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Grasp planning with a soft reconfigurable gripper
exploiting embedded and environmental constraints

Enrico Turco1,2, Valerio Bo1,3, Maria Pozzi1,3, Alessandro Rizzo4 and Domenico Prattichizzo1,3

Abstract—Grasping in unstructured environments requires 
highly adaptable and versatile hands together with strategies to 
exploit their features to get robust grasps. This paper presents a 
method to grasp objects using a novel reconfigurable soft gripper 
with embodied constraints, the Soft ScoopGripper (SSG). The 
considered grasp strategy, called scoop grasp, exploits the SSG 
features to perform robust grasps. The embodied constraint, 
i.e., a scoop, is used to slide between the object and a flat 
surface (e.g., table, wall) in contact with it. The fingers are 
first c onfigured ac cording to  th e ob ject ge ometry an d th en used 
to establish reliable contacts with it. This work introduces an 
algorithm that, given the object point cloud, computes the best 
pre-grasp gripper configuration f rom w hich t o s tart t he scoop 
grasp strategy. Several experimental trials in different scenarios 
confirmed t he e ffectiveness o f t he p roposed method.

Index Terms—Soft Robot Applications; Underactuated Robots; 
Grasping.

I. INTRODUCTION

Recent studies showed that in grasping tasks, mainly when
there are uncertainties in the object pose, humans tend to
exploit environmental features to pick objects up [1]. This is
possible thanks to the adaptability and compliance of human
hands, and can be replicated with robots exhibiting active or
passive compliant behaviors [2]. Bimbo et al. [3] and Hang et
al. [4], for example, proposed different ways to implement the
so-called slide-to-edge grasp, in which an object is dragged
towards the edge of a table and then grasped from the side.

Salvietti et al., in [5], introduced a different point of
view, embedding a constraint directly in the robotic hand.
They presented the Soft ScoopGripper (SSG), a novel hand
composed of two soft modular fingers a nd a  tendon-driven
scoop connected through a flexible h inge t o t he h and palm.
Acting on the dovetail joints at the bases of the fingers, i t is
possible to obtain several hand configurations. While in [5] this
motion was obtained manually, here we adopt a new version
of the SSG, where each finger c an b e a utomatically rotated
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Fig. 1: Scoop grasp: a soft gripper uses an embedded constraint
(scoop) to slide over an environmental constraint (table or
wall) and reach the object. Then, reconfigurable soft fingers
grasp it.

of an arbitrary angle about its axis. A sketch of the hand is
depicted in Fig. 1.

In this paper, we propose a method to plan grasps with the
Soft ScoopGripper explicitly taking into account and exploit-
ing its features. The considered grasp strategy is the so-called
scoop grasp (Fig. 1), where the scoop adapts its orientation
to the surface where it slides (e.g., table or wall), while the
soft fingers establish reliable contacts with the object and cage
it over the scoop. Two main situations are considered: i) the
object to be grasped is in contact with only one environmental
constraint (e.g., table, Fig. 1a), and ii) the object touches two
different surfaces (e.g., wall and table, Figs. 1b-c).

The grasps depicted in Fig. 1 take inspiration from the so-
called surface-constrained grasp and slide-to-wall grasp [1].
In [1], however, the two strategies are performed by a multi-
fingered soft hand and require two very different motions. A
scoop grasp, instead, can be performed on surfaces with dif-
ferent inclinations without substantially modifying the adopted
strategy. This is possible because the exploitation of environ-
mental features is facilitated by the presence of the actuated
scoop, which offers an additional embedded constraint besides
the palm.

