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Appendix

A. Formal derivation of the deterministic continuum model on growing domains

We carry out a formal derivation of the deterministic continuum model given by the PDE (2.16) for
d = 2. Similar methods can be used in the case where d = 1.

When cell dynamics are governed by the rules described in Section 2.1.2 and Section 3.1.2,
considering (i, j) ∈ [1, I − 1] × [1, I − 1], the mass balance principle gives
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Using the fact that the following relations hold for τ and χ sufficiently small

tk ≈ t, tk+1 ≈ t + τ, x̂i ≈ x̂, x̂i±1 ≈ x̂ ± χ, ŷ j ≈ ŷ, ŷ j±1 ≈ ŷ ± χ

nk
(i, j) ≈ n(t, x̂, ŷ), nk+1

(i, j) ≈ n(t + τ, x̂, ŷ), nk
(i±1, j) ≈ n(t, x̂ ± χ, ŷ), nk
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(i±1, j) ≈ v(t, x̂ ± χ, ŷ), vk
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Lk ≈ L(t), Lk+1 ≈ L(t + τ),
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the balance equation (A.1) can be formally rewritten in the approximate form
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)
+

]
n

−
η

4 umaxL
2

[(
u(t, x̂, ŷ − χ) − u
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u(t, x̂, ŷ + χ) − u

)
+

]
n

+
(
αnψ(n)φu(u) − βnφv(v)

)
n −

1
τ
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If n(t, x̂, ŷ) is a twice continuously differentiable function of x̂ and ŷ and a continuously differentiable
function of t, u(t, x̂, ŷ) is a twice continuously differentiable function of x̂ and ŷ, and the function L(t)
is continuously differentiable, for χ and τ sufficiently small we can use the Taylor expansions
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L(t + τ) = L + τ
dL
dt

+ O(τ2).

Substituting into Eq (A.3), using the elementary property (a)+ − (−a)+ = a for a ∈ R and letting
τ → 0 and χ → 0 in such a way that conditions (2.16) are met, after a little algebra, as similarly done
in [44], we find

∂n
∂t

=
Dn

L2

(
∂2n
∂x̂2 +

∂2n
∂ŷ2

)
+

Cn

L2

[(
∂2u
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)
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∂n
∂x̂

+
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∂ŷ
∂n
∂ŷ

)]
+
(
αnψ(n)φu(u) − βnφv(v)

)
n −G(x̂, ŷ, n,L), (t, x̂, ŷ) ∈ R∗+ × (0, 1) × (0, 1), (A.4)

where G(x̂, ŷ, n,L) is given by Eq (3.13) in the case where g(i, j)(nk
(i, j)) is defined via Eq (3.3) and by

equation (3.14) in the case where g(i, j)(nk
(i, j)) is defined via Eq (3.4). The PDE (A.4) can be easily

rewritten in the form of Eq (3.12). Moreover, zero-flux boundary conditions easily follow from the fact
that [cf. definitions (3.5)–(3.8)]

T k
L(0, j) := 0, T k

R(I, j) := 0, Jk
L(0, j) := 0, Jk

R(I, j) := 0 for j ∈ [0, I]

and
T k

D(i,0) := 0, T k
U(i,I) := 0, Jk

D(i,0) := 0, Jk
U(i,I) := 0 for i ∈ [0, I].

Remark A.1. The derivation of the continuum limit for the static domain case can be carried out in a
similar way by assuming Lk to be constant, which implies that gi ≡ 0 and results in G ≡ 0.

B. Set-up of numerical simulations on static domains

We let x ∈ [0, 1], y ∈ [0, 1] and χ := 0.005 (i.e., I = 201). Moreover, we define τ := 1 × 10−3.

Dynamics of the morphogens For the dynamics of the morphogens, we consider the parameter
setting used in [13], that is,

Du := 1 × 10−4, Dv := 4 × 10−3, αu := 0.1, β := 1, γ := 1, αv := 0.9. (B.1)

Moreover, we assume the initial distributions to be small perturbations of the homogeneous steady
state (u∗, v∗) ≡ (1, 0.9), that is,

u0
i = u∗ − ρ + 2 ρR and v0

i = v∗ − ρ + 2 ρR

where ρ := 0.001 and R is either a vector for d = 1 or a matrix for d = 2 whose components are
random numbers drawn from the standard uniform distribution on the interval (0, 1), using the built-in
Matlab function rand. These choices of the initial distributions of morphogens are such that

u∗ − ρ ≤ u0
i ≤ u∗ + ρ and v∗ − ρ ≤ v0

i ≤ v∗ + ρ for all i,

that is, the parameter ρ determines the level of perturbation from the homogeneous steady state. Since
the difference equations (2.2) governing the dynamics of the morphogens are independent from the
dynamics of the cells, such equations are solved first for all time-steps and the solutions obtained are
then used to evaluate both the probabilities of cell movement [cf. definitions (2.6)–(2.9)] and the
probabilities of cell division and death [cf. definitions (2.11)–(2.13)]. The parameter umax in
definitions (2.8) and (2.9) is defined as max

k,i
uk

i .
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Computational implementation of the rules underlying the dynamics of the cells At each time-
step, each cell undergoes a three-phase process: Phase 1) undirected, random movement according
to the probabilities described in the definitions (2.6) and (2.7); Phase 2) chemotaxis according to the
probabilities described via the definitions (2.8) and (2.9); Phase 3) division and death according to
the probabilities defined via Eqs (2.11)–(2.13). For each cell, during each phase, a random number is
drawn from the standard uniform distribution on the interval (0, 1) using the built-in Matlab function
rand. It is then evaluated whether this number is lower than the probability of the event occurring and
if so the event occurs.

