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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

In production systems, digital twins must be always aligned with the real system to guarantee an effective decision making process in a 
continuously changing environment. To allow the alignment, digital models can be updated with process mining techniques through data 
collected by sensors. This paper addresses the issue of detecting changes in the production system by analyzing data collected from sensors. 
Using raw collected data, a procedure is proposed to compute and plot relevant system measures that could help change identification. 
Simulation is used to test the effectiveness of the procedure in a realistic medium size production line. 
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1. Introduction 

Firms of the Industry 4.0 era need to be completely 
integrated and flexible to adapt the production to product 
customization and to frequent market changes. In this context, 
the real production system must have a continuously aligned 
digital counterpart (digital twin) to address planning and/or 
control problems in such a flexible environment. 

Currently, digital models are defined in the system design 
phase, and they risk, if never updated, to become obsolete 
with respect to the current state of the real system, leading to 
wrong decisions and losses of efficiency. If the system 
changes due to unexpected events (e.g., failures) or 
managerial decisions (e.g., the addition of a new machine in a 
production stage by exploiting the plug & produce concept), 
and its digital twin is not promptly adapted to the change, the 
decisions taken by the use of digital twin risk to be no longer 
effective. Thus, keeping the digital twin continuously aligned 
with the real system is crucial to support an effective decision 
making process. To allow this alignment, the instantaneous 
identification of changes in the real system is a fundamental 
issue. To this purpose, data mining techniques on data, made 

available by the increasing computerization and sensorization 
of production lines (with a much larger availability of new 
data and information about the processes), can be used to keep 
the continuous alignment between real systems and their 
digital models.  

Process Mining, a recent field of data mining, aims to build 
process models starting from process event logs. An event log 
is a strictly structured database in which each record 
represents an event occurred in the process [1]. Many 
algorithms have been developed to exploit event logs to 
understand the process structure (process discovery), to verify 
the alignment of the model with the real process (conformance 
checking), and to get deeper insights in the process (model 
enhancement) [2, 3]. Event logs are generated in the form of a 
data stream in which every new event should be evaluated to 
understand whether the underlying process is changing. The 
issue of creating a process model from a data stream has been 
addressed with different methods. Starting from process 
discovery algorithms developed in [3] (such as the Heuristic 
Miner), many adaptations have been proposed in the literature. 
Two different adaptations of the Heuristic Miner are proposed 
in [4]: the first iteratively applies a modified version of the 
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algorithm on rolling windows (with a specific width) of data 
(Heuristic Miner with Sliding Window, SW); the second one, 
instead, works on buckets whose width depends on the 
maximum approximation error (Heuristic Miner with Lossy 
Counting, LC). The last approach is based on an algorithm 
proposed in [5]. A modified version of the Heuristic Miner 
was developed in [6], which is based on building initial prefix-
trees to extract sequential patterns of events from the stream 
and on continuously updating this structure through “pruning” 
and “decaying” of relations and activities. When dealing with 
the system change detection, different kinds of drift (or 
variation) have to be considered. A simple drift classification 
is made in [7], which divides temporary from permanent 
variations (based on the lifespan), and sudden, recurring, 
gradual and incremental drifts (based on how they manifest). 

In the last fifteen years, process mining discovery and 
change detection techniques have been applied to various 
industries; business processes [8] and healthcare processes [9] 
are the main fields of application. Only a few works applied 
process mining to production processes. Among these, a 
methodology based on process discovery algorithms is 
proposed in [10] to create the model of a manufacturing 
system and to deal with infrequent behaviors while keeping 
the model up to date. A probabilistic neural net is used to 
distinguish exceptional messages, while a genetic algorithm 
allows to continuously refresh the model as the data flows.  

In all the cited papers, the model is automatically updated 
as new events are added in the event log, without explicitly 
considering if and when a variation happened in the process. 
The objective of this paper is to contribute to the literature of 
the application of process mining in production systems. 
Specifically, the problem of identifying and understanding if, 
when and how the real process changes is addressed, thus 
leading the way to future studies on how to efficiently update 
production process digital models.  

The rest of the paper is organized as follows. Section 2 
describes the analyzed production system and the possible 
variations occurring in it, and Section 3 addresses the process 
mining technique proposed to detect the change. The 
numerical experiment and its results are presented in Section 
4, while Section 5 concludes the paper with the main insights, 
limitations and ideas for future research. 