Indeed, similarly to [6] and [1], the passive compliance
of the SSG allows shape adaptation between hand, object,
and environment, and further improves grasp success. While
there are works that consider completely rigid embedded
constraints [7], passive adaptability in the gripper structure
was found to be very important in other works presenting a
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“scooping grasp” strategy [8].
In this paper, we extend the concept of scooping grasps to

include cases in which objects are constrained from two sides
and the scoop can either slide on horizontal surfaces, or on
vertical ones. This level of flexibility is obtained thanks to
a grasp planning algorithm that, based on the point cloud of
the object, computes the desired pre-grasp configuration of the
hand with respect to the object, rather than the exact position
of contact points as done in [8].

In our method, pre-grasp parameters are computed by
solving an optimization problem in simulation, then the real
SSG is configured accordingly, and the hand-environment-
object interaction is exploited to achieve the grasp. In this
way, we leave the grasp execution to the gripper “intelligence”,
without attempting to exactly control the unpredictable inter-
play between hand, environment, and object. This principle
is at the basis of recent methods for planning grasps with
soft and underactuated robotic hands. Thanks to the presence
of passive compliance in their mechanical structures, these
devices are adaptable, versatile, and robust. Thus, we can say
that part of the “intelligence” of the grasping system is already
embodied in the hardware design, and it is not all demanded to
the planning and control algorithms. In light of this, classical
grasp planning methods, prescribing the exact position of
fingers for ensuring force closure, need to be extended, or even
overcome, to exploit the intrinsic features of soft hands [2].
In [3], [9], for example, soft robotic hands are pre-shaped
and suitably aligned over the object to obtain edge-grasps and
top-grasps, respectively. In other works, human demonstrations
were used to define motion primitives [10] or pre-grasp hand
orientations [11] for a soft anthropomorphic hand. In [12],
a Convolutional Neural Network is used to estimate suitable
grasp poses and wrist orientations for a soft gripper.

Previously cited papers present model- and learning-based
methods to achieve pre-grasp configurations or perform motion
primitives that, combined with the hand adaptability, allow to
achieve successful grasps. In this paper, we build on a similar
principle, but we propose an algorithm that is suitable for
hands with embedded constraints, like the SSG.

The paper is organized as follows. The grasp planning
algorithm is introduced in Sec. II, and its experimental valida-
tion through multiple grasping trials is presented in Sec. III.
The discussion of the results is included in Sec. IV, and the
conclusions of the paper are outlined in Sec. V.

II. METHODOLOGY

A. The Soft ScoopGripper

The Soft ScoopGripper (SSG) is a non-anthropomorphic
underactuated robotic gripper composed of two soft fingers
and a flat surface connected through a flexible hinge to the
hand palm (the “scoop”). The fingers can be simultaneously
flexed thanks to a tendon-driven differential system actuated
by one motor. The scoop can be closed towards the fingers
through a tendon-driven mechanism actuated by another mo-
tor. The new version of the gripper used in this paper has two
additional degrees of actuation that allow to rotate the dovetail
joints placed at fingers’ bases up to 180◦. Several types

of passively compliant grippers have been proposed in the
literature, from tendon-driven structures [13], to completely
soft devices [14]. In the first, modules made of soft and rigid
materials are usually combined to achieve a trade-off between
compliance and grasp strength [15]. In the second, bio-inspired
elements, such as spring reinforced [16] or spine-inspired [17]
actuators, can be employed to guarantee a satisfactory dynamic
performance of the gripper. The SSG falls in the first category
of soft grippers as it has modular rigid links connected by
flexible joints.

Similarly to multimodal grippers, the SSG can be reconfig-
ured according to the object to grasp. However, in the SSG,
the performed grasp is always the result of an enveloping
movement (i.e., the fingers close towards each other, as in
Fig. 1a, or both against the scoop, as in Figs. 1b-c), while, in
multimodal grippers, different grasping modes, not necessarily
based on closing motions (e.g., suction cups [18]), can be
combined.

