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Epidemic spreading in modular 
time-varying networks
Matthieu Nadini1,6, Kaiyuan Sun2, Enrico Ubaldi  3, Michele Starnini4,5, Alessandro Rizzo  6 
& Nicola Perra7

We investigate the effects of modular and temporal connectivity patterns on epidemic spreading. To 
this end, we introduce and analytically characterise a model of time-varying networks with tunable 
modularity. Within this framework, we study the epidemic size of Susceptible-Infected-Recovered, SIR, 
models and the epidemic threshold of Susceptible-Infected-Susceptible, SIS, models. Interestingly, 
we find that while the presence of tightly connected clusters inhibits SIR processes, it speeds up SIS 
phenomena. In this case, we observe that modular structures induce a reduction of the threshold with 
respect to time-varying networks without communities. We confirm the theoretical results by means 
of extensive numerical simulations both on synthetic graphs as well as on a real modular and temporal 
network.

Network thinking has become a prominent and convenient paradigm to unveil the properties of complex systems. 
Such a paradigm has been rapidly enriched, giving rise to variants that account for inherent features of real com-
plex systems inferred by the availability of large, often time-resolved datasets1–4. Three are the main features that 
have captured the attention of researchers in the area. The first is heterogeneity in the statistical distributions of 
key topological properties such as the number of connections per node (degree) and the intensity of interactions 
(weight)3,4. This property is one of the hallmarks of complexity and is linked to a range of non-trivial dynamics3,5. 
For example, heterogeneity in the connectivity patterns makes networks extremely fragile to the spreading of 
infectious diseases and malicious attacks6,7. The second feature regards the presence of modules and communi-
ties8. Available datasets have highlighted that real networks are organized in modules, or communities, whereby 
the density of links within the community is much greater than the density of links between communities. On the 
one hand, communities can be treated as fairly independent entities within a large network, like the behaviour of 
different organs within the same body. On the other hand, from time to time, phenomena originating in a com-
munity may involve a huge portion, if not all, of the network. This is for example the case of pandemics originat-
ing from local outbreaks6,9–11. Nevertheless, the role played communities is still ambivalent. For example, the 
presence of communities might slow down or speed up the propagation of a disease and facilitate the spreading 
of social norms12–20. Detecting communities in a real system is not a trivial task, due to their fuzzy, vanishing, and 
overlapping nature. Also, in most of the available datasets communities are not explicitly labeled, so the validation 
of community detection algorithms cannot often be rigorously carried out8,21. Finally, networks are characterised 
by non trivial temporal dynamics22,23. The propensity of nodes to initiate and to attract interactions per unit time 
is typically heterogeneously distributed24,25. The same applies to the duration and the time interval between con-
nections13,26. Furthermore, the creation or renewal of interactions might be correlated, and the dynamics driving 
the temporal evolution of networks are function of the time-scale considered27,28. However, the large majority of 
studies on dynamical processes unfolding on networks have been conducted under the hypothesis of time scale 
separation which effectively neglects all such features. In particular, the evolution of the process and the evolution 
of network are considered to take place at well-distinct time scales. Within this paradigm two opposite limits have 
been considered. In the first case, the dynamical process is assumed to be much faster than the evolution of the 
network. This is the limit of quenched/static networks29. Here, networks are fully characterised from an adjacency 
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matrix, Aij whose entries are non-zero for all connected pairs i − j3. The second case instead, is the opposite limit 
where an annealed version of the network can be considered and averaging (mean-field) techniques can be 
applied30–32. Annealed networks are fully characterised by an average adjacency matrix Ak k,i j

 describing the prob-
ability of connection for nodes of degree ki and degree kj

33. In our case instead, the time scale regulating the 
dynamical process and the evolution of the network are comparable, the time scale approximation is not valid. 
This is the regime of time-varying networks23. Interestingly, the temporal nature of interactions might inhibit or 
facilitate spreading processes evolving at comparable time-scales11,24,34–46. The effects introduced by communities 
and time-varying connectivity patterns on dynamical processes have been mostly scrutinised separately. However, 
as few recent works pointed out, the two attributes are connected and their interplay introduces non-trivial 
effects, such as segregated behaviours and formation of hierarchical structures47; or the intricate competition 
between topological and temporal correlations48. The presence of groups, think for example the interaction net-
work of students in a school, introduces specific dynamics that deeply affect spreading processes. A thorough 
modelling and study of these phenomena may be useful to define prioritisation of interventions and containment 
strategies in epidemic spreading49.

Altogether, these observations call for a general modelling framework aimed at characterising both features 
and single out their effects on real networks. The model presented in this paper leverages on the paradigm of 
Activity Driven Networks (ADNs) to model realistic temporal networks where the node and link dynamics coev-
olve at comparable time scales24,50 and includes the modularity phenomena, whereby connection patterns can be 
set to preferentially occur within a given community, rather than outside the community toward the rest of the 
population. While the coevolution of node and link dynamics is inherently considered in ADNs by construction, 
modularity is here modelled by a single parameter that regulates the interplay between the link formation within 
and outside of the community. In the context of epidemic processes on time-varying networks, our model is first 
characterised analytically. Then it is used to study the behaviour of different contagion processes on synthetic 
networks, and on a large, time-resolved dataset of scientific collaborations. Results and methods are discussed in 
detail in the following sections.

Results
Here, we study the effect of modularity (i.e., the presence of communities in the network) on time-varying net-
works. To this extent, we introduce a model of time-varying networks with tunable modularity, able to capture 
several features of real temporal graphs. We derive an analytical characterisation of the model, and we study the 
behaviour of the Susceptible-Infected-Recovered (SIR) and the Susceptible-Infected-Susceptible (SIS) epidemic 
processes unfolding on its fabric51. Remarkably, while the presence of tightly connected clusters inhibits SIR pro-
cesses, it favours the spreading of SIS-like diseases lowering the epidemic threshold. Interestingly, similar results 
have been recently obtained in models of time-varying networks characterised by correlated topological features 
induced by reinforcement of specific ties42. We confirm the theoretical picture emerging from synthetic networks 
by means of extensive simulations on a real word dataset of scientific collaborations within the American Physical 
Society (APS). Our results contribute to characterise the mechanisms, and their interplay, behind the complex, 
and often contradictory, behaviour of dynamical processes unfolding on real networks.

