
06 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Change-point visualization and variation analysis in a simple production line: a process mining application in
manufacturing / Chiò, Edoardo; Alfieri, Arianna; Pastore, Erica. - ELETTRONICO. - 99:(2021), pp. 573-579. (Intervento
presentato al convegno 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering nel 15-17 July
2020) [10.1016/j.procir.2021.03.122].

Original

Change-point visualization and variation analysis in a simple production line: a process mining
application in manufacturing

Publisher:

Published
DOI:10.1016/j.procir.2021.03.122

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2900304 since: 2021-05-13T17:14:56Z

Elsevier

ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 99 (2021) 573–579

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering,
15-17 July 2020.
10.1016/j.procir.2021.03.122

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering,
15-17 July 2020.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2020) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ˈ20

Change-point visualization and variation analysis in a simple production
line: a process mining application in manufacturing

 Edoardo Chiòa, Arianna Alfieria, Erica Pastorea,*
aPolitecnico di Torino, c.so Duca degli Abruzzi 24, Torino 10129, Italy

* Corresponding author. Tel.: +39-011-090-8302. E-mail address: erica.pastore@polito.it

Abstract

In production systems, digital twins must be always aligned with the real system to guarantee an effective decision making process in a
continuously changing environment. To allow the alignment, digital models can be updated with process mining techniques through data
collected by sensors. This paper addresses the issue of detecting changes in the production system by analyzing data collected from sensors.
Using raw collected data, a procedure is proposed to compute and plot relevant system measures that could help change identification.
Simulation is used to test the effectiveness of the procedure in a realistic medium size production line.
© 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

 Keywords: Production Systems; Process Mining; Change Identification; Industry 4.0; Digital Twin

1. Introduction

Firms of the Industry 4.0 era need to be completely
integrated and flexible to adapt the production to product
customization and to frequent market changes. In this context,
the real production system must have a continuously aligned
digital counterpart (digital twin) to address planning and/or
control problems in such a flexible environment.

Currently, digital models are defined in the system design
phase, and they risk, if never updated, to become obsolete
with respect to the current state of the real system, leading to
wrong decisions and losses of efficiency. If the system
changes due to unexpected events (e.g., failures) or
managerial decisions (e.g., the addition of a new machine in a
production stage by exploiting the plug & produce concept),
and its digital twin is not promptly adapted to the change, the
decisions taken by the use of digital twin risk to be no longer
effective. Thus, keeping the digital twin continuously aligned
with the real system is crucial to support an effective decision
making process. To allow this alignment, the instantaneous
identification of changes in the real system is a fundamental
issue. To this purpose, data mining techniques on data, made

available by the increasing computerization and sensorization
of production lines (with a much larger availability of new
data and information about the processes), can be used to keep
the continuous alignment between real systems and their
digital models.

Process Mining, a recent field of data mining, aims to build
process models starting from process event logs. An event log
is a strictly structured database in which each record
represents an event occurred in the process [1]. Many
algorithms have been developed to exploit event logs to
understand the process structure (process discovery), to verify
the alignment of the model with the real process (conformance
checking), and to get deeper insights in the process (model
enhancement) [2, 3]. Event logs are generated in the form of a
data stream in which every new event should be evaluated to
understand whether the underlying process is changing. The
issue of creating a process model from a data stream has been
addressed with different methods. Starting from process
discovery algorithms developed in [3] (such as the Heuristic
Miner), many adaptations have been proposed in the literature.
Two different adaptations of the Heuristic Miner are proposed
in [4]: the first iteratively applies a modified version of the

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2020) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ˈ20

Change-point visualization and variation analysis in a simple production
line: a process mining application in manufacturing

 Edoardo Chiòa, Arianna Alfieria, Erica Pastorea,*
aPolitecnico di Torino, c.so Duca degli Abruzzi 24, Torino 10129, Italy

* Corresponding author. Tel.: +39-011-090-8302. E-mail address: erica.pastore@polito.it

Abstract

In production systems, digital twins must be always aligned with the real system to guarantee an effective decision making process in a
continuously changing environment. To allow the alignment, digital models can be updated with process mining techniques through data
collected by sensors. This paper addresses the issue of detecting changes in the production system by analyzing data collected from sensors.
Using raw collected data, a procedure is proposed to compute and plot relevant system measures that could help change identification.
Simulation is used to test the effectiveness of the procedure in a realistic medium size production line.
© 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

 Keywords: Production Systems; Process Mining; Change Identification; Industry 4.0; Digital Twin

1. Introduction

Firms of the Industry 4.0 era need to be completely
integrated and flexible to adapt the production to product
customization and to frequent market changes. In this context,
the real production system must have a continuously aligned
digital counterpart (digital twin) to address planning and/or
control problems in such a flexible environment.

Currently, digital models are defined in the system design
phase, and they risk, if never updated, to become obsolete
with respect to the current state of the real system, leading to
wrong decisions and losses of efficiency. If the system
changes due to unexpected events (e.g., failures) or
managerial decisions (e.g., the addition of a new machine in a
production stage by exploiting the plug & produce concept),
and its digital twin is not promptly adapted to the change, the
decisions taken by the use of digital twin risk to be no longer
effective. Thus, keeping the digital twin continuously aligned
with the real system is crucial to support an effective decision
making process. To allow this alignment, the instantaneous
identification of changes in the real system is a fundamental
issue. To this purpose, data mining techniques on data, made

available by the increasing computerization and sensorization
of production lines (with a much larger availability of new
data and information about the processes), can be used to keep
the continuous alignment between real systems and their
digital models.