B. Optimization problem

In this paper, we present a method to choose the pre-
grasp pose of the SSG based on an optimization algorithm.
The vector x of decision variables contains the angles of the
dovetail joints θR and θL, the distance between object and
scoop centers d, the orientation of the scoop γ with respect to
the object, and the inclination of the gripper α (see Fig. 2):

x = [θR, θL, d, γ, α]. (1)

The values of γ vary in an interval whose end points depend
on the portion of workspace that is reachable by the robot for
a certain object pose.

The optimization problem is formulated as follows:

maximize
x

GQI(x) +
Ascoop(x)

Atot
. (2)

The main components of the cost function are a grasp
quality index and the ratio between the area of the scoop
occupied by the object (Ascoop) and the total area of the
scoop (Atot). In our simulations and experiments, we chose
the Grasp Isotropy Index (GII)1 [20] as grasp quality index.
In principle, however, it is possible to choose any other metric
that can be computed based on the knowledge of the quasi-
static model of the grasp [19]. The only precaution to be taken
consists in the normalization of the index. The second term
of the cost function is meant to give more importance to the
solutions which maximize the use of the embodied constraint.
An analysis of its role is presented at the end of this section.
Given that both the terms vary between 0 and 1, the value of
the cost function varies in the interval [0, 2]. The closer is the
value to 2, the better is the solution.

Our problem is non-convex and as solver we adopted a
genetic algorithm [21]. We generated an initial population

1The GII is the ratio between the minimum and the maximum singular
values of the Grasp Matrix G: GII = σmin(G)/σmax(G). This index
approaches 1 when the grasp is isotropic (optimal case), and falls to zero
when the grasp is close to a singular configuration. For more details on the
computation of the Grasp Matrix the reader can refer to [19].
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(a) (b) (c) (d)

Fig. 2: Decision variables of the optimization problem in Eq. (2): a) θR and θL express rotations of right and left dovetail
joints, respectively. Joint axes point towards the palm of the hand; b) d is the distance between the object center and the scoop
center; c) γ represents a rotation referred to the scoop frame around the z-axis of the object reference frame; d) α represents
a rotation referred to the scoop frame around its x-axis. The axes are represented in red (x), green (y), and blue (z).

of 50 individuals where the genes represent our constrained
variables in (1). We adopted (2) as a fitness function. The
best individuals were chosen using the Tournament Selection
to speed up the entire process. After each generation, we
generated the children with a scattered crossover function,
such that the variables are inherited by the new individuals
with a random binary vector. We adopted an adaptive mutation
algorithm that randomly generates adaptive directions for the
last successful or unsuccessful generation. The algorithm stops
when the average relative change in the fitness function value
is less than a certain threshold δ. We assumed δ = 0.05. We
noticed that, in the worst case, the algorithm stops after the
10th generation.

The grasp simulations needed to solve the optimization
problem were carried out using the SynGrasp MATLAB
Toolbox [22], in which we defined the model of the SSG
depicted in Fig. 2. The optimization algorithm takes as input
the normal to the plane on which the scoop should slide
and the point cloud of the object to be grasped. Then, the
hand model is rotated in the frame of the selected plane and
for each combination of decision variables selected by the
solver, a grasp is generated by closing the simulated SSG
over the model of the object obtained from the point cloud.
To compute the contact points necessary to evaluate the GII ,
we developed a contact detection algorithm implemented in
SynGrasp that progressively closes the hand over the object,
and geometrically finds the final contact points. More details
on scene segmentation and grasp execution are in Sec. II-C.

To better characterize the contribution of the second term
in (2), we analysed the results of the optimization carried out
with two different objective functions:

fo1 = GII(x), fo2 = GII(x) +
Ascoop(x)

Atot
.

We acquired the point cloud of 11 different objects (see
Table II). We ran the optimization algorithm five times for
each objective function, and for each object, considering the
object always in the same pose. We noticed that the presence
of the second term remarkably affects the solutions found for
the distance d between scoop and object centers. Obtained
results are reported in Table I and show that both the mean
values and the standard deviations of the distance d are lower

TABLE I: Optimization results for the variable d averaged
over 5 trials for each condition.