Modular activity driven networks. The system under investigation is composed by N nodes. Each node i 
is characterised by an activity rate ai, that describes its propensity to engage in social interactions with other 
nodes. To capture empirical observations performed in a wide set of systems ranging from R&D to online inter-
actions networks25,38,52,53, we consider activity rates heterogeneously distributed, and extracted from a continuous 
functional form F(a) = Ba−ν, where a ∈ [ε, 1] and ε = 10−3 to avoid divergence in the distribution. Furthermore, 
each node is assigned to only one group/community. To take into account empirical evidences, the size of each 
community is extracted from a heavy-tailed distribution, i.e. P(s) = Cs−ω with ∈s s N[ , ]min

8,54. Therefore, we do 
not limit ourselves in studying a fixed number of modules55, whilst their number is driven from the model’s 
parameters. The assignment of nodes to communities is done as follow. A community of size s is extracted. The ID 
of s nodes is progressively assigned to the community. The processes is repeated until all N nodes are assigned to 
one community. Very rarely, all nodes can be perfectly assigned to the extracted community sizes. Indeed, in the 
last extraction we might have available only a fraction of the nodes necessary to fill the community. However, the 
average value of s is much smaller than the total number of nodes, thus the actual size of the last community can 
be only slightly smaller than the extracted value. The empirical distribution of community sizes in the network 
will then follow P(s). Given these settings, a generative network model is defined by the following steps (see 
Fig. 1).

•	 At each time t, the network, Gt, starts with N disconnected nodes.
•	 With probability aiΔt each vertex i is active and willing to create m connections.
•	 Each link being generated points with probability μ within the node’s community, and with probability 1 − μ 

to one of any other groups. In both cases, the target node j of the link is randomly selected in the target 
community.

•	 At the next time step t + Δt all the edges in Gt are deleted.

All the interactions have a constant duration Δt. In the model, neither self-loops nor multiple edges are 
allowed. In the following, without loss of generality, we fix Δt = 1. Furthermore, we consider the case m = 1.

Given an heterogeneous distribution of activity, at each time step, the model generates a random, structureless 
network in which few nodes are active. The modular features of the network emerge integrating connections in 
time. Such time-integrated properties, at different time regimes, can be computed analytically. In the following, 
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we will report the results for the evolution of the average number of connections of each node 〈ki(t)〉 (aver-
age degree) and the overall degree distribution ρ(k). The complete set of results is shown in the Supplementary 
Information (SI).

To solve the average degree’s dynamics, let us introduce the effective activity = + 〈 〉a a ai i  (where 〈a〉 is the 
average value of the activity distribution) and the mixing parameter μ′ = 1 − μ. We refer to the degree of node i at 
time t as k(ai, s, t), where s is the node’s community size. By defining an activity class as the group of nodes featur-
ing similar activity values a, we set the average in-community degree 〈kc(a, s, t)〉 to be the average number of 
connections that nodes belonging to the activity class a and falling in communities of size s have toward nodes of 
their same community. The latter grows as

τ
= −





 −





−










k a s t s t

a s
( , , ) ( 1) 1 exp

( , )
,
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where τ(a, s) is the characteristic time that it takes for the degree kc(a, s, t) of nodes of activity a belonging to a 
community of size s to be ∼ −k a s t s( , , ) ( 1)c , being s − 1 the maximum value of the in-community degree (see 
the Supplementary Information for the evaluation of τ(a, s)).

Similarly, we can define the average out-community degree 〈ko(a, t)〉 as the number of connections that nodes 
of activity class a have outside of their communities at time t. We expect this quantity to be independent of the 
nodes’ community size s so that, for large networks, we can write:

μ= ′
k a t at( , ) (2)o

The average total degree 〈k(a, s, t)〉 can be computed as the simple sum between the two previous equations, 
obtaining
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Three regimes are readily identified: an initial growth in which both the in-community and the out-community 
degrees are growing linearly in time, followed by the slowing down of the in-community degree, which saturates 
to s − 1, and then a further linear regime driven only by the out-community degree growth. Figure 2 shows that 
the numerical simulations perfectly match with the theoretical formulas (see the SI for details).

Noticeably, the long time evolution of the node degree is linear in time and proportional to its activity class a, 
so that we find the asymptotic degree distribution of the system to feature the same functional form of F(a) ∝ a−ν, 
as found in non-modular activity driven networks24,56:

ρ → ∝ .ν∝ ⋅ −F a da k dk k dk( ) ( ) (4)
k a t a t( , )

In Fig. 3, we integrate the network for T = 105 and we plot the three degree distributions. As expected, the 
out-community ρ(ko) and the total ρ(k) degree distributions fall as power laws with exponent −ν. On the other 

Figure 1. Schematic representation of the model. In red, we show active nodes. Straight lines and arcs describe 
links connecting nodes in the same or in different communities respectively. In the bottom right panel we show 
the integrated network obtained as the union of G1, G2, G3.
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hand, the in-community degree ρ(kc) saturates to the community size distribution P(s), as all the nodes reach 
their maximum in-community degree value (s − 1), being that the modules’ size is far smaller than the network 
size = s N N( )max . On the contrary, the out-community degree takes longer times to saturate to its maxi-
mum value − N s s.

It is worth stressing that the results presented in this section apply to the networks obtained integrating links 
over time. A process unfolding on such networks, in general, will be affected by the time-aggregated features of 
the graph. The extent to which this is true, is function of the interplay between the time-scale describing its evo-
lution, τP, and the various τ(a, s). In the limit τ τ a s( , )p  the process would effectively evolve on the instantane-
ous, annealed networks that are characterised by a small average degree and modularity. In the opposite limit 
instead, the process would effectively unfold on static networks obtained integrating links over longer time char-
acterised by high average degree and low modularity. Indeed, the average degree in this regime will be dominated 
by out-community links that make the connections between different communities increasingly stronger, thus 
increasingly destroying the identity of communities. In the limit τ τ∼ a s( , )p  the process would effectively evolve 
on maximally modular networks (for a given set of parameters). Arguably, this is the most interesting regime that 
we will consider in the following.

Epidemic processes on modular activity driven networks. Let us turn our attention on the dynamical 
properties of SIR and SIS processes (see the Methods section for a detailed definition of the two) unfolding on the 
proposed model. Although similar, the two processes are intrinsically different33,57–59. Indeed, SIR processes are 
always characterised by the so called disease-free equilibrium, provided dtN = 0. The illness eventually disappear, 
i.e., I = 0 for t → ∞. SIS models instead allow the existence of an endemic state where a finite and constant frac-
tion of infected individuals permanently colonise the population, i.e., I > 0 for t → ∞. Here, we focus on a central 
concept of contagion phenomena: the epidemic threshold. This quantity defines the conditions necessary for the 
spreading of the illness. In annealed networks, the threshold is determined by the moments of the degree distri-
bution ρ(k). In static graphs the expression is given by the principle eigenvalue of the adjacency matrix57,60,61. In 
time-varying networks instead, the threshold is determined by the interplay between the time-scales of the conta-
gion and network evolution processes24,41,45,50,62–69. In the case of SIR models, we also consider another important 

Figure 2. Time evolution of the average total degree, 〈k(a, s, t)〉, for different activity classes and compared with 
the theoretical function of Eq. 3a,b,c and, evaluated considering a community size equal to the average (i.e. 
s = 〈s〉). The rescaled time is → t at and 〈 〉k at( )  is plotted. Parameters used are: N = 105, ω = 2.1, ν = 2.1, 
smin = 10, μ = 0.9 and T = 105 evolution steps. Each point is an average of 102 simulations.

