
11 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dissecting a Data-driven Prognostic Pipeline: A Powertrain use case / Giordano, Danilo; Pastor, Eliana; Giobergia,
Flavio; Cerquitelli, Tania; Baralis, Elena; Mellia, Marco; Neri, Alessandra; Tricarico, Davide. - In: EXPERT SYSTEMS
WITH APPLICATIONS. - ISSN 0957-4174. - ELETTRONICO. - (2021), p. 115109. [10.1016/j.eswa.2021.115109]

Original

Dissecting a Data-driven Prognostic Pipeline: A Powertrain use case

Publisher:

Published
DOI:10.1016/j.eswa.2021.115109

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2898758 since: 2021-05-10T14:48:27Z

Elsevier

Dissecting a Data-driven Prognostic Pipeline: A
Powertrain use case

Danilo Giordanoa,∗, Eliana Pastora, Flavio Giobergiaa, Tania Cerquitellia,
Elena Baralisa, Marco Melliaa, Alessandra Nerib, Davide Tricaricob

a Politecnico di Torino, Turin, Italy
danilo.giordano@polito.it, eliana.pastor@polito.it, flavio.giobergia@polito.it,

tania.cerquitelli@polito.it, elena.baralis@polito.it, marco.mellia@polito.it
bPunch Torino (Former GM Torino), Turin, Italy alessandra.neri@punchtorino.com,

davide.tricarico@punchtorino.com

Abstract

Nowadays, cars are instrumented with thousands of sensors continuously col-

lecting data about its components. Thanks to the concept of connected cars,

this data can be now transferred to the cloud for advanced analytics function-

alities, such as prognostic or predictive maintenance. In this paper, we dissect

a data-driven prognostic pipeline and apply it in the automotive scenario. Our

pipeline is composed of three main steps: (i) selection of most important sig-

nals and features describing the scenario for the target problem, (ii) creation of

machine learning models based on different classification algorithms, and (iii)

selection of the model that works better for a deployment scenario. For the

development of the pipeline, we exploit an extensive experimental campaign

where an actual engine runs in a controlled test bench under different working

conditions. We aim to predict failures of the High-Pressure Fuel System, a key

part of the diesel engine responsible for delivering high-pressure fuel to the cylin-

ders for combustion. Our results show the advantage of data-driven solutions

to automatically discover the most important signals to predict failures of the

High-Pressure Fuel System. We also highlight how an accurate model selection

step is fundamental to identify a robust model suitable for deployment.

∗Corresponding author
Email address: danilo.giordano@polito.it (Danilo Giordano)

Preprint submitted to Elsevier May 8, 2021

Keywords: predictive maintenance; automotive; machine learning;

classification; svm; neural network.

1. Introduction

With the introduction of the Internet of Things paradigm, data that was

previously constrained at the device level can now be transferred and processed

elsewhere in the cloud. This enables new possibilities, particularly in those

fields where the main limitations were not due to a shortage of data, but rather

a limitation in the on-board computing power.

Automotive is one such field: vehicle sensors generate large amounts of data,

typically processed by on-board Electric Control Units, with very limited hard-

ware capabilities. Today, this data could be transferred to the cloud, and become

a precious mine of useful information to exploit advanced data analytics func-

tionalities. Among these, prognostics, or predictive maintenance, is seen as the

most interesting opportunity to reduce costs and improve customer satisfaction.

This study focuses on the High-Pressure Fuel System (HPF), a key part of

the diesel engine responsible for delivering high-pressure fuel to the cylinders

for combustion. To guarantee efficient combustion, the HPF is responsible for

the injection timing, quantity, and pressure (DieselNet. Diesel fuel injection.,

2009). These are key factors to guaranteeing both good performance and to limit

emissions of polluters. Malfunctioning in the HPF results in the car suddenly

stopping while running.

This work aims at engineering a prognostic pipeline to detect the initial

symptoms of a drift from the HPF expected behavior. Currently, on-board

engine data is recorded by the Engine Control Unit (ECU), which is only capable

of detecting significantly degraded conditions i.e., to trigger a Diagnostic Trouble

Code (DTC), and to alert the driver that the vehicle immediately needs service.

Through a prognostic approach, we aim to detect the problem before a serious

issue happens, implementing a predictive maintenance strategy i.e., recalling to

the service a car before the DTC fires, thus allowing for an early intervention.

2

For this work, we collaborate with General Motors (GM). GM is a leader

in the application of automotive prognostics, which is marketed in the US since

2015 under the name of OnStar Proactive Alerts, available on millions of pro-

duction vehicles. Here we focus entirely on a data-driven approach to prevent

the DTC alert. We run experiments in a controlled test bench, where all the

engine data is collected. Domain experts control the engine settings to recreate

the conditions of a faulty or healthy HPF. Our goal is to use the collected engine

data to understand what the underlying condition of the HPF is (and whether

it is transitioning to a faulty state).

There are lots of challenges to build a production-suitable system. Among

them, two prove to be particularly complex: (i) the limited computing resources

and (ii) the constraints on the quality of the trained model. More specifically,

the first problem is due to the ECU not being suitable for machine learning

purposes. Because of this, a cloud-based approach has to be adopted. The price

to pay is that the more interesting data to be analyzed needs to be transferred

from the ECU to a remote server, carefully considering the cost to data transfer.

Hence, a careful data selection is required to minimize the cost of the transfer.

This has a significant impact on the definition of the machine learning solution to

consider. As for the second problem, the model must guarantee certain levels of

quality to make it deployable in production. Limited performance, would result

in calling to the service either too many cars, increasing costs and harming

customers’ trust; or too few cars, making the model useless. These translate

into tight constraints on precision and recall.

With these considerations in mind, we design, develop, and thoroughly test

a complete prognostic pipeline for the HPF system. We start from hundreds of

sensor signals collected by the ECU. We select the most representative signals

based on, domain knowledge, data analysis, and correlation analysis. Next, we

transform collected signals into features to train multiple classifiers obtaining

different models. We then carefully evaluated these models in terms of per-

formance and robustness to identify the final model suitable for a deployment

scenario.

3

As a final validation experiment, we re-apply the engineered pipeline to a

completely new set of data and on a different engine (i.e., a different model for

a different vehicle). Our results, demonstrate the promising direction of the

approach, achieving performance widely above the constraints imposed by the

carmaker on both the engines.

The paper is organized as follows: in Sec. 2 we introduce our dataset, the

labeling policy used to identify malfunctions in the HPF system and define our

problem. Next, in Sec. 3 we describe how we preprocessed the engine data to

select only the most important signals, and then how we extract and select the

classification features. In Sec. 4 we present our classification methodology, while

in Sec. 5, we discuss how we select the final model usable in deployment. In

Sec. 6 we apply the full pipeline on our dataset to validate our approach. In

Sec. 7, we present practical challenges related to the on-board implementation

and discuss possible decision-making policies about recalling a car to the service

for predictive maintenance. In Sec. 8 we summarize the related work. Finally,

in Sec. 9 we conclude the paper.

2. Scenario

In this section, we detail the data collection, the experimental setting, the

dataset, and the labeling policy. Then, we define our problem and outline the

proposed prognostic pipeline.

2.1. Bench Experiment Methodology

To explore the different conditions in which the HPF system works, we run

a thorough experimental campaign using a test bench environment. In the test

bench, we instrument an actual engine with its on-board sensors and simulate

real driving scenarios. Test benches are commonly used to collect large amounts

of data without having a pilot driving an actual car. This introduces some

significant advantages: first, the same scenario and engine configuration can be

reproduced easily as it is not affected by aleatory events; second, large amounts

of data can be collected at a reduced cost (e.g., an engine in a test bench can

4

run continuously and overnight). This, however, introduces some complications:

test bench data is not affected by some variables that are present while driving a

real car (e.g., the effect of vibrations of components, weather conditions, bumpy

roads, etc.). These deviations from the “real-world” scenario, though, are often

negligible and the quality of data is in most cases more than satisfactory. As a

matter of fact, test bench data is even used in the early stages of the preparation

for homologation tests.