Object Obj. d (mm) Object Obj. d (mm)
fct. fct.

apple fo1 28.2(±4.26) banana fo1 8.45(±10.7)
fo2 9.39(±1.45) fo2 0.47(±1.82)

bowl fo1 11.1(±15.1) chips fo1 26.4(±10.7)
fo2 0.22(±2.37) can fo2 21.2(±0.89)

spring fo1 3.59(±7.03) plastic fo1 20.5(±8.93)
clamp fo2 0.53(±0.92) funnel fo2 4.57(±0.91)
gelatin fo1 11.2(±8.11) mug fo1 24.9(±13.5)
box fo2 0.8(±0.51) fo2 12.3(±5.27)
pasta fo1 18.9(±8.72) screw- fo1 4.74(±1.83)
pack fo2 9.49(±3.56) driver fo2 1.36(±0.73)
toy fo1 3.39(±1.66)
dolphin fo2 1.67(±0.83)

when the second term is present. A lower average distance
translates into a pre-grasp pose in which the gripper is closer
to the object, and thus the scoop is exploited more. Lower
standard deviations, instead, indicate that fo2 gives more
repeatable and reliable solutions, increasing the robustness of
the algorithm [23]. Using the optimization results reported in
Table I, we made a short comparison between fo1 and fo2 in
terms of grasp success rate in real experiments. We chose 3
objects in the dataset (apple, chips can, box) and performed
5 trials per object, per function. The success rate obtained
when using fo2 (93%, 14 out of 15) is remarkably higher
with respect to that achieved with fo1 (60%, 9 out of 15).

C. Scene segmentation and grasp execution

We adopted the Object Recognition Kitchen Tabletop
pipeline [24], to recognize the planes that are present in the
scene (captured through an RGB-D camera), and identify a
cluster of 3D points belonging to the object. The extraction
of the cluster is performed using the Point Cloud Library
(PCL) [25], that allows to process the point cloud coming from
the camera. The point cloud of the object is then opportunely
processed using the Crust algorithm to reconstruct the object
shape [26].
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Fig. 3: Simulated result of the optimization and corresponding real experimental trial for a cylindrical object (chips can) grasped
from the table (left), and for a spherical object (apple) grasped by sliding the gripper over a vertical wall (right).

Once the main features of the scene are correctly detected
and the sliding plane is selected, the grasp planning algo-
rithm based on the optimization problem in Eq. (2) can start
searching for the optimal pre-grasp pose, that we indicate with
x∗ = [θ∗R, θ

∗
L, d

∗, γ∗, α∗].
Based on the result of the optimization, the execution of the

grasp proceeds as follows. The orientation of the fingers is set
using the two servo motors to achieve θ∗R and θ∗L. Then, the
robot arm supporting the SSG is moved to let the scoop rotate
of an angle γ∗. Hence, a hybrid force-velocity controller is
implemented such that the SSG moves towards the surface to
slide on until it touches the surface itself. Upon termination,
the scoop is moved towards the object at a constant speed ~v
parallel to the surface, while maintaining a constant force in
the direction normal to the surface. During its sliding motion
towards the object, the end-effector is rotated with respect to
the table surface by an angle α∗. Thus, the angular velocity of
the robot end-effector is computed as: ~ω(t) = (~v(t)/d(t)) ·α∗,
where d(t) is the distance between the object and the hand.
Once the distance between the hand and the object reaches
the desired value d∗, the gripper controller flexes the fingers
until they touch the object. Then, the scoop is actuated, and
the object is pushed against the palm until it is caged.

Two examples of the simulated outcomes of the optimiza-
tion and their real counterparts are shown in Fig. 3. While the
cylindrical chips can is grasped from the table, the apple is
grasped sliding the scoop over the wall.