2. System Description 

In this paper, a serial-parallel production system 
characterized by i=1,…,S stages (or Activities) and j=1,…,Ni 
parallel identical machines (or Resources) at each stage i is 
considered. Before each stage i there is a finite capacity 
incoming buffer Bi, except for the first one B1, which is 
uncapacitated to allow all the arriving jobs to enter the line. In 
addition to incoming buffers, after each stage there is an 
outgoing buffer whose capacity is equal to the number of 
machines in the stage (congestion stock). 

The inter-arrival time I of jobs to the system is assumed to 
be deterministic, while the transfer time from one stage to 
another is assumed negligible. The machine processing time, 
instead, is stochastic but its probability distribution and the 
related parameters are assumed known. 

For the rest of the paper the following notation is used: 
 Li: capacity of buffer Bi;  
 Rij: j-th resource of stage i; 
 Ti: processing time distribution of each resource Rij 

(index j is not used as all the resources in the same stage 
i are identical); 

 Mi: average processing time of resources at stage i (i.e., 
the mean of distribution Ti); 

 Ci = Ni / Mi: average capacity of stage i; 
 Cmin: average capacity of the bottleneck (BN) stage; 
 F = 1 / I: arrival rate of jobs to the system. 

Both stable (F < Cmin) and unstable (F > Cmin) processes are 
considered. However, for sake of simplicity, only systems that 
have initially highly congested or almost void steady state 
buffers are studied. No failures or setups are assumed to 
occur. 
Data are assumed to have been already collected in a 
complete and static event log. The event log is assumed to 
have been collected from two different configurations of 
sensors in each stage of the line: 

1. one sensor before the incoming buffer, one between 
the buffer and the resources, one before the 
congestion stock. (Fig. 1); 

2. one sensor before the incoming buffer, one at the 
entrance of each resource, and one at the exit of each 
resource. (Fig. 2). 

The sensors convey the following information: 
 CaseID: identification number unique for each job; 
 EventID: identification number unique for each 

event; 
 Activity: identification number unique for each stage; 
 Resource: identification number unique for each 

machine (collected only for the second configuration 
of sensors); 

 Timestamp: timestamp, i.e., the time when the event 
occurs.  

Three different types of changes are considered: 
 variation of the buffer capacity; 
 variation of number of parallel resources in a stage;  
 variation of processing times in single resources. 

A variation can occur at any stage (i’), which is defined 
according to the position of stage i’ with respect to the 
bottleneck stage i". If i’< i” the variation is called top 
variation, otherwise, if i’ > i”, the variation is called bottom 
variation. 

  

Fig. 1. First sensor configuration in a single stage with 3 parallel resources 
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Fig. 2. Second sensor configuration in a single stage with 3 parallel resources 

Single or multiple variations can occur at the same stage in 
different time instants. Moreover, according to the 
classification proposed in [7], only permanent (with respect to 
the lifespan) and sudden drifts (with respect to how they 
manifest) are studied. 

3. Data reorganization 

To detect the changes in the system, the data collected by 
the sensors are analyzed. The sensor output is an event log 
containing the five fields previously described (Table 1): 
CaseID, EventID, Activity, Resource, Timestamp. 

Table 1. An event log section 

CASEID EVENTID ACTIVITY RESOURCE TIME 
9146 224835 4 0 638115 
9146 227134 4 1 646182.5 
9146 227154 4 1 646262.2 
9147 224858 4 0 638199.6 
9147 227157 4 1 646262.2 
9147 227177 4 1 646340.6 
9148 224881 4 0 638271.7 
9148 227180 4 1 646340.6 
9148 227200 4 1 646415.1 
9149 224907 4 0 638354.7 
9149 227203 4 1 646415.1 
9149 227223 4 1 646494.1 
9150 224930 4 0 638446.2 
9150 227226 4 1 646494.1 
9150 227246 4 1 646565 
 
To extract information from the event log, data are 

reorganized as follows. The log is divided in different data 
frames, one for each different Activity. Each Activity frame is 
called case list (Table 2), and it includes the events of the log 
classified in three categories: 

 entrance of a job in the stage buffer related to the 
Activity (Timestamp_buff); 

 departure of a job from the stage buffer and its 
entrance in a resource of the stage (Timestamp_res); 

 departure of a job from the resource and its entrance 
in the congestion stock of the stage 
(Timestamp_end). 

