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ABSTRACT

Stroke survivors commonly experience unilateral muscle weakness, which limits their engagement in daily ac-
tivities. Bimanual training has been demonstrated to effectively recover coordinated movements among those
patients. We developed a low cost telerehabilitation platform dedicated to bimanual exercise, where the patient
manipulates a dowel to control a computer program. Data on movement is collected using a Microsoft Kinect
sensor and an inertial measurement unit to interface the platform, as well as to assess motor performance re-
motely. Toward automatic classification of bimanual movements executed by the user, we test the performance
of a linear and a nonlinear dimensionality reduction techniques.
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1. INTRODUCTION

Stroke-induced hemiparesis prevents survivors’ participation in activities of daily living, adversely impacting
their quality of life. Survivors can recover motor function of their paretic limbs by adhering to a rehabilitation
regimen, consisting of repetitive, high-intensity exercises.1 Since they cannot move their paretic limb effectively,
survivors undergoing telerehabilitation may move abnormally and, ultimately, reinforce incorrect movements.2

Holding a rod-shaped instrument with both hands could facilitate appropriate movement of the affected limb
along with the preserved limb. Furthermore, bimanual training has been shown to hold clinical value, capitalizing
on brain plasticity, neural reorganization, and exercise overflow to recover voluntary motion.3–5

In a recent paper,6 we established an interactive telerehabilitation platform dedicated for bimanual exercise
(Figure 1A). The platform consists of a Microsoft Kinect device (Microsoft corporation, Redmond, Washington)
and an inertial measurement unit (IMU; MPU-6050, InvenSense Inc., Sunnyvale, California) embedded in a
simple wooden dowel (Figure 1B). Patients would stand in front of the Kinect sensor, hold the dowel with both
hands, and manipulate it (Figure 1C).

Patients’ gestures are translated to actions in a computer program, thereby providing an engaging context to
the exercise. Specifically, the patients contribute to a citizen science project by performing standard therapeutic
tasks. In principle, patients could select any citizen science project that contributes to a cause. Framing the
exercise in an educational and altruistic activity has potential to empower patients, who often experience low
self-esteem and self-worth due to their acquired disability.7,8
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In our platform, patients would analyze 360◦ images of a polluted canal in Brooklyn, New York9,10 by labeling
objects of interest they observe in the image. Patients would begin from a baseline pose, where they hold their
arms straight and parallel to the ground. To move the cursor to the left, they would perform horizontal shoulder
abduction to the left with both arms, while maintaining the dowel parallel to the ground (Figure 1D). To move
the cursor to the right, they would perform horizontal shoulder abduction in the opposite direction, moving both
hands to the right side of their body. To move the cursor upward or downward, the patients would flex both
shoulders and raise the dowel or extend their shoulders and lower it (Figure 1E). To rotate the image right or
left, they would vertically rotate the dowel clockwise or counterclockwise, respectively (Figure 1F). To rotate
the image up or down, they would flex or extend their wrists, respectively (Figure 1G). Finally, to select or drop
a label, the patients would flex and then extend both elbows, pushing the dowel away from their body (Figure
1H).

Interfacing of the platform was achieved by fusion of sensor data from the Microsoft Kinect and IMU, and
application of simple conditional statements. The conditional statements are implemented with respect to the
relative position of joints. For example, the cursor would move to the left if the left elbow’s position relative
to the left shoulder’s position along the horizontal axis, parallel to the ground, exceeds a certain threshold, and
simultaneously, the right elbow’s position relative to the right shoulder’s position along the same axis exceeds a
different threshold.

A) B) C)

D) E) F) G) H)

x

y

Figure 1. Illustration of the telerehabilitation platform. The user holds a dowel with both hands (A). A 3D-printed box
is fixed at the center of the dowel. The box contains an IMU, oriented with its x-axis perpendicular to the dowel and
its y-axis parallel to the dowel (z-axis, not shown, is orthogonal to both) (B). The user manipulates the dowel in front
of a monitor to perform actions in a citizen science software (C). They can execute five movements to perform in-game
actions. In order to move the cursor left or right, the user performs horizontal shoulder abduction (D). In order to move
the cursor up or down, the user flexes or extends their shoulders (E). To rotate the image left and right, the user vertically
rotates the dowel (F), and to rotate it up and down, the user flexes and extends their wrists (G). To select and drop
labels, the user flexes and extends their elbows (H).

To accommodate potential patients’ compromised range of motion, the software integrates a calibration phase
during which the user performs the aforementioned movements that control the software. They perform each
movement and return to the original pose five times, consecutively. The platform records an average of the user’s
range of motion, and sets the threshold for in-game actions at 20% of it. In this manner, users with a limited
range of motion would need to move a smaller distance to induce an action on the screen.