III. EXPERIMENTAL RESULTS

The experimental setup, shown in Fig. 4, included a LBR
iiwa 7 robot arm (KUKA AG), a Gamma 6-axis force-
torque sensor (ATI Industrial Automation, Inc.), and the Soft
ScoopGripper attached to the end-effector [5]. A Kinect One
RGB-D camera (Microsoft) was used to detect objects and
planes in the scene as described in Sec. II-C.

The adopted dataset of objects is shown in Fig. 4 and
described in Table II. The objects were chosen to have a wide
range of sizes, weights and shapes and most of them come
from the YCB Dataset [27]. The apple, the gelatin box, and
the chips have paradigmatic shapes (sphere, cuboid, cylinder);
the banana, the spring clamp, and the screwdriver have a small
height and diverse shapes; the pasta pack is heavy; the toy
dolphin is deformable; the funnel has a complex shape and
can rotate when touched; the mug and the bowl are hollow.

Fig. 4: Experimental setup and dataset of objects. (A) Soft
ScoopGripper, (B) ATI F/T sensor, (C) KUKA LBR iiwa, and
(D) Kinect. Objects are indicated with numerical IDs and their
properties are reported in Table II.

The cracker box was only used in Experiment 3 as a support
for another object.

Three experiments were performed to test the grasp plan-
ning algorithm explained in Sec. II. Experiment 1 was meant
to test the effectiveness of the grasp planner when dealing with
objects in contact with just one surface in the environment, i.e.,
laying on a table. In this case, the success rate over 11 different
objects, picked up 10 times each, was evaluated in correlation
to objects’ characteristics. Experiment 2 aimed at testing the
scoop grasp in situations in which the object is in contact
with two different surfaces, i.e., table and wall. Here, the most
relevant aspect to study was where to slide the scoop to obtain
higher success rates, given objects’ features. Experiment 3
had the objective of showing the applicability of the proposed
grasping strategies in real world scenarios, including grasping
in clutter or inside boxes. In all the experiments, a grasp was
considered successful if the object was picked up and moved to
the final position without falling. Otherwise, it was considered
unsuccessful.
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TABLE II: Dataset of objects.

ID Object Weight (g) Size (mm)

1 banana (YCB) 66 36× 190
2 apple (YCB) 68 75
3 toy dolphin 84 80× 200× 90
4 spring clamp (YCB) 59 90× 115× 27
5 pasta pack 510 65× 114× 182
6 metal mug (YCB) 118 80× 82
7 metal bowl (YCB) 147 159× 53
8 cracker box (YCB) 411 60× 158× 210
9 gelatin box (YCB) 97 28× 85× 73
10 screwdriver (YCB) 98.4 31× 215
11 chips can (YCB) 205 75× 250
12 plastic funnel 21 125× 115

Fig. 5: Experiment 1: grasp success (top) and failure (bottom)
of the funnel.

A. Experiment 1: scoop grasp exploiting a table

First, we decided to analyze the case where the object is
placed on a table, far from any other possible constraint.
The scene segmentation algorithm recognizes that no walls
or inclined planes are exploitable by the SSG. Then, the
optimization problem is solved considering that the scoop will
slide on the table and the constrained variables are referred
to the reference frame placed on the table itself. The grasp is
executed as explained in Sec. II-C and two trials (a success and
a failure) are shown in Fig. 5. We carried out 110 trials with
this setup, 10 for each object. The third column of Table III
shows the obtained success rates.

TABLE III: Success rates obtained in Experiment 1 and in the
two conditions tested in Experiment 2.