 

 

Table 2. A case list section 

CASE
ID 

TIMESTAMP_B
UFF 

TIMESTAMP_
RES 

TIMESTAMP_
END 

9146 638115 646182.5 646262.2 
9147 638199.6 646262.2 646340.6 
9148 638271.7 646340.6 646415.1 
9149 638354.7 646415.1 646494.1 
9150 638446.2 646494.1 646565 

 
Each record (i.e., each row) of the case list represents the 
three different event types occurring to a job in a single 
stage. Within the case list, the timestamp differences are 
created. They refer to qualities related to the flowing of 
jobs in the system. As an example, consider Fig. 3.  
 

Fig. 3. Timestamps and intervals scheme. 
 

Table 3. Same case intervals 

CASEI
D 

WAITING_TI
ME 

PROCESSING_TI
ME 

BLOCKING_TI
ME 

9146 8067.515 79.6887 47.11337 
9147 8062.591 78.40707 45.18427 
9148 8068.841 74.55483 26.16633 
9149 8060.458 78.99909 39.311 
9150 8047.883 70.8386 52.87607 

 

Table 4. Consecutive case intervals 

CASEID INPUT_DIFF MID_ DIFF OUTPUT_ 
DIFF 

9146 79.22356 78.35248 79.6887 
9147 84.61259 79.6887 78.40707 
9148 72.15771 78.40707 74.55483 
9149 82.93689 74.55483 78.99909 
9150 91.57459 78.99909 70.8386 

 
The timestamp differences are classified in two categories, 

and they are computed for each job k and stage i: 
Same case intervals refer to the differences between the 
timestamps of a same job (Table 3): 

 waiting time of job k in the buffer of stage i  
Waiting_time(k,i) = Timestamp_res(k,i) – 
Timestamp_buff(k,i); 

 processing time of job k at stage i  
Process_time(k,i) = Timestamp_end(k,i)-
Timestamp_res(k,i); 
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algorithm on rolling windows (with a specific width) of data 
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Fig. 2. Second sensor configuration in a single stage with 3 parallel resources 
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9150 8047.883 70.8386 52.87607 

 

Table 4. Consecutive case intervals 

CASEID INPUT_DIFF MID_ DIFF OUTPUT_ 
DIFF 

9146 79.22356 78.35248 79.6887 
9147 84.61259 79.6887 78.40707 
9148 72.15771 78.40707 74.55483 
9149 82.93689 74.55483 78.99909 
9150 91.57459 78.99909 70.8386 

 
The timestamp differences are classified in two categories, 

and they are computed for each job k and stage i: 
Same case intervals refer to the differences between the 
timestamps of a same job (Table 3): 

 waiting time of job k in the buffer of stage i  
Waiting_time(k,i) = Timestamp_res(k,i) – 
Timestamp_buff(k,i); 

 processing time of job k at stage i  
Process_time(k,i) = Timestamp_end(k,i)-
Timestamp_res(k,i); 
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 blocking time of job k in the congestion buffer of 
stage i 
Blocking_time(k,i) = Timestamp_buff(k,i+1)-
Timestamp_end(k,i). 

Consecutive case intervals refer to the differences between 
consecutive job arrivals in the same sensor position (Table 
4): 

 Input_diff(k,i) = Timestamp_buff(k,i) -
Timestamp_buff(k-1,i); 

 Mid_diff(k,i) = Timestamp_res(k,i) -
Timestamp_res(k-1,i); 

 Output_diff(k,i) = Timestamp_end(k,i) -
Timestamp_end(k-1,i). 

The case list and the timestamp differences are used to 
detect the process behavior and the changes in the system 
through graphs. Specifically, two types of plots are created. 
The first type of plots shows the pairs of intervals 
(timestamps) as dependent variables, and CaseID as 
independent variable. In the second type of plot, instead, the 
dependent variables are mean, variance, skewness, and 
kurtosis of timestamps. These quantities are computed using a 
moving window, characterized by a width and a shifting 
frequency, on the case list. These quantities are plotted as 
function of CaseID, to deepen the understanding of how 
process variations can change the event log data. 

4. Numerical experiments 

A simulator is used to replicate a production system and 
create the event logs collected by the sensors. A production 
line with 8 stages and 15000 jobs is considered. The 
processing times of all the resources are assumed to follow 
triangular distributions. 

In the experiments, some factors have been varied to 
analyze the behavior of the algorithm in various scenarios.  