Figure 3. Plot of the three degree distributions and the theoretical prediction, given in Eq. 4. Parameters used 
are: N = 105, ω = 2.1, ν = 2.1, smin = 10, μ = 0.9 and T = 105 evolution steps.
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quantity: the epidemic size R∞ which is defined as the final ratio of recovered nodes. This describes the fraction 
of nodes affected by the disease.

To develop a deeper understanding, let us derive the mean-field level dynamical equations describing the con-
tagion process in modular activity driven networks. We define the activity block variables Sa,s, Ia,s, and Ra,s as the 
number of susceptible, infected and recovered individuals, respectively, in the class of activity a and community 
of size s at time t (to enhance readability, we omit to notate the dependence on time). This allows us to write the 
mean-field evolution of the number of infected individuals, for a SIR process, in each group of nodes with activity 
a as:

∑

γ λ μ μ

λ μ μ

= − +






+ −
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where Is and I are the number of infected in communities of size s and in the whole network, respectively. The first 
term in the r.h.s. accounts for the recovery of infected individuals. The other four terms account for the probabil-
ity that a Susceptible node in a community of size s connects to an Infected node inside (first) or outside (second) 
its community acquiring the infection, and for the probability that an Infected node of class a′ connects to a 
Susceptible node inside (third) or outside (forth) a community of size s, contracting the disease. For simplicity, 
we consider that N − s ~ N and, at least initially, I − Is ~ I. Summing over all the activities and community sizes, and 
considering only the first order terms in a, Ia,s, Ra,s and their products, we obtain

∑γ λ λ λμ= − + 〈 〉 + Θ + 〈 〉 − 〈 〉d I I a I a a I( ) ,
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where we defined Θ = ∑ aIa a, and Θ = ∑ aIs a a s, . The term 〈 〉 = ∑a N a s/x
s a a s

x
,  describes the moments of the 

activity distribution in any community of size s. The second, auxiliary, equation is obtained from the first by mul-
tiplying both sides by a and summing over all s and a. The epidemic threshold, in principle, can be derived evalu-
ating the principle eigenvalue of the Jacobian matrix of the system of differential equations in I and Θ24,41,45,50,69,70. 
In general, a closed expression for the threshold does not exist. However, we can point out some interesting 
observations.

First of all, the terms associated to Ra,s vanish, implying that, at the first order, the thresholds of both SIR and 
SIS are equal50. Furthermore, the terms in μ weight a comparison between the moments of the activity distribu-
tion in the network with the corresponding quantities evaluated inside each community. If fluctuations of these 
terms are negligible, due for example to very large community sizes or to narrow distribution of activity, the 
equations become equivalent to the case μ = 0. In the limit μ → 0 the network has no modular structure, and the 
threshold, for both SIR and SIS, becomes β γ χ≥ +/ 2/(1 ) as derived with different approaches in refs24,41,45,71. 
We defined χ = 〈a2〉/〈a〉2, where the moments are evaluated over the whole network. As expected, the spreading 
condition is determined by the interplay between the time-scale of the contagion process and the time-scale of the 
network. Furthermore, the threshold is significantly larger with respect to the case in which the disease would 
spread in static or annealed networks generated integrating connections over time24. Indeed, the concurrency of 
contacts in the two time scale separation regimes drastically facilitates the spreading of diseases23,72. It is impor-
tant to notice how the threshold is not function of m even in the case of m > 1. This is due to the fact that we 
absorbed the contact rates in the definition of β. As detailed in the methods section, this is defined as the per 
capita rate of infection. By adopting such definition, we are able to estimate the spreading power of a disease 
independently of possible differences in contacts rates. The expression could be easily changed to explicitly 
account this aspect obtaining λ γ ≥

χ〈 〉 +
/

m a
1

(1 )
24,46,73. In the opposite limit μ → 1 networks are extremely mod-

ular, fluctuations become important and the symmetry between SIR and SIS breaks. In order to understand this 
limit, let us consider first a SIR process started from a single infected node in a community of size s. The large 
majority of connections are towards a small number of vertices in the same group. As soon as the disease start to 
spread within the community the number of infected and then recovered nodes grows, thus the probability of 
links I − I and I − R increases. Such connections cannot help the spreading of the disease. In fact they hamper the 
contagion process. In case instead of a network characterised by smaller values of modularity the growth of 
infected and recovered nodes has a much smaller effect. Indeed, the connectivity between communities would 
guarantee access to larger pool of susceptible nodes to sustain the spreading. From these simple observations we 
can expect that SIR processes are inhibited by highly modular connectivity patterns. Except for few exceptions in 
particular topologies17, this is the case on static and annealed graphs12–17. As we will show below, the same argu-
ments hold also in time-varying connectivity patterns. On the other hand, in case of SIS processes, the repetition 
of contacts does not lead to such “pair annihilation”: contacts between infected nodes do not help the spreading 
of the disease, but they are only temporary (eventually, all infected nodes become susceptible again). Thus, we 
expect that modularity plays a different role in SIS dynamics. This is what has been found also in the case of one 
annealed network model18. Below we will show how this applies also in the case of time-varying networks. In 
order to numerically characterise SIR models, we study the epidemic size, R∞, as a function of β/γ. This quantity 
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acts as the order parameter of a second-order phase transition6. For SIS processes instead, the order parameter is 
the final fraction of infected individuals, I∞

6. The numerical estimation of this quantity is challenging, since it 
requires the precise determination of endemic states. For these reasons, we follow ref.74, measuring the life time 
of the disease, L, that acts as the susceptibility in phase transitions74,75. This quantity is defined as the average time 
it takes for the disease to either die out or reach a macroscopic fraction, Y, of the populations. Without loss of 
generality, we start our simulations by setting 1% of randomly selected nodes as initial infected seed. Other 
parameters are set as: γ = 0.01, m = 1, ν = 2.1, ω = 2.1, N = 105 and Y = 0.5 (see SI for similar plots obtained fixing 
ω = 1.5).

Results obtained from SIR models are represented in Fig. 4A,B, whilst results from SIS models are shown in 
Fig. 5A,B. In Figs 4B and 5B we study different community structure, either by considering a constant community 
size (dashed curves) or by drawing community sizes directly from the community size distribution P(s) (solid 
curves). In general, red curves represents a network with bigger communities than the one represented with blue 
curves.