ID Object Exp. 1 Exp. 2 (wall) Exp. 2 (table)

1 banana 10/10 3/6 5/6
2 apple 10/10 3/3 3/3
3 toy dolphin 10/10 6/6 6/6
4 spring clamp 9/10 8/18 16/18
5 pasta pack 4/10 7/18 12/18
6 metal mug 10/10 3/3 3/3
7 metal bowl 10/10 3/3 3/3
8 gelatin box 8/10 6/18 16/18
9 screwdriver 6/10 1/6 3/6
10 chips can 9/10 9/9 9/9
11 plastic funnel 8/10 7/9 9/9

TOTAL 94/110 56/99 85/99

Fig. 6: Experiment 2: grasps from the wall: only the wall
constraint is exploited (top); the scoop slides on the wall and
the fingers slide on the table and grasp the object thanks to
their compliance (bottom).

B. Experiment 2: scoop grasp exploiting a table or a wall

The second experiment consists in grasping objects which
are constrained from two sides. The objects were placed close
to a vertical wall and we tested two different types of grasp
approaches: i) scoop sliding on the wall, towards the object,
ii) scoop sliding on the table towards the object. In the first
case, the optimization algorithm is solved considering that the
sliding surface is vertical, thus, in the simulation, the hand is
rotated to approach the object from above.

In both approaches, depending on the desired scoop ori-
entation, the fingers might end up touching the constraint
perpendicular to the exploited one, during their closure. To
ensure a gentle slide and avoid a collapse of the fingers over
the surface, we had to properly set the boundaries of the
optimization variable d, based on the length of the fingers.

The two conditions were tested with the same 11 objects that
were used in Experiment 1. Each object was placed in a certain
orientation with respect to the environmental constraints, with
one side touching the wall and one touching the table. Then
it was grasped with the two different approaches. While in
Experiment 1 we performed 10 trials for each object, in
Experiment 2 we performed 3 trials for each possible object
orientation with respect to the environmental constraints. Ob-
jects with a rounded shape (apple, mug, bowl), for example,
were tested 3 times per strategy as they have only one possible
orientation with respect to the wall, without considering them
upside-down since the apple is almost spherical and for the
other two objects we want to keep the hollow part up. The
box, instead, as well as the pasta pack and the spring clamp
were tested in 6 different orientations. Obtained results are
summarized in the fourth and fifth columns of Table III.
Successful trials obtained letting the scoop sliding on the wall
and on the table are shown in Fig. 6 and in Fig. 7, respectively.

C. Experiment 3: use cases

Experiment 3 deals with use case scenarios. In particular,
we analysed cases where the surface of an object is used to
carry out a scoop grasp (Fig. 8a) and cases where the scoop is
used inside a box (Fig. 8b). Two additional objects were used:
a candy tube (18 × 228 mm, 12 g) and a box (74 × 153 ×
125 mm, 93 g). A total of 9 experiments were performed
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Fig. 7: Experiment 2. Successful grasp of the pasta pack (top)
and of the funnel (bottom) exploiting the table.

(a) (b)

Fig. 8: Experiment 3. (a) Scoop grasp exploiting another object
(cracker box). (b) Scoop grasp inside a box.

for each use case (6 for the box, and 3 for the candy tube),
i.e., one test for each possible object orientation. In the first
scenario, the surface of the cracker box was used as a sliding
plane, and we obtained 8 successes out of 9 grasps. The second
scenario involved grasping an object inside a box, exploiting
also the internal walls as additional constraints. In this case,
we achieved 7 successes out of 9 trials.

IV. DISCUSSION

Previously presented results indicate that the SSG can grasp
a wide range of objects with the same strategy, exploiting
hand reconfigurability, and embedded and environmental con-
straints. Considering all objects grasped with the configuration
obtained with our optimization algorithm, 250 out of 326
grasps were successful, with an overall grasp success rate of
about 77%. However, the conducted experiments are different
in nature and need to be evaluated in detail.

A. Experiment 1: The scoop grasp strategy works well for
different objects constrained only on one side.

The overall success rate of Experiment 1 is about 85%. This
means that the adopted scoop grasp strategy works fine with
different objects in different positions. In the following we
will analyse in detail the relation between the success rate,
the object features and the optimization variables.