Specifically, the factors are: 
 number of machines per stage (j = {1,2,3}); 
 time occurrence of a change in the system within the 

simulation (after 5000, 7500, 10000, 12500 jobs 
have been processed by the first stage); 

 moving window length (100, 200, 300, 400, 500 
jobs); 

 window updating frequency (25, 50, 75 jobs);  
 stage of the change occurrence (i = {4,6}); 
 bottleneck stage (BN) stage (i = {4,6}). 

Each simulation run generates an event log that is 
transformed in a case list as described in section 3. The data 
of the case list are plotted in different combinations. For 
conciseness reasons, the results presented in the paper only 
refer to an increase in the mean processing time in one of the 
4th stage resources, while the bottleneck is placed in the 6th 
stage (top variation). 

4.1. Waiting time 

The waiting time interval of the case list has been plotted 
as a function of CaseID. Fig. 4 shows the case of a system 
composed of one resource per stage. Specifically, the graphs 
in Fig. 4 show the stage before the one where the variation 
occurs, the changing stage, the following stage, and the BN 

stage, respectively. The plots of an initially unstable (on the 
left) and an initially stable (on the right) system are placed 
side by side to compare the different behaviors.  
In an initially unstable system, all the buffers upstream the 
bottleneck (BN buffer included), after the transient period, are 
saturated (i.e., the average waiting time is equal to the ratio 
between the buffer capacity and the BN capacity, Li / Cmin). 
Instead, the buffers downstream the bottleneck are almost 
empty (i.e., zero waiting time). If a stage, after a variation, has 
Ci / Cmin, it becomes the new BN. In the waiting time plots, 
this variation can be identified when the waiting time in its 
buffer grows, as in the upstream buffers, and the waiting time 
in the downstream buffers decreases to 0.  
In an initially stable system, instead, all the buffers are empty 
(the waiting time is 0); in the BN buffer there is a cloud of 
dots as there are jobs waiting in it, but most of them have an 
almost null waiting time. When the changing stage gets Ci < 
Cmin, if Ci is still larger than the inter-arrival rate F, no 
variation occurs. Only if Ci becomes lower than F, the change 
can be identified (i.e., it becomes visible); in this case, all the 
buffers in the upstream stages (and in the changing position) 
become saturated, and the average waiting time increases to Li 
/ C’min (where C’min is the capacity of the new BN). 
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Fig. 4. Waiting time plots. 

In conclusion, the graphs behave accordingly to the theory, 
and this type of plots is useful to identify a change in the 
processing time and to understand if the BN stage changes 
with respect to its initial position. 

4.2. Processing time 

The processing time is plotted as a function of CaseID in 
Fig. 5. The graphs are related to a line composed of three 
resources per stage. The plots compare an initially unstable 
and an initially stable system. The sensors are placed 
according to the second configuration (Fig. 2), to isolate the 
behavior of the changing resource. The top graphs show the 
three resources together, while the bottom ones show only the 
resource affected by the variation. 

Regardless of the system stability, the plots show that the 
processing time grows. However, in an unstable system every 
increase appears sooner than in the stable one. This happens 
because the more the buffers are saturated, the longer jobs are 
processed, because of the increase in the processing time.  
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Fig. 5. Processing time plots. 

This type of plots can then be useful to understand whether 
and in which stage a processing time change or a resource 

activation (or deactivation) is happening, independently from 
the system stability. 

4.3. Blocking time 

The blocking time is plotted as a function of CaseID in Fig. 
6. The plots refer to a line composed of single resource stages. 
The graphs show the blocking time in the stage before the 
changing stage in an initially unstable (on the left) and 
initially stable (on the right) system. 

In an unstable system, the blocking occurs in all the stages 
upstream the BN. If the capacity in the changing stage 
decreases below the capacity in the BN, blocking no longer 
occurs in all the stages between the changing stage and the 
initial BN (in a top variation situation), while the blocking 
time in the upstream stages increases. The plot on the left 
shows the described situation. 
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Fig. 6. Blocking time plots. 

Instead, the blocking does not occur if the system is stable. 
Only when the capacity in the changing stage decreases below 
the inter-arrival rate (Ci < F), the system becomes unstable 
and the blocking occurs in all the stages upstream, as can be 
seen in the graph on the right. 

This type of plots clearly shows when a stable system 
becomes unstable and vice versa. 

