed resorting to the proposed method. The comparison
between the three groups allows us to better analyze the fault
coverage, the test duration, the size and the memory footprint of
each test program.

The benchmarks correspond to GPU programs that perform
SFU’s operations. The first 6 benchmarks (SIN, COS, RSQ,
LG2, EX2, RCP) are embarrassingly parallel programs
executing each SFU operation on an array of 1,024 elements. The
last benchmark (NN) is extracted from the Rodinia benchmark
suite [17] and implements a parallel version of the Nearest
Neighbor algorithm, commonly used in critical applications,
including pattern recognition and computer vision.

The second group is composed of SBST programs using
pseudorandom test patterns following the approach presented in
[7]. For the purpose of this work, we developed 4 different SBST
programs. Each test program applies a different number of
random values: RND_30K (30,000 random TPs), RND_60K
(60,000 TPs), RND_90K (90,000 TPs) and RND_120K
(120,000 TPs). Each test program was generated and executed
five times to evaluate the variability in the achieved fault
coverage.

Finally, the last group of test programs was generated using the
proposed approach. A set of 1,815 test patterns were initially
generated for the SFUs using the proposed method, leading to
the development of three SBST programs (IMM, MEM_MR,
and MEM_CR). The IMM program exploits immediate
addressing instructions. The corresponding program size
amounts to 16,856 instructions, with a relatively high total test
duration time. Although IMM has the largest program size, its
duration time is shorter than pseudorandom-based SBSTs. The
memory-based test programs MEM_MR (input patterns

replicated in global memory), and MEM_CR (input patterns
replicated by code) are SBST programs that have a similar
structure. However, MEM_CR uses half of the data memory size
than MEM_MR, but involves a performance penalty of around
3,900 clock cycles (CCs).

Table I presents the experimental results in terms of fault
coverage, Test duration in clock cycles, program size, and data
memory size. As it can be observed, the benchmark programs
achieve a moderate Fault Coverage (FC) (28,99% to 40.88%)
and show limited use of resources and duration time compared
to the test programs. Regarding the pseudorandom SBST
programs, they provide a higher FC (from 77% to 89%) but
require a relevant size of memory and a longer duration time than
the other test programs. The data about the FC of the SBST
random-based programs also include the mean (M), and
Standard Deviation (SD) computed with the five versions of each
program. The highest FC reached by this method was 89.11%
(using the RND_90K test-program) with an SD of 0.42%. It is
important to remark that according to our results, pseudorandom
test programs with a higher number of random TPs do not
necessarily achieve a higher FC.

Regarding the results of the SBST programs implemented
with the proposed approach, all provide a higher FC (90.75%).
A considerable percentage of the undetected faults (almost
3.44% of the total) are untestable due to 130 invalid TPs, mainly
caused by incompatible instructions in the ISA of the GPU and
unfeasible matching between the TPs and the op-codes of the
instructions (several binary combinations in the selector input of
the SFU processor cannot be controlled). Marking these faults as
untestable we computed a Testable Fault Coverage (TFC) equal
to 94.48%, which also includes a 0.29% of untestable faults at
the combinational level, according to the ATPG results.

The remaining 5.52% of not detected faults (NDs) are faults
aborted by the ATPG tool due to the complexity of the SFU core
architecture, which has internal restrictions on the input ports of
the FAT component. Therefore, it is challenging to find at least
one TP to detect any of the faults in that component. Analyzing
the SFU architecture presented in Fig. 2, the inputs of the FAT
module have controllability restrictions mainly caused by the
limited number of constant coefficients stored in the LUTs. In
fact, they only store 1,280 values out of a total number of 253
possible values for C0, C1 and C2. A similar situation happens
for the 𝑋2

2 input of the FAT module. This input depends on a
squaring unit, which never produces all possible combinations.