In Fig. 9, we report a matrix of scatter plots and histograms
of the data related to Experiment 1, which are gathered
by dividing each variable into two groups: successful and
unsuccessful grasps. Success rates are reported with respect
to x and the objects’ features. The selected properties are the
object’s weight and height; the second one is dependent on
the object’s pose.

As we can notice, in the first two histograms related to
θR and θL, the workspace of the fingers is spanned in an
unbalanced manner. Indeed, 76 out of 110 trials were per-
formed exploiting ranges of the variables θR and θL belonging
respectively to [−21◦, 0◦] and [0◦, 21◦]. This is mainly related
to the objects’ height. Indeed, we can notice a correlation
between the variation in height and the use of a certain range
of θR and θL. Shorter objects are easily wrapped by caging
the fingers towards the scoop, i.e., maintaining the two angles
in a small interval near zero degrees. On the other hand, taller
objects (such as chips can and pasta pack) are successfully
grabbed by rotating the fingers in the ranges [−120◦,−50◦]
and [50◦, 120◦] to push the object on the scoop towards the
palm (see also Fig. 3).

In 56.4% of experiments, the optimization algorithm pro-
vided an object-hand distance d in the range [0, 5] mm. These
low values are mainly due to the effect of the second index
introduced in the cost function, which tends to maximize the
portion of the scoop area occupied by the object. No particular
trends link the value of d to a failed grasp.

The variable γ, indicating the direction of the scoop ap-
proach towards the object, most of the times varies in the
range [−60◦, 150◦]. The reason for this trend is related to
the workspace of the robot arm. The failure trend is equally
distributed across the range.

There are no remarkable trends for the variable α.
Lastly, as the weight increases, inevitably, the success rate

will tend to zero once the payload value supported by the
scoop is exceeded. In fact, 37.5% (6 out of 16) of failed grasps
are related to the weight of the object (pasta pack).

B. Experiment 2: when the object is constrained on two sides,
exploiting the table is most of the times more convenient than
exploiting the wall.

In both the conditions tested within Experiment 2, the apple,
the bowl, the metal mug, the chips can, and the toy dolphin
were successfully grasped in all the orientations.

Short objects such as the banana, the gelatin box, and the
screwdriver resulted difficult to be picked from the wall. This
is mostly due to the fact that the SSG fingers are rather long
and they need to be closed before reaching the object with the
scoop to avoid their collapse over the table during the closure
motion. A longer scoop (or shorter fingers) would avoid this
problem. In general, a trade-off needs to be found. A longer
scoop could facilitate the grasp from the wall, but, at the same
time, might complicate the one from the table. The screwdriver
was the object in the dataset picked up only once after sliding
on the wall. The spring clamp was successfully grasped in
almost half of the cases, and in two of these, the wall grasp
succeeded, while the grasp from the table failed. Heavy objects
like the pasta pack are very difficult to be picked up from the
wall. One of the failed grasps of the pasta pack is shown in
the top part of Fig. 10.

The grasp from the table failed only with the heavy pasta
pack and with short objects (banana, gelatin box, spring clamp,
screwdriver). The bottom part of Fig. 10 shows the failure
obtained with the screwdriver: also here, like in the case of the
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Fig. 9: Success and failure rates related to pre-grasp pose variables ([θR, θL, d, γ, α]), and object characteristics (height h and
weight w). Notice that the y-axis of the histograms reports the values of success and failures rates, going from 0 to 0.75 (see
the y-axis label in the top left panel). All angles are expressed in degrees, the height in m and the weight in kg. The light
yellow and light cyan boxes highlight the correlation between the orientations of the fingers (θR, θL) and the object height (h).
The Pearson correlation coefficients ρθRh, ρθLh are -0.82 and 0.79, respectively: the higher is the object, the greater are the
absolute values of the angles.