To monitor different HPF system working conditions, we impose different

engine conditions by manually tuning the HPF parameters of two critical com-

ponents, namely the high-pressure fuel pump reference level and the valve timing

aperture. In particular, we manually force these components to work in condi-

tion drifting from the specifications. This drift affects the fuel pressure and the

fuel flow simulating common HPF malfunctions. This translates into emulat-

ing a faulty HPF system up to a point where the ECU triggers a major DTC

failure and our engine suddenly stops. In each experiment, we follow a “driv-

ing cycle”, i.e., a predefined sequence of gas pedal presses and releases coupled

with different engine loads to reproduce different driving situations (e.g., urban,

extra-urban, highway). We focus on three standard homologation cycles, plus

two real driving cycles obtained by recording actual pilots during regular driv-

ing sessions. For the homologation cycles, we use the Real Driving Emissions

(RDE) (Suarez-Bertoa et al., 2019), Worldwide Harmonized Light Vehicles Test

Cycle (WLTC) (Tutuianu et al., 2015) and Artemis standard test cycles (Andr,

2004). Each cycle lasts from 30 minutes up to 1 hour as described in Table 1.

We collect data for each HPF configuration, and for each cycle. Overall we run

more than 230 experiments.

During the experiment, the test bench records more than 600 signals. These

signals are collected from various locations in the engine, monitoring different

aspects of it: from signals directly monitoring the fuel rail and fuel injection

system, to signals monitoring the engine at large like the torque control, the

engine airflow or the DTCs, up to signals monitoring the after treatment system

such as NOx emissions, catalytic converter or exhaust temperature. Such a large

5

Table 1: Dataset description per driving cycle.

Cycle Duration Green Yellow Red Total

H
o
m

ol RDE 60 25 24 38 87
WLTC 31 28 37 22 87
Artemis 54 15 7 4 26

R
ea

l Driver1 43 15 7 4 26
Driver2 66 19 1 2 22

Table 2: Signals overview.

Description Number
Fuel Rail 184
Fuel injection 182
Engine airflow 33
NOx emissions 30
Oxygen levels 26
Torque control 21
Catalytic converter 15
Exhaust manifold 13
Exhaust temperature 12
Engine rotation 11
After treatment (Diesel particle system) 10
Diagnostic Trouble Codes (DTC) 5
Others 74
Total 616

collection of signals guarantees to our system a broad view of what could be

the impact of a malfunctioning HPF system on the rest of the engine. Table 2

summarizes the signals into 13 categories based on what they monitor. While

the nature of these signals is important from a domain expert perspective, we

have handled them with a data-driven, domain-agnostic approach. Thus, in the

following, we will avoid making domain-specific considerations.

Let xi(t) be the i− th signal at time t, and X = {xi(t),∀i} the set of signals.

The ECU records samples of signal xi(t) with two possible sampling strategies:

• Linear sampling, the ECU records samples of xi at a constant frequency.

The frequency span from 1 Hz, for slow signals, up to 160 Hz for fast

signals.

• Angular sampling: the ECU records samples of xi with a frequency that

6

depends on the engine rotation speed. The faster the engine’s rotation,

the more frequent the samples are.

This poses practical challenges when processing signals having different sam-

pling rates and strategies.

2.2. Labeling Policy

General Motors experts provide a labeling policy linked to the functioning

of the physical system. The labeling policy is based on the highly non-linear

error signal Perror. In detail, the Perror is computed in two steps. Firstly,

domain experts compute, in any time (t), the absolute difference X(t) between

the target and the measured pressure in the common rail as follows:

X(t) = |Ptarget(t)− Pmeasured(t)|

Then, a smoothing function removes spikes due to wrong readings and local

phenomenon as follows:

Perror(t) = (1− k) ∗X(t− 1) + k ∗X(t)

The Perror is computed on-board with a sampling frequency of 160 Hz, i.e.,

generating 160 samples each second.1

Having the Perror for the entire experiment, domain experts label the ex-

periment with a class label as follows:

• Red: the HPF is in a critical state, and the car must go to the service.

This happen when the Perror > α for 5 seconds continuously any time

during the cycle;

• Yellow: the HPF system starts drifting from the nominal behavior, but it

is not in a critical state. This happen when the Perror > β for 2.5 seconds

continuously any time during the cycle;

1Full details about the error computation are not disclosed due to the sensitive nature of
this information.

7

• Green: the HPF system works normally, i.e., in all other cases.

Note that a malfunctioning HPF system can still work properly for some

maneuver, and it can exhibit malfunctioning period only during some short pe-

riod of time which correspond to specific maneuver (e.g., high demand of torque

for a highway overtake, or for up-hill start). For this, we label each experiment

separately, and the labeling policy requires the Perror to be consistently offset

for quite sizable amount of time.

Finally, during each cycle domain experts check whether the engine triggered

any DTC error related to the HPF system. If so, we discard those experiments

as a DTC indicates that the HPF system was already compromised.

Since we want to have data about the HPF behaviour in different situations,

for each configuration of the HPF parameters (i.e., high-pressure pump and

valve), we performed from 2 to 5 different experiments with different driving

cycles.

2.3. Problem definition

Given all signals recorded by the ECU, our goal is to identify whether the

HPF system is drifting from the nominal working condition. Hence, we aim to

give a prognosis of the current HPF system condition rather than predict the

remaining useful life of the component. A correct prognosis would allow us to

predict the needs of the maintenance, warning drivers that the engine must be

checked, or the remote assistance to recall the vehicle.

For this, we could formulate the problem either as a regression problem, in

which we predict the Perror signal, or as a classification problem, in which we

predict the label to assign to the engine. In the former case, we could achieve

a very quick reaction speed by predicting sample by sample the Perror signal.

However, recalling that this signal is sampled at a frequency of 160 Hz (i.e., every

6.25 ms), this would require, either to implement the regressor directly on-board,

or to send to the cloud all the signals’ samples at a very high frequency. Given

the hardware constraints and the impossibility to implement machine learning

functionality directly on-board, the former represents an infeasible solution in

8

Signals
Selection

Dataset

Data
Transformation

Model Training
and Tuning

Features
selection

Preprocessing

• Training size
• Hyperparameters

Model Selection

Figure 1: Overview of the predictive maintenance pipeline.

our scenario. Similarly bandwidth constraints make it unfeasible to send all data

to the cloud (more details follow in Sec. 7.1). Al last, the carmaker is interested

in understanding classes of malfunctions to make a prognosis of which car should

be recalled to the service rather than understanding the punctual behaviour of

the error signal. As such, here we address the prediction of HPF malfunctions

by using a classification approach. For this, we design the complete data-driven

pipeline described in Fig. 1. We get in input the raw engine data, and performs

the following steps:

Preprocessing: we select the most important signals and transform them into

features suitable for the classification task. The latters are then filtered via a

feature selection step.

Model Training and Tuning: we build and assess the performance of dif-

ferent models exploiting multiple classification algorithms with an extensive

hyperparameter tuning.

Model Selection: we select the final model suitable for the deployment.

3. Preprocessing

The preprocessing step aims to prepare the data for the classification task

by performing three stages: (i) signal selection, (ii) data transformation, and

(iii) feature selection.

3.1. Signal Selection

The ECU exposes hundreds of signals to monitor the engine status. Here,

we start from a subset composed of about 600 signals. Not the all of them are

useful to predict the HPF status. As such, we perform signals selection to keep

9

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Time[s]

x1 x2 x3

Figure 2: Sampling Difference

only the most informative signals discarding the useless ones. To this aim, we

exploit a mix of data-driven techniques and domain knowledge.

Firstly, with the help of domain experts, we discard all signals that are

weakly related with the addressed problem. For instance, we remove signals

related to the battery charge level or the engine cooling system that are almost

independent of the HPF system. Secondly, we remove signals that are constant

over time and do not bring any information. We are left with a subset of signals

X̂ ⊆ X.

Next, we perform automatically a signal selection based on the correlation

analysis by Giobergia et al. (2018 October) which exploits the Pearson’s corre-

lation coefficient between pairs of signals. It demands that the signal samples

must be aligned. As we discussed in Sec. 2.1, given a pair of signals xi and xj ,

their sampling frequencies2 Fi and Fj can be very different. As a result, their

samples will be misaligned. When this appends, we must upsample the signal

to the highest frequency. We apply the sample and hold technique to keep only

real signal values. However, we must carefully consider whether compute the

correlation between signal xi and xj is reasonable. Look for example Fig. 2,

which reports three signals x1, x2, and x3 with three different sampling fre-

quencies F1, F2, and F3. While x2 and x1 have similar frequencies, upsampling

x3 at F1 results in a signal constant most of the time (x3), degrading the cor-

relation analysis. As such, we compute the correlation between pairs of signals

2For angular signals, the sampling frequency is computed as the mean sampling frequency.