Process Mining, a recent field of data mining, aims to build
process models starting from process event logs. An event log
is a strictly structured database in which each record
represents an event occurred in the process [1]. Many
algorithms have been developed to exploit event logs to
understand the process structure (process discovery), to verify
the alignment of the model with the real process (conformance
checking), and to get deeper insights in the process (model
enhancement) [2, 3]. Event logs are generated in the form of a
data stream in which every new event should be evaluated to
understand whether the underlying process is changing. The
issue of creating a process model from a data stream has been
addressed with different methods. Starting from process
discovery algorithms developed in [3] (such as the Heuristic
Miner), many adaptations have been proposed in the literature.
Two different adaptations of the Heuristic Miner are proposed
in [4]: the first iteratively applies a modified version of the

574 Edoardo Chiò et al. / Procedia CIRP 99 (2021) 573–579
 Edoardo Chiò et al. /Procedia CIRP 00 (2020) 000–000

algorithm on rolling windows (with a specific width) of data
(Heuristic Miner with Sliding Window, SW); the second one,
instead, works on buckets whose width depends on the
maximum approximation error (Heuristic Miner with Lossy
Counting, LC). The last approach is based on an algorithm
proposed in [5]. A modified version of the Heuristic Miner
was developed in [6], which is based on building initial prefix-
trees to extract sequential patterns of events from the stream
and on continuously updating this structure through “pruning”
and “decaying” of relations and activities. When dealing with
the system change detection, different kinds of drift (or
variation) have to be considered. A simple drift classification
is made in [7], which divides temporary from permanent
variations (based on the lifespan), and sudden, recurring,
gradual and incremental drifts (based on how they manifest).

In the last fifteen years, process mining discovery and
change detection techniques have been applied to various
industries; business processes [8] and healthcare processes [9]
are the main fields of application. Only a few works applied
process mining to production processes. Among these, a
methodology based on process discovery algorithms is
proposed in [10] to create the model of a manufacturing
system and to deal with infrequent behaviors while keeping
the model up to date. A probabilistic neural net is used to
distinguish exceptional messages, while a genetic algorithm
allows to continuously refresh the model as the data flows.

In all the cited papers, the model is automatically updated
as new events are added in the event log, without explicitly
considering if and when a variation happened in the process.
The objective of this paper is to contribute to the literature of
the application of process mining in production systems.
Specifically, the problem of identifying and understanding if,
when and how the real process changes is addressed, thus
leading the way to future studies on how to efficiently update
production process digital models.

The rest of the paper is organized as follows. Section 2
describes the analyzed production system and the possible
variations occurring in it, and Section 3 addresses the process
mining technique proposed to detect the change. The
numerical experiment and its results are presented in Section
4, while Section 5 concludes the paper with the main insights,
limitations and ideas for future research.

2. System Description

In this paper, a serial-parallel production system
characterized by i=1,…,S stages (or Activities) and j=1,…,Ni
parallel identical machines (or Resources) at each stage i is
considered. Before each stage i there is a finite capacity
incoming buffer Bi, except for the first one B1, which is
uncapacitated to allow all the arriving jobs to enter the line. In
addition to incoming buffers, after each stage there is an
outgoing buffer whose capacity is equal to the number of
machines in the stage (congestion stock).

The inter-arrival time I of jobs to the system is assumed to
be deterministic, while the transfer time from one stage to
another is assumed negligible. The machine processing time,
instead, is stochastic but its probability distribution and the
related parameters are assumed known.

For the rest of the paper the following notation is used:
 Li: capacity of buffer Bi;
 Rij: j-th resource of stage i;
 Ti: processing time distribution of each resource Rij

(index j is not used as all the resources in the same stage
i are identical);

 Mi: average processing time of resources at stage i (i.e.,
the mean of distribution Ti);

 Ci = Ni / Mi: average capacity of stage i;
 Cmin: average capacity of the bottleneck (BN) stage;
 F = 1 / I: arrival rate of jobs to the system.

Both stable (F < Cmin) and unstable (F > Cmin) processes are
considered. However, for sake of simplicity, only systems that
have initially highly congested or almost void steady state
buffers are studied. No failures or setups are assumed to
occur.
Data are assumed to have been already collected in a
complete and static event log. The event log is assumed to
have been collected from two different configurations of
sensors in each stage of the line:

1. one sensor before the incoming buffer, one between
the buffer and the resources, one before the
congestion stock. (Fig. 1);

2. one sensor before the incoming buffer, one at the
entrance of each resource, and one at the exit of each
resource. (Fig. 2).

The sensors convey the following information:
 CaseID: identification number unique for each job;
 EventID: identification number unique for each

event;
 Activity: identification number unique for each stage;
 Resource: identification number unique for each

machine (collected only for the second configuration
of sensors);

 Timestamp: timestamp, i.e., the time when the event
occurs.

Three different types of changes are considered:
 variation of the buffer capacity;
 variation of number of parallel resources in a stage;
 variation of processing times in single resources.

A variation can occur at any stage (i’), which is defined
according to the position of stage i’ with respect to the
bottleneck stage i". If i’< i” the variation is called top
variation, otherwise, if i’ > i”, the variation is called bottom
variation.

Fig. 1. First sensor configuration in a single stage with 3 parallel resources

 Edoardo Chiò et al. / Procedia CIRP 00 (2020) 000–000

Fig. 2. Second sensor configuration in a single stage with 3 parallel resources

Single or multiple variations can occur at the same stage in
different time instants. Moreover, according to the
classification proposed in [7], only permanent (with respect to
the lifespan) and sudden drifts (with respect to how they
manifest) are studied.

3. Data reorganization

To detect the changes in the system, the data collected by
the sensors are analyzed. The sensor output is an event log
containing the five fields previously described (Table 1):
CaseID, EventID, Activity, Resource, Timestamp.