Toward a genuine telerehabilitation paradigm, where users’ motor performance is analyzed online and in-
terpretable data is sent to a practitioner for remote assessment, we aim to characterize movements from data
collected by the platform. In our earlier work, we pursued a data science approach where we designed features
based on a principal component analysis (PCA), and applied a Bagged Trees algorithm to classify movements.6

Our results demonstrated reliable classification, reaching 93.1% accuracy. In spite of the promising results, our
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use of PCA assumes a linear relationship between the variables. Current literature suggests that human motion
consists of a linear combination of motor primitives.11,12 Specifically, muscle flexion and extension are engen-
dered by co-activation of several innervated muscle fibers (also known as synergy11), in parallel or in series.
However, it is tenable that vision-based recordings of human motion would consist of nonlinear observations. In
such a case, alternative methods for dimensionality reductions, such as isomap13 and diffusion maps,14 would be
more appropriate.

Here, we compare dimensionality reduction of data captured by our platform through PCA and isomap.
PCA is a popular method that uncovers manifolds that lie in a linear subspace of the high-dimensionality input
space.15 In its essence, PCA reduces the dimensionality of a data set by identifying fewer orthogonal axes that
best preserve the data points’ variance.15 It is easily implemented and considered less computationally intensive
than other methods. In contrast, isomap seeks to preserve the geodesic distances between data points.13 It is
particularly useful for recovery of nonlinear manifolds, and represents the global structure of the data set in a
single coordinate system. Comparing these methods will provide insight into the nature of human motion data,
collected through vision-based sensors.

2. METHODS

2.1 Data collection

Data was collected for a single, healthy subject who moved the dowel along the trajectories predefined in the
natural user interface. The first author stood in a baseline pose with her arms held straight and parallel to the
ground. She performed the pre-defined bimanual movements as instructed in the calibration, and continued to
interact with the software for a short while thereafter.

Two data sets were generated during this exercise. The first data set recorded the subject’s joint positions
in three dimensions from the Microsoft Kinect sensor. The second data set logged the IMU’s Tait-Bryan angles
(yaw about the z-axis, α; pitch about the y-axis, β; and roll about the x-axis, γ) and rotational velocities (ωx,
ωy, and ωz). Both data sets were collected synchronously at a sampling rate of 18 measurements per second for
a duration of 167.9 seconds, generating time series of 3023 time steps.

2.2 Data analysis

The data were processed in MATLAB (MATLAB R2020a, The MathWorks, Inc., Natick, Massachusetts, United
States). Only data from the calibration was used, as the sequence of movements the subject performed were
known and could be classified. As a first step, a skeleton model of the user’s body was reconstructed from the
three-dimensional positions of each joint (Figure 2). A reference frame was defined with its origin fixed at the
spine, between the shoulder.16 Its X-axis was parallel to the ground, its Y -axis was perpendicular to ground,
and its Z-axis was orthogonal to both, following the right-hand rule. The vectors that corresponded to limb
segments were computed by subtraction of the coordinates of the proximal joint from the coordinates of the
distal joint.

For each time step, four instantaneous joint angles were computed for each arm: shoulder horizontal abduction
(θ1,R and θ1,L), shoulder flexion (θ2,R and θ2,L), wrist flexion (θ3,R and θ3,L), and elbow flexion (θ4,R and θ4,L),
where R and L denote the right and left arms, respectively. Horizontal shoulder abduction angles were obtained
by projecting the model’s upper arm onto the anatomical transverse plane and computing the angle it forms
with respect to the anatomical sagittal plane through the inverse tangent. Likewise, shoulder flexion angles were
obtained by projecting the model’s arm onto the anatomical sagittal plane and computing the angle it forms
with respect to the anatomical transverse plane. Elbow and wrist angles were computed using the scalar product
between the model’s arm and forearm, and between the model’s forearm and hand, respectively.

For added insight on the kinematics of movements, instantaneous angular velocities were computed for each
joint. A central difference scheme was applied on time series of angle measurements to obtain θ̇1,R, θ̇1,L, θ̇2,R,

θ̇2,L, θ̇3,R, θ̇3,L, θ̇4,R, and θ̇4,L. Overall, 22 variables were measured at each time step (Table 1).

Time series were visually inspected to identify intervals of movement and the type of movement performed.
To standardize the selection of interval boundaries, movement was defined as an instance where IMU rotational
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Figure 2. Reconstruction of the user’s skeleton from the Microsoft Kinect Data (A). A reference frame is fixed at the
model’s cervical spine, between the shoulders. The X- and Y -axes are embedded in the anatomical coronal plane, the X-
and Z-axes are contained in the transverse plane, and the Y - and Z-axes form the sagittal plane. Horizontal shoulder
abduction angle (θ1) is computed by projection of the model’s upper arm onto the anatomical transverse plane (B).
Shoulder flexion angle (θ2) is computed by projection of the model’s upper arm onto the anatomical sagittal plane (C).

velocity exceeded 2 deg/s. For each movement type and direction, data points within its intervals were aggregated
into a single subset. In total, nine subsets were created: left horizontal shoulder abduction, right horizontal
shoulder abduction, shoulder flexion, shoulder extension, counterclockwise rotation, clockwise rotation, wrist
flexion, wrist extension, and elbow flexion.