Figure 4. Panel (A) R∞ as a function of β/γ, for selected values of μ and smin = 10. Vertical black line represents 
the theoretical value of the epidemic threshold for μ = 0 as derived in refs24,71. Panel (B) Rmax, i.e. the max value 
of R∞, as a function of μ. In red curves we set smin = 100, in blue curves smin = 10. In solid curves, we draw 
community sizes directly from the community size distribution P(s). In dashed curves, we fix the community 
sizes as equal to the average value of P(s) for all communities. The 95% confidence interval is in grey. Each point 
is an average of 102 independent simulations.

Figure 5. Panel (A) Lifetime of the disease L as a function of β/γ, for selected values of μ and when smin = 10. 
Vertical lines are the epidemic threshold. Panel (B) Ratio ξSIS = β/γ in correspondence of Lmax, as a function of 
μ. In red curves we set smin = 100, blue curves smin = 10. Each point is an average of 102 independent simulations. 
Note that we avoid to simulate μ = 1 because the criterion we follow for the estimation of the threshold does not 
hold for a network with many connected components.
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For SIR models, Fig. 4A tells us that, as expected, the higher β/γ the higher the epidemic size. The figure also 
confirm the intuitions about the threshold. Indeed, we observe a dependence on μ: the higher μ the higher the 
threshold. However, it is important to notice how such dependence is weak especially when compared with the 
SIS case (see below). Moreover, the higher the fraction of links created between pair of nodes sharing the same 
community (i.e. the higher μ), the lower the epidemic size. This second observation is confirmed studying differ-
ent community structures, as done in Fig. 4B, in which we plot the maximum epidemic size (corresponding to the 
largest value of β/μ in our settings), Rmax, as a function of μ. In the limit μ → 0, we observe that the disease impact 
is the same: the networks behave as if no community structure was present. Instead, when μ → 1, the modular 
structure influences the spread of the disease. As mentioned before, repeating contacts within communities sig-
nificantly narrows the chances of having new infected individuals. Indeed, in SIR models, once a node recovers, 
it cannot be infected again. Repeating contacts with nodes already recovered does not favour the spread of the 
disease. Overall, the main observations are four. (i) Increasing the modularity reduces the epidemic size. (ii) A 
network with, on average, larger modules is likely to yield a higher epidemic size. (iii) The larger the modules the 
weaker the dependence on μ of the epidemic size. (iv) In case of small modules, the distribution of community 
sizes seems to influence the spreading of the disease. In particular, a network organised in small groups of con-
stant sizes leads to smaller epidemic size respect to a network in which the average community size is the same, 
but individual sizes are extracted from a power-law distribution.

For SIS models, the lower μ, the lower the life time L (see Fig. 5). Inter-community links speed up the disease 
spreading and an endemic state, i.e. Y = 0.5, is reached faster. Moreover, the higher μ, the lower the epidemic 
threshold. This last observation, which implies that increasing values of modularity favour the survival of the 
disease, is confirmed in Fig. 5B where we also test the effects of different community structures. In the limit μ → 0, 
there is no community structure and the curves converge to the same epidemic threshold. On the contrary, when 
μ → 1, the community structure becomes increasingly important and influences the spreading. Qualitatively, 
higher levels of modularity diminish the epidemic threshold. This is due to the repetition of the same contacts 
within a community which becomes increasingly more likely. Indeed, in SIS models, reinfection is allowed and 
nodes can become infected many times: communities act as a reservoir for the disease and favour the contagion 
process pushing the epidemic threshold to smaller values. Besides this last point, there are two main observations. 
(i) A network with larger modules is likely to have an higher epidemic threshold. (ii) In case of communities 
with smaller average sizes and high values of modularity, having the community size extracted from a power-law 
seems to slightly increase the threshold. Thus, the disease is able to spread more easily in modular networks with 
communities of similar or equal sizes. With the exception of one data point, this is observed for μ > 0.5 (see the 
dashed blue line in Fig. 5B).

Real networks. Although the modelling framework presented captures realistic activity and community size 
distributions of real networks, it neglects other important features such as burstiness76–80, and more complex tem-
poral/structural correlations81–85. It is then crucial grounding the picture emerging from synthetic models with a 
real world system. To this extent, we consider a temporal and modular network about scientific collaborations in 
the American Physical Society (APS). We study 96940 scholars connected by 692667 links (see the Supplementary 
Information for more details)86. We focus on ten years of data (January 1997–December 2006) coarse-grained at 
a time resolution of one month. To single out the effects introduced by communities on contagion processes, we 
consider also a randomised version of the dataset. Here, the interactions at each time are shuffled, destroying the 
community structure, but the sequence of activation times for each node and the degree distribution at each time 
step are preserved87. In order to make sure that the randomisation process removes topological structures, we 
integrate the two networks over all time steps and we use OSLOM88 to find the communities. The modularity89 of 
the real APS network is Q = 0.6685, and of its randomised counterpart Q = 0.0937. As expected, the degree pre-
serving randomisation reduces the modularity significantly. Using these two networks, we study the dynamical 
properties of SIR and SIS processes unfolding on their structure. In Fig. 6A,B we present the results. The modular 
properties of the real network do not influence the threshold of SIR models. Considering the weak dependence on 
the modularity observed in synthetic networks this results is not surprising. Even more, in this case the maximum 
value of modularity is defined by the data. We cannot increase it manually as done in our model. Nevertheless, the 
presence of communities reduces the impact of the disease, i.e. lowers the epidemic size. In the case of SIS pro-
cesses instead, communities have a larger effect shifting the threshold to smaller values. These results qualitatively 
confirm what observed in synthetic systems.