Table 1. An event log section

CASEID EVENTID ACTIVITY RESOURCE TIME
9146 224835 4 0 638115
9146 227134 4 1 646182.5
9146 227154 4 1 646262.2
9147 224858 4 0 638199.6
9147 227157 4 1 646262.2
9147 227177 4 1 646340.6
9148 224881 4 0 638271.7
9148 227180 4 1 646340.6
9148 227200 4 1 646415.1
9149 224907 4 0 638354.7
9149 227203 4 1 646415.1
9149 227223 4 1 646494.1
9150 224930 4 0 638446.2
9150 227226 4 1 646494.1
9150 227246 4 1 646565

To extract information from the event log, data are

reorganized as follows. The log is divided in different data
frames, one for each different Activity. Each Activity frame is
called case list (Table 2), and it includes the events of the log
classified in three categories:

 entrance of a job in the stage buffer related to the
Activity (Timestamp_buff);

 departure of a job from the stage buffer and its
entrance in a resource of the stage (Timestamp_res);

 departure of a job from the resource and its entrance
in the congestion stock of the stage
(Timestamp_end).

Table 2. A case list section

CASE
ID

TIMESTAMP_B
UFF

TIMESTAMP_
RES

TIMESTAMP_
END

9146 638115 646182.5 646262.2
9147 638199.6 646262.2 646340.6
9148 638271.7 646340.6 646415.1
9149 638354.7 646415.1 646494.1
9150 638446.2 646494.1 646565

Each record (i.e., each row) of the case list represents the
three different event types occurring to a job in a single
stage. Within the case list, the timestamp differences are
created. They refer to qualities related to the flowing of
jobs in the system. As an example, consider Fig. 3.

Fig. 3. Timestamps and intervals scheme.

Table 3. Same case intervals

CASEI
D

WAITING_TI
ME

PROCESSING_TI
ME

BLOCKING_TI
ME

9146 8067.515 79.6887 47.11337
9147 8062.591 78.40707 45.18427
9148 8068.841 74.55483 26.16633
9149 8060.458 78.99909 39.311
9150 8047.883 70.8386 52.87607

Table 4. Consecutive case intervals

CASEID INPUT_DIFF MID_ DIFF OUTPUT_
DIFF

9146 79.22356 78.35248 79.6887
9147 84.61259 79.6887 78.40707
9148 72.15771 78.40707 74.55483
9149 82.93689 74.55483 78.99909
9150 91.57459 78.99909 70.8386

The timestamp differences are classified in two categories,

and they are computed for each job k and stage i:
Same case intervals refer to the differences between the
timestamps of a same job (Table 3):

 waiting time of job k in the buffer of stage i
Waiting_time(k,i) = Timestamp_res(k,i) –
Timestamp_buff(k,i);

 processing time of job k at stage i
Process_time(k,i) = Timestamp_end(k,i)-
Timestamp_res(k,i);

 Edoardo Chiò et al. / Procedia CIRP 99 (2021) 573–579 575
 Edoardo Chiò et al. /Procedia CIRP 00 (2020) 000–000

algorithm on rolling windows (with a specific width) of data
(Heuristic Miner with Sliding Window, SW); the second one,
instead, works on buckets whose width depends on the
maximum approximation error (Heuristic Miner with Lossy
Counting, LC). The last approach is based on an algorithm
proposed in [5]. A modified version of the Heuristic Miner
was developed in [6], which is based on building initial prefix-
trees to extract sequential patterns of events from the stream
and on continuously updating this structure through “pruning”
and “decaying” of relations and activities. When dealing with
the system change detection, different kinds of drift (or
variation) have to be considered. A simple drift classification
is made in [7], which divides temporary from permanent
variations (based on the lifespan), and sudden, recurring,
gradual and incremental drifts (based on how they manifest).

In the last fifteen years, process mining discovery and
change detection techniques have been applied to various
industries; business processes [8] and healthcare processes [9]
are the main fields of application. Only a few works applied
process mining to production processes. Among these, a
methodology based on process discovery algorithms is
proposed in [10] to create the model of a manufacturing
system and to deal with infrequent behaviors while keeping
the model up to date. A probabilistic neural net is used to
distinguish exceptional messages, while a genetic algorithm
allows to continuously refresh the model as the data flows.

In all the cited papers, the model is automatically updated
as new events are added in the event log, without explicitly
considering if and when a variation happened in the process.
The objective of this paper is to contribute to the literature of
the application of process mining in production systems.
Specifically, the problem of identifying and understanding if,
when and how the real process changes is addressed, thus
leading the way to future studies on how to efficiently update
production process digital models.

The rest of the paper is organized as follows. Section 2
describes the analyzed production system and the possible
variations occurring in it, and Section 3 addresses the process
mining technique proposed to detect the change. The
numerical experiment and its results are presented in Section
4, while Section 5 concludes the paper with the main insights,
limitations and ideas for future research.

2. System Description

In this paper, a serial-parallel production system
characterized by i=1,…,S stages (or Activities) and j=1,…,Ni
parallel identical machines (or Resources) at each stage i is
considered. Before each stage i there is a finite capacity
incoming buffer Bi, except for the first one B1, which is
uncapacitated to allow all the arriving jobs to enter the line. In
addition to incoming buffers, after each stage there is an
outgoing buffer whose capacity is equal to the number of
machines in the stage (congestion stock).

The inter-arrival time I of jobs to the system is assumed to
be deterministic, while the transfer time from one stage to
another is assumed negligible. The machine processing time,
instead, is stochastic but its probability distribution and the
related parameters are assumed known.

For the rest of the paper the following notation is used:
 Li: capacity of buffer Bi;
 Rij: j-th resource of stage i;
 Ti: processing time distribution of each resource Rij

(index j is not used as all the resources in the same stage
i are identical);

 Mi: average processing time of resources at stage i (i.e.,
the mean of distribution Ti);

 Ci = Ni / Mi: average capacity of stage i;
 Cmin: average capacity of the bottleneck (BN) stage;
 F = 1 / I: arrival rate of jobs to the system.