Dynamics of the cells Unless stated otherwise, we assume the initial cell distributions to be
homogeneous with

n0
i ≡ 104 when d = 1 and n0

i ≡ 4 × 105 when d = 2.

In the case where chemically-controlled cell proliferation occurs and there is no chemotaxis, unless
stated otherwise, we use the following parameter values when d = 1

θ := 0.05, η := 0, αn := 5, βn := 1, nmax := 2 × 104.

and the following ones when d = 2

θ := 0.005, η := 0, αn := 5, βn := 0.1, nmax := 8 × 105.

The results shown in Figures 5 and 6 refer to the same settings with the modification that when d = 1

n0
i ≡ 4 × 103 and nmax := 1.5 × 103

and when d = 2
n0

i ≡ 2 × 105 and nmax := 8 × 104.

In the case where cells undergo chemotaxis and cell proliferation is not chemically-controlled,
unless stated otherwise, we use the following parameter values when d = 1

θ := 0.05, η := 1, αn := 0.1, βn := 0.055, nmax := 2 × 104.

and the following ones when d = 2

θ := 0.005, η = 1, αn := 0.1, βn := 0.055, nmax := 8 × 105.

Numerical solutions of the corresponding continuum models Numerical solutions of the
PDE (2.17) and the system of PDEs (2.18) subject to zero-flux boundary conditions are computed
through standard finite-difference schemes using initial conditions and parameter values that are
compatible with those used for the IB model and the system of difference equations (2.2). In
particular, the values of the parameters Dn and Cn in the PDE (2.17) are described via the
definitions (2.23).
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C. Set-up of numerical simulations on growing domains

We let x ∈ [0, 1], y ∈ [0, 1] and χ := 0.005 (i.e., I = 201). Moreover, we assume τ := 1 × 10−3 and
we define L according to equation (3.16) (i.e., the domain grows linearly over time).

Dynamics of the morphogens For the dynamics of the morphogens, we use the parameter setting
given by the definitions (B.1). Moreover, we define the initial distributions as the numerical
equilibrium distributions obtained in the case of static domains. Similarly to the case of static
domains, since the difference equations (3.2) governing the dynamics of the morphogens are
independent from the dynamics of the cells, such equations are solved first for all time-steps and the
solutions obtained are then used to evaluate both the probabilities of cell movement given by
definitions (3.5)–(3.8) and the probabilities of cell division and death given by Eqs (3.9)–(3.11). The
parameter umax in the definitions (3.7) and (3.8) is defined as max

k,i
uk

i .

Computational implementation of the rules underlying the dynamics of the cells Similarly to
the case of static domains, at each time-step, each cell undergoes a three-phase process: Phase 1)
undirected, random movement according to the probabilities described through the definitions (3.5)
and (3.6); Phase 2) chemotaxis according to the probabilities described through the definitions (3.7)
and (3.8); Phase 3) division and death according to the probabilities defined via Eqs (3.9)–(3.11). For
each cell, during each phase, a random number is drawn from the standard uniform distribution on
the interval (0, 1) using the built-in Matlab function rand. It is then evaluated whether this number is
lower than the probability of the event occurring and if so the event occurs.

Dynamics of the cells We assume the initial cell distributions and all parameter values to be the same
as those used in the static domain case.

Numerical solutions of the corresponding continuum models Numerical solutions of the
PDE (3.12) and the system of PDEs (3.15) subject to zero-flux boundary conditions are computed
through standard finite-difference schemes using initial conditions and parameter values that are
compatible with those used for the IB model and the system of difference equations (3.2). In
particular, the values of the parameters Dn and Cn in the PDE (3.12) are described through the
definitions (2.23).
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D. Supplementary figures

Figure D1. Dynamics of the morphogens on a two-dimensional static domain. Plots of
the concentration of activator u(t, x) (top row) and the concentration of inhibitor v(t, x)
(bottom row) at four consecutive time instants, obtained by solving numerically the system
of PDEs (2.18) for d = 2 complemented with the definitions (2.19) and subject to zero-flux
boundary conditions. A complete description of the set-up of numerical simulations is given
in Appendix B.

Figure D2. Dynamics of the morphogens on a two-dimensional uniformly growing
domain. Plots of the concentration of activator u(t, x̂) (top row) and the concentration
of inhibitor v(t, x̂) (bottom row) at four consecutive time instants, obtained by solving
numerically the system of PDEs (3.15) for d = 2, subject to zero-flux boundary conditions,
complemented with the definitions (2.19), Eqs (3.13) and (3.16). A complete description of
the set-up of numerical simulations is given in Appendix B.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7442–7479.
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Figure D3. Dynamics of the morphogens on a two-dimensional apically growing
domain. Plots of the concentration of activator u(t, x) (top row) and the concentration
of inhibitor v(t, x) (bottom row) at four consecutive time instants, obtained by solving
numerically the system of PDEs (3.15) for d = 2, subject to zero-flux boundary conditions,
complemented with the definitions (2.19), Eqs (3.14) and (3.16). A complete description of
the set-up of numerical simulations is given in Appendix B.
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