Discussion
Real networks are characterised by heterogeneous statistical distributions of crucial topological features; they are 
organised in modules/communities; they are subject to non trivial temporal dynamics3–5,8,22,23. It has long been 
acknowledged that such attributes have critical effects on contagion processes evolving on systems’ fabric5. In 
particular, the heterogeneity in the connectivity patterns makes static/annealed networks extremely fragile to the 
spreading of infectious diseases6. Moreover, the presence of communities in static/annealed graphs might either 
slow down or facilitate the propagation of a disease12–18. In particular, community structures are most likely to 
inhibit SIR-like processes12–17. However, in particular networks, such as Autonomous System Graphs, peculiar 
topological properties might have the opposite effect17. The study of SIS processes in the context of modular net-
works has received much less attention. However, at least in the case of one artificial network model, modularity 
has been found to help the spreading18. A note of caution is however important. Indeed, in this paper, modular 
networks are compared with random graphs of different degree distribution. Thus, it is hard to disentangle the 
real effect of modularity on SIS processes in this case. The temporal features of networks have been found to either 
facilitate or hamper the spreading of contagion processes. We refer the reader to ref.90 for a recent compendium 
of epidemic spreading on time-varying networks. The study of the effects of modularity on epidemic spreading 
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unfolding on time-varying networks has been very limited. At the best of our knowledge only one paper so far 
tackled directly this issue55. In this work, an activity-driven network organised in two communities of equal size 
has been considered. In these settings, the threshold is not function of the modularity as each community is a 
good representation of the full network, thus the critical behaviour is the same independently of the number of 
connections between the two modules. Furthermore, the authors found a weak correlation between modularity 
and epidemic size. Starting from all these results, here we aimed to characterise the interplay between modular-
ity and temporal dynamics of networks considering realistic community structures. To this end, we proposed a 
model of temporal networks with tunable modularity and heterogeneous activity distributions. We provided an 
analytical description of time-aggregated properties of such networks, and studied the impact of modular and 
temporal features on epidemic spreading processes. In synthetic networks, we found that modularity reduces 
the epidemic size and threshold in SIR models, slowing down the spreading process. The effect of modularity on 
the threshold is weak and appreciable only for large values of it. In SIS models, modularity reduces the epidemic 
threshold making the system more prone to disease spreading. The dependence on modularity is in this case 
much stronger. The repetition of the same contacts between nodes belonging to the same community acts as a 
reservoir for SIS-like diseases and allows the pathogen to reach an endemic state more easily. Our work is not 
exempt by caveats. The most important limitation, perhaps, is represented by the adoption of Poissonian activa-
tion dynamics, which has been shown to be unrealistic in empirical temporal networks which are characterised 
by bursty behaviours (heterogenous inter-event time distributions)23. Furthermore, not only links are dynamical 
entities being created and terminated, but also nodes may appear and disappear during the dynamics23. Our 
model of modular activity-driven networks does not capture all these aspects of real temporal networks. Thus, 
we confirmed the picture emerging in synthetic graphs by numerical simulations of SIR and SIS models on real 
network, characterised by both modular and temporal features. We selected a co-authorship network in which 
nodes describe authors and links between them capture scientific collaborations. Clearly, such network is not of 
direct epidemiological relevance. Unfortunately, datasets more suitable for the study of the behaviour of spreading 
processes on temporal networks, such as face-to-face interactions, are scarce and quite small in size. Thus, they 
are not the optimal choice to study how temporal and topological properties affect epidemic thresholds which 
are analytically defined in the limit of N → ∞. However, it is important to notice that social networks, in many 
different contexts, are characterised by the wide range of features missing in our simple model3,23. Thus, in the 
spirit of a qualitative comparison, studying the behaviour of contagion processes on co-authorship networks is 
a meaningful exercise. In conclusion, our findings show that on time-varying networks modularity can have 
opposite effects on different classes of spreading processes. Dynamical processes unfolding on real networks have 
been show to exhibit a rich and complex phenomenology, depending on the topological and temporal properties 
of the underlying substrate as well as on the characteristics of the process under investigation. Such complexity 
may be addressed by both the definition of proper generative models, that allows to control the desired features, 
and the study of the processes behaviour in real-world network. Our work is set within this framework, and it 
contributes to shed light on the impact of modular and temporal properties of real networks on epidemic spread-
ing dynamics.

Methods
SIS and SIR models. In both processes nodes are divided in different classes according to their disease sta-
tus. In SIR models nodes are either Susceptible (S), Infected (I) or Recovered (R). Susceptible nodes describe 
healthy individuals. Infected nodes contract the disease and are infectious. Recovered nodes are no longer 

Figure 6. Panel (A) R∞ as a function of β/γ for SIR processes diffusing on APS (cyan circles) and on the 
randomized APS dataset (green circles). Panel (B) L as a function of β/γ for a SIS models evolving on the same 
two networks. Each point is the average of 102 independent simulations started from 1% of random seeds. We 
fix γ = 0.05.
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infected and acquire complete immunity to the illness. The model is fully characterized by two transitions: 
+ →

β
S I I2  and →

γ
I R. The first describes the infection propagation and β is the capita infection rate. This quan-

tity is defined by the average contacts per node 〈k〉 and by the per contact probability of transmission λ, i.e. 
β = λ〈k〉. The second transition describes the recovery process. Infected individuals recover spontaneously and 
permanently with rate γ. In SIS models instead we have just Susceptible and Infected nodes. While the contagion 
process is equivalent to the SIR case, the recovery is different and described by the following transition: →

γ
I S. 

Infected nodes spontaneously return in the susceptible compartment with rate γ.
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ABSTRACT

In this Supplementary Information, we present in a more detailed and comprehensive way the definition of the model, its key
properties and the results (both analytical and numerical) found. Furthermore, we show additional simulations studied in
synthetic networks for SIR and SIS models. Finally, an explanation of the APS dataset is given.

1 The Model
The network is defined by means of the following parameters:

- the total number N of nodes in the network;

- the activity distribution parameters, i.e. the lower cut-off ε and the leading exponent ν , so that F(a) ∝ a−ν for a ∈ [ε,1];

- the lower cut-off smin, the upper limit smax and the exponent ω describing the community size distribution, i.e. P(s) ∝ s−ω

for s ∈ [smin,smax];

- µ is the probability that, once active, a node will connect to a node inside the community, so that µ ′ = 1− µ is the
probability to fire outside the community;

We initialize the network extracting N activity values from the activity distribution F(a) and we then group the nodes in
communities of size s drawn from a size-distribution P(s). Once we initialized the network we let it evolve following the
time-varying activity driven framework. At each time step t we start with N disconnected nodes. Each node gets active with
probability aidt at each time step dt and fire to a randomly chosen node inside (outside) its own community with probability µ

(µ ′). At time t +dt we delete all the edges and repeat the above procedure. Each node i will then have a set of neighbors that
have been contacted or have contacted the node during the network growth. The size of such a set is the integrated degree k of
the node i. Of these k neighbors, kc will be inside the i’s community (in-community degree) and ko = k− kc will be external to
the community (out-community degree).

2 The Network growth
In the integrated network, each node i has a set of neighbors that have been contacted or have contacted the node during the
network growth. The size of such a set is the integrated degree k. Of these k neighbors, kc are inside the i’s community (i.e.
the in-community degree) and ko = k− kc are external to the community (i.e. the out-community degree). Since the model is
memoryless, the in-community degree kc and the out-community degree ko are decoupled and can, in fact, be treated separately.
Even the activity potential ai of each node can be “split” in two components: the in-community activity µai = (1− µ ′)ai

1



and the complementary out-community µ ′ai. Indeed, each node points, on average, a fraction µ of its own events toward the
community, while the remaining µ ′ are directed outside the community itself. Each node experiences a mean field of activity,
µ 〈a〉, coming from the community (provided that the community is large enough) and a supplementary external field µ ′ 〈a〉
coming from the rest of the network.