Both stable (F < Cmin) and unstable (F > Cmin) processes are
considered. However, for sake of simplicity, only systems that
have initially highly congested or almost void steady state
buffers are studied. No failures or setups are assumed to
occur.
Data are assumed to have been already collected in a
complete and static event log. The event log is assumed to
have been collected from two different configurations of
sensors in each stage of the line:

1. one sensor before the incoming buffer, one between
the buffer and the resources, one before the
congestion stock. (Fig. 1);

2. one sensor before the incoming buffer, one at the
entrance of each resource, and one at the exit of each
resource. (Fig. 2).

The sensors convey the following information:
 CaseID: identification number unique for each job;
 EventID: identification number unique for each

event;
 Activity: identification number unique for each stage;
 Resource: identification number unique for each

machine (collected only for the second configuration
of sensors);

 Timestamp: timestamp, i.e., the time when the event
occurs.

Three different types of changes are considered:
 variation of the buffer capacity;
 variation of number of parallel resources in a stage;
 variation of processing times in single resources.

A variation can occur at any stage (i’), which is defined
according to the position of stage i’ with respect to the
bottleneck stage i". If i’< i” the variation is called top
variation, otherwise, if i’ > i”, the variation is called bottom
variation.

Fig. 1. First sensor configuration in a single stage with 3 parallel resources

 Edoardo Chiò et al. / Procedia CIRP 00 (2020) 000–000

Fig. 2. Second sensor configuration in a single stage with 3 parallel resources

Single or multiple variations can occur at the same stage in
different time instants. Moreover, according to the
classification proposed in [7], only permanent (with respect to
the lifespan) and sudden drifts (with respect to how they
manifest) are studied.

3. Data reorganization

To detect the changes in the system, the data collected by
the sensors are analyzed. The sensor output is an event log
containing the five fields previously described (Table 1):
CaseID, EventID, Activity, Resource, Timestamp.

Table 1. An event log section

CASEID EVENTID ACTIVITY RESOURCE TIME
9146 224835 4 0 638115
9146 227134 4 1 646182.5
9146 227154 4 1 646262.2
9147 224858 4 0 638199.6
9147 227157 4 1 646262.2
9147 227177 4 1 646340.6
9148 224881 4 0 638271.7
9148 227180 4 1 646340.6
9148 227200 4 1 646415.1
9149 224907 4 0 638354.7
9149 227203 4 1 646415.1
9149 227223 4 1 646494.1
9150 224930 4 0 638446.2
9150 227226 4 1 646494.1
9150 227246 4 1 646565

To extract information from the event log, data are

reorganized as follows. The log is divided in different data
frames, one for each different Activity. Each Activity frame is
called case list (Table 2), and it includes the events of the log
classified in three categories:

 entrance of a job in the stage buffer related to the
Activity (Timestamp_buff);

 departure of a job from the stage buffer and its
entrance in a resource of the stage (Timestamp_res);

 departure of a job from the resource and its entrance
in the congestion stock of the stage
(Timestamp_end).

Table 2. A case list section

CASE
ID

TIMESTAMP_B
UFF

TIMESTAMP_
RES

TIMESTAMP_
END

9146 638115 646182.5 646262.2
9147 638199.6 646262.2 646340.6
9148 638271.7 646340.6 646415.1
9149 638354.7 646415.1 646494.1
9150 638446.2 646494.1 646565

Each record (i.e., each row) of the case list represents the
three different event types occurring to a job in a single
stage. Within the case list, the timestamp differences are
created. They refer to qualities related to the flowing of
jobs in the system. As an example, consider Fig. 3.

Fig. 3. Timestamps and intervals scheme.

Table 3. Same case intervals

CASEI
D

WAITING_TI
ME

PROCESSING_TI
ME

BLOCKING_TI
ME

9146 8067.515 79.6887 47.11337
9147 8062.591 78.40707 45.18427
9148 8068.841 74.55483 26.16633
9149 8060.458 78.99909 39.311
9150 8047.883 70.8386 52.87607

Table 4. Consecutive case intervals

CASEID INPUT_DIFF MID_ DIFF OUTPUT_
DIFF

9146 79.22356 78.35248 79.6887
9147 84.61259 79.6887 78.40707
9148 72.15771 78.40707 74.55483
9149 82.93689 74.55483 78.99909
9150 91.57459 78.99909 70.8386

The timestamp differences are classified in two categories,

and they are computed for each job k and stage i:
Same case intervals refer to the differences between the
timestamps of a same job (Table 3):

 waiting time of job k in the buffer of stage i
Waiting_time(k,i) = Timestamp_res(k,i) –
Timestamp_buff(k,i);

 processing time of job k at stage i
Process_time(k,i) = Timestamp_end(k,i)-
Timestamp_res(k,i);

576 Edoardo Chiò et al. / Procedia CIRP 99 (2021) 573–579
 Edoardo Chiò et al. /Procedia CIRP 00 (2020) 000–000

 blocking time of job k in the congestion buffer of
stage i
Blocking_time(k,i) = Timestamp_buff(k,i+1)-
Timestamp_end(k,i).

Consecutive case intervals refer to the differences between
consecutive job arrivals in the same sensor position (Table
4):

 Input_diff(k,i) = Timestamp_buff(k,i) -
Timestamp_buff(k-1,i);

 Mid_diff(k,i) = Timestamp_res(k,i) -
Timestamp_res(k-1,i);

 Output_diff(k,i) = Timestamp_end(k,i) -
Timestamp_end(k-1,i).

The case list and the timestamp differences are used to
detect the process behavior and the changes in the system
through graphs. Specifically, two types of plots are created.
The first type of plots shows the pairs of intervals
(timestamps) as dependent variables, and CaseID as
independent variable. In the second type of plot, instead, the
dependent variables are mean, variance, skewness, and
kurtosis of timestamps. These quantities are computed using a
moving window, characterized by a width and a shifting
frequency, on the case list. These quantities are plotted as
function of CaseID, to deepen the understanding of how
process variations can change the event log data.