4.4. Changes in the parameters of a distribution 

As discussed in section 3, various moments of the 
distributions of performance measures have been calculated 
through moving windows. Plotting these moments as a 
function of CaseID can be used to identify the changes in the 
distribution parameters.  
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 blocking time of job k in the congestion buffer of 
stage i 
Blocking_time(k,i) = Timestamp_buff(k,i+1)-
Timestamp_end(k,i). 

Consecutive case intervals refer to the differences between 
consecutive job arrivals in the same sensor position (Table 
4): 

 Input_diff(k,i) = Timestamp_buff(k,i) -
Timestamp_buff(k-1,i); 

 Mid_diff(k,i) = Timestamp_res(k,i) -
Timestamp_res(k-1,i); 

 Output_diff(k,i) = Timestamp_end(k,i) -
Timestamp_end(k-1,i). 

The case list and the timestamp differences are used to 
detect the process behavior and the changes in the system 
through graphs. Specifically, two types of plots are created. 
The first type of plots shows the pairs of intervals 
(timestamps) as dependent variables, and CaseID as 
independent variable. In the second type of plot, instead, the 
dependent variables are mean, variance, skewness, and 
kurtosis of timestamps. These quantities are computed using a 
moving window, characterized by a width and a shifting 
frequency, on the case list. These quantities are plotted as 
function of CaseID, to deepen the understanding of how 
process variations can change the event log data. 

4. Numerical experiments 

A simulator is used to replicate a production system and 
create the event logs collected by the sensors. A production 
line with 8 stages and 15000 jobs is considered. The 
processing times of all the resources are assumed to follow 
triangular distributions. 

In the experiments, some factors have been varied to 
analyze the behavior of the algorithm in various scenarios.  

Specifically, the factors are: 
 number of machines per stage (j = {1,2,3}); 
 time occurrence of a change in the system within the 

simulation (after 5000, 7500, 10000, 12500 jobs 
have been processed by the first stage); 

 moving window length (100, 200, 300, 400, 500 
jobs); 

 window updating frequency (25, 50, 75 jobs);  
 stage of the change occurrence (i = {4,6}); 
 bottleneck stage (BN) stage (i = {4,6}). 

Each simulation run generates an event log that is 
transformed in a case list as described in section 3. The data 
of the case list are plotted in different combinations. For 
conciseness reasons, the results presented in the paper only 
refer to an increase in the mean processing time in one of the 
4th stage resources, while the bottleneck is placed in the 6th 
stage (top variation). 

4.1. Waiting time 

The waiting time interval of the case list has been plotted 
as a function of CaseID. Fig. 4 shows the case of a system 
composed of one resource per stage. Specifically, the graphs 
in Fig. 4 show the stage before the one where the variation 
occurs, the changing stage, the following stage, and the BN 

stage, respectively. The plots of an initially unstable (on the 
left) and an initially stable (on the right) system are placed 
side by side to compare the different behaviors.  
In an initially unstable system, all the buffers upstream the 
bottleneck (BN buffer included), after the transient period, are 
saturated (i.e., the average waiting time is equal to the ratio 
between the buffer capacity and the BN capacity, Li / Cmin). 
Instead, the buffers downstream the bottleneck are almost 
empty (i.e., zero waiting time). If a stage, after a variation, has 
Ci / Cmin, it becomes the new BN. In the waiting time plots, 
this variation can be identified when the waiting time in its 
buffer grows, as in the upstream buffers, and the waiting time 
in the downstream buffers decreases to 0.  
In an initially stable system, instead, all the buffers are empty 
(the waiting time is 0); in the BN buffer there is a cloud of 
dots as there are jobs waiting in it, but most of them have an 
almost null waiting time. When the changing stage gets Ci < 
Cmin, if Ci is still larger than the inter-arrival rate F, no 
variation occurs. Only if Ci becomes lower than F, the change 
can be identified (i.e., it becomes visible); in this case, all the 
buffers in the upstream stages (and in the changing position) 
become saturated, and the average waiting time increases to Li 
/ C’min (where C’min is the capacity of the new BN). 
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Fig. 4. Waiting time plots. 

In conclusion, the graphs behave accordingly to the theory, 
and this type of plots is useful to identify a change in the 
processing time and to understand if the BN stage changes 
with respect to its initial position. 

4.2. Processing time 

The processing time is plotted as a function of CaseID in 
Fig. 5. The graphs are related to a line composed of three 
resources per stage. The plots compare an initially unstable 
and an initially stable system. The sensors are placed 
according to the second configuration (Fig. 2), to isolate the 
behavior of the changing resource. The top graphs show the 
three resources together, while the bottom ones show only the 
resource affected by the variation. 