PCA and isomap were applied on the subsets. The isomap algorithm constructed the network based on the
Euclidean distances between pairs of data points. For every data point, other data points that were within a
fixed radius ε were considered as neighbors. The radius was determined as the fifth percentile of all Euclidean
distances in the manifold, such that each manifold for each movement had a unique value for ε.

3. RESULTS

Both PCA and isomap successfully reduced the dimensionality of each movement type. Embedding of the data
set into three dimensions by PCA and isomap yields different manifolds, however, their boundaries are not
distinctly demarcated (Figure 3).

For all movements types, residual variances decreased as the dimensionality increased. Nonetheless, residual
variances were generally similar between the methods (Figure 4). In all curves, residual variance was slightly
lower for isomap than for PCA when reduced to a single dimension. With added dimensions, the effects were
soon exchanged and PCA demonstrated lower residual variance than isomap. Points at which the curves abruptly
plateau with added dimensions, otherwise known as “elbows”, were observed only for shoulder flexion and elbow
flexion for both PCA and isomap.

4. DISCUSSION

We present a low-cost platform for bimanual training in stroke telerehabilitation. The platform integrates a
simple dowel, an IMU, and a Microsoft Kinect, to create a natural user interface for a dedicated citizen science
software. By manipulating the dowel bimanually, patients are able to perform therapeutic movements that are
commonly prescribed for home-based rehabilitation, while also contributing to authentic research efforts.
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Table 1. Summary of the variables collected by the Microsoft Kinect and IMU. A subscript L or R indicates the left or
right arm.

Sensor Variable Observation Notation
Microsoft Kinect u1 right shoulder abduction angle θ1,R

u2 right shoulder flexion angle θ2,R
u3 right elbow flexion angle θ3,R
u4 right wrist flexion angle θ4,R
u5 left shoulder abduction angle θ1,L
u6 left shoulder flexion angle θ2,L
u7 left elbow flexion angle θ3,L
u8 left wrist flexion angle θ4,L
u9 right shoulder abduction velocity θ̇1,R
u10 right shoulder flexion velocity θ̇2,R
u11 right elbow flexion velocity θ̇3,R
u12 right wrist flexion velocity θ̇4,R
u13 left shoulder abduction velocity θ̇1,L
u14 left shoulder flexion velocity θ̇2,L
u15 left elbow flexion velocity θ̇3,L
u16 left wrist flexion velocity θ̇4,L

IMU u17 roll angle γ
u18 pitch angle β
u19 yaw angle α
u20 rotational velocity about x-axis ωx

u21 rotational velocity about y-axis ωy

u22 rotational velocity about z-axis ωz

A) B)

Figure 3. Three-dimensional embedding of the left horizontal shoulder abduction manifold using A) PCA and B) isomap.
D1, D2, and D3 represents the first three embedded dimensions. In PCA, these embedded dimensions are principal
components, constructed from a linear combination of the original variables. In Isomap, they are nonlinear and need to
be inferred by inspection.

Toward consolidation of the platform into a genuine telerehabilitation paradigm, we aim to program classifi-
cation of movements through data-driven methodologies. Automatic identification of movements would enable
real-time feedback to prevent patients from performing undesirable movements,2 as well as providing clinicians
with interpretable scores of motor performance for remote assessment.

To this end, we compared two algorithms for dimensionality reduction: PCA and isomap. If our data was
underscored by nonlinear relationships, we would expect isomap to recover a manifold different than the one
embedded by PCA. However, isomap created a manifold with no distinct boundaries and visible topology. Fur-
thermore, examination of the residual variance indicated that both methods equally preserve variation. Therefore,
it seems that isomap does not outperform PCA.
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Figure 4. Residual variance of each movement for PCA (blue) and isomap (red).

Several factors might limit our findings. First, it is possible that insufficient data points were used in this
study. Collecting data on more iterations of each movements might yield a more defined manifold. Second, it
is tenable that noise from the Microsoft Kinect falsely led to greater variation along certain dimensions. For
example, when joints are occluded from its view, the Microsoft Kinect estimates their position and introduces
error into the measurement.17 With our platform, a user may hold the dowel such that the Kinect’s view of the
elbow and shoulder joints is occluded by the hands. In such a case, the Kinect may introduce erroneous elbow
flexion and shoulder abduction angles.17

In the next steps, alternative dimensionality reduction methods may be explored on larger data sets. Such
methods may include diffusion maps14 and locally linear embedding.18 Once the method of choice is selected,
different classifiers may be explored as well, including decision trees,19 support vector machine,20 K-nearest
neighbors,21 and RUSBoost.22 These effort will provide insight into programmed assessment of upper-limb
movements and its prospects in telerehabilitation.
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