4. Numerical experiments

A simulator is used to replicate a production system and
create the event logs collected by the sensors. A production
line with 8 stages and 15000 jobs is considered. The
processing times of all the resources are assumed to follow
triangular distributions.

In the experiments, some factors have been varied to
analyze the behavior of the algorithm in various scenarios.

Specifically, the factors are:
 number of machines per stage (j = {1,2,3});
 time occurrence of a change in the system within the

simulation (after 5000, 7500, 10000, 12500 jobs
have been processed by the first stage);

 moving window length (100, 200, 300, 400, 500
jobs);

 window updating frequency (25, 50, 75 jobs);
 stage of the change occurrence (i = {4,6});
 bottleneck stage (BN) stage (i = {4,6}).

Each simulation run generates an event log that is
transformed in a case list as described in section 3. The data
of the case list are plotted in different combinations. For
conciseness reasons, the results presented in the paper only
refer to an increase in the mean processing time in one of the
4th stage resources, while the bottleneck is placed in the 6th
stage (top variation).

4.1. Waiting time

The waiting time interval of the case list has been plotted
as a function of CaseID. Fig. 4 shows the case of a system
composed of one resource per stage. Specifically, the graphs
in Fig. 4 show the stage before the one where the variation
occurs, the changing stage, the following stage, and the BN

stage, respectively. The plots of an initially unstable (on the
left) and an initially stable (on the right) system are placed
side by side to compare the different behaviors.
In an initially unstable system, all the buffers upstream the
bottleneck (BN buffer included), after the transient period, are
saturated (i.e., the average waiting time is equal to the ratio
between the buffer capacity and the BN capacity, Li / Cmin).
Instead, the buffers downstream the bottleneck are almost
empty (i.e., zero waiting time). If a stage, after a variation, has
Ci / Cmin, it becomes the new BN. In the waiting time plots,
this variation can be identified when the waiting time in its
buffer grows, as in the upstream buffers, and the waiting time
in the downstream buffers decreases to 0.
In an initially stable system, instead, all the buffers are empty
(the waiting time is 0); in the BN buffer there is a cloud of
dots as there are jobs waiting in it, but most of them have an
almost null waiting time. When the changing stage gets Ci <
Cmin, if Ci is still larger than the inter-arrival rate F, no
variation occurs. Only if Ci becomes lower than F, the change
can be identified (i.e., it becomes visible); in this case, all the
buffers in the upstream stages (and in the changing position)
become saturated, and the average waiting time increases to Li
/ C’min (where C’min is the capacity of the new BN).

 Initially unstable system Initially stable system

U
ps

tr
ea

m
 st

ag
e

C
ha

ng
in

g
st

ag
e

D
ow

ns
tr

ea
m

 st
ag

e

 Edoardo Chiò et al. / Procedia CIRP 00 (2020) 000–000

 Initially unstable system Initially stable system

B
ot

tle
ne

ck
 st

ag
e

Fig. 4. Waiting time plots.

In conclusion, the graphs behave accordingly to the theory,
and this type of plots is useful to identify a change in the
processing time and to understand if the BN stage changes
with respect to its initial position.

4.2. Processing time

The processing time is plotted as a function of CaseID in
Fig. 5. The graphs are related to a line composed of three
resources per stage. The plots compare an initially unstable
and an initially stable system. The sensors are placed
according to the second configuration (Fig. 2), to isolate the
behavior of the changing resource. The top graphs show the
three resources together, while the bottom ones show only the
resource affected by the variation.

Regardless of the system stability, the plots show that the
processing time grows. However, in an unstable system every
increase appears sooner than in the stable one. This happens
because the more the buffers are saturated, the longer jobs are
processed, because of the increase in the processing time.

 Initially unstable system Initially stable system

A
ll

re
so

ur
ce

s

C
ha

ng
in

g
re

so
ur

ce

Fig. 5. Processing time plots.

This type of plots can then be useful to understand whether
and in which stage a processing time change or a resource

activation (or deactivation) is happening, independently from
the system stability.

4.3. Blocking time

The blocking time is plotted as a function of CaseID in Fig.
6. The plots refer to a line composed of single resource stages.
The graphs show the blocking time in the stage before the
changing stage in an initially unstable (on the left) and
initially stable (on the right) system.

In an unstable system, the blocking occurs in all the stages
upstream the BN. If the capacity in the changing stage
decreases below the capacity in the BN, blocking no longer
occurs in all the stages between the changing stage and the
initial BN (in a top variation situation), while the blocking
time in the upstream stages increases. The plot on the left
shows the described situation.

Initially unstable system Initially stable
system

Fig. 6. Blocking time plots.

Instead, the blocking does not occur if the system is stable.
Only when the capacity in the changing stage decreases below
the inter-arrival rate (Ci < F), the system becomes unstable
and the blocking occurs in all the stages upstream, as can be
seen in the graph on the right.

This type of plots clearly shows when a stable system
becomes unstable and vice versa.

4.4. Changes in the parameters of a distribution

As discussed in section 3, various moments of the
distributions of performance measures have been calculated
through moving windows. Plotting these moments as a
function of CaseID can be used to identify the changes in the
distribution parameters.

 Window of 100 jobs Window of 500 jobs

M
ea

n
Pr

oc
es

s_
tim

e

 Edoardo Chiò et al. / Procedia CIRP 99 (2021) 573–579 577
 Edoardo Chiò et al. /Procedia CIRP 00 (2020) 000–000

 blocking time of job k in the congestion buffer of
stage i
Blocking_time(k,i) = Timestamp_buff(k,i+1)-
Timestamp_end(k,i).