Regardless of the system stability, the plots show that the 
processing time grows. However, in an unstable system every 
increase appears sooner than in the stable one. This happens 
because the more the buffers are saturated, the longer jobs are 
processed, because of the increase in the processing time.  
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Fig. 5. Processing time plots. 

This type of plots can then be useful to understand whether 
and in which stage a processing time change or a resource 

activation (or deactivation) is happening, independently from 
the system stability. 

4.3. Blocking time 

The blocking time is plotted as a function of CaseID in Fig. 
6. The plots refer to a line composed of single resource stages. 
The graphs show the blocking time in the stage before the 
changing stage in an initially unstable (on the left) and 
initially stable (on the right) system. 

In an unstable system, the blocking occurs in all the stages 
upstream the BN. If the capacity in the changing stage 
decreases below the capacity in the BN, blocking no longer 
occurs in all the stages between the changing stage and the 
initial BN (in a top variation situation), while the blocking 
time in the upstream stages increases. The plot on the left 
shows the described situation. 
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Fig. 6. Blocking time plots. 

Instead, the blocking does not occur if the system is stable. 
Only when the capacity in the changing stage decreases below 
the inter-arrival rate (Ci < F), the system becomes unstable 
and the blocking occurs in all the stages upstream, as can be 
seen in the graph on the right. 

This type of plots clearly shows when a stable system 
becomes unstable and vice versa. 

4.4. Changes in the parameters of a distribution 

As discussed in section 3, various moments of the 
distributions of performance measures have been calculated 
through moving windows. Plotting these moments as a 
function of CaseID can be used to identify the changes in the 
distribution parameters.  
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Fig. 7. Moments of the processing time distribution. 

The plots in Fig. 7 are related to a line with one resource 
for stage and stable behavior. The graphs show the moving 
windows of the mean (upper graphs) and of the variance 
(lower graphs) of the processing time of the resource affected 
by the change. Two different window lengths have been used 
(100 jobs on the left and 500 jobs on the right) while the 
update frequency is set to 50 jobs in all the graphs. 

The plots show that the shorter the window, the faster the 
change can be identified; however, a larger window better 
filters data from noise and outliers. One of the main issues is 
finding the suitable window length to balance detection speed 
and accuracy. The variance plots have peaks when the 
processing time changes: this happens because the windows 
include pre-change and post-change processing times. After 
each peak, the variance stabilizes on larger levels because, in 
the tests, each processing time variation affects the mean and 
variance of its distribution, by inflating both. 

By looking at the plots of the moving windows of the mean 
and of the variance, changes on the parameters of the 
distribution can be spotted. The moving average plots show a 
change in the mean of the distribution (regardless the length 
of the window), however it does not show a change in the 
variance of the distribution. Instead, by plotting the moving 
window of the variance, changes in the mean of the 
distribution can be spotted with peaks in the graph, while the 
change in the variance of the distribution can be spotted by 
shifts of the curve in the graph. 

5. Conclusions 

In this paper, the problem of the automatic identification of 
changes in a production system is addressed. Specifically, the 
paper addresses the issue of extracting information about the 
changes in the system from sensor collected data. The 
available data are manipulated and reorganized so as to define 
the so-called timestamps, and relevant timestamp differences 
are computed. These differences are plotted as a function of 
the jobs flowing in the production system to evaluate if they 
are able to show occurred system changes. This methodology 
was applied to a simple flow line through simulation, and 
results showed that the usefulness of each plot depends on the 
state of the system at the time the change occurred, and on the 
type of occurred change. 

Some results, being in accordance with the production 
system theory, seems obvious, however the purpose of this 
work is not to explain the system behavior rather to identify 

changes. Thus, the results show which subset of data should 
be analyzed to detect different type of changes, to reduce the 
big data load that will be available in the future full sensorized 
lines. 

The main limit of this research is that currently the use of 
plots to identify changes implies a human operator evaluating 
them. Hence, ongoing research focuses on automatically 
identifying changes in the system without (or with a reduced) 
human intervention. The objective is to develop an algorithm 
that automatically detects and classifies changes from 
timestamp difference plots. 