10

only if the ratio of their frequencies is within a reasonable range. In a nutshell,

given two signals x1 and x2, and their respective frequencies F1 and F2, with

F1 < F2, we upsample F2 only if F2 ≤ F1

4 .

Next, we use the algorithm proposed in (Giobergia et al., 2018 October) to

aggregate signals x ∈ X̂ in groups g ∈ G. We greedily create groups of strongly

correlated signals by using a parameter called rmin. To tune this parameter, we

employ the identification of the knee point proposed by Satopaa et al. (2011,

June). As output, the algorithm exposes for each group g ∈ G the signals x ∈ g.

Rather than using a domain-agnostic heuristic to select which signals should be

kept, the domain experts analyzed the groups g ∈ G to select which signals

should be selected as best representative for the group.

In detail, domain experts select the most general signals recorded by different

ECUs. In this way, the learning process performed by the current signal selection

process can be easily transferred to cars monitored by a different ECU. Secondly,

some signals may derive from a mathematical model describing a phenomenon

directly monitored by a sensor. The former is typically used to identify wrong

sensor readings. In this case, domain experts discard the mathematical model

signal in favor of the raw sensor data. Thirdly, two signals may be strongly cor-

related because the first one directly monitors raw data from a sensor, while the

second is a compensation of the first signal. This appends when the sensor data

only partially describes a phenomenon, hence other environmental information

should be used to get the correct readings. For example, the oxygen signal mon-

itored by the engine must be compensated with the airflow pressure to get the

correct oxygen percentage. In this case, the domain experts select the compen-

sated signal. Finally, in some cases, the same phenomenon can be monitored at

different points of the engine, to cope with different software components. In

this case, domain experts kept the most upstream signal.

After this stage, we remain with a subset of signals X̃ ⊆ X̂.

11

0 60 12
0

18
0

24
0

Time[s]

15
10

5
0
5

10

Va
lu

e

(a) Time Windows aggregation

15 10 5 0 5 10

Value

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(b) Feature Extraction

Figure 3: Data Transformation

3.2. Data Transformation

After the signal selection stage, we model signals in features usable by the

classifiers. Although the ECU records from thousands up to half a million sam-

ples per signal in an hour, the degradation phenomenon is not visible analyzing

the data sample by sample, but rather, as discussed in Sec. 2.2, by analyz-

ing how the engine runs for a longer period of time. As such, we exploit the

ECU computational capabilities to, aggregate samples into time windows w(k),

and to summarize each signals with statistics. In a nutshell, given a signal

x and a sample x(t), the sample is assigned to a time window w(k) such as

w(k ∗ ∆T) ≤ t < w((k + 1) ∗ ∆T), where ∆T is the time window length. For

example, look at Fig. 3a, where we choose ∆T = 120s, we aggregate all samples

having 0 ≤ t < 120 in the window with ID k = 0.

Then, we summarize each signal in the time window by means of statistics

i.e., the features. While these features remove the temporal sequence among

samples, they help representing characteristics of the time series that would

not be visible in a sample by sample representation. For the representation of

the time series, we select a set of Np percentiles. In Fig. 3b, we summarize

the signal in the time window with 11 percentiles (black dots). The percentiles

can be seen as samples of the cumulative distribution function (CDF) of the

time series. Studying and comparing CDFs makes it easy to identify those

12

phenomena that manifest themselves in terms of variations in the distribution

of the values. This brings our feature space to F = X̃ ∗Np.

3.3. Feature Selection

To reduce the data to process and to transmit, we perform a feature selection

stage based on a wrapping approach (Blum & Langley, 1997). In a wrapping

solution, the feature selection is executed by evaluating the performance of dif-

ferent feature subsets with a classification algorithm (Blum & Langley, 1997).

The main advantage of this solution is that it directly shows the predictive per-

formance of the feature subset highlighting the combined prediction capabilities

of the selected features. However, finding the best feature selection demands

an exhaustive search, as all possible feature subsets should be evaluated. Since

this is infeasible, here we propose a heuristic approach that reduces the compu-

tational complexity from an exponential problem to a linear one.

Firstly, we rank the features f ∈ F by using multiple ranking solutions, each

one producing a different ranking R.

We exploit two algorithms to ranks the features.

• mRMR: it is a state of art a priori method. It ranks the features by means

of the Mutual Information Difference (MID), a metric that combines the

importance of each feature (measured as the correlation with the target

class), with the redundancy that the feature would introduce (Ding &

Peng, 2005);

• Feature importance for the random forest : we train a random forest

model, and then we extract the Feature Importance (FI) which describes

how much each feature contributes to the classification process (Breiman,

2001).

We rely on these two algorithms as the former balances the importance and

the redundancy of each feature, independently on how these are used during

classification, while the latter gives us insights about possible interactions among

features during the decision process.

13

From these algorithms, we derive three distinct rankings Ri, namely:

1. mRMR ranking using the red class as the target;

2. Random Forest (RF) configured with hyperparameters as suggested in (Genuer

et al., 2008), trained using the training set, and all the features in F ;

3. Random Forest Optimized (RF-Optimized): as before, but we optimize

the hyperparameters via a coarse grid search. In the details, given a

hyperparameter set, we train the model with all the features and test

it with the Validation set. We pick the hyperparameters that lead to the

best model (highest F-measure on the red class) and consider the resulting

feature ranking.

Once rankings are derived, we iteratively create different feature subsets

SRi
(j), where each one is composed by the top j features from the ranking Ri:

SRi(j) =

j⋃
k=1

Ri(k) j ∈ (1, .., |Ri|)

Then, we evaluate each feature subset SRi(j) with a classification algorithm.

We train a model using SRi
(j) as input features and we assess each model

performance. Finally, we use a learning curve (Sammut & Webb, 2011) to

evaluate, for each ranking Ri, how the performance changes with increasing

information i.e., for each SRi(j) j ∈ (1, .., |Ri|).

4. Model Training and Tuning

In this step, we employ different classic and recent classification algorithms

to model the high-pressure fuel system behavior, namely, we use: Logistic re-

gression (Hastie et al., 2001), Random Forest (Breiman, 2001), XGBoost (Chen

& Guestrin, 2016), Support Vector Machines (Cortes & Vapnik, 1995), and

Artificial Neural Networks (Schmidhuber, 2015).

• Logistic regression (LR) (Hastie et al., 2001) is a linear model that mod-

els the posterior probabilities of the outcomes of a dependent variable via

14

linear functions on multiple independent variables. In our pipeline, we ex-

ploit multinomial logistic regression that generalizes logistic regression to

multiclass problems and we use regularization to balance the bias-variance

trade-off.

• Random Forest (Breiman, 2001) is an ensemble learning method that con-

structs a multitude of decision trees at training time and outputs the class

that is the mode of the classes of the individual trees.

• XGBoost (Chen & Guestrin, 2016) is a gradient boosting technique (Fried-

man, 2001) applied to decision trees. Through different boosting rounds,

a decision tree is trained to iteratively improve its performance on previ-

ously misclassified training points. In particular, XGBoost is designed to

be an optimized distributed gradient boosting library.

• Support Vector Machines (SVM) (Cortes & Vapnik, 1995) are a set of dis-

criminative classifiers that find the hyperplane that better categorize the

data by maximizing the margin. SVMs can handle classes with complex

non-linear decision boundaries.

• Artificial neural networks (ANN) (Schmidhuber, 2015) are a class of tech-

niques inspired to the biological neural systems. ANN are based on a set

of connected units, called artificial neurons. Neurons are usually struc-

tured in connected layers divided into an input layer, one or more hidden

layers, and an output layer. In particular, in our pipeline, we exploit the

multilayer perceptron (MLP) feed-forward artificial neural network.

We train each model with experiments belonging to a training set. Then,

we evaluate the model performance through a separate set called validation set.

To tune the classifier hyperparameters, we run a grid search optimizing the

performance on the validation set. This allows us to find, for each classification

algorithm, a candidate model suitable for the deployment phase.

15

Performance metrics and visualization

Classification performance is assessed through quality metrics of the trained

model including precision, recall, and F-measure and visualization approaches.