Consecutive case intervals refer to the differences between
consecutive job arrivals in the same sensor position (Table
4):

 Input_diff(k,i) = Timestamp_buff(k,i) -
Timestamp_buff(k-1,i);

 Mid_diff(k,i) = Timestamp_res(k,i) -
Timestamp_res(k-1,i);

 Output_diff(k,i) = Timestamp_end(k,i) -
Timestamp_end(k-1,i).

The case list and the timestamp differences are used to
detect the process behavior and the changes in the system
through graphs. Specifically, two types of plots are created.
The first type of plots shows the pairs of intervals
(timestamps) as dependent variables, and CaseID as
independent variable. In the second type of plot, instead, the
dependent variables are mean, variance, skewness, and
kurtosis of timestamps. These quantities are computed using a
moving window, characterized by a width and a shifting
frequency, on the case list. These quantities are plotted as
function of CaseID, to deepen the understanding of how
process variations can change the event log data.

4. Numerical experiments

A simulator is used to replicate a production system and
create the event logs collected by the sensors. A production
line with 8 stages and 15000 jobs is considered. The
processing times of all the resources are assumed to follow
triangular distributions.

In the experiments, some factors have been varied to
analyze the behavior of the algorithm in various scenarios.

Specifically, the factors are:
 number of machines per stage (j = {1,2,3});
 time occurrence of a change in the system within the

simulation (after 5000, 7500, 10000, 12500 jobs
have been processed by the first stage);

 moving window length (100, 200, 300, 400, 500
jobs);

 window updating frequency (25, 50, 75 jobs);
 stage of the change occurrence (i = {4,6});
 bottleneck stage (BN) stage (i = {4,6}).

Each simulation run generates an event log that is
transformed in a case list as described in section 3. The data
of the case list are plotted in different combinations. For
conciseness reasons, the results presented in the paper only
refer to an increase in the mean processing time in one of the
4th stage resources, while the bottleneck is placed in the 6th
stage (top variation).

4.1. Waiting time

The waiting time interval of the case list has been plotted
as a function of CaseID. Fig. 4 shows the case of a system
composed of one resource per stage. Specifically, the graphs
in Fig. 4 show the stage before the one where the variation
occurs, the changing stage, the following stage, and the BN

stage, respectively. The plots of an initially unstable (on the
left) and an initially stable (on the right) system are placed
side by side to compare the different behaviors.
In an initially unstable system, all the buffers upstream the
bottleneck (BN buffer included), after the transient period, are
saturated (i.e., the average waiting time is equal to the ratio
between the buffer capacity and the BN capacity, Li / Cmin).
Instead, the buffers downstream the bottleneck are almost
empty (i.e., zero waiting time). If a stage, after a variation, has
Ci / Cmin, it becomes the new BN. In the waiting time plots,
this variation can be identified when the waiting time in its
buffer grows, as in the upstream buffers, and the waiting time
in the downstream buffers decreases to 0.
In an initially stable system, instead, all the buffers are empty
(the waiting time is 0); in the BN buffer there is a cloud of
dots as there are jobs waiting in it, but most of them have an
almost null waiting time. When the changing stage gets Ci <
Cmin, if Ci is still larger than the inter-arrival rate F, no
variation occurs. Only if Ci becomes lower than F, the change
can be identified (i.e., it becomes visible); in this case, all the
buffers in the upstream stages (and in the changing position)
become saturated, and the average waiting time increases to Li
/ C’min (where C’min is the capacity of the new BN).

 Initially unstable system Initially stable system

U
ps

tr
ea

m
 st

ag
e

C
ha

ng
in

g
st

ag
e

D
ow

ns
tr

ea
m

 st
ag

e

 Edoardo Chiò et al. / Procedia CIRP 00 (2020) 000–000
 Initially unstable system Initially stable system

B
ot

tle
ne

ck
 st

ag
e

Fig. 4. Waiting time plots.

In conclusion, the graphs behave accordingly to the theory,
and this type of plots is useful to identify a change in the
processing time and to understand if the BN stage changes
with respect to its initial position.

4.2. Processing time

The processing time is plotted as a function of CaseID in
Fig. 5. The graphs are related to a line composed of three
resources per stage. The plots compare an initially unstable
and an initially stable system. The sensors are placed
according to the second configuration (Fig. 2), to isolate the
behavior of the changing resource. The top graphs show the
three resources together, while the bottom ones show only the
resource affected by the variation.

Regardless of the system stability, the plots show that the
processing time grows. However, in an unstable system every
increase appears sooner than in the stable one. This happens
because the more the buffers are saturated, the longer jobs are
processed, because of the increase in the processing time.

 Initially unstable system Initially stable system

A
ll

re
so

ur
ce

s

C
ha

ng
in

g
re

so
ur

ce

Fig. 5. Processing time plots.

This type of plots can then be useful to understand whether
and in which stage a processing time change or a resource

activation (or deactivation) is happening, independently from
the system stability.

4.3. Blocking time

The blocking time is plotted as a function of CaseID in Fig.
6. The plots refer to a line composed of single resource stages.
The graphs show the blocking time in the stage before the
changing stage in an initially unstable (on the left) and
initially stable (on the right) system.

In an unstable system, the blocking occurs in all the stages
upstream the BN. If the capacity in the changing stage
decreases below the capacity in the BN, blocking no longer
occurs in all the stages between the changing stage and the
initial BN (in a top variation situation), while the blocking
time in the upstream stages increases. The plot on the left
shows the described situation.

Initially unstable system Initially stable
system

Fig. 6. Blocking time plots.

Instead, the blocking does not occur if the system is stable.
Only when the capacity in the changing stage decreases below
the inter-arrival rate (Ci < F), the system becomes unstable
and the blocking occurs in all the stages upstream, as can be
seen in the graph on the right.

This type of plots clearly shows when a stable system
becomes unstable and vice versa.

4.4. Changes in the parameters of a distribution

As discussed in section 3, various moments of the
distributions of performance measures have been calculated
through moving windows. Plotting these moments as a
function of CaseID can be used to identify the changes in the
distribution parameters.