2.1 The network time scales
As a first insight, let us note that the in-degree time dependence can be easily approximated with a probabilistic consideration.
Each node i of activity ai, within a community of size s, has s−1 available edges. Now, for each time step of the dynamics,
the edge ei j is created with probability µ(ai +a j)/(s−1). Then, on average, each edge emanating from i is activated with
probability c(ai,µ)/(s−1) = µ(ai + 〈a〉)/(s−1), where c(ai,µ) is the number of edges intra-community. The probability
P(ai,µ,s, t) for an edge pointing to i not to be activated after t time steps then reads:

P(ai,µ,s, t) =
(

1− c(ai,µ)

s−1

)t

. (1)

Since the in-degree kc ∈ [0,s−1], we can write:

kc(ai,µ,s, t) = (s−1)(1−P(ai,µ,s, t)). (2)

In the following, we always have the dependency on ai, µ and t, so to simplify the notation we drop most of those parameters:
P(ai,µ,s, t) = P′(s), to avoid confusions with the community size distribution P(s). Also, kc(ai,µ,s) = kc(s) and c(ai,µ) = c.

We note that Eq. 1 gives us an estimation of the characteristic time τ(s) that takes for a node of activity ai to saturate the
in-degree kc→ (s−1). Indeed, we can rewrite Eq. 1 as:

P′(s) = exp
[

t ln
(

1− c
s−1

)]
⇒ τ(s) =−

[
ln
(

1− c
s−1

)]−1

. (3)

So, as expected, the saturation time (i.e. the typical time for kc to be of the same order of s) increases as the activity µai
decreases and/or the community size s grows.
Generalizing the above reasoning, the characteristic time for a community to have the majority of the nodes saturated is obtained
by evaluating the probability Pe(s) to create (on average) an edge ei j in a community of size s in a single evolution step. In
other words, it is the number of edges activated in one step divided by the total number of possible edges in the network:

Pe(s) =
2sµ 〈a〉
s(s−1)

. (4)

The probability for one edge not to be created after t time steps is then:

P̄e(s) =
(

1− 2µ 〈a〉
s−1

)t

⇒ P̄e(s) = exp
[
− t

τc(s)

]
⇒ τc(s) =−

[
ln
(

1− 2µ 〈a〉
s−1

)]−1

, (5)

where τc(s) represents the typical time by which the majority of the nodes of a community has a degree kc ' s.
Note that, in the evaluation of both τ(s) and τc(s), we did not take into account the difference between edges pointing to a

more active node and the ones pointing to a less active one. Nevertheless, this is a simple estimation that, as we will show
later, correctly catches the general behaviour of the in-degree kc for any value of µ , ai and s. Besides, when computing the key
features of the evolving network, we are now able to distinguish the short time range t� τc(s) (in which kc� s for any activity
value ai) and the long time limit t� τc(s) (in which kc ∼ s for any activity value ai).

2.2 The Master Equation and the P(a,k, t)
We can now write down the Master Equation (ME) for the quantities Pc(s,kc) and Po(s,ko), that is, the probability for a node of
activity ai belonging to a community of size s to have degree in (out) degree kc (ko) at time t. In general, ai∆t represents the
probability the node i is active, where ai is the activity rate of node i. Without loss of generality we will assume ∆t = 1. To get
the ME for the in-degree kc distribution, we exploit also the time-dependence for a couple of passages:

Pc(s,kc, t +1) = Pc(s,kc, t)

[
1−µ ∑

j
a j

]
+Pc(kc, t)

[
kc

s
µai +

s−1
s

µ ∑
j�i

a j +µ ∑
j∼i

a j

]
+

+Pc(s,kc−1, t)

[
s− kc

s
µai +

1
s

µ ∑
j�i

a j

]
,

(6)
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where ∑ j∼i and ∑ j�i are respectively two contracted notations for the sum of all the first neighbors of node i and the sum of all
nodes but the neighbors of node i. The first parenthesis indicates the probability that none of the nodes in the network fire.
Third (sixth) term is the probability a node i, in the instantaneous network, is active and fires to a node where, in the integrated
counterpart, there is already (isn’t) a link. Four (seventh) term is the probability a node j not linked to i fires to any of the nodes
but i (fires to i). Fifth factor is the probability a node j already linked to i fires.
After some algebra, ME can be written as:

Pc(s,kc, t +1)−Pc(s,kc, t) =− [Pc(s,kc, t)−Pc(s,kc−1, t)]

(
s− kc

s
µai +

µ

s ∑
j�i

a j

)
. (7)

Now we pass to the continuum limit by considering t� 1 and k� 1. So the l.h.s becomes simply the time derivative with
respect to Pc(s,kc) and, to obtain a proper convergence of the results, we can expand the probability with respect to the
incommunity degree up to second order.
In the regime t� τ(s), we can neglect kc� s and 1/s∑ j�i a j ≈ 〈a〉.

∂Pc(s,kc)

∂ t
= (µa+µ 〈a〉)

[
∂Pc(s,kc)

∂kc
− 1

2
∂ 2Pc(s,kc)

∂k2
c

]
, (8)

where we dropped the ai index since we expect all the nodes of a given activity to behave in the same way. Now a is an
activation rate and in the treatment we assume it takes small values to avoid that two nodes become active together.
The solution of Eq. 8 reads:

Pc(s,kc) =C exp
[
− (kc−µ(a+ 〈a〉)t)2

2µ(a+ 〈a〉)t

]
, (9)

where C is a normalization constant.
By following the same procedure, we recover the same results of Eq. 9 for the out-community degree ko(a, t), by substituting
µ → µ ′ and kc→ ko:

Po(s,ko) =C exp
[
− (ko−µ ′(a+ 〈a〉)t)2

2µ ′(a+ 〈a〉)t

]
(10)

Since N� smax, the out-degree ko� N for any time t of the process, thus we assume that Eq. 10 is valid for all the time scales
analyzed. Also note that, as expected, the net effect of the mixing parameter µ ′ is just a time rescaling of the out-community
and in-community activity, respectively.
Then, in the t ∼ τc(s) time range is not possible to find an analytic formula, however simulations will be run to provide, at
least, a qualitative behavior. In the t� τc(s) time limit the Pc(s,kc) converges to the δ (kc− (s−1)) distribution. In fact, all the
nodes will have all their edges activated and the Pc(s,kc) time derivative goes to zero.