To compute these metrics, first we need to find for each class c the:

• True Positives (TP): the number of instances belonging to c, correctly

labeled in the c class;

• False Positives (FP): the number of instances not belonging to class c,

wrongly labeled in the c class;

• False Negatives (FN): the number of instances belonging to c, wrongly

labeled in a different class.

Then, we compute:

• Precision: is a measure of exactness. It represents the percentage of in-

stances labeled as belonging to class c that actually belong to it (Han

et al., 2012).

Precision =
TP

TP + FP

• Recall: is a measure of completeness. It captures the percentage of in-

stances of class c that are labeled as such (Han et al., 2012).

Recall =
TP

TP + FN

• F-measure: is used to summarize precision and recall metrics. F-measure

is defined as the harmonic mean of precision and recall and balances be-

tween precision and recall.

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

Precision, recall, and F-measure allow one to summarize classification per-

formance. To provide insights about overall mispredictions we rely on the Con-

fusion matrix (Han et al., 2012). Instead, to check the mispredictions on single

16

0 2 4

Experiment ID

0

2

4

6

8

10

W
in

do
w

ID

R
R

G R
R R
R
R

Y Y Y
Y Y Y
Y Y Y Y

R
R

RED YELLOW GREEN

Figure 4: Mismatch matrix example.

experiments, we propose the usage of a novel visual representation, referred as

mismatch matrix. The mismatch matrix represents, for each experiment e ∈ val-

idation set, whether a time window we(k) is misclassified or not. An example of

a mismatch matrix is reported in Fig. 4. The x axis reports the experiments e

under evaluation, grouped by class label (on top of x-axis). While the y axis re-

ports the experiments time windows w(k). The color of the cell depends on the

predicted class. White means that the prediction is correct, otherwise the cell

is colored with the mispredicted class color. Hence, the mismatch matrix allows

us to inspect individual wrong classifications maintaining the concept of a cycle

and time window within a cycle, thus highlighting possible patterns. For exam-

ple, Fig. 4 shows that experiment 3 results are critical, with almost all windows

w3(k) that are misclassified as red (instead of yellow). Inspecting Fig. 4 by row,

it reveals frequent misclassification patterns at specif times e.g., time window 7

and 8 are frequently (mis)classified as yellow. This highlights where the model

lacks predictive capabilities, hence where the model needs improvements.

In our analysis, we use precision, recall, and F-measure for the red class to

optimize model parameters. We then use the confusion matrix and the mismatch

matrix to easily identify classification errors. With the latter, being particularly

useful for the final decision-making process as we will discuss in Sec. 7.2.

17

5. Model selection

After finding the best candidate model for each classifier, we select the final

model that will be used in deployment. We need to find both which family of

models to use, and then which hyperparameters to set. For this, we look for

models that: (i) achieve stable classification performance while changing the

training set size, and (ii) where the hyperparameters lie in a part of the hyper-

parameters space where also other configurations achieve similar performance.

Both conditions allow us to select a solution that is robust and generic, i.e., does

not suffer for overfitting. Once we select the final model, we verify it with a

new independent test set to verify generalization capabilities. In the following,

we detail our approach.

Training size The study of the training set size is instrumental to balance

the cost of producing training data and the model fitting process. Indeed,

collecting experimental data has a cost in terms of data acquisition, labeling,

and data preprocessing. This analysis shows how much we benefit from adding

more training data, assessing the acceptable amount of data (Provost et al.,

1999, August).

For this, we rely on the learning curve (Blum & Langley, 1997). Starting

from an empty set of experiments T (j), where j is the step we are performing, we

iteratively add experiments e to T (j) to grow the training set. At each iteration,

we randomly add one experiment per class to keep the classes balanced. We

then train a new model for each classifier. With the best hyperparameters

selected when using the entire training set. Next, we evaluate precision and

recall metrics, testing the model with the validation set, and with T (j) itself.

We continue the process until T (j) includes all experiments. Since we are adding

experiments randomly, we repeat the entire process N times. Finally, we plot

the average learning curve in function of j.

Hyperparameters stability By optimizing hyperparameters for a given

validation set we might suffer from overfitting, i.e., choosing a very specific set

of hyperparameters. To avoid this, we study the impact of little hyperparameter

18

perturbation with respect to the one selected by the candidate models. Intu-

itively, this allows us to discover whether the candidate models lie in an area

where also other configurations offer similar performance eventually highlighting

instability.

6. Experimental results

We evaluate the proposed pipeline on the real data collected with the test

bench described in Sec. 2.1. Collected data is split into three disjoint sets,

the training set composed by only experiments from homologation cycles, the

validation set composed only by experiments of Driver1 cycle, and the test

set composed by a mix of experiments from RDE cycles, Driver1 cycles, and

Driver2 cycles. The test set includes a mix of cycles to analyze the performance

of the proposed approach on a heterogeneous set of data. Tab 3 summarizes the

cardinality of each set and the label distribution. We recall here that our focus

is to reach high-quality metrics for the red class since mispredictions on this

class have higher costs with respect to the other classes. Hence, the carmaker

defined quality thresholds coming from the business requirements to send to

maintenance as many red vehicles as possible, and possibly limit green or yellow

ones. Thus, we subjected the classification setting to minimum thresholds of

precision and recall for the red class. Specifically the candidate models must

have at least a precision of 0.7 and a recall of 0.5.

Table 3: Sets description

Cycle Green Yellow Red Total
Training set 68 68 64 200

Validation set 15 7 4 26
Test set 19 1 2 22

6.1. Preprocessing results

Here we present the results for the preprocessing step. Table 4 briefly sum-

marizes the results and their impact on the classification process.

19

Table 4: Preprocessing overview

Signal Selection
Step Original Selected Precision Recall F-measure
1) Domain Knowledge 614 551 - - -
2) Data Analysis 551 285 0.534 0.989 0.693
3) Correlation 285 43 0.729 0.489 0.585

Data Transformation
Step Original Transformed
4) Summarization 43 Signals 473 Features

Features Selection
Data Original Selected Precision Recall F-measure
5) Features 473 25

0.824 0.852 0.838
(Signals) 43 6

6.1.1. Signal Selection

In each experiment, we collect more than 600 signals. We first remove signals

that are totally unrelated with the addressed problem reducing to 551 signals

(Table 4 signal selection (1)). Next, we discard signals not carrying any infor-

mation as they take exactly the same value over all experiments. We are left

with 285 signals (Table 4 signal selection (2)).

Next, we execute the correlation-based signal selection algorithm. This al-

gorithm requires rmin, the threshold above which two signals are considered

strongly correlated. We automatically choose the best rmin based on the knee

point identification (Satopaa et al., 2011, June). Fig. 5 reports the normalized

number of groups that will be created for different values of rmin. We choose

rmin ∈ [0.7, 1]. The knee point identification locates the knee at rmin = 0.95.

This value allows us to group only strongly correlated signals while limiting the

number of groups to 40% more groups with respect to rmin = 0.7. From each

group the domain experts select the most representative ones as discussed in

Sec. 3.1. At the end of the process we are left with 43 representative signals

(Table 4 signal selection (3)).

6.1.2. Data Transformation

To transform signals in features, the data transformation stage requires the

definition of the window length ∆T and the percentiles to extract. In this

stage, the choice of ∆T is driven by how often we want to verify the engine

20

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0
0.9

1
0.9

2
0.9

3
0.9

4
0.9

5
0.9

6
0.9

7
0.9

8
0.9

9
1.0

0

r_min

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
#G

ro
up

s

Figure 5: Choose Rmin

health condition. Intuitively, one desires to check it as frequently as possible.

Yet the signals’ frequency takes an important role as a short time window does

not allow the system to collect enough samples to reliably estimate the signal

distribution. Given the slowest signals are sampled at 1 Hz, to collect enough

samples of all signals, we use a time window of length ∆T = 120s which results

also reasonable by domain experts. A sensitivity analysis of this parameter will

be given in Sec. 6.4.

Given a time window ∆T = 120s, we compute the distribution of each signal

is computed and summarize it with the percentiles. We consider the 9 deciles

from the 10th to the 90th, plus the 1st and the 99th percentiles (11 percentiles

in total). We consider 1st and the 99th percentile to sample the head and the

tail of the distribution while avoiding to consider the minimum and maximum

which are very sensitive to noise and outliers. After the data transformation

stage, each experiment is described by 43 · 11 = 473 features.