 Window of 100 jobs Window of 500 jobs

M
ea

n
Pr

oc
es

s_
tim

e

578 Edoardo Chiò et al. / Procedia CIRP 99 (2021) 573–579
 Edoardo Chiò et al. /Procedia CIRP 00 (2020) 000–000

 Window of 100 jobs Window of 500 jobs

V
ar

. P
ro

ce
ss

_t
im

e

Fig. 7. Moments of the processing time distribution.

The plots in Fig. 7 are related to a line with one resource
for stage and stable behavior. The graphs show the moving
windows of the mean (upper graphs) and of the variance
(lower graphs) of the processing time of the resource affected
by the change. Two different window lengths have been used
(100 jobs on the left and 500 jobs on the right) while the
update frequency is set to 50 jobs in all the graphs.

The plots show that the shorter the window, the faster the
change can be identified; however, a larger window better
filters data from noise and outliers. One of the main issues is
finding the suitable window length to balance detection speed
and accuracy. The variance plots have peaks when the
processing time changes: this happens because the windows
include pre-change and post-change processing times. After
each peak, the variance stabilizes on larger levels because, in
the tests, each processing time variation affects the mean and
variance of its distribution, by inflating both.

By looking at the plots of the moving windows of the mean
and of the variance, changes on the parameters of the
distribution can be spotted. The moving average plots show a
change in the mean of the distribution (regardless the length
of the window), however it does not show a change in the
variance of the distribution. Instead, by plotting the moving
window of the variance, changes in the mean of the
distribution can be spotted with peaks in the graph, while the
change in the variance of the distribution can be spotted by
shifts of the curve in the graph.

5. Conclusions

In this paper, the problem of the automatic identification of
changes in a production system is addressed. Specifically, the
paper addresses the issue of extracting information about the
changes in the system from sensor collected data. The
available data are manipulated and reorganized so as to define
the so-called timestamps, and relevant timestamp differences
are computed. These differences are plotted as a function of
the jobs flowing in the production system to evaluate if they
are able to show occurred system changes. This methodology
was applied to a simple flow line through simulation, and
results showed that the usefulness of each plot depends on the
state of the system at the time the change occurred, and on the
type of occurred change.

Some results, being in accordance with the production
system theory, seems obvious, however the purpose of this
work is not to explain the system behavior rather to identify

changes. Thus, the results show which subset of data should
be analyzed to detect different type of changes, to reduce the
big data load that will be available in the future full sensorized
lines.

The main limit of this research is that currently the use of
plots to identify changes implies a human operator evaluating
them. Hence, ongoing research focuses on automatically
identifying changes in the system without (or with a reduced)
human intervention. The objective is to develop an algorithm
that automatically detects and classifies changes from
timestamp difference plots.

Other issues that future research will have to consider are
those related to the assumptions made in the paper. First, the
paper considered only extreme cases with respect to the initial
buffer levels: completely empty buffers (and stage capacities
much larger than those requested by the inter-arrival times) or
completely full buffers (and stage capacities much smaller
than those requested by the inter-arrival times). Intermediate
cases, more representative of real stable systems, need to be
considered. To this purpose, also other types of systems, other
types of changes (e.g., failures or setup times), and not sudden
(i.e., incremental) changes will be considered.

With respect to the plot procedure, when data windows and
updating frequencies are used, as in the plots of the
distribution moments, parameters to choose the most adequate
window length and frequency value should be defined.
Moreover, as in real situations it is necessary to work with
group of data, the use of data windows and updating
frequencies has to be evaluated also for the other type of plots
(e.g., waiting time or processing time plots).
To have more information of possible distribution changes,
also the use of concentration indices, applied to the data
windows, will be evaluated.

References

[1] Van Der Aalst, W., Adriansyah, A., De Medeiros, A. K. A., Arcieri, F.,
Baier, T., Blickle, T., & Burattin, A. (2011, August). Process mining
manifesto. In International Conference on Business Process Management.
Springer, Berlin, Heidelberg. p. 169-194

[2] Song, M. & Van Der Aalst, W.M.P. (2007). Supporting process mining by
showing events at a glance. In WITS 2007 - Proceedings, 17th Annual
Workshop on Information Technologies and Systems. Social Science
Research Network. p. 140–145

[3] Van Der Aalst, W.M.P. (2016). Process mining: data science in action.
Springer Verlag.

[4] Burattin, A., Sperduti, A., & van der Aalst, W. M. (2014, July). Control-
flow discovery from event streams. In 2014 IEEE Congress on
Evolutionary Computation (CEC). IEEE. p. 2420-2427

[5] Manku, G. S., & Motwani, R. (2002, January). Approximate frequency
counts over data streams. In VLDB'02: Proceedings of the 28th
International Conference on Very Large Databases. Morgan Kaufmann. p.
346-357

[6] Hassani, M., Siccha, S., Richter, F., & Seidl, T. (2015, December).
Efficient process discovery from event streams using sequential pattern
mining. In 2015 IEEE symposium series on computational intelligence.
IEEE. p. 1366-1373

[7] Bose, R. J. C., van der Aalst, W. M., Žliobaitė, I., & Pechenizkiy, M.
(2011, June). Handling concept drift in process mining. In International
Conference on Advanced Information Systems Engineering. Springer,
Berlin, Heidelberg. p. 391-405

[8] Tiwari, A., Turner, C. J., & Majeed, B. (2008). A review of business
process mining: state-of-the-art and future trends. Business Process
Management Journal, 14(1), 5-22.

 Edoardo Chiò et al. / Procedia CIRP 00 (2020) 000–000

[9] Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016).
Process mining in healthcare: A literature review. Journal of biomedical
informatics, 61, 224-236.

[10] Denno, P., Dickerson, C., & Harding, J. A. (2018). Dynamic production
system identification for smart manufacturing systems. Journal of
manufacturing systems, 48, 192-203.