Fig. 10: Experiment 2: grasp failures. (top) Pasta pack reached
from the wall. (bottom) Screwdriver from the table.

grasp from the wall, the fingers close before the scoop reaches
the object. In general, the results of Experiment 2 show that
when it is possible it is better to choose to grasp objects from
the table (success rate: 86%) rather than from the wall (success
rate: 56%). This is also due to the fact that while in the first
case the scoop is perpendicular to the direction of the gravity,
in the second, the weight of the object goes entirely on the
fingers.

In contrast with Experiment 1, in which the hand grasps
objects that are constrained only on one side, in Experiment 2
the second constraint can help to push the object on the scoop.
This was shown to be particularly useful when the scoop slides
on the table. Remarkable examples are the funnel and pasta
pack (see Fig. 7). The first one was grasped in the only pose
the gripper could not grasp it in Experiment 1 (Fig. 5). The

pasta pack was grasped 12 times out of 18, with a success rate
of almost 67%, instead of 40%.

C. Experiment 3: the scoop grasp can be applied in real-world
scenarios with constrained objects.

Experiment 3 had the objective of testing two possible
applications of the scoop grasp. In the first, an object was used
as a sliding surface to grab another one attached to it. This
simulates a situation in which the object to grasp is so close to
another that grasping it with classical grippers and strategies
might be ineffective, unless using a very precise positioning
of the gripper or using pushing motions to divide the objects.
Thanks to the SSG we can use a single motion to achieve
the grasp. Sliding between two objects, the scoop manages to
separate them and grasp the object of interest while keeping
the other in almost static conditions. In the 9 trials, there was
only 1 failure, when the candy tube was put with the longest
side attached to the cracker box. As discussed above, short
objects are difficult to be picked from a surface perpendicular
to the table.

In the second scenario, the object was placed inside a box,
simulating a situation in which there are multiple environmen-
tal constraints. The task was to slide on the box bottom surface
and grab objects by exploiting the box walls. In this case, also
the corners can be used (object constrained from three sides).
The exploitation of the additional surface is made possible by
the reconfigurability of the fingers (see Fig. 8b), which allows
avoiding collisions with the box wall. The grasp succeeded
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in 7 out of 9 trials. The 2 failures were recorded with the
candy tube. The first one was due to the box size that did not
permit the hand to slide under the object. The second one was
related to the box inclination that did not allow the candy tube
to stand in a vertical position.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to grasp objects
exploiting the embodied constraint (a scoop) and the reconfig-
urable fingers of a soft gripper. We implemented the so-called
“scoop grasp”, where the soft fingers are exploited to cage
the object on the inherent constraint while it slides under the
object itself.

Through the use of an optimization algorithm taking as
input the point cloud of the object to be grasped, we searched
for the best configuration of the fingers and the best pre-
grasp pose for each object. We shaped the cost function of
the optimization problem such that the grasp is robust and
the embodied constraint is efficiently used. Even though the
proposed algorithm is thought to be used with a particular
gripper, the SSG, the general approach of combining two
terms, one considering the grasp quality and one taking into
account the actual exploitation of the embedded constraint,
could also be applied to other similar devices.

We performed three different experiments over various ob-
jects. Experimental results show that reconfigurable soft grip-
pers with embedded constraints represent a viable alternative
to more complex soft hands if used with grasping strategies
that allow exploiting their features. Reconfigurability allows
grasping a variety of objects, whereas the use of the scoop
allows exploiting the surfaces in contact with the objects. The
intrinsic and passive adaptability of the hand is key to the
success of the scoop grasp.

In future work, we will study whether a synergistic approach
combining hand design and grasp planning can lead to im-
proved success rates. We will investigate how to adapt the
hand design (e.g., scoop length, joints stiffness, finger length,
etc.) to the characteristics of the objects, possibly introducing
variables related to the hand design in the optimization prob-
lem. Future research will also focus on the development of an
algorithm able to determine on which plane the SSG should
slide on based on the detected scene.
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