6.1.3. Feature Selection

We apply the heuristic approach for feature selection described in Section 3.3

exploiting the three rankings derived from mRMR, random forest feature im-

portance, and its parameter optimization (respectively referred to as mRMR,

RF, and RF-optimized).

Fig. 6 reports the three rankings with the importance of each feature normal-

ized with a min-max normalization. Consider the RF rankings first. Despite

their similar behaviours, they have very different trends and ranking results.

The RF-Optimized tends to give non-negligible importance to a larger number of

21

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Feature

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

 F
I/M

ID mRMR
RF
RF-Optimized

Figure 6: All Rankings

features with respect to the RF solution. This implies that in the RF-Optimized

solution, different subsets of features have been used by the classification algo-

rithm. Considering the mRMR ranking, instead, this ranking shows a very

different trend. A few features have a very high score, almost linearly decreas-

ing in importance. The difference in trends is given by the different ways the

algorithms compute the importance. While RF identifies the most important

features for the classification stage, mRMR searches for the subset of most im-

portant - yet not redundant - features. Given the very different trends among

the rankings, choosing how many features to use is not obvious. As such, we rely

on a wrapping approach that allows us to empirically evaluate the best feature

subset by directly using a classification algorithm. As a classifier, we use a SVM

model. Here we rely on the SVM classifier as it offers a good trade-off between

capabilities of handling nonlinear problems (Cortes & Vapnik, 1995), and the

ease of hyperparameters tuning given the lower number of parameters with re-

spect to the other classifiers. Since we are not aware of which hyperparameter

configuration may perform well, for each feature subset SRi
(j), we perform a

lightweight grid search of 400 hyperparameter configurations creating 400 dif-

ferent models.3 We train each model on the training set and evaluate it with

the validation set. For each feature subset SRi(j), we pick the hyperparameter

3For the hyperparameters we use a RBF kernel, and we equally sample C and γ spaces (Hsu
et al., 2003).

22

Training set Validation set

0 10 20 30 40 50 60 70 80 90 10
0

#Features

0.0
0.2
0.4
0.6
0.8
1.0

F-
M

ea
su

re

(a) MRMR

0 10 20 30 40 50 60 70 80 90 10
0

#Features

0.0
0.2
0.4
0.6
0.8
1.0

F-
M

ea
su

re

(b) RF

0 10 20 30 40 50 60 70 80 90 10
0

#Features

0.0
0.2
0.4
0.6
0.8
1.0

F-
M

ea
su

re

(c) RF Optimized

Figure 7: Feature Selection

setting having the highest F-measure of the red class. We also evaluate the

performance of this model with the training set itself. This validation allows us

to spot whether performance on the training is maintained in the validation set

too. We perform 100 experiments for each ranking, training, and validation in

total we compare 120 thousands models.

23

Fig. 7 reports for the three rankings Ri, the classification performance for

increasing j. In Fig. 7a, we observe how the mRMR algorithm requires more

than 60 features before offering stable performance. RF (Fig. 7b) and RF-

Optimized (Fig. 7c) demand fewer features. The latter shows more consistent

performance. In particular, looking at Fig. 7c, with more than 25 features,

performance increases in the training set, while decreases for the validation set.

This is a symptom of overfitting to the training data. As such, since we are

interested in building a model able to generalize, we select the first 25 features

from the RF-Optimized ranking for the next evaluations. This allows us to drop

the number of signals that must be monitored by the ECU from 43 to just 6

signals.

6.1.4. Impact of Data Selection

Here, we present a sensitivity analysis aimed at computing the impact on

the classification task of each choice. For this, we first transform in features the

signals selected after each step. We do not consider the signals before the data

analysis selection as constant signals would not contribute to the classification

task. Then, we perform a SVM grid search as in the Feature Selection step.

Tab. 4 reports the best precision, recall, and F-measure achieved in the vali-

dation set for each step. After the data analysis the performance is low, with

a precision well below the defined threshold. The correlation signal selection

improves it at a disadvantage of the recall, now below the minimum threshold

of 0.5. The feature selection achieves much better performance, with both preci-

sion and recall above the requirement thresholds. This, confirms the importance

of the data selection phase.

6.2. Model Training and Tuning results

Here we compare the performance of five classifiers. We run a grid search

process to select the hyperparameters and observe which classifiers meet the

required minimum precision and recall thresholds. Next, we select the best

model for each classifier, namely the candidate model, to finally select the final

model.

24

For hyperparameter selection, we are interested in finding which hyperpa-

rameters produce the best precision and recall while generating also stable per-

formance without suffering from overfitting. To run the grid search, we exploit a

parallel computing system that allows us to train and test thousands of models

in parallel. Table 5 details the ranges we use for each hyperparameter and algo-

rithm. For each setup, we train the model using the training set and evaluate

the performance using the validation set. Thanks to the parallel computation

system the time required for the extensive grid search drops from days to hours

for the MLP, from a day to less than an hour for SVM, and from hours to a few

minutes for the Logistic regression, Random Forest and XGboost.

Table 5: Grid Search

Classifier Parameter Values

Logistic regression

Solver {newton-cg, lbfgs, sag, saga}
C [10−3, 103] step 50 in a log scale

penalty l2
multi class multinomial
max iter [100, 500, 1000]

class weight [balanced, None]

Random Forest

Impurity Decrease [0, 0.02] step 0.005
Min samples leaf [5, 35] step 5

Estimators {10, 15, 20, 30, 50,
100, 150, 200, 250, 500}

Split Criterion entropy
Max features {auto, log2 , None, 0.5}

XGBoost

of boosting rounds 1000
Maximum tree depth {2, 5, 7, 10}

Learning rate {0.01, 0.05, 0.25, 0.5}
Minimum child weight {1, 0.01, 0.05, 0.25, 0.5}

γ {0, 0.5, 1, 5, 10}
subsample ratio {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}

subsample ratio of columns {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}

SVM
Kernel rbf

C [10−3, 103] step 100 in a log scale
γ [10−3, 103] step 100 in a log scale

MLP

1st Layer [25, 225] step 25
2nd Layer [25, 225] step 25
Activation {Logistic, tanh}

Seed 100 random values
Solver Adam

Tolerance 10−4

25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(a) Logistic Regression

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(b) Random Forest

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(c) XGBoost

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(d) SVM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(e) MLP

Figure 8: Grid Search results. Each dot represents on classifier setup. Red lines are the
minimum precision and recall performance to meet.

Fig. 8 reports the recall (x-axis) and the precision (y-axis) for the red class

obtained by each model on the validation set. The red bars report the minimum

threshold on the recall and on the precision.

As shown in Fig. 8a and Fig. 8b, none of the Logistic Regression and the

Random Forest models meet the minimum performance thresholds. Hence, we

discard the Logistic Regression and Random Forest classifiers.

Considering, XGBoost ((Fig. 8c), SVM Fig. 8d, and MLP (Fig. 8e) some

of their configurations meet the target thresholds. Looking at XGBoost first,

it demonstrates better performance than the classic Random Forest ensemble

learning. However, only a few models slightly pass the precision threshold.

Considering SVM an accurate tuning of the hyperparameters is needed as the

resulting model may achieve very variable performance both in terms of pre-

cision and recall. Instead, the MLP classifier seems more stable in terms of

performance. All hyperparameter configurations meet the minimum required

recall, while precision widely varies.

26

Training set (T(j)) Validation set

25 50 75 10
0

12
5

15
0

17
5

20
0

|T(j)|

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

(a) Precision SVM

25 50 75 10
0

12
5

15
0

17
5

20
0

|T(j)|

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

(b) Precision MLP

Figure 9: Training Stability.

Since SVM and MLP show the most promising performance we perform the

model stability analysis with these two classification algorithms only. For this,

we select the best models for SVM and MLP (i.e. the candidate models) as the

models having the best F-measure on the red class.

6.3. Model selection

We now check which model would be usable in a deployment scenario. For

this, we evaluate the stability and generalization capabilities for each candidate

model. In detail, we evaluate the sensitivity of the performance versus the size of

the training set and we check if small changes in the best hyperparameters do not

impact the performance, i.e., if the hyperparameters lie in a space where different

configurations offer similar performance. Finally, we evaluate the performance

of the final model with new and independent test set.

Sensitivity to training size

We build a learning curve by training the model with an increasing amount

of data, i.e., creating at each step j, a training set T (j), with |T (j)| = j. Here we

use the hyperparameters of the candidate models. We assess the performance of

the model created at step j by using the validation set, and T (j) itself. For each

step, we consider 100 different subsets by randomly extracting j experiments

from the original training set. We compute the learning curve calculated using

T (j) for testing as it provides an indication of how well the model is learning.