Let us now resume the results found in this section:

Pc(s,kc) ∝

 exp
[
− (kc−µ(a+ 〈a〉)t)2

2µ(a+ 〈a〉)t

]
for t� τc(s) (11a)

δ (kc− (s−1)) for t� τc(s) (11b)

Po(s,ko) ∝ exp
[
− (ko−µ ′(a+ 〈a〉)t)2

2µ ′(a+ 〈a〉)t

]
for ∀t (12)

where we now distinguish between the in-community degree distribution Pc(s,kc) and the out-community degree distribution
Po(s,ko). The latter however, is independent on the community size and we can then define Po(s,ko) = Po(ko).
So far we treated the two probability functions separately when, in fact, kc and ko are bound by the relation k = kc + ko. The
total degree distribution P(s,k) will then be determined by the convolution of both the Pc(s,kc) and Po(s,k− kc):

P(s,k) =
∫ k

0
dkcPc(s,kc)Po(k− kc) (13)
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where we integrate over all the possible arrangements of the kc edges.
In the t� τ(s) limit, by substituting Eq. 11a and 12 in Eq. 13, we sum the two exponents getting:

P(s,k) =C
∫ k

0
dkc exp

[
− (kc−µ(a+ 〈a〉)t)2

2µ(a+ 〈a〉)t
− (k− kc−µ ′(a+ 〈a〉)t)2

2µ ′(a+ 〈a〉)t

]
(14)

where C is, again, a normalization constant.
By combining the two terms and after some algebra we get:

P(s,k) =C
∫ k

0
dkc exp

[
− (kc−µk)2

2µµ ′(a+ 〈a〉)t
− k2−2k(a+ 〈a〉)t− (a+ 〈a〉)2t2

2(a+ 〈a〉)t

]
. (15)

The integration over kc gives:

P(s,k) =C

[
Erf

(
µ ′k√

2µµ ′(a+ 〈a〉)t

)
−Erf

(
µk√

2µµ ′(a+ 〈a〉)t

)]
exp
[
−k2−2k(a+ 〈a〉)t− (a+ 〈a〉)2t2

2(a+ 〈a〉)t

]
(16)

where Erf(x) is the error function evaluated at x.
In the small time limit, if we want to evaluate the P(k) =

∫ smax
smin

dsP(s)P(s,k), we have to consider t�mins(τc(s)). In this way,
for each community we can use Eq. 16 as the true value of the P(s,k). The integration over the different community size s is
then straightforward since the terms are independent on it, giving P(k) = P(s,k). Note that this result holds for any value of µ ,
N and a.
The computation of P(k) in the large time limit (i.e. t� 〈τc(s)〉) is more complicated and we have to assume that kc = s−1 for
each node in a community of size s, otherwise Eq. 11b put everything equal to zero. The Po(s,ko) will still be approximated by
Eq. 12. The integral now reads:

P(k) =
∫ smax

smin

dsP(s)P(s,k) =C
∫ smax

smin

dsP(s)exp
[
− (k− (s−1)−µ ′(a+ 〈a〉)t)2

2µ ′(a+ 〈a〉)t

]
, (17)

The exponential can be written as:

exp
[
− (k−µ ′(a+ 〈a〉)t)2 +(s−1)[(s−1)−2(k−µ ′(a+ 〈a〉)t)))]

2µ ′(a+ 〈a〉)t

]
, (18)

where the rise of new terms proportional to s2 and sk makes it difficult to perform the integral.
We can, however, give a solution for the simple case P(s) = δ (s− s̄), when all the communities have equal size. First of all,

we have, for large times, Pc(s,kc) = δ (kc− (s−1)). Then:

P(s,k) =
{

Po(k− (s−1)) for k ≥ s−1 (19a)
0 for k < s−1. (19b)

When k < s− 1, for sure kc < s− 1 and the delta put everything equal to zero. In the other case kc = s− 1 with a certain
probability Po(k− (s−1)). Finally, equation 17 can be written as:

P(k) =
{

Po(k− (s̄−1)) for k ≥ s̄−1 (20a)
0 for k < s̄−1 (20b)

2.3 The average degree 〈k(a,s, t)〉
We can provide a simple expression for the nodes average degree belonging in different classes. As we already showed in Eq. 2,
〈kc(a,s, t)〉 grows as:

〈kc(a,s, t)〉= (s−1)
(

1− exp
(
− t

τ(s)

))
=

= (s−1)
(
1−P′(s)

)
=

= (s−1)
[

1−
(

1− c
s−1

)t]
,

(21)
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and the 〈ko〉 grows as the mean value of the distribution given in equation 12, and turns out to be independent on s.

〈ko(a, t)〉= µ
′(a+ 〈a〉)t (22)

The average total degree k(a,s, t) for nodes of activity a belonging to communities of size s depends on the time scale we
analyse the problem. For small times (i.e. t� 〈τ(s)〉s):

〈k(a,s, t)〉= 〈kc(a,s, t)〉+ 〈ko(a, t)〉 ≈

≈ (s−1)
(

1−1+
µ(a+ 〈a〉)t

s−1

)
+(1−µ)(a+ 〈a〉)t =

= (a+ 〈a〉)t

(23)

As time grows toward the regime of times comparable to the average (i.e. t ∼ 〈τ(a,s, t)〉s), we cannot approximate the
in-community degree anymore but we use directly equation 2:

〈k(a,s, t)〉= (s−1)(1−P′(s))+ 〈ko(a, t)〉 . (24)

Then, the regime of large times (i.e. t� 〈τ(s)〉s) is:

〈k(a,s, t)〉 ≈ s−1+µ
′(a+ 〈a〉)t ≈ µ

′(a+ 〈a〉)t (25)

The above equations then predict that the average degree has a linear growth proportional to a+ 〈a〉 for short time limit
(equation 23), then a transition for t ∼ 〈τ(s)〉s is followed by a second linear growth, valid for large times, proportional to
µ ′(a+ 〈a〉). These regimes correspond to the initial growth, in which both the in-community and the out-community degrees
are growing linearly in time, followed by the slowing down of the in-community degree which is saturating to s−1. Finally,
the third regime is again linear and it is driven by the µ ′(a+ 〈a〉) coefficient: it means meaning that only the out-community
degree is growing.

2.4 The degree distribution ρ(kth)
Now that we have the expression of the average degree, it is straightforward to write the degree distribution. At all the time
scales we found 〈kth〉 ∝ Ct, where C is a time-independent coefficient. Then, kth ∝ at, and it results in an equal increment in the
activity and in the degree values (da = dkth). If we use the change of variable rule, we obtain:

F(a)da = ρ(kth)dkth⇒ a−ν da = k−x
th dkth⇒ x = ν , (26)

i.e., the degree distribution has the same exponent ν as the activity distribution function.

3 Comparison with numerical simulations
To check the analytical predictions of Section 2 we performed numerical simulation. In particular we realized 100 representations
of a network featuring:

- N = 105 nodes with modularity µ = 0.9 evolving for 105 evolution steps;

- activity potential distributed following the F(a) ∝ a−ν with ν = 2.1 and a ∈ [10−3,1] interval;

- power-law distributed community sizes P(s) ∝ s−ω with ω = 2.1 and s ∈ [10,
√

N].

In order to analyze the collective behavior of the nodes we group them by their activity and community size, thus defining b
classes of nodes. We average over the representations of the network and for each class of nodes b we evaluate:

- Pc(s,k), Po(k), P(s,k) for t� τc(s) and t� τc(s);

- the average degree 〈kc(s)〉, 〈ko〉 and 〈k(s)〉;

- the degree distribution ρ(kth).