Other issues that future research will have to consider are 
those related to the assumptions made in the paper. First, the 
paper considered only extreme cases with respect to the initial 
buffer levels: completely empty buffers (and stage capacities 
much larger than those requested by the inter-arrival times) or 
completely full buffers (and stage capacities much smaller 
than those requested by the inter-arrival times). Intermediate 
cases, more representative of real stable systems, need to be 
considered. To this purpose, also other types of systems, other 
types of changes (e.g., failures or setup times), and not sudden 
(i.e., incremental) changes will be considered.  

With respect to the plot procedure, when data windows and 
updating frequencies are used, as in the plots of the 
distribution moments, parameters to choose the most adequate 
window length and frequency value should be defined. 
Moreover, as in real situations it is necessary to work with 
group of data, the use of data windows and updating 
frequencies has to be evaluated also for the other type of plots 
(e.g., waiting time or processing time plots). 
To have more information of possible distribution changes, 
also the use of concentration indices, applied to the data 
windows, will be evaluated. 
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Fig. 7. Moments of the processing time distribution. 

The plots in Fig. 7 are related to a line with one resource 
for stage and stable behavior. The graphs show the moving 
windows of the mean (upper graphs) and of the variance 
(lower graphs) of the processing time of the resource affected 
by the change. Two different window lengths have been used 
(100 jobs on the left and 500 jobs on the right) while the 
update frequency is set to 50 jobs in all the graphs. 

The plots show that the shorter the window, the faster the 
change can be identified; however, a larger window better 
filters data from noise and outliers. One of the main issues is 
finding the suitable window length to balance detection speed 
and accuracy. The variance plots have peaks when the 
processing time changes: this happens because the windows 
include pre-change and post-change processing times. After 
each peak, the variance stabilizes on larger levels because, in 
the tests, each processing time variation affects the mean and 
variance of its distribution, by inflating both. 

By looking at the plots of the moving windows of the mean 
and of the variance, changes on the parameters of the 
distribution can be spotted. The moving average plots show a 
change in the mean of the distribution (regardless the length 
of the window), however it does not show a change in the 
variance of the distribution. Instead, by plotting the moving 
window of the variance, changes in the mean of the 
distribution can be spotted with peaks in the graph, while the 
change in the variance of the distribution can be spotted by 
shifts of the curve in the graph. 

5. Conclusions 

In this paper, the problem of the automatic identification of 
changes in a production system is addressed. Specifically, the 
paper addresses the issue of extracting information about the 
changes in the system from sensor collected data. The 
available data are manipulated and reorganized so as to define 
the so-called timestamps, and relevant timestamp differences 
are computed. These differences are plotted as a function of 
the jobs flowing in the production system to evaluate if they 
are able to show occurred system changes. This methodology 
was applied to a simple flow line through simulation, and 
results showed that the usefulness of each plot depends on the 
state of the system at the time the change occurred, and on the 
type of occurred change. 

Some results, being in accordance with the production 
system theory, seems obvious, however the purpose of this 
work is not to explain the system behavior rather to identify 

changes. Thus, the results show which subset of data should 
be analyzed to detect different type of changes, to reduce the 
big data load that will be available in the future full sensorized 
lines. 

The main limit of this research is that currently the use of 
plots to identify changes implies a human operator evaluating 
them. Hence, ongoing research focuses on automatically 
identifying changes in the system without (or with a reduced) 
human intervention. The objective is to develop an algorithm 
that automatically detects and classifies changes from 
timestamp difference plots. 

Other issues that future research will have to consider are 
those related to the assumptions made in the paper. First, the 
paper considered only extreme cases with respect to the initial 
buffer levels: completely empty buffers (and stage capacities 
much larger than those requested by the inter-arrival times) or 
completely full buffers (and stage capacities much smaller 
than those requested by the inter-arrival times). Intermediate 
cases, more representative of real stable systems, need to be 
considered. To this purpose, also other types of systems, other 
types of changes (e.g., failures or setup times), and not sudden 
(i.e., incremental) changes will be considered.  

With respect to the plot procedure, when data windows and 
updating frequencies are used, as in the plots of the 
distribution moments, parameters to choose the most adequate 
window length and frequency value should be defined. 
Moreover, as in real situations it is necessary to work with 
group of data, the use of data windows and updating 
frequencies has to be evaluated also for the other type of plots 
(e.g., waiting time or processing time plots). 
To have more information of possible distribution changes, 
also the use of concentration indices, applied to the data 
windows, will be evaluated. 
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