27

Intuitively, the more data we provide during training, the better we expect the

performance. On the other hand, we consider the curve calculated using the

validation data set to observe how well the model generalizes. Intuitively, very

good performance on training set do not guarantee good performance on the

validation set, i.e., the model may suffer from overfitting of T (j).

Fig. 9 reports the heatmaps of the precision of the red class over all the runs

for increasing j, for the training and validation sets. Notice that the redder is

the area, the more runs achieved that performance. The black curves report the

average performance with the training sets (dashed line), and the validation set

(solid line).

Focus on SVM first. Fig. 9a shows that the average precision follows a

decreased trend when tested on the training set, and an increasing trend when

tested on the validation set. This suggests that the model requires a large

amount of data to be generic enough. Considering the spread of the precision,

for a given j, the more the number of experiments, the smaller the spread is.

A symptom that we can create a general model with a suitable variety of data.

The colored error bars highlight how more stable the model becomes for larger

training set size.

Considering the MLP learning curve (Fig. 9b), the average precision on the

validation set always remains below the minimum performance threshold. It

only suddenly rises when all available experiments are used to train the model.

Hence, the model is very sensitive to the training data and it clearly suffers

from an overfitting phenomenon. In conclusion, by varying the input training

set size, the SVM results are more stable with respect to MLP.

Hyperparameter stability

We now investigate the impact of small variations on hyperparameters on

classification performance. For SVM, Fig. 10a shows those γ and C combina-

tions for which precision and recall are above the target thresholds. We have

440 configurations that meet the performance requirements. Those are densely

compact in the hyperparameter subspace. Intuitively, little hyperparameter

perturbations do not harm SVM performance.

28

0.001
0.004

0.016
0.066

0.266
17

70

285

1000

C

(a) SVM Focus

0 30 60 90 0 30 60 90

Seed

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

/R
ec

al
l Tanh Logistic

Precision Recall

(b) MLP Focus

Figure 10: Classification Parameters.

For MLP, we have more than two hyperparameters. We start investigating

the two main ones i.e., the number of neurons in the 1st and 2nd layer. The

result (not reported for the sake of brevity) shows that, given any combina-

tion of neurons, it is possible to find at least one model meeting the minimum

performance. In total, we find 3260 good configurations. However, for each con-

figuration of neurons and activation function, we perform 100 experiments just

changing the initial random seeds. One would expect that the initial random

seed shall not play any role. However, this is not the case. Fig. 10b reports, for

the neurons combination with the highest performance, precision and recall of

the red class varying the seed and the activation function. The dotted blue and

red lines represent the precision and the recall minimum thresholds. Almost all

configurations exceed the recall threshold, but only a few are above the precision

threshold. And this depends on the random seed only. This result is generic,

only some “random” configurations of MLP reach the desired performance for

any neuron layer configuration. Therefore, MLP tuning is not stable.

Given the result of these analyses, we select SVM as the final model.

Testing with new data

As last, to evaluate if the model would achieve acceptable performance in

deployment, we evaluate the performance with a set of data never used before,

i.e., the test set.

Fig. 11 reports performance on the validation set (left) and on the test set

29

G Y R
Predicted Label

G

Y

R

Ac
tu

al
 L

ab
el

286 35 9

36 111 7

9 4 75

0 2 4 6 8 10 12 14 16 18 20 22 24

Experiment ID

0
2
4
6
8

10
12
14
16
18
20

W
in

do
w

ID

R G Y Y Y Y
G G G R G

G G G G G G G
G G Y Y Y Y Y Y

G
Y G G

G
G Y Y Y
G Y
G
G G
G G
G R Y Y Y Y Y Y Y Y

G G R R R R R
G R G Y Y Y
G G Y R R

Y G G G
R G G Y R Y R

G R Y
G G Y G

G G Y Y
Y G G R Y Y Y Y

RED YELLOW GREEN

(a) Validation set : Precision 0.824, Re-
call 0.852

G Y R
Predicted Label

G

Y

R

Ac
tu

al
 L

ab
el

442 55 12

14 18 1

1 16 49

0 2 4 6 8 10 12 14 16 18 20

Experiment ID

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

W
in

do
w

ID

Y R Y R Y Y Y Y Y Y
R R Y Y Y

Y R
G R Y Y

Y Y Y R R
G R

Y Y Y
Y Y Y Y Y Y Y
Y
Y R
Y
Y G Y Y
Y Y Y R Y Y Y Y
G G

G
Y Y Y Y Y
Y Y Y

G
G Y

Y G
Y G Y

G
Y Y Y

Y G
Y Y R
Y G R
Y Y Y

G
Y G

Y Y Y Y
Y Y Y Y

RED YELLOW GREEN

(b) Test set : Precision 0.790, Recall
0.742

Figure 11: Classification Performance

(right) using the confusion and the mismatch matrices. Firstly, looking at the

overall performance, we can see how the selected model passes the minimum

performance thresholds on the test set as well. Looking at the confusion matrix

of the Validation set (Fig. 11a), we can see how only a few green and yellow

windows are misclassified as red. Recalling that our goal is to send to the service

only malfunctioning cars, this represents an important milestone. Focusing on

the test set (Fig. 11b), we can see very similar results, demonstrating the gen-

erality of the model. Next analyze the outcome of the mismatch matrices. This

helps us understanding whether the misclassified windows are concentrated in

only a single cycle, i.e., increasing the probability to wrongly recall a car to the

service, or spread across multiple cycles. Looking at the mismatch matrix of

30

Training set Validation set Test set

60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

T [s]

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

Figure 12: Impact of the Time windows duration on the classification performance

the validation set (Fig. 11a), we can see how in a few cases the engine behaviour

differs from the applied label. For instance, experiment 8 has more green win-

dows with respect to yellow ones. Focusing on the red experiments, we can see

how our solution well models the engine behaviour with only a few misclassi-

fied windows, i.e., we can easily identify which car needs to go to the service.

Fig. 11b reports how the model performs similarly in the test set. Here, only

experiment 1 shows several misclassified windows with most of them correctly

classified as red, i.e., 17 out of 33. The others are classified as yellow or green as

the engine partially behaves like a car drifting from the normal behaviour. This

confirms that a malfunctioning HPF can still behave normally under some part

of the cycle. To handle these cases, in Sec. 7.2 we discuss the decision-making

process to decide when send a car to the service.

Finally, to assess the easy reproducibility of the classification pipeline, we

evaluate the performance of the entire pipeline on data coming from a new en-

gine. As for the previous case, we divide the data into three distinct sets. Then,

we train an SVM model with the training set, where the data is described only

by the features selected with the first engine. To find the best hyperparameters

we run a grid search optimizing parameters with the validation set. The results

show that also with this engine the SVM overcomes the minimum performance

thresholds by yielding stable behavior.

31

6.4. Impact of Time windows size

Once we finish setting all the parameters, we determine how frequently we

should compute our predictions. This translates into tuning how frequently we

should compute the features given a time window of new data. On the one

hand, a large time window allow us to collect more data, hence having a stable

picture of the engine behaviour. On the other hand, smaller windows allow us

to capture more frequently the engine status, hence making the final decision

based on more observations.

We consider window size in [60, 300] s with a pace of 10 seconds. For each

∆T, we create the model by finding the best SVM hyperparameters via a grid

search. We select the best performing model on the validation set and use it

to predict the labels of the testing set as well. Fig 12 reports the F-measure

versus ∆T . Short time windows do not allow to fully capture the engine status

- with too few samples to correctly measure the percentiles. A window size

in [110, 160] s shows the most balanced performance with all datasets having

similar performance. Increasing the ∆T reduces the size of training set, which

in turn causes more unstable results for the test set. As such, we confirm that

the choice of ∆T = 120 s offers a good tradeoff between the number of decisions

and performance.

7. Discussion

After evaluating how to perform our prognostic pipeline, here we briefly dis-

cuss practical aspects of the implementation, namely the computational com-

plexity to implement it on-board, and the decision-making process to identify

which car should go to the service.

7.1. Complexity

Along with the paper, we employed different methodologies to limit the

amount of data to be stored on-board to cope with the limited hardware ca-

pabilities and to reduce the bandwidth required to transmit the data to the

cloud.