In the main discussion, we already showed that some of the above measures have a great agreement with analytical
predictions. To complete the discussion, we add below Fig. 1 which proves that also the in-community probability and the
in-community degree perfectly matches our expectation. In panel B) we display Pc(s,k) for t ∼ τc even if it was impossible
to obtain an exact result, the comparison demonstrates that the in-community probability starts to deviate from a Gaussian
distribution.
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Figure 1. Panels A-C) rescaled Pc(kc) probability distribution as found for a selected node class at different times (legends).
Functions in panels A-B) are rescaled accordingly to the theoretical distribution given in Eq. 11a, i.e., by sending
kc→ k̃c = (kc−〈kc〉)/〈kc〉1/2 and plotting Pc(k̃c)〈kc〉1/2. Panel C) is rescaled accordingly to the theoretical distribution given
in Eq. 11b, i.e., by sending kc→ k′c = kc/〈kc〉 and plotting Pc(k′c)〈kc〉. In panel D) we plot 〈kc〉 for nodes featuring different
activity potential and belonging to communities of different size. The data are rescaled sending the time t→= t/τ and then
plotting 〈kc(t/τ)〉/s. The analytical prediction of Eq. 2 computed for a node of activity a = 〈a〉 and belonging to a community
of size s = 〈s〉. Each point is an average over 102 independent simulations, parameters used are: N = 105, ω = 2.1, ν = 2.1,
m = 1, smin = 10 and µ = 0.9
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4 SIR and SIS processes on modular activity driven networks
We present together all the results about SIR and SIS models obtained in synthetic networks. We start our simulations by setting
1% of randomly selected nodes as initial infected seeds, the other parameters are fixed as γ = 0.01, m = 3, ν = 2.1, N = 105

and Y = 0.5. Panels A) and C) set the exponent of the distribution of community sizes ω = 1.5, while panels B) and D) have
ω = 2.1. The qualitative picture is unchanged due to selecting a different value of ω . The modular structure becomes irrelevant
for µ → 0, whilst it significantly modifies the spread of the disease when µ � 0. Modularity slows down contagion processes
in SIR models, it favors the disease outbreak in SIS models. Moreover, quantitatively, in SIR models the presence of larger
communities lead to higher epidemic size, in SIS models it lower the epidemic threshold. Moreover, in SIS models and when
µ → 1, the epidemic threshold is likely to increase due to major limitations in reaching an endemic size. This phenomenon is
particularly visible in Panel C), solid blue curve.

Figure 2. Panels A-B) take Rmax of each R∞ curve and plot it as a function of µ . Panels C-D) ξSIS, that is β/γ in
correspondence of Lmax, and plot it as a function of the modularity. In red curves we set smin = 100, in blue curves smin = 10.
Solid curves are obtained by drawing community sizes from a power law distribution, 95% confidence interval is in gray.
Dashed curves have a constant community size equal to the average value of the power law. Each point is an average of 102

independent simulations.

7/9



5 Real network: APS dataset
In the data each author of an article is described as a node. An undirected link between two different authors is drawn if they
collaborated in the same article. We used the dataset from Ref1 which spans a period between 1893 and 2006. To have the
average degree in each instantaneous network as comparable as possible (see Fig. 3), we select a period of ten years, from
January 1997 to December 2006. In this time window we register 96940 scholars who create 692667 connections. When we
simulate SIR and SIS models on top of APS temporal network, we use periodic boundary conditions to let the disease dynamics
evolve without late-time constrains.

Figure 3. Average degree for each month in the selected subset of APS dataset (red circles), compared with the global average
of all the ten years considered (solid black line). We label each month with increasing integer numbers from 1 to 120, where 1
represents the beginning of our sample, January 1997, and 120 the end, December 2006. We observe an increasing number of
collaborations through years.

Using OSLOM, in Fig.4A we show that the integrated APS network is modular. Then, we apply the following degree-
preserving randomization technique to destroy the network’s community structure. We choose randomly a source node S1 and,
among its neighbors, we select randomly a target node T1. We do the same for other two nodes S2 and T2. If the two pairs are
equivalent or if a multi-edge will be created, we start back by selecting S1 again and repeating the instructions. Otherwise,
we swap T1 and T2 to have the new undirected links: S1−T2 and S2−T1. The edges are chosen within the same temporal
network and the number of swaps is equal to the number of edges in that instantaneous network. So, the above procedure is
applied for each instantaneous network. At the end, we integrate the randomized temporal network and use OSLOM to detect
the community structure. In Fig.4B, we qualitatively prove that our degree preserving randomization destroys the network’s
community structure.
The options used in OSLOM are: -uw (to study undirected networks); -cp0.99 (to have communities as large as possible); -hr
(to avoid to consider hierarchies); -r100 (to repeat 100 times the community detection). Since OSLOM finds communities in a
non-deterministic way, last option is useful to get rid of stochastic fluctuations and have a more reliable community structure.
Finally, we evaluate quantitatively the modularity of the two networks. For the original APS network, Q = 0.6685, and for its
randomized counterpart Q = 0.0937.
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Figure 4. Panel A) Community sizes probability density function in the original network. Number of communities found is
10825, minimum community size is 1, maximum 91. Panel B) Community sizes probability density function after having
applied the degree-preserving randomization. Number of communities found is 1489, minimum community size is 1,
maximum 222. Note also that the shape of the distribution is completely different from panel A).

References
1. Radicchi, F., Fortunato, S., Markines, B. & Vespignani, A. Diffusion of scientific credits and the ranking of scientists. Phys.

Rev. E 80, 056103 (2009).

9/9


	s41598-018-20908-x
	Epidemic spreading in modular time-varying networks
	Results
	Modular activity driven networks. 
	Epidemic processes on modular activity driven networks. 
	Real networks. 

	Discussion
	Methods
	SIS and SIR models. 

	Acknowledgements
	Figure 1 Schematic representation of the model.
	Figure 2 Time evolution of the average total degree, 〈k(a, s, t)〉, for different activity classes and compared with the theoretical function of Eq.
	Figure 3 Plot of the three degree distributions and the theoretical prediction, given in Eq.
	Figure 4 Panel (A) R∞ as a function of β/γ, for selected values of μ and smin = 10.
	Figure 5 Panel (A) Lifetime of the disease L as a function of β/γ, for selected values of μ and when smin = 10.
	Figure 6 Panel (A) R∞ as a function of β/γ for SIR processes diffusing on APS (cyan circles) and on the randomized APS dataset (green circles).


	41598_2018_20908_MOESM1_ESM
	The Model
	The Network growth
	The network time scales
	The Master Equation and the P(a, k, t)
	The average degree "426830A k(a,s,t) "526930B 
	The degree distribution (kth)

	Comparison with numerical simulations
	SIR and SIS processes on modular activity driven networks
	Real network: APS dataset
	References