V. CONCLUSIONS

In this paper, we propose a functional test methodology to
develop self-test programs targeting the Special Function Units
(SFUs) in a GPU. The proposed solution offers a TP generation
strategy that allows finding an adequate set of TPs for testing the
SFUs, keeping in mind the constraints coming from the SFU
architecture, which prevent the generation of all TPs during the
functional behavior. Despite these limitations, the generated test
programs allow to reach 90.75% of stuck-at FC, corresponding
to 94.48% of stuck-at TFC.

We compared the results of our method first with those
produced by some application programs and then with those of
pseudorandom test patterns, as proposed in [7]. In both cases, the

results have been quite far from those provided by our method in
terms of achieved FC, required memory, and test duration. The
test program generated resorting to our method perfectly fits the
requirements for on-line testing of GPUs used in safety-critical
applications.

Further work is ongoing to further increase the effectiveness
of the method and to extend it to other fault models.

REFERENCES

[1] S. Hamdioui et al, "Reliability challenges of real-time systems in
forthcoming technology nodes," Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2013.

[2] J. E. R. Condia et al, “Untestable faults identification in GPGPUs for
safety-critical applications”, 26th IEEE International Conference on

Electronics, Circuits and Systems (ICECS), 2019.

[3] M. Psarakis et al. “Microprocessor Software-Based Self-Testing”, IEEE
Design & Test of Computers, 2010 , Volume 27, Issue 3.

[4] B. Du et al, "About the functional test of the GPGPU scheduler," IEEE

24th International On-Line Testing Symposium (IOLTS), 2018.
[5] S. Di Carlo et al, "An On-Line Testing Technique for the Scheduler

Memory of a GPGPU," IEEE Access, vol. 8, 2020.

[6] J. E. R. Condia and M. Sonza Reorda, "Testing permanent faults in
pipeline registers of GPGPUs: A multi-kernel approach," IEEE 25th

International Symposium on On-Line Testing and Robust System

Design (IOLTS), 2019.
[7] S. Di Carlo et al., "A software-based self test of CUDA Fermi GPUs,"

18th IEEE European Test Symposium (ETS), 2013.

[8] S. Di Carlo et al, "Fault mitigation strategies for CUDA GPUs," IEEE
International Test Conference (ITC), 2013.

[9] S. Guramurthy et al., “Automated mapping of pre-computed module-level

test sequences to processor instructions”, IEEE International Conference
on Test, 2005.

[10] J. E. R. Condia et al, "FlexGripPlus: An improved GPGPU model to

support reliability analysis," Microelectronics Reliability, vol. 109, 2020.
[11] J. E. R. Condia, J. D. Guerrero-Balaguera, C. F. Moreno-Manrique and M.

Sonza Reorda, “Design and Verification of an open-source SFU model for

GPGPUs”, 17th Biennial Baltic Electronics Conference (BEC), 2020
[12] E. Lindholm et al, "NVIDIA Tesla: A Unified Graphics and Computing

Architecture," IEEE Micro, vol. 28, no. 2, pp. 39-55, March-April 2008.

[13] K. Andryc et al, "FlexGrip: A soft GPGPU for FPGAs," 2013
International Conference on Field-Programmable Technology (FPT),

2013.

[14] J. Pineiro et al, "High-speed function approximation using a minimax
quadratic interpolator," IEEE Transactions on Computers, vol. 54, no. 3,

March 2005, doi: 10.1109/TC.2005.52.
[15] Mayler Martins, et al.. Open Cell Library in 15nm FreePDK Technology.

In Proceedings of the 2015 Symposium on International Symposium on

Physical Design (ISPD '15). Association for Computing Machinery, New
York, NY, USA, 171–178.

DOI:https://doi.org/10.1145/2717764.2717783

[16] J.E. R. Condia et al, “Programmers manual flexgripplus sass sm 1.0,” pp.
1–67, May 2020. [Online]. Available: https://doi.org/10.5281/zenodo.381

9313

[17] S. Che et al., "Rodinia: A benchmark suite for heterogeneous computing,"

2009 IEEE International Symposium on Workload Characterization

(IISWC), 2009.