32

0 600 1200 1800 2400 3000 3600
Time [s]

10 3

10 2

10 1

100

M
bp

s

All
Data Analysis

Correlation
Feature Selection

Figure 13: Bandwidth required to transmit signals and features to the cloud

Bandwidth Requirements

To quantify the bandwidth required along the pipeline, we compute the

number of samples that the ECU should collect and transfer every second in case

different data transformation is employed. This amount changes based on the

subset of signals considered. In particular, we consider three different scenarios:

(i) the ECU transfers all the signals, i.e., 614 signals; (ii) the ECU transfers the

subset of signals after the domain knowledge and data analysis signal selection,

i.e., 285 signals; and (iii) the ECU transfers the subset of signals left after the full

signal selection process, i.e., 43 signals. Next, for each signal subset, we estimate

the bandwidth requirements by considering that each sample is encoded as a

4-bytes floating-point number. Finally, we compare these estimations with the

bandwidth required to send only the features, i.e., 25 features encoded as 4-bytes

floating number each, sent once every 120 seconds.

Fig. 13 reports the number of bits per second to transmit, evaluated for 1

hour. When all signals are transmitted (blue line), the ECU should constantly

transmit more than 1 Mbps. This definitely represents an infeasible scenario.

Considering the subset of signals after the domain knowledge and data analysis

(orange line), the required bandwidth only halves. As expected, the best im-

provements are achieved at the end of the signal selection (green line) where 43

signals ask for a constant bandwidth of about 100 kbps yet, this calls for signifi-

cant cost both for on-board and cloud connectivity. Considering the bandwidth

required to transmit just features (red dots), we require only 100 bytes every

120 seconds. This solution makes the transmission easily affordable also in the

33

automotive scenario when an unstable connection may be present.

Memory Requirements.

Before the data transmission, we require to compute the percentiles by the

on-board ECU. As highlighted in Sec. 6, after our feature selection stage we

monitor only 6 signals. Despite this low number, collecting all the samples for 2

minutes can be memory consuming in a scenario where little memory is present,

e.g., in the order of a few MB for all the applications running in the ECU.

Indeed, considering again that each signal is encoded with a 4-byte floating-point

number, that each signal may generate a new sample every 6.25 ms, in total, in

2 minutes we may have to store up to 20 thousand samples per signal for a total

of 120 thousand samples equal to 480 kB. To reduce the amount of data required

to compute percentiles, several algorithms are present in the literature. Jain &

Chlamtac (1985) deployed the heuristic P 2 algorithm to estimate the percentiles

on the fly, without storing observations. Greenwald & Khanna (2001) propose

a solution to accurately compute the percentile with a memory footprint of

O
(1

ε
log(εN)

)
in function of the precision εN and the number of samples N .

This is recently been confirmed as the optimal space-bound by Cormode &

Veselỳ (2020). These solutions can be effectively put in place to reduce the

amount of memory required making the ECU implementation feasible.

Cloud Computational Requirements

Regarding the computational cost, this evaluation is not critical as, after

the training phase, testing is done in the cloud and asks very little time. In the

case of limited resources, the carmaker can easily scale-up the required back-

end. For instance, considering a medium-level server equipped with an Intel

Xeon Gold 6140 CPU at 2.30 GHz and 32 GB of RAM, and by testing with

our Python prototype, we can execute about 9000 classifications per second,

potentially handling more than 1 million vehicles every time window.

7.2. Decision Making

While the proposed pipeline assesses the state of the HPF for each time win-

dow, the carmaker is ultimately interested in finding a decision-making policy

34

to recall cars to the service.

We conducted a preliminary study based on the validation set for the assess-

ment of a voting strategy and time span for making the decision. For instance,

a majority voting strategy over all time windows in an hour span shows satis-

factory results both on the validation and on the test set. Indeed, in both cases,

all and only the red cars would be correctly recalled to go to service.

However, tuning these thresholds for decision-making requires a proper cal-

ibration with additional data. An initial soft release of the proposed pipeline

is required to collect more data and to validate the performance. During this

phase, our pipeline should be implemented in cars, and when cars go to the

service, both statistics about the pipeline and the HPF should be collected to

investigate the best decision strategy. This analysis is required to allow the

car-maker to run a data-driven calibration of the criteria. In a second stage,

a hard release of the system should take place in which the carmaker actually

recalls the cars as the system can be used for the prognosis of the state of the

HPF system.

8. Related Work

The topic of predictive maintenance has been of particular interest in recent

years. The enabling technologies at the core of the Internet of Things paradigm

(more specifically, connected devices and cloud computing) have brought pre-

dictive maintenance within reach. As such many fields studied approaches to

predict maintenance operations. For instance, authors in (Baptista et al., 2018;

Ferreiro et al., 2012) studied how to predict maintenance in aircraft, authors

in (Rabatel et al., 2011) detect anomalies in railway to predict potential failures,

authors in (Renga et al., 2020) study the problem of prognostic vs diagnosis to

study an electric distribution network, authors in (Rohani et al., 2011) predict

repair and maintenance costs of a fleet tractors, while authors in (Proto et al.,

2019, July; Apiletti et al., 2018, December) proposed data-driven methodology

to support predictive maintenance in the era of Industry 4.0. The two main

approaches to predictive maintenance found in literature are model-based and

35

data-driven. The former is based on the introduction of physics-based models

of the system under study, along with its possible interactions with other com-

ponents. The latter approach is characterized by the collection of data and the

development of agnostic models based only on empirical observations. We focus

on the second approach only.

Data-driven approaches can be applied to multiple problems. Intuitively

low domain expertise is required for the definition of the output model since the

bulk of the relevant domain knowledge is automatically extracted from the data.

This requires collecting significant amounts of data for the learning process.

Some domain validation is still needed to define goals and validate different

steps. Many examples of data-driven works can be found in the literature. In

(Kargupta et al., 2004, April), a data mining approach to a vehicle’s health

is proposed: through a PCA, the authors identify low-dimensional clusters of

nominal behaviors. When the vehicle drifts away from these clusters, a faulty

situation is identified. In (Jagannathan & Raju, 2000, June), the authors collect

samples of oil engine and label them based on their Remaining Useful Life

(RUL). Then, an artificial neural network is trained to predict RUL from data

collected by various on board sensors.

Many predictive maintenance problems need to process time series since the

data comes from sensors which collect signals as they evolve in time. Possible

approaches to time series data are wavelets, recurrent neural networks, and

convolutional neural networks (with 1-dimensional convolutions on the time

axis). All these approaches are explored in (Munikoti et al., 2019) to detect on

an early stage DC motors faults. Convolutional neural networks obtain the best

performance, but similar results are achieved with the other techniques.

When the phenomenon under study is cumulative, time-series data can be

converted into a collection of summary statistics (e.g. mean, maximum, mini-

mum, variance). Authors of (Giobergia et al., 2018 October) present a predictive

maintenance pipeline that adopts this data transformation: here, to predict a

fault in the oxygen sensor of diesel engines, the signals collected by the engine

are converted into summary statistics, used for training multiple classifiers. A

36

similar approach is used in (Susto et al., 2015), which is instead concerned with

semiconductors manufacturing, more specifically, with the changing of filaments

in ion implantation tools.

In this paper we discuss a complete predictive maintenance pipeline, exploit-

ing the possible alternatives that can be pursued at each step of the process and

discussing the rationale behind the decisions taken. In particular, we adopt a

pipeline similar to the one presented in (Giobergia et al., 2018 October). How-

ever, we put additional focus on the signal and feature selection steps, which are

particularly relevant in a constrained scenario such as the on-board data pro-

cessing in the automotive setup. More specifically, we introduce an additional

feature selection step that helps reduce the redundancy in the data that needs

to be transferred. On top of that, we study the classification models trained

in terms of robustness in terms of hyperparameters and stability over time and

with new, different data. These aspects are particularly relevant when deploying

a model in a production environment, where reliability should be the main con-

cern. By contrast, the majority of the literature does not explore alternatives

and suitability of various techniques in different scenarios, thus hindering the

applicability of the presented methodologies in new, likely different, scenarios.

Additionally, the proposed case study (the HPF system) is a prognostics prob-

lem that we have not found to have been approached before from a data-driven

perspective.

9. Conclusion

In this work, we dissected a full prognostic pipeline to study challenges and

possible solutions for each step. We applied our pipeline in the context of the

automotive field to identify when the HPF system drifts from nominal behavior.