 Edoardo Chiò et al. / Procedia CIRP 99 (2021) 573–579 579
 Edoardo Chiò et al. /Procedia CIRP 00 (2020) 000–000

 Window of 100 jobs Window of 500 jobs

V
ar

. P
ro

ce
ss

_t
im

e

Fig. 7. Moments of the processing time distribution.

The plots in Fig. 7 are related to a line with one resource
for stage and stable behavior. The graphs show the moving
windows of the mean (upper graphs) and of the variance
(lower graphs) of the processing time of the resource affected
by the change. Two different window lengths have been used
(100 jobs on the left and 500 jobs on the right) while the
update frequency is set to 50 jobs in all the graphs.

The plots show that the shorter the window, the faster the
change can be identified; however, a larger window better
filters data from noise and outliers. One of the main issues is
finding the suitable window length to balance detection speed
and accuracy. The variance plots have peaks when the
processing time changes: this happens because the windows
include pre-change and post-change processing times. After
each peak, the variance stabilizes on larger levels because, in
the tests, each processing time variation affects the mean and
variance of its distribution, by inflating both.

By looking at the plots of the moving windows of the mean
and of the variance, changes on the parameters of the
distribution can be spotted. The moving average plots show a
change in the mean of the distribution (regardless the length
of the window), however it does not show a change in the
variance of the distribution. Instead, by plotting the moving
window of the variance, changes in the mean of the
distribution can be spotted with peaks in the graph, while the
change in the variance of the distribution can be spotted by
shifts of the curve in the graph.

5. Conclusions

In this paper, the problem of the automatic identification of
changes in a production system is addressed. Specifically, the
paper addresses the issue of extracting information about the
changes in the system from sensor collected data. The
available data are manipulated and reorganized so as to define
the so-called timestamps, and relevant timestamp differences
are computed. These differences are plotted as a function of
the jobs flowing in the production system to evaluate if they
are able to show occurred system changes. This methodology
was applied to a simple flow line through simulation, and
results showed that the usefulness of each plot depends on the
state of the system at the time the change occurred, and on the
type of occurred change.

Some results, being in accordance with the production
system theory, seems obvious, however the purpose of this
work is not to explain the system behavior rather to identify

changes. Thus, the results show which subset of data should
be analyzed to detect different type of changes, to reduce the
big data load that will be available in the future full sensorized
lines.

The main limit of this research is that currently the use of
plots to identify changes implies a human operator evaluating
them. Hence, ongoing research focuses on automatically
identifying changes in the system without (or with a reduced)
human intervention. The objective is to develop an algorithm
that automatically detects and classifies changes from
timestamp difference plots.

Other issues that future research will have to consider are
those related to the assumptions made in the paper. First, the
paper considered only extreme cases with respect to the initial
buffer levels: completely empty buffers (and stage capacities
much larger than those requested by the inter-arrival times) or
completely full buffers (and stage capacities much smaller
than those requested by the inter-arrival times). Intermediate
cases, more representative of real stable systems, need to be
considered. To this purpose, also other types of systems, other
types of changes (e.g., failures or setup times), and not sudden
(i.e., incremental) changes will be considered.

With respect to the plot procedure, when data windows and
updating frequencies are used, as in the plots of the
distribution moments, parameters to choose the most adequate
window length and frequency value should be defined.
Moreover, as in real situations it is necessary to work with
group of data, the use of data windows and updating
frequencies has to be evaluated also for the other type of plots
(e.g., waiting time or processing time plots).
To have more information of possible distribution changes,
also the use of concentration indices, applied to the data
windows, will be evaluated.

References

[1] Van Der Aalst, W., Adriansyah, A., De Medeiros, A. K. A., Arcieri, F.,
Baier, T., Blickle, T., & Burattin, A. (2011, August). Process mining
manifesto. In International Conference on Business Process Management.
Springer, Berlin, Heidelberg. p. 169-194

[2] Song, M. & Van Der Aalst, W.M.P. (2007). Supporting process mining by
showing events at a glance. In WITS 2007 - Proceedings, 17th Annual
Workshop on Information Technologies and Systems. Social Science
Research Network. p. 140–145

[3] Van Der Aalst, W.M.P. (2016). Process mining: data science in action.
Springer Verlag.

[4] Burattin, A., Sperduti, A., & van der Aalst, W. M. (2014, July). Control-
flow discovery from event streams. In 2014 IEEE Congress on
Evolutionary Computation (CEC). IEEE. p. 2420-2427

[5] Manku, G. S., & Motwani, R. (2002, January). Approximate frequency
counts over data streams. In VLDB'02: Proceedings of the 28th
International Conference on Very Large Databases. Morgan Kaufmann. p.
346-357

[6] Hassani, M., Siccha, S., Richter, F., & Seidl, T. (2015, December).
Efficient process discovery from event streams using sequential pattern
mining. In 2015 IEEE symposium series on computational intelligence.
IEEE. p. 1366-1373

[7] Bose, R. J. C., van der Aalst, W. M., Žliobaitė, I., & Pechenizkiy, M.
(2011, June). Handling concept drift in process mining. In International
Conference on Advanced Information Systems Engineering. Springer,
Berlin, Heidelberg. p. 391-405

[8] Tiwari, A., Turner, C. J., & Majeed, B. (2008). A review of business
process mining: state-of-the-art and future trends. Business Process
Management Journal, 14(1), 5-22.

 Edoardo Chiò et al. / Procedia CIRP 00 (2020) 000–000

[9] Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016).
Process mining in healthcare: A literature review. Journal of biomedical
informatics, 61, 224-236.

[10] Denno, P., Dickerson, C., & Harding, J. A. (2018). Dynamic production
system identification for smart manufacturing systems. Journal of
manufacturing systems, 48, 192-203.