Given the limited computational resources on board, we showed how a thorough

preprocessing step is fundamental to select only the most important signals and

then features.

To study which classification algorithms could be more promising in a deploy-

ment scenario, other than evaluating classification performance we extensively

37

analyzed the stability of the algorithms under different perspectives. The re-

sults showed that a careful evaluation of each step, and with the aid of domain

experts, we successfully create a data-driven prognostic pipeline. Performed

experiments on real data showed that the designed pipeline yielded accurate

performance (above the required thresholds) with data coming from different

driving situations and different engines.

As future work, we aim to assess the performance achievable in a deployment

scenario with data coming from a non-controlled environment. Furthermore,

we plan to quantify the economical benefits both for the carmaker and the car

owner.

Acknowledgements

The research leading to these results has been funded by the General Motors

(GM) through a research project and the SmartData@PoliTO center for Big

Data technologies. We thank Michelangelo Matina for assistance performing

part of the experiments.

References

Andr, M. (2004). The artemis european driving cycles for measuring car pol-

lutant emissions. Science of The Total Environment , 334-335 , 73 – 84.

https://doi.org/10.1016/j.scitotenv.2004.04.070.

Apiletti, D., Barberis, C., Cerquitelli, T., Macii, A., Macii, E., Poncino, M., &

Ventura, F. (2018, December). istep, an integrated self-tuning engine for pre-

dictive maintenance in industry 4.0. Paper session presentation at the IEEE

International Conference on Parallel & Distributed Processing with Applica-

tions, Ubiquitous Computing & Communications, Big Data & Cloud Com-

puting, Social Computing & Networking, Sustainable Computing & Commu-

nications, ISPA/IUCC/BDCloud/SocialCom/SustainCom , Melbourne, Aus-

tralia.

38

Baptista, M., Sankararaman, S., de Medeiros, I. P., Nascimento Jr, C.,

Prendinger, H., & Henriques, E. M. (2018). Forecasting fault events for pre-

dictive maintenance using data-driven techniques and arma modeling. Com-

puters & Industrial Engineering , 115 , 41–53. https://doi.org/10.1016/j.

cie.2017.10.033.

Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples

in machine learning. Artificial intelligence, 97 , 245–271. https://doi.org/

10.1016/S0004-3702(97)00063-5.

Breiman, L. (2001). Random forests. Machine Learning , 45 , 5–32. https:

//doi.org/10.1023/A:1010933404324.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining (pp. 785–794).

Cormode, G., & Veselỳ, P. (2020). A tight lower bound for comparison-based

quantile summaries. In Proceedings of the 39th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems (pp. 81–93).

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning ,

20 , 273–297. https://doi.org/10.1007/BF00994018.

DieselNet. Diesel fuel injection. (2009). https://dieselnet.com/tech/

diesel_fi.php. Accessed 9 March 2020.

Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from

microarray gene expression data. Journal of bioinformatics and computational

biology , 3 , 185–205. https://doi.org/10.1142/S0219720005001004.

Ferreiro, S., Arnaiz, A., Sierra, B., & Irigoien, I. (2012). Application of

bayesian networks in prognostics for a new integrated vehicle health man-

agement concept. Expert Systems with Applications, 39 , 6402 – 6418.

https://doi.org/10.1016/j.eswa.2011.12.027.

39

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting

machine. Annals of statistics, (pp. 1189–1232).

Genuer, R., Poggi, J.-M., & Tuleau, C. (2008). Random forests: some method-

ological insights. ArXiv preprint. https://arxiv.org/abs/0811.3619.

Giobergia, F., Baralis, E., Camuglia, M., Cerquitelli, T., Mellia, M., Neri, A.,

Tricarico, D., & Tuninetti, A. (2018 October). Mining sensor data for predic-

tive maintenance in the automotive industry. Conference session presentation

at the IEEE 5th International Conference on Data Science and Advanced

Analytics (DSAA), Turin, Italy.

Greenwald, M., & Khanna, S. (2001). Space-efficient online computation of

quantile summaries. ACM SIGMOD Record , 30 , 58–66.

Han, J., Kamber, M., & Pei, J. (2012). Classification: Basic concepts. In J. Han,

M. Kamber, & J. Pei (Eds.), Data Mining (Third Edition) The Morgan Kauf-

mann Series in Data Management Systems (pp. 327 – 391). Boston: Morgan

Kaufmann.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical

Learning . Springer Series in Statistics. New York, NY, USA: Springer New

York Inc.

Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to support vec-

tor classification. Techical Report. https://www.csie.ntu.edu.tw/~cjlin/

papers/guide/guide.pdf.

Jagannathan, S., & Raju, G. V. S. (2000, June). Remaining useful life prediction

of automotive engine oils using mems technologies. Conference session presen-

tation at the American Control Conference. ACC (IEEE Cat. No.00CH36334),

Chicago, IL.

Jain, R., & Chlamtac, I. (1985). The p2 algorithm for dynamic calculation of

quantiles and histograms without storing observations. Communications of

the ACM , 28 , 1076–1085.

40

Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra, S., Dull,

J., Sarkar, K., Klein, M., Vasa, M. et al. (2004, April). Vedas: A mobile

and distributed data stream mining system for real-time vehicle monitoring.

SIAM. Conference session presentation at the SIAM International Conference

on Data Mining, Lake Buena Vista, FL.

Munikoti, S., Das, L., Natarajan, B., & Srinivasan, B. (2019). Data driven

approaches for diagnosis of incipient faults in dc motors. IEEE Transactions

on Industrial Informatics, 15 , 5299–5308. https://doi.org/10.1109/TII.

2019.2895132.

Proto, S., Ventura, F., Apiletti, D., Cerquitelli, T., Baralis, E., Macii, E., &

Macii, A. (2019, July). Premises, a scalable data-driven service to predict

alarms in slowly-degrading multi-cycle industrial processes. Conference ses-

sion presentation at the IEEE International Congress on Big Data, BigData

Congress, Milan, Italy.

Provost, F., Jensen, D., & Oates, T. (1999, August). Efficient progressive sam-

pling. Conference session presentation at the fifth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, San Diego, CA.

Rabatel, J., Bringay, S., & Poncelet, P. (2011). Anomaly detection in monitoring

sensor data for preventive maintenance. Expert Systems with Applications,

38 , 7003 – 7015. https://doi.org/10.1016/j.eswa.2010.12.014.

Renga, D., Apiletti, D., Giordano, D., Nisi, M., Huang, T., Zhang, Y., Mel-

lia, M., & Baralis, E. (2020). Data-driven exploratory models of an electric

distribution network for fault prediction and diagnosis. Computing , 1 , 1–13.

https://doi.org/10.1007/s00607-019-00781-w.

Rohani, A., Abbaspour-Fard, M. H., & Abdolahpour, S. (2011). Prediction of

tractor repair and maintenance costs using artificial neural network. Expert

Systems with Applications, 38 , 8999 – 9007. https://doi.org/10.1016/j.

eswa.2011.01.118.

41

Sammut, C., & Webb, G. I. (2011). Encyclopedia of machine learning . New

York: Springer Science & Business Media.

Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011, June). Finding

a” kneedle” in a haystack: Detecting knee points in system behavior. IEEE.

Conference session presentation at the 31st international conference on dis-

tributed computing systems workshops. Minneapolis, MN.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

Networks, 61 , 85–117. https://doi.org/10.1016/j.neunet.2014.09.003.

Suarez-Bertoa, R., Valverde, V., Clairotte, M., Pavlovic, J., Giechaskiel, B.,

Franco, V., Kregar, Z., & Astorga, C. (2019). On-road emissions of passenger

cars beyond the boundary conditions of the real-driving emissions test. En-

vironmental research, 176 , 108572. https://doi.org/10.1016/j.envres.

2019.108572.

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Ma-

chine learning for predictive maintenance: A multiple classifier approach.

IEEE Transactions on Industrial Informatics, 11 , 812–820. https://doi.

org/10.1109/TII.2014.2349359.

Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N., Marotta, A.,

Pavlovic, J., & Steven, H. (2015). Development of the world-wide harmonized

light duty test cycle (wltc) and a possible pathway for its introduction in

the european legislation. Transportation Research Part D: Transport and

Environment , 40 , 61 – 75. https://doi.org/10.1016/j.trd.2015.07.011